
c© 2015 by the authors; licensee RonPub, Lübeck, Germany. This article is an open access article distributed under the terms and conditions of
the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).

Open Access

Open Journal of Big Data (OJBD)
Volume 1, Issue 1, 2015

http://www.ronpub.com/journals/ojbd
ISSN 2365-029X

Cognitive Spam Recognition
Using Hadoop and Multicast-Update

Mukund. Y. R A, Sunil Sandeep Nayak A, K. Chandrasekaran B

A National Institute of Technology Karnataka, Surathkal, Mangalore 575025, India,
{mukund.mukund16, sunil.nayak133}@gmail.com

B National Institute of Technology Karnataka, Surathkal, Mangalore 575025, India, kchnitk@ieee.org

ABSTRACT

In today’s world of exponentially growing technology, spam is a very common issue faced by users on the internet.
Spam not only hinders the performance of a network, but it also wastes space and time, and causes general irritation
and presents a multitude of dangers - of viruses, malware, spyware and consequent system failure, identity theft, and
other cyber criminal activity. In this context, cognition provides us with a method to help improve the performance
of the distributed system. It enables the system to learn what it is supposed to do for different input types as
different classifications are made over time and this learning helps it increase its accuracy as time passes. Each
system on its own can only do so much learning, because of the limited sample set of inputs that it gets to process.
However, in a network, we can make sure that every system knows the different kinds of inputs available and learns
what it is supposed to do with a better success rate. Thus, distribution and combination of this cognition across
different components of the network leads to an overall improvement in the performance of the system. In this paper,
we describe a method to make machines cognitively label spam using Machine Learning and the Naive Bayesian
approach. We also present two possible methods of implementation - using a MapReduce Framework (hadoop),
and also using messages coupled with a multicast-send based network - with their own subtypes, and the pros and
cons of each. We finally present a comparative analysis of the two main methods and provide a basic idea about the
usefulness of the two in various different scenarios.

TYPE OF PAPER AND KEYWORDS

Regular research paper: Spam, Hadoop, Naive Bayes, Multicast, Machine Learning, Cognition, Distributed Systems

1 INTRODUCTION

A system in a network might receive numerous messages
which do not support any useful cause. A lot of them
are advertisements, and a few of them malicious in na-
ture. This unsolicited message is termed as Spam. These
Spam messages cause the wastage of a system user’s
time and also the resources. E-Mail is one of the com-
mon media where the spamming is considered to be a
serious problem. The spam mails not only contain ad-
vertisements which may be considered harmless but also

play part in malicious activities like phishing, spreading
Trojan viruses etc,. The amount of spam mail grew expo-
nentially over the following years, and today composes
some 80 to 85 percent of all the e-mail in the World, by
a ”conservative estimate” [1].

It would be a great benefit to the system user if the sys-
tem were able to recognize the spam mail before the user
opened it. This ability is called spam recognition. Spam
recognition is a technique which uses machine learning
concepts to train the system to recognize the mail as

16

http://creativecommons.org/licenses/by/3.0/
http://www.ronpub.com/journals/ojbd

Mukund. Y. R, Sunil Sandeep Nayak, K. Chandrasekharan: Cognitive Spam Recognition Using Hadoop and Multicast-Update

spam with reference to its content. Spam recognition can
be applied either on a user machine or on the mail server
itself. These programs which implement spam recog-
nition are called spam filters [2]. They can be applied
either on a user machine or on the mail server itself [3].
The most commonly used filters are Bayesian filters [4],
which use the Bayes theorem to classify the mail as spam
with reference to a probability model constructed on a
known dataset of spam mails [5].

When a system classifies a mail as spam and if that
knowledge gained by that particular system is shared
among the other systems in the network the collective
spam filtering efficiency increases. This method of col-
lective learning between the systems is called cognition
[6].

The spam mails today are being modified so that the
existing filters do not recognize them as spam. The spam
filtering system needs to adapt to this change in pattern of
the spam mail. This can be achieved through the concept
of collective learning. This paper gives the idea of col-
lective learning employed to recognize spam. In doing
so it discusses the overheads encountered and also a new
technique which can be used to overcome that overhead.

In this paper, we make the following research contri-
butions:

1. Collective learning using Multicast-Update: In the
field of spam filtering, a huge part of the work has
been done to improve the existing algorithms used.
Much importance has not been given to the underly-
ing infrastructure. Even though we do not deny that
the work on the algorithms is important, the paper
concentrates on improving or using the infrastruc-
ture and thereby influencing the accuracy and the
robustness of the entire system. An algorithm is
given which uses the simple concept of multicasting
to share the knowledge on spam between the sys-
tems that form a network. This sharing of knowl-
edge increases the richness of the learning in the
individual systems, which makes the systems more
intelligent resulting in a better performance.

2. Collective learning using the Hadoop MapRe-
duce framework: Distributed systems have many
favourable characteristics like scalability, resilience
etc. [7]. The paper also talks about the concept of
a spam filtering system employing a distributed ar-
chitecture. An algorithm is given where the MapRe-
duce framework is used along with a classification
technique to gve us a spam filtering system. This
method conquers certain disadvantages of the ear-
lier proposed Multicast-Update method, like having
to perform the learning seperately for each system,
the network overhead involved in knowledge shar-
ing etc. Thus a spam filtering system is proposed

which has an improved performance and also the
favourable characteristics of a distributed system.

3. Increasing the efficiency of the MapReduce frame-
work for learning problems using a flag: In the pro-
posed distributed method of spam filtering, we see
that the system has to perform a reduce() everytime
a false positive occurs. So to overcome this over-
head a newreduce() function is proposed which
employs a simple technique of checking a flag be-
fore carrying out any reduce() operation. This
method decreases the overhead by a large amount.
The technique of using a flag can be employed
for any application using a MapReduce framework
where the data in the file systems change very of-
ten i,e. where reduce() operations have to be per-
formed very often.

Even though all these methods are given for the appli-
cation of spam filtering. They can be used for any learn-
ing problem, which has to deal with a large amount of
data and where the data is subject to change very often.

The structure of the paper is as follows, section 2 de-
scribes the Naive-bayesian Classifier model, section 3
describes some of the related work, section 4 gives the
algorithm which uses Multicast-Update, section 5 gives
the algorithm which uses the MapReduce framework,
followed by section 6 which gives a mathematical anal-
ysis on the runtime performance and the overheads that
occur. section 7 gives the results of the simulations con-
ducted thus gives an analysis of the classifier algorithm
and also proposed methods for the Mapreduce frame-
work and finally section 8 concludes the paper in accor-
dance with the results obtained.

2 NAIVE-BAYESIAN CLASSIFIER

Spam recognition in most cases involves the Naive-
Bayesian classifier. This classifier uses the factors of
the text such as word count and associated features to
train or build a probabilistic model for each occurrence
of a word. The incoming mail is weighted based on this
probabilistic model and the final weight calculated de-
termines if the mail is spam or not. For instance let us
consider the word ”sales” which occurs in a lot of spam
mails. The Bayesian classifier is trained such that it as-
signs a very high probability of the word being associ-
ated with a spam mail to the word ”sales”. This decreases
the probability of the word being associated with a nor-
mal mail. When the classifier encounters this word it
assigns the weight accordingly and hence is classified as
spam.

The formula by equation 1 gives the probability func-

17

Open Journal of Big Data (OJBD), Volume 1, Issue 1, 2015

tion of the word being associated with a spam mail.

P (S|W) =
P (W |S) · P (S)

P (W |S) · P (S) + P (W |NS) · P (NS)
(1)

where:

• P (S|W) is the probability that the given mail is a
spam, knowing the word ”sales” is in it.

• P (S) is the Total probability that any mail is spam.

• P (W |S) is the probability that the word ”sales” ap-
pears in spam messages.

• P (NS) is the overall probability that any mail is
not spam.

• P (W |NS) is the probability that the word ”sales”
appears in general mails.

3 RELATED WORK

Wang et al. in [8] applies the concept of spam recogni-
tion to the popular social networking site Twitter. Based
on the analysis of the data,he defines the follower and
the friend relationships among the users. There are two
approaches that are discussed a graph based feature and
content based feature approach, In the graph based fea-
tures of the tweet the reputation based feature which is
proposed here has the best performance of detecting ab-
normal behaviour. Applying Various machine learning
algorithms the conclusion is that the Bayesian classifier
has the best performance with respect to the F factor.

The paper by Damiani et al. [9] speaks about a P2P
system where spam is collaboratively detected and fil-
tered. They use a protocol and the hierarchy of user level,
peer level and super-peer level to deal with the spam de-
tection. The paper concludes on the advantages of the
distributed architecture where there is no centralized au-
thority of control. Thus showing us that the P2P mecha-
nism generally applied as sharing technique can be used
to address an important problem like spam recognition.

Piskorski et al. in [11] explores the possibility of us-
ing the linguistic features in a mail for the task of spam
recognition. Dai et al. in [10] give us a Trusted Execu-
tion Emvironment for a cloud computing environment.
The proposed TEE does not have any extra overhead re-
garding the performance of the Virtual Machines used.
It can suppport a wide variety of application security
needs from cryptographic libraries to trustworthy soft-
ware. This type of a secure environment in cloud which
ensures that there is no input given to the systems from
an untrusted system is very desirable in implenting our
method because it is assumed in our method that all the

systems are trustworthy and hence the exchange of spam
knowledge takes place without any security concerns.

Yang et al. in [12] also talk about the Naive Bayes
approach extensively. The paper deals with the various
sub-approaches and the intricacies of Naive Bayesian
methods. A model which is based on the classifier er-
ror weights is proposed and with experimentation it is
shown that the method is effective. Sasaki et al. in [13]
gives us a new spam detection technique based on text
clustering on a vector space model. It applies a spherical
k-means algorithm on all the mails and generates cen-
troid vectors which are further labelled as spam or non-
spam based on the number of spam and non-spam mails
in those particular clusters. A mail is classified based
on the cosine similarity between the mail vector and the
centroid vectors of all the clusters that are calculated and
based on this the mail is classified into the most similar
cluster. Chang in [14] discusses Buisness Intelligence as
a Service, on cloud. The discussion is about providing
an integrated service consisting of the Heston Volatility
and Pricing as a Service (HVPaaS) and the Business An-
alytics as a Service (BAaaS).

Tan et al. in [15] give a collaborative intrusion detec-
tion framework for Big data security. To improve the
accuracy and performance for the IDS the framework
should be able to access the network data of all the in-
dividual systems on the network. They use the MapRe-
duce framework, for the network data summarization.
Chang et al. in [16] propose a framework to achieve
Big data security. They provide a multi-layer security
which is much more effective than the current systems
which give a single solution. It is shown that this frame-
work could isolate and quarantine 97.53% of trojans and
viruses. Garg et al. in [17] talks about how in previous
applications of collaborative spam filtering users shared
the email fingerprint of the mails that are known to be
spam, a new method is proposed where-in the spam fil-
ters of the users are shared as an alternative method for
spam recogniton applications. This new approach has an
advantage of reduced communication among the users.

Kakade et al. in [18] gives us an idea of an SVM clas-
sifier using a MapReduce framework. Priyadarshini et al.
in [19] talks about a Document based CMS on a Hadoop
File system. As given in [17] the concept of collaborative
spam filters is interesting, but the underlying architecture
for that purpose is not very common and easily available
and thus not desirable for a simple spam filtering sys-
tem. The method of using clustering algorithms as given
in [13] takes a large time for clustering, even though ef-
fective the time complexity of the method is undesirable.
P2P networks can be applied to networks consisting of a
large number of systems but not for a small network. As
stressed in [8], [12] the use of the naive-bayesian clas-
sifier for the classification problem is considered in this

18

Mukund. Y. R, Sunil Sandeep Nayak, K. Chandrasekharan: Cognitive Spam Recognition Using Hadoop and Multicast-Update

paper.
The concept of a collaborative IDS given in [15] is a

similar problem compared to the collective spam filter-
ing, but the method requires a lot of additional infras-
tructure for that purpose. It is desirable to develop a
system which does not require extra infrastructure and
also uses the concept of collective learning. The frame-
work proposed in [16] by Chang et al. is very effective
in protecting a certain cloud application against attacks
and can be employed to prevent mails containing viruses
and trojans.

However the spam mails which are more of an incon-
venience rather than a security concern should also be
blocked by the spam filtering system. Considering all the
existing solutions to spam filtering, we propose a unique
method which gives the users a more desirable solution.
The kind of a framework given in [14] can make use
of collective spam filtering. Since the systems involved,
have a smilarity in preferences regarding spam and ham
and also since it is a trusted network, collective spam fil-
tering can be employed to save time of the employees
which is otherwise spent in clearing spam mails. As the
number of employees increase the time saved increases
and so does the impact on the company’s productivity.

Table 1 gives the various solutions for the problem
of spam filtering. However most of these techniques
can be overcome by the spammers, if they can adapt
their sending methods. To develop a system which can
recognize new patterns, the method of using Machine
Learning algorithms is the best approach. The advent
of systems having high computing power and classifiers
which are computationally less expensive, like the naive-
Bayesian Classifier makes the implementation of such
systems easier.

4 ALGORITHM USING MULTICAST-UPDATE

Multicasting is when a system in a network, sends a sin-
gle message to a group of other systems in the network
[20]. This method is more efficient than multiple uni-
casting where the same message is duplicated and sent
separately to each of the system. In multicasting the in-
termediate routers which are connected to the systems
involved in the group do the duplication and forward the
duplicates to the group. In this paper we present mul-
ticasting as one of the methods employed to update the
probability model of the systems in case of a wrongful
classification by the existing probability model. When-
ever the model classifies an incoming spam message as
not spam the system asks the user for his/her opinion of
whether it is a spam or not, if the user’s opinion is differ-
ent compared to the classification that has been made by
the model then the probability models of all the systems

are updated.
Each of the systems have the same algorithm and ini-

tially all the systems share their training sets among each
other. Each instance of the mail data is passed to a func-
tion gen word vector() which parses the key words in
the mail and builds a word vector [21] containing the
key words, the number of occurrences of that word in
the mail and also contains the information on the nature
of the mail(spam or not spam). A probabilistic model
probability model() is built using these word vectors
which contains all the words and their associated proba-
bility weight of them occurring in a spam.

After this build the system is ready to classify the mail
and during the learning phase whenever a mail is classi-
fied it inquires the user to again verify if its classification
is accurate. If the user disagrees with the classification
then the model needs to be updated so the system up-
dates its model and also sends the update data to its peers
with the function multicast send newresult() which
sends the mail data along with correct classification. The
systems which receive the mails also update their mod-
els thereby employing cognition or collective learning
among the peers.

5 ALGORITHM USING THE MAPREDUCE
FRAMEWORK

Another way to implement the Naive-Bayes classifier
discussed above would be to use the distributed file sys-
tem - Hadoop [24]. We would be using the Hadoop API
extensively for doing so, especially the map and reduce
functions [22]. However, using the normal reduce()
function would lead to an additional overhead (which
would lead to a proportional increase in runtime [25]).

To overcome this our method would involve writing
the value of a particular flag to a file. The function of
this flag would be to check if the probability model has
changed. We would need to know this because we would
be classifying each new mail instance using the proba-
bility model we have and this model must be the most
updated version of itself, else there would be no point
of the collective learning mechanism we have developed.
The suggestion is to make slight changes to the reduce()
[22] mechanism and this changed function is addressed
as ”new reduce()”.

5.1 Training

The process of training involves, creating the initial clas-
sifier model from the available training datasets. The
classifier is built on the knowledge that is extracted
from each of the examples in the training set which, are
marked spam or not spam. Based on these examples, the
classifier learns, as to when a mail should be classified

19

Open Journal of Big Data (OJBD), Volume 1, Issue 1, 2015

Table 1: Description of the current Spam Recognition techniques

Method used Description Advantages Disadvatages Examples

Blacklisting of IP
The sender’s IP is black-
listed referencing it against
an available blacklist

A fast method of spam
classification

May Result in False Posi-
tives for shared IPs DNS Black Listing [27]

Authenticating Senders
The SMTP servers is
checked on the list of
authorized servers

The identity of the sender
is verified by the SMTP
server and backscatter of
spam is reduced

Forwarded E-Mails may
get through SenderID [28]

Grey Listing

E-mails from unfamiliar
sources are blocked. As-
sumes valid SMTP servers
retries sending the mail
while a spamming server
wont.

User interaction is reduced
and the amount of system
resources used is also re-
duced.

Sending methods can be
easily changed to adapt
and there is a delay in the
E-Mail delivery.

[29]

Challenge Response

System stores the mails
received from unknown
senders and sends back a
challenge to verify if the
sender is human or a bulk
sender.

One time only process
Address spoofing can be
done, also may result in
spam backscatter.

Tagged message delivery
agent [30]

Collaborative Spam Filter-
ing

Mail fingerprints are com-
pared against a shared list
from trusted systems.

Uses the collective intelli-
gence and since the classi-
fication is human, accuracy
is high

Highly dependent on
proper training

Distributed Checksum
Clearninghouse [31], [17],
[32]

Heuristic based
Compares mail against
pre-defined rules to inden-
tify traits of spam.

Training Overhead does
not exist.

System is not adaptable to
new patterns. SpamAssasin [34]

Machine Learning

Knowledge is derived from
a supplied Training set,
this knowledge is then used
to classify mail.

System is adaptable to new
patterns in spam.

Needs good training
datasets to derive knowl-
edge.

Bayesian Spam filtering
[4]

as ’spam’. In our algorithm the initial training dataset is
shared among all the systems in the network which helps
in collective learning.

Initially there exists n systems in the network each
with its own training data. We would need to create a
file, ”mapfile” in each system. This system would con-
tain a dirty−flag (which will be explained further) and
the output of the map() [22] function when it is run, i.e,
it would contain a map (key, value pair [22]) of all the
words available in the training set.

Next, we would have to run the reduce() [22] function
for every key present in the mapfile (to count the num-
ber of occurrences of each word) and store the collective
output in a dictionary say ”r”. We would use ”r” to gener-
ate the probability model ”pt” using the Naive-Bayesian
classifier (parse r’s keys and calculate the probability at
every step). We would have to send the dictionary ”r” to
all the systems in the network which helps in sharing the
knowledge of spam. The other systems use this dictio-
nary and build the probability model. Since all the sys-
tem share their dictionaries, the initial probability model
is the same for all the systems. This concludes the initial
training phase of the implementation.

5.2 Working

Post completion of the training phase, each system
would have to wait for mails/messages from which we
will have to segregate spam. Until such a mail is re-
ceived, the system keeps doing its own job or remains
waiting for the mail (we place no restriction on this, it
can be synchronous or asynchronous). Once a mail is
received, the actual usage of the training done starts.

Firstly, the system checks its mapfile to see if the
dirty − flag is set to 1. If it isn’t, the system classifies
the mail based on the probability model ”pt” as spam or
not-spam. It then asks the user whether the classification
is right. If the user agrees with this classification, no step
is taken as the training holds. Else, if the user finds a dis-
crepancy, the word-vector (the map, as it was called be-
fore), ”m” changes. This change has to be written to the
mapfile of the corresponding system. Note that the maps
in the mapfile of the other systems need not be changed
by virtue of how Hadoop works. Then, for every key in
m, the function ”new reduce()” is called. This function
works in the same way as the reduce() function except
for the fact that it sets the dirty − flag to 1 in mapfiles
of all the systems it goes through.

This would reduce the overhead required to open and
write to the file every time we called reduc()e for every

20

Mukund. Y. R, Sunil Sandeep Nayak, K. Chandrasekharan: Cognitive Spam Recognition Using Hadoop and Multicast-Update

Figure 1: Flow of algorithm : Using Multicast-
Update

different system in the group. Then, for the system where
we called the new reduce() function, we would have
to regenerate the probability model and store the result
in ”pt” again. After all this, we would have to set the
dirty − flag in this system’s mapfile to 0.

If the initial check of the dirty − flag shows us that
the flag is set to 1, we would have to run the reduce()
function initially, store the new key,value pairs in ”r” and
regenerate the probability model ”pt” based on this new

Figure 2: Flow of algorithm : Using MapReduce

”r”. Only after this is done should we classify the mail.
This is because, as we have mentioned earlier, we require
”pt” to be the newest version of itself for the cognition
facility. Note here, that if the mapfile’s dirty − flag is
1, it implies that the actual probability model is now dif-
ferent and the reduce() operation needs to be run again
to update it.

21

Open Journal of Big Data (OJBD), Volume 1, Issue 1, 2015

6 ANALYSIS OF THE ALGORITHMS

6.1 Performance Analysis for the Hadoop Al-
gorithm

The Processing Power

Increasing the processing power by two reduces the run-
time to half the original if there was only one system in-
volved. But, with a Hadoop Implementation, the relation
between the speed-up and the processing power isn’t that
trivial. The main equation we need for understanding the
Hadoop implementation [25] is the one we get from

runtime =
overhead

(1− time to process one hour of data)
(2)

From this, we get the following results: If we increase
the processing power by a certain factor, say n, then our
speed-up will be

speedup =
old runtime

new runtime
(3)

Say the old processing power is p. This gives us

speedup =
n− nx

n− x
(4)

limn→∞((n− nx)/(n− x))

= limn→∞((1− x)/(1− (x/n)))

= 1− x

Graphing the above equation for two different values
of n, 2 and 9, we find that as n grows, the graph moves
closer and closer to the line y = 1 − x. This is easily
proved, as the limit of the speed-up when n approaches
infinity is 1 − x. It just means that the speed up with
respect to the number of systems decreases relatively as
the number of systems increase.

The Aggregate Overhead

This refers to any non changing factor like network de-
lay and other bottlenecks during the run time. If the sys-
tem is optimized it will lead to a reduction in overhead.
However the Overhead cannot be made zero. From the
equation above, we also find that the runtime is directly
proportional to the overhead. Hence, increasing the over-
head by a factor of n produces a speedup of the factor
1/n.

These are the considerations we need to make while
building our system with a goal of making it time-
efficient.

Figure 3: Variation in processing times with the pro-
cessing power factor in hadoop

6.2 Performance Analysis for Multicast-
Update Algorithm

In a multicast system the message to a particular group
is conveyed along the minimum spanning tree for that
group where the tree contains all the nodes involved in
the group and the distance from the source to a node
is the shortest path. We had discussed before that the
network overhead is the only overhead involved in the
Multicast-Update Algorithm. Thus as the networking
delay increases or the amount of data increases the per-
formance of the system with reference to time decreases.
The equation below gives the delay factor for a multicast
system [23].

The Overall delay(D) for a multicast message when it
is sent from a sender node(s) to a group(MG) is given
as the summation of overall delay for each link of a
spanning tree from the sender nodes (s) to all receivers
(r ∈MG) and the delay for each link of the intermediate
routers. Hence, this gives us to the expression for Over-
all delay (D) for multicast messages transmitted from
sender node (s) to a receiver node (r):

Ds−MG
=

Z∑
i=1

D(Li) +

n∑
i=1

D(Li) (5)

where Z is the number of receiver nodes in one group
of a spanning tree (T) where n gives the total number of
links a route has.

22

Mukund. Y. R, Sunil Sandeep Nayak, K. Chandrasekharan: Cognitive Spam Recognition Using Hadoop and Multicast-Update

If we consider that we have a route within a spanning
tree (T) from sender (s) to a receiver (r) as RT (s, r),
then the multicast messages transmitted from a sender
node to a receiver have a total delay of:

D<s→(r∈MG)> =
∑

Ln,Z∈RT (s,r)

D(Ln,Z) (6)

where Ln,Z gives the total links (i.e., Z ∈ RT) that
a particular message has to traverse for it to reach the
specific receiver r in a route of RT with in the Spanning
Tree T as well as the links from sender s to a group MG.
From the equation when the number of systems increase
the delay increases as the number of links increases and
the delay is the summation of delay per link [23].

7 SIMULATION RESULTS AND DISCUSSION

The simulation was carried out using the YARN simula-
tor for hadoop. The files of the individual systems are
taken as an HDFS, this file system stores the training
data and the updated data(as the mails are received) of
the spam filtering system. Initially it contains just the
training data for each system, in their respective files.
Later as the user provides feedback on the wrong clas-
sifications, the dataset is updated. Using this framework
the map() and reduce() tasks are run, such that after
the reduce(), the dictionary contains the word vector for
the whole training set. Using this dictionary the proba-
bility model is built using the classifier algorithms. The
probability model is then updated, with every wrongly
classified mail.

7.1 Performance analysis for the MapReduce
Framework

7.1.1 Comparison of the algorithms with flag
and without flag

The new reduce() method was introduced to remove re-
dundant reduce() and file I/O operations. This would
go on to reduce the total time taken by the algorithm.
The aim was to reduce extra overhead of maintaining a
distributed file system for a collective learning frame-
work. The experiment was conducted by splitting the
same dataset into different number of file systems, so as
to determine the impact of number of file systems on the
performance. Results were taken for the number of sys-
tems ranging from 2 to 10. The number of false positives
where, the user would propose a correction to the exist-
ing model was set to 30 percent of the dataset. Data is
obtained for two methods one with the flag and one with-
out the flag. The flag as discussed earlier is used to check
redundant operations. The code was also run for a nor-
mal Mapreduce framework which does not use the flag
and results were obtained.

Table 2 gives the values of the criterion considered for
the MapReduce framework. It also gives the percent-
age reduction in the values for the two methods with flag
and without flag. The algorithm with the new reduce()
method, i,e. the method which uses the flag to check
for updated files, clearly performs better than the method
which does not use the flag.

This clearly shows that introducing the flag into the
HDFS does help in reducing the total time taken. The
percentage reduction in the overhead increases initially
and peaks at a distribution of 6 systems. It later goes to
decrease as the number of systems increase. This is be-
cause even though the new reduce() methods succeeds
in reducing the overhead to a certain extent, the increase
in the number of systems increases the number of map()
and reduce() tasks considerably. This increase in the
tasks due to the number of systems decreases the overall
percentage reduction.

However, the Percentage reduction in File I/O changes
slightly with the change in number of systems. This is
because the dataset remains the same size and the only
reads that are performed extra, are the reads that are per-
formed for reading the flags of each of the system, which
again increases with increase in the number of systems.

7.1.2 Impact of False Positives on the Perfor-
mance

Another experiment to analyze the impact of the number
of false positives, i,e. the number of times the user pro-
vides a correctional feedback to the classifier was con-
ducted. In the simulation conducted the number of times
the new reduce() would be called(the No. of False Pos-
itives) was artificially set. The data is given for different
percentage of false positives, with respect to the dataset.
Table 3 gives the results.

The percentage increase given for each case is with
respect to the initial 10 percent scenario. There is a clear
increase in the MapReduce tasks and also the file I/O
performed. This shows that providing an accurate and
a rich initial training dataset would reduce the overhead
later caused by the corrections suggested.

This goes to shows that the algorithm proposed is opti-
mal for a network having systems whose individual spam
and not spam preferences are similar, else the number of
false positives are increased because each user has a dif-
ferent opinion on the spamcity of the mail. Thus showing
that the personalizing the spam filter for individual sys-
tems which have radically different preferences regard-
ing spam cannot be carried out and will result in a col-
lective filter with poor performance with regard to both
accuracy and time complexity. However, it is optimal
for a network of individual systems with a similar pref-
erence. The rate of degradation is given by table 3.

23

Open Journal of Big Data (OJBD), Volume 1, Issue 1, 2015

Table 2: Details of the MapReduce jobs for reduce(without flag) and new reduce(with flag)

Criteria No. of bytes
read

No. of read op-
erations

Total time spent
by map tasks
(vcore-seconds)

Total time spent
by reduce tasks
(vcore-seconds)

Total megabyte-
seconds taken
by all map tasks

Total megabyte-
seconds taken
by all reduce
tasks

2 systems : without flag 44590406 481 69962 9176 71641088 9396224
2 systems : with flag 44574022 479 28383 8721 29064192 8930304
percentage decrease 0.03% 0.4% 59.4% 4.95% 59.4% 4.95%
3 systems : without flag 45589933 606 101937 13728 104383488 14057472
3 systems : with flag 45508013 596 66717 9485 68318208 9712640
percentage decrease 0.179% 1.65% 34.5% 30.9% 34.5% 30.9%
4 systems : without flag 46448619 714 142729 9689 146154496 9921536
4 systems : with flag 46161899 679 108720 8050 111329280 8243200
percentage decrease 0.617% 4.9% 23.8% 16.9% 23.8% 16.9%
5 systems : without flag 47047486 790 161958 12277 165844992 12571648
5 systems : with flag 46981950 782 138825 8957 142156800 9171968
percentage decrease 0.139% 1.01% 14.2% 27.04% 14.2% 27.04%
6 systems : without flag 47744738 878 221616 18755 226934784 19205120
6 systems : with flag 47654626 867 203561 9081 208446464 9298944
percentage decrease 0.188% 1.25% 8.14% 51.5% 8.14% 51.5%
7 systems : without flag 48347949 955 230710 12638 236247040 12941312
7 systems : with flag 48241453 942 205523 10844 210455552 11104256
percentage decrease 0.22% 1.36% 10.9% 14.19% 10.9% 14.19%
8 systems : without flag 48911710 1027 241693 11389 247493632 11662336
8 systems : with flag 48801813 1013 213247 10781 218364928 11039744
percentage decrease 0.23% 1.3% 11.7% 5.3% 11.7% 5.3%
9 systems : without flag 49610583 1115 251149 20000 257176576 20480000
9 systems : with flag 49479511 1099 243915 18720 249768960 19169280
percentage decrease 0.26% 1.43% 2.8% 6.4% 2.8% 6.4%
10 systems : without
flag 49903159 1154 256735 22896 262896640 23445504

10 systems : with flag 49788471 1140 250145 17300 256148480 17715200
percentage decrease 0.23% 1.213% 2.56% 2.6% 2.56% 2.6%

7.2 Performance analysis for the Classifier

7.2.1 The unsure class

Sometimes the mails received might be falsely classified
as spam. This is a much serious problem as the user
might fail to receive some important information. The
mails are classified based on the spaminess score which
ranges from 0 to 1, with 0 being classified as spam and 1
as not spam. When a certain incoming mail contains new
words that are not there in the dictionary of the system,
the mail gets a score near the vicinity of 0.5. There is a
chance of that mail being classified wrongly.

To reduce these classifications, where classifier is un-
certain about the nature of the mail, we can introduce
an uncertain region where the spam is classified as un-
sure. The mails classified as unsure are sent to the user
for a correct classification, this knowledge given by the
user is again used to re-build the classifier model based
on this corrected information. For our classifier we set
the unsure region to be from the spaminess score of 0.45
to 0.55. This is a rather ”strict” limit, and the number
of false negatives or false positives would reduce and in-
stead be classified as unsure as the region for the same is

widened.

7.2.2 Quality of the Dataset

Inorder to ensure that initial training model built dose not
develop a bias towards a certain class, we make sure that
the number of instances for both spam and not spam are
kept the same. This kind of problems caused by imbal-
anced dataset is discussed in [35]. It is also ensured that
the dataset contains examples which increase the rich-
ness of the dictionary i,e. when the system is deployed,
it should be made sure that the number of mails getting
classified as unsure because of encountering a new word
should be small.

The dataset should also be of a sufficiently large size.
A small dataset may result in an unsure classifier i,e.
when the frequency for a particular word is less, it re-
sults in a certain mail being weighted with a score which
is near 0.5 or with a score which may not be accurate.
Thus a quality dataset for the purpose of spam filtering,
must of a sufficiently large size, balanced and should re-
sult in a dictionary with a large number of words. Addi-
tionally the pre-processing of data, like stemming [36] is

24

Mukund. Y. R, Sunil Sandeep Nayak, K. Chandrasekharan: Cognitive Spam Recognition Using Hadoop and Multicast-Update

Table 3: Details of the MapReduce jobs for differing percentage of False Positives

Criteria No. of bytes
read

No. of read op-
erations

Total time spent
by map tasks
(vcore-seconds)

Total time spent
by reduce tasks
(vcore-seconds)

Total megabyte-
seconds taken
by all map tasks

Total megabyte-
seconds taken
by all reduce
tasks

10% False Positives 45686763 621 182398 8005 186775552 8197120
20% False Positives 46063595 667 189776 9610 194330624 9840640
percentage increase 0.82% 7.4% 4.04% 20.04% 4.04% 20.04%
30% False Positives 46383083 706 228892 11786 234385408 12068864
percentage increase 1.5% 13.6% 25.4% 47.2% 25.4% 47.2%

also done.

7.2.3 Accuracy of the classifier

The dataset used had three classes spam, not spam and
unsure. According to the algorithms the user is shown
the mail when the algorithm classified the mail as lat-
ter two classes, so as to improve the classifier model
built initially. The dataset was randomly split into de-
sired number of system files. The results on accuracy
and other measures for the classifier is as follows. This
result is for the scenario when the dataset was split as 4
systems and each of the individual datasets were subject
to analysis.

Table 4: Comparision of Classifier performances

Criteria System
1

System
2

System
3

System
4

Combined
System

Percentage Accu-
racy for N-Bayes 83.5 85.7 84.3 82.8 95.4

Percentage Accu-
racy for SVM 51.5 52.3 61.4 57.2 88.6

No. of False Posi-
tives for N-Bayes 34 30 33 38 9

No. of False Posi-
tives for SVM 43 37 15 30 284

No. of False Nega-
tives for N-Bayes 32 29 31 34 12

No. of False Nega-
tives for SVM 980 968 829 881 4

No. of Unsure for
N-Bayes 270 228 246 281 71

No. of Unsure for
SVM. 7 5 1 3 0

As the results indicate, the naive bayesian algorithm
does perform better when compared to the SVM, how-
ever this depends on the training data and the parame-
ters over which the model is built. The parameter selec-
tion process is out of scope of this paper and the result
is given to show that a bayesian classifier is the better
choice of classifier for purpose of spam filtering. The re-
sults may vary if the process parameter optimization [33]
is done.

We can also see that along with accuracy, the num-
ber of False Negatives and False Positives reduce greatly,

when compared to the individual system output. This
goes onto prove that collective learning for spam filter-
ing is a successful idea. These results are logical, as the
increase in the richness of the training dataset implies
that the performance of the classifier also increases.

7.2.4 Run Time

Simulation was conducted to check the time taken for the
classifier to build a model based on the training data.

Table 5: Comparision of Time Taken

Criteria time for N-
Bayesian(seconds)

time for
SVM(seconds)

2000 instances 0.02 1.98
4000 instances 0.03 5.24
6000 instances 0.05 10.5
8000 instances 0.06 28.86

Table 5 gives the time taken to build a classifier model
from the dataset. This data was obtained by running
the classifier algorithm for the datasets of different sizes
for both Naive-Bayes and SVM classifier. We can see
that the time taken for Naive-Bayes Classifier almost re-
mains the same even as the size of the dataset increases.
The time taken for a particular size of dataset is also the
least for Naive-Bayes classifier. Thus the use of a Naive-
Bayes classifier further strengthens the concept of scala-
bility of our spam filtering system.

The results for the SVM classifier under the fourth
system also show that trend of having higher number
False Negatives is reversed. This is because when you
analyze the training set for the fourth system, you tend
to see that there is a slightly higher number of instances
which are marked spam than those marked as not spam.
This is different in the training sets of the first three sys-
tems where, the number of instances marked not spam
are slightly more than the number of instances marked
spam. This, goes to show that, SVM develops a bias
against the class whose number of instances are less.
This again, is not an acceptable characteristic for a spam
filter.

All these results go on to show that the Naive-bayes

25

Open Journal of Big Data (OJBD), Volume 1, Issue 1, 2015

classifier is a better classifier with regard to both accu-
racy and time complexity for the problem of spam filter-
ing.

Thus all the results indicate that the new reduce()
method does help in reducing the overhead and also that
the Naive-Bayes classifier is a better option for the pur-
pose of spam recognition.

8 CONCLUSION

In this paper, we have addressed the issue of cognitive
spam recognition using two methods, Multicast-Update
and Hadoop map-reduce. The simulation results show
that, the new reduce() method reduces the time taken
by MapReduce jobs by a significant amount. The reduc-
tion is maximum for a mediumly large number of sys-
tems and decreases as the number of systems increase.
The results with different percentage of false positives
show that the algorithm is suitable for a network where
the individual systems have similar individual prefer-
ences when it comes to spam and the performance of the
system deteriorates as the differences in the preference
increase.

The results for the classifier performance suggest that
Naive-Bayes is the better algorithm for the purpose of
collective spam filtering and also verifies the concept of
collective learning with an increased accuracy and reduc-
tion in the number of false positives and false negatives
for the proposed combined system.

An equation giving the network delay for a network
employing the Multicast-Update algorithm is given. It
suggests that the network overhead increases with the in-
creases in the number of systems. This overhead is also
more than that of algorithm with the MapReduce frame-
work. Thus, suggesting that the Multicast-Update algo-
rithm cannot be applied for networks with large network
overheads.

However, The choice of method for one’s own imple-
mentation depends on how one’s network is structured,
the number of systems used in the network, the bottle-
necks present in the network and whether they can be
dealt with. Whatever the method used we do see that
cognition increases the overall performance of a cluster
of systems and also posses qualities like fault tolerance
etc,. attributed to distributed systems. Thus proving our
point that Cognition results in the betterment of spam
recognition systems. The concepts proposed can be ap-
plied for any learning problem involving a network of
systems with a similar aim.

The future work would involve optimizing the Hadoop
algorithm, so that during the reduce() operation, in-
stead of processing the whole file it can just process
the key values which have undergone changes since the

last update. This will significantly optimize the present
algorithm and thus providing an optimized framework
for Learning algorithms using the current MapReduce
framework.

REFERENCES

[1] Messaging Anti-Abuse Working Group. ”Email
metrics report”, https://www.maawg.org/
sites/maawg/files/ news/ MAAWG 2011 Q1-
4 Metrics Report15Rev.pdf, accessed 25th May
2015.

[2] J. Rennie, ”ifile: An application of machine learn-
ing to e-mail filtering”, In Proc, KDD 2000 Work-
shop on Text Mining, Boston, MA. August, 2000.

[3] MozillaZine, ”Junk Mail Controls”,
https://kb.mozillazine.org/Junk Mail Controls,
accessed 25th May 2015.

[4] M. Sahami, S. Dumais, D. Heckerman, & E.
Horvitz, ”A Bayesian approach to filtering junk e-
mail”. In Learning for Text Categorization: Papers
from the 1998 workshop, Vol. 62, pp. 98-105. July
1998.

[5] S. Russell, & P. Norvig, Artificial intelligence: a
modern approach, Prentice Hall, 1995.

[6] D. C. Geary, ”An integrative model of human brain,
cognitive, and behavioral evolution”,In Acta Psy-
chologica Sinica, Vol.39, No.3, 2007.

[7] G. F. Coulouris, J. Dollimore, & T. Kindberg, Dis-
tributed systems: concepts and design. pearson ed-
ucation, 2005.

[8] A. H. Wang, ”DONT FOLLOW ME: Spam Detec-
tion in Twitter”, In Proc. 2010 International Confer-
ence on Security and Cryptography (SECRYPT),
Pg 1-10, July 2010.

[9] E. Damiani, S. De Capitani di Vimercati, S. Para-
boschi, & P. Samarati, ”P2P-based collaborative
spam detection and filtering”, In Proc. Fourth Inter-
national Conference on Peer-to-Peer Computing,
IEEE, pp. 176-183, August 2004.

[10] W, Dai, H. Jin, D. Zou, S. Xu, W. Zheng, L. Shi, &
L. T. Yang, ”TEE: a virtual DRTM based execution
environment for secure cloud-end computing”. Fu-
ture Generation Computer Systems, Vol. 49, 2015.

[11] J. Piskorski, M. Sydow & D. Weiss, ”Exploring
Linguistic Features for Web Spam Detection: A
Preliminary Study”. In AIRWeb ’08 Proceedings of

26

Mukund. Y. R, Sunil Sandeep Nayak, K. Chandrasekharan: Cognitive Spam Recognition Using Hadoop and Multicast-Update

the 4th international workshop on Adversarial in-
formation retrieval on the web, ACM, pp. 25-28,
2008.

[12] Z. Yang, X. Nie, W. Xu, & Jun Guo. ”An Ap-
proach to Spam Detection by Naive Bayes En-
semble Based on Decision Induction”. In Proc.
Sixth International Conference on Intelligent Sys-
tems Design and Applications (ISDA’06), IEEE,
pp. 861-866, October 2006.

[13] M. Sasaki & H. Shinnou, ”Spam Detection Using
Text Clustering”. In Proc. of the 2005 International
Conference on Cyberworlds (CW05), IEEE, pp. 4-
pp, November 2005.

[14] V. Chang, ”The business intelligence as a service in
the cloud”. Future Generation Computer Systems,
Vol. 37, pp. 512-534, 2014.

[15] Z. Tan, U. T. Nagar, X. He, P. Nanda, R. P. Liu, S.
Wang, & J. Hu, ”Enhancing big data security with
collaborative intrusion detection”, Cloud Comput-
ing, IEEE, Vol. 1, No. 3, 2014.

[16] V. Chang & M. Ramachandran, ”Towards achiev-
ing Data Security with the Cloud Computing Adop-
tion Framework”. In Press, IEEE Transactions on
Services Computing.

[17] A. Garg, R. Battiti & R. G. Cascella, ”May I bor-
row Your Filter? Exchanging Filters to Combat
Spam in a Community”. In Proc. 20th International
Conference on Advanced Information Networking
and Applications (AINA06), IEEE, pp. 5-pp, April
2006.

[18] A. G. Kakade, P. K. Kharat & A. K. Gupta, ”Sur-
vey of Spam Filtering Techniques and Tools, and
MapReduce with SVM”. In International Journal of
Computer Science and Mobile Computing, Vol.2,
No. 11, 2013.

[19] R. Priyadarshini, L. Tamilselvan, ”Document clus-
tering based on keyword frequency and concept
matching technique in Hadoop”. In International
Journal of Scientific & Engineering Research, Vol.
5, No. 5, 2014.

[20] L. Harte, Introduction to data multicasting, Althos
Publishing, 2008.

[21] G. Salton, A. Wong & C. S. Yang, ”A vector space
model for automatic indexing”, Communications
of the ACM, Vol.18, No.11, 1975

[22] J. Dean, & S. Ghemawat. MapReduce: ”Simplified
Data Processing on Large Clusters”. In Communi-
cation of ACM, Vol. 51, No.1, 2008.

[23] S. S. Rizvi, K. M. El Leithy & A. Riasat, ”A Math-
ematical Model for Evaluating the Performance
of Multicast Systems”. In International Workshop
on IP Multimedia Communications (IPMC 2008),
IEEE, August 2008,

[24] Apache Software Foundation, ”Apache Hadoop”,
http://hadoop.apache.org/, accessed 25th May
2015.

[25] Nathan Marz, ”The mathematics behind Hadoop-
based systems”, http://nathanmarz.com/blog/the-
mathematics-behind-hadoop-based-systems.html,
accessed 25th May 2015.

[26] Apache Software Foundation. ”2.3.0 (YARN)”.
http://hadoop.apache.org/docs/current/hadoop-
yarn/hadoop-yarn-site/YARN.html, accessed 25th
May 2015.

[27] IRTF Anti-Spam Research Group, J.
Levine, DNS Blacklists and Whitelists,
http://tools.ietf.org/html/rfc5782, accessed 25th
May 2015.

[28] J. Goodman, G. V. Cormack & D. Heckerman,
”Spam and the ongoing battle for the inbox”, Com-
munications of the ACM, Vol.50, No.2, 2007.

[29] J. R. Levine. ”Experiences with greylisting”, In
Proc. of the Second Conference on Email and Anti-
Spam(CEAS), July 2005.

[30] TMDA, ”Tagged Message Delivery Agent”,
http://www.tmda.net , accessed 25th May 2015.

[31] V. Schryver. ”Distributed Checksum Clearing-
house”, http://www. rhyolite.com/anti-spam/dcc,
accessed 25th May 2015.

[32] V. V. Prakash & A. O’Donnell. ”Fighting Spam
with Reputation Systems”,In ACM Queue, Vol.3,
No.9, 2005.

[33] T. Bck, & H. P. Schwefel, ”An overview of evo-
lutionary algorithms for parameter optimization”.
Evolutionary computation, Vol.1, No.1, 1993.

[34] The Apache SpamAssassin Project, ”Welcome to
SpamAssassin”, http://spamassassin.apache.org/,
accessed 25th May 2015.

27

Open Journal of Big Data (OJBD), Volume 1, Issue 1, 2015

[35] J. D. Rennie, L. Shih, J. Teevan, & D. R. Karger,
”Tackling the poor assumptions of naive bayes text
classifiers”. In Proc. International Conference on
Machine Learning (ICML), pp. 616-623, August
2003.

[36] J. B. Lovins, Development of a stemming algo-
rithm, MIT Information Processing Group, Elec-
tronic Systems Laboratory, 1968.

AUTHOR BIOGRAPHIES

Mukund. Y. R is currently
an undergrad student pursuing
B.tech in Computer Engineering
at the National Institute of Tech-
nology Karnataka, Surathkal,
Mangalore, India. His feild
of interests included Machine
Learning, Cryptography and Ar-
tificial Intelligence. He is also
avidly interested in the field of
competitive programming.

Sunil Nayak is an undergrad
student pursuing B.Tech in
Computer Engineering at the
National Institute of Technology
Karnataka, Surathkal, Manga-
lore, India. He has finished his
fifth semester. He is interested
in the fields of Artificial In-
telligence, Computer Graphics
and Virtual Reality. Aside from
academics, he plays the Guitar
and the Bass Guitar for the

college’s music club.

Dr. K. Chandrasekaran is
currently Professor in the De-
partment of Computer Science
& Engineering, National Insti-
tute of Technology Karnataka,
Surathkal, Mangalore, India,
having 27 years of experience.
He has more than 160 research
papers published by various re-
puted and peer-reviewed Inter-
national journals, and confer-

ences. He serves as a member of various reputed profes-
sional societies including IEEE (Senior Member), ACM
(Senior Member), CSI (Life Member), ISTE (Life Mem-
ber) and Association of British Scholars (ABS). He is
also a member in IEEE Computer Society’s Cloud Com-
puting STC (Special Technical Community). He is in the
Editorial Team of IEEE Transactions on Cloud Comput-
ing, one of the recent and reputed journals of IEEE pub-
lication. He has coordinated many sponsored projects,
and, some consultancy projects. His areas of interest -
research include: Computer Communication Networks,
Cyber Security and Distributed Computing and Business
Computing & Information Systems Management.

28

	Introduction
	Naive-Bayesian Classifier
	Related Work
	Algorithm Using Multicast-Update
	Algorithm Using The MapReduce Framework
	Training
	Working

	Analysis of the algorithms
	Performance Analysis for the Hadoop Algorithm
	Performance Analysis for Multicast-Update Algorithm

	Simulation Results and Discussion
	Performance analysis for the MapReduce Framework
	 Comparison of the algorithms with flag and without flag
	Impact of False Positives on the Performance

	Performance analysis for the Classifier
	The unsure class
	Quality of the Dataset
	Accuracy of the classifier
	Run Time

	Conclusion

