
c© 2018 by the authors; licensee RonPub, Lübeck, Germany. This article is an open access article distributed under the terms and conditions of
the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).

Open Access

Open Journal of Big Data (OJBD)
Volume 4, Issue 1, 2018

http://www.ronpub.com/ojbd
ISSN 2365-029X

Modelling Patterns in
Continuous Streams of Data

Ricardo JesusA, B, Mário AntunesA, B, Diogo GomesA, B, Rui L. AguiarA, B

A DETI, Universidade de Aveiro, 3810-193 Aveiro, Portugal, ricardojesus@ua.pt
B Instituto de Telecomunicações, Universidade de Aveiro, 3810-164 Aveiro, Portugal,

{mario.antunes, dgomes, ruilaa}@av.it.pt

ABSTRACT

The untapped source of information, extracted from the increasing number of sensors, can be explored to improve
and optimize several systems. Yet, hand in hand with this growth goes the increasing difficulty to manage and
organize all this new information. The lack of a standard context representation scheme is one of the main struggles
in this research area. Conventional methods for extracting knowledge from data rely on a standard representation
or a priori relation, which may not be feasible for IoT and M2M scenarios. With this in mind we propose a stream
characterization model in order to provide the foundations for a novel stream similarity metric. Complementing
previous work on context organization, we aim to provide an automatic stream organizational model without
enforcing specific representations. In this paper we extend our work on stream characterization and devise a novel
similarity method.

TYPE OF PAPER AND KEYWORDS

Regular research paper: stream mining, time series, machine learning, IoT, M2M, context awareness

1 INTRODUCTION

Over the last years the Internet of Things (IoT) [34]
has gained significant attention from both industry and
academia. IoT has made it possible for everyday
devices to acquire and store contextual data, and
to use it at a later stage. This allows devices to
share data with one another, in order to cooperate
and accomplish a given objective. A cornerstone
to this connectivity landscape is machine-to-machine
(M2M) communications [10]. M2M generally refers
to information and communication technologies able
to measure, deliver, digest and react upon information
autonomously, i.e. with none or minimal human
interaction.

Context-awareness is an intrinsic property of IoT [27].
Context-aware communications and computing have

played a critical role in understanding sensor data,
since it provides the necessary tools to analyse data
regarding an entity and choose a useful action. As
discussed in [5] an entity’s context can be used to provide
added value: improve efficiency, optimize resources
and detect anomalies, to name a few. However, recent
projects follow a vertical approach [14, 28, 12], where
devices/manufacturers can not share context information
because each one uses its own structure, leading to
information silos. This has hindered interoperability and
the realisation of even more powerful IoT and M2M
scenarios.

Context information is an enabler for further data
analysis, potentially exploring the integration of an
increasing number of untapped information sources.
Not only are the common definitions of context
information [1, 33] so broad that any data related to

1

http://creativecommons.org/licenses/by/4.0/
http://www.ronpub.com/ojbd


Open Journal of Big Data (OJBD), Volume 4, Issue 1, 2018

an entity can be considered context information, but
they also do not provide any insight about the structure
of context information. Currently there is no uniform
way to share/understand vast amounts of IoT/M2M
data, and it is unlikely that in the future a context
representation standard will be widely adopted. First,
there is the diversity of context representations, each of
them designed for a specific usage and/or data types.
Second, a widely adopted context representation does
not completely solve the issue of knowledge extraction.
Due to the vast amount of data being considered, it
becomes extremely difficult to define a priori all the
relations among information sources, patterns, and even
possible optimizations.

Another important issue is the need for a new way
to manage, store and process such diverse machine
data: unconstrained, without limiting structures and
with minimal human interaction. With this in mind
we proposed a data organization model optimized for
unstructured data [5, 4] that organizes context data based
on semantic and stream similarity. Our model uses
tailored features and unsupervised learning algorithms to
automatically organize data. In this paper we extend our
previous work on stream characterization model [18, 6]
and devise a novel similarity metric for our stream
model. Our generative model for stream characterization
can be used either for stream generation or similarity.

The remainder of this paper is organized as follows.
In Section 2 we discuss semantic similarity and present
the most relevant methods. We discuss our generative
model for stream characterization in Section 3. Details
about the implementation of our prototype are given in
Section 4. The results of our evaluation are in Section 5.
Finally, the discussion and conclusions are presented in
Section 6.

2 RELATED WORK

Context information is an enabler for further data
analysis, potentially exploring the integration of an
increasing number of information sources. As
previously mentioned, common definitions of context
information [1, 33, 13] do not provide any insight
about its structure. In fact, each device can share
context information with a different structure. For
example, sensory and location information can be used
to characterize an entity’s context, yet the two can have
different structures. One important objective of context
representation is to standardize the process of sharing
and understanding context information. However,
nowadays no widely accepted context representation
scheme exists; instead there are several approaches
to deal with context information. These can be

divided into three groups: (i) adopt/create a new
context representation, (ii) normalize the storing process
through ontologies, (iii) accept the diversity of context
representations.

In [25] the authors analyse two different projects
related with context-awareness. One of the projects uses
a single context representation scheme. The authors
concluded that using a single context representation
limits the relations that exist between all the data sources.
As a consequence it becomes increasingly difficult to
detect and react to complex events. Furthermore, it
limits the quantity of data that can be shared with other
projects.

The second possibility would be employing ontologies
to normalize the organization process. Each context
representation is mapped into the internal data model
through an ontology [22]. This type of platform
supports several context representations, yet it is
necessary to define a new ontology (mapping) for
each new representation. Defining a new ontology
is a tedious task that requires human intervention.
Due to the diversity and scale associated with IoT/
M2M scenarios it is extremely difficult to maintain this
strategy. As an example, we can consider the lexical
database WordNet [24]. WordNet is a manually-created
hierarchical network of nodes (taxonomy), that due
to funding and staffing issues is no longer accepting
comments and suggestions. It is extremely difficult to
maintaining large databases of relations (of any type) if
they depend on human input.

As an alternative, we can accept the diversity of
context representation as a consequence of economic
pressures, and develop an efficient method to deal with it.
Let us consider the specific case of IoT/M2M scenarios
as a representative use case for context information and
context-aware systems. In order to develop and deploy
complex IoT/M2M scenarios we need to address the
issues regarding storing, analysing and understanding
IoT data. However, correctly managing IoT data has
become a difficult task to accomplish. The volume and
diversity of data puts a toll on conventional storage and
analytical tools, restricting and limiting the development
of complex IoT/M2M scenarios. Due to the volume
and lack of formal representation, IoT data can be
characterized as a combination of the unstructured data
and Big Data paradigms. These paradigms are inherently
connected, and are one of the factors that led to the
advent of NoSQL databases [21, 9]. This insight points
to the limitation of current technology when dealing with
massive unstructured data.

Relational databases rely on predefined
representations and a priori relations in order to correctly
store and retrieve information. That is rather difficult
to accomplish when the data is mostly unstructured,

2



R. Jesus, M. Antunes, D. Gomes, R. L. Aguiar: Modelling Patterns in Continuous Streams of Data

as is the case of IoT data. NoSQL databases relax
some constraints and are good alternatives to several
workloads and even small IoT scenarios. However,
they lack advanced query capabilities, restricting the
discovery of information and complex patterns [3, 5].

The limitations are not purely technological. Even
if we were able to store and query all the data
gathered by IoT devices, we would still need methods
to organize, analyse and discover relevant relations
between data sources and target functions. Most
analytical tools rely on either a priori relations or a
human to analyse the data. These elements bestow some
latent knowledge to the underlying model, which implies
top-down classification. Top-down classification limits
the dimension along which one can make distinctions,
and local choices at the leaves are constrained by global
categorizations in the branches. It is therefore inherently
difficult to put things in their hierarchical places, and
the categories are often forced. Let us consider the
following example. The information gathered from
an accelerometer inside a vehicle can be used by city
officials to detect potholes and other anomalies on the
road. But it can also be used by policemen to detect
dangerous manoeuvres and behaviours. These examples
illustrate how difficult defining a priori relations in
complex environments can become.

Some authors [29, 7, 15] point out that probabilistic
models based on bottom-up characterization can produce
better results than binary schemes based on top-down
classification. Based on this approach we devised a
bottom-up model [5] to organize context information
without enforcing a specific representation. Our
organization model is divided into two main parts, as
depicted in Figure 1. The first part is composed by
two components that represent the structured part of
our model and account for the source identification and
fixed d-dimensions respectively. These d-dimensions
allow human users to select information based on
time, location or even other dimensions, and can be
understood as an OLAP cube helping in the process
of filtering information. The second part represents
machine learning features, that can be used to find
similar or related sources of data. Up until now we have
worked on semantic [5, 4] and stream features [18, 6]. In
this paper we continue our work on stream similarity.

While there are several academic works based on
stream prediction and mining [20], the same can not be
said about stream similarity. Most methods are based on
longest common sub-sequence algorithm [23, 8]. Some
work related with detection patterns in time-series has
been done in financial stock markets [17]. However,
these methods are not ideal for generalized IoT/M2M
data for two main reasons. First, data acquired from IoT
devices tend to be noisy, can be shifted in time and have

Figure 1: Context organization model based on
semantic and stream similarity

different scales. Second, the vast number of IoT devices
implies that there are several streams for the same
phenomenon. Our objective is to learn a representation
of the phenomenon, combining all the streams in a
single model. Due to these reasons we devised our own
generative model. We are interested in characterizing the
“shape” of a stream/time series, the closest analogue that
we known being shape descriptors in image recognition,
such as Roy’s Shape Representation and Global Shape
Context [26]. In fact our model draws inspirations from
the previously mentioned techniques, since it also uses a
grid like structure to capture the “shape” of a stream/time
series.

It is not only IoT that will benefit from stream
patterns’ characterization. Any task that requires
time-series clustering and/or classification will benefit
from a stream characterization model. Typical real-
world examples include financial data [2] and medical
data [16]. Even areas, such as network optimization,
BPMN execution flow and time-series privacy, may
benefit from stream patterns’ characterization. Using
the hidden patterns in network traffic it is possible to
extract more accurate network graphs and achieve better
optimizations [30]. Data-flow errors in BPMN 2.0
process models, can be detected by mapping them to
Petri Nets, unfolding the execution semantics and detect
specific error patterns [32]. Time series anonymization
is an important problem, by using a (n, l, k)-anonymity
model that transform a time-series without jeopardizing
the relevant patterns [19]. Another area that may benefit
from stream characterization is model compression [11,
31]. By capturing the relevant characteristics of a
time-series we can minimize the amount of information
transmitted and stored. It can be specially useful for
large IoT scenarios.

3



Open Journal of Big Data (OJBD), Volume 4, Issue 1, 2018

3 GENERATIVE MODEL FOR STREAM
CHARACTERIZATION

Before discussing the details of our stream
characterization model, let us discuss its origin.
With the advent of IoT/M2M devices, context-aware
platforms require novel organizational models, learning
algorithms and proper testing. However, it is rather
difficult to evaluate the accuracy of these systems when
the environment is as dynamic and vast as the IoT/M2M
environment. In order to properly test these platforms
we require both a controlled environment and tools to
control the input data.

There are some possibilities, and the most common
one is to use several datasets gathered from actual
sensors. Gathering, pre-processing, classifying and
maintaining these datasets requires human intervention
and is time-consuming. Furthermore, in order to
guarantee that the tests cover all (almost) the possible
inputs, large amounts of data are required. One
alternative to this is to develop a model that captures
the information about a determined phenomenon and is
able to generate its several instances that are statistically
similar. This was the drive to develop our stream
characterization model. Apart from stream generation,
our model structure makes it ideal to develop similarity
metrics. We intend to explore the full capabilities of this
model, as a tailored feature for IoT/M2M organization,
in future publications.

This section will address two different but related
ideas. First, we will present our generative model for
stream characterization based on Markov Chains and
detail its inner workings. Second, we will elaborate on
a stream generator that uses the previously mentioned
model.

3.1 Stream Characterization

Our approach is to model a stream’s behaviour using
first order Markov chains. Considering a perfect scenario
where there is no noise or errors, most events would thus
happen in a very predictable manner (i.e. without major
variances). We could formulate our model as Equation 1,
by knowing how probable it is for, at a given time instant
xi−1 with a value of yj , a stream at the time xi take a
value of yk. In other words, the probability of having
value yk at a time instant xi knowing its immediate
predecessor.

Pi(yk|yj) (1)

For the remainder of this paper we will call the
succession of a value to the one following it (along the x
axis) a jump or transition.

We could then argue that using the method above and
knowing all the probabilities of all the jumps along the
period of the event, we could represent it with quite
high confidence. For the sake of argument, consider
that we had at our disposal such a probability function
as expressed above, and we were given a sequence of
values representing an event. We would like to compute
the similarity (S) between the sequence of values and
the probability function. This can be achieved by
verifying all the values of Pi for all transitions within
a sequence’s period, and either averaging them or using
some other statistical indicator to get a representative,
normalized value of the overall resulting probabilities
(see Equation 2, where n represents the number of
samples in the stream).

S =
1

n

n∑
i=1

Pi (2)

The probability function would assign an high or low
value to each jump of the sequence based on how well it
relates to the events expressed by the probability function
itself. If the sequence’s values were off the event’s, then
the overall probability would be low. On the other hand if
it was high, then we could be confident that this sequence
is similar to the event represented by the function.

The problem arises as we notice that this perfect
scenario is not possible in practical cases, hence if we
intend to use such a function as the one described above
to represent a stream, we need to overcome three major
issues and make a few changes to its definition:

1. Streams representing the same events may vary
widely, for reasons such as noise, location, time of
day, etc;

2. It is impractical, due to both time and space
constraints, to have a function mapping every tuple
of points ((xi, yj), (xi+1, yk)) into a number (the
probability of the transition);

3. Along the lines of the previous item, it is
not reasonable to consider the continuous and/or
infinite domain associated with most events (which
would imply considering infinite values).

Our proposal attempts to solve these issues by
overlaying a grid-like structure over the different values
a stream takes along its period, effectively turning each
(xi, yj) in the preceding discussion into a slot (as
depicted in Figure 2). This gap gives rise to two other
values that are now to be considered, ∆x and ∆y, each
representing the resolution of their corresponding axis.

Issue 1 can be solved by overlaying multiple
streams representing a same event, and computing the
probabilities that arise from their transitions. Issues 2

4



R. Jesus, M. Antunes, D. Gomes, R. L. Aguiar: Modelling Patterns in Continuous Streams of Data

y

x
∆x

∆y

P0

P1

P2

P3

P4

P5

P6

µ
σ
...

Figure 2: Structure proposed to model stream information
A grid is overlayed over the sample streams, in order to build a matrix like structure where each slot contains a
probability vector, an histogram of values, and other relevant statistical values (e.g. the mean and standard deviation
of the values inside the bin).

and partially 3 are solved by now considering jumps’
areas instead of single values, in a sense discretizing
both a stream’s domain and codomain. By the law of
large numbers and assuming that those streams do follow
a pattern (even if with noise and/or erratic behaviour),
one can be sure that eventually the probabilities will
converge. Issue 3 can be further improved in the case
of periodic streams.

Given that most real scenarios are periodic to some
extent, the model can be constructed based on the event’s
period. In case the data has some seasonality property
associated, a model can be contracted in accordance to
each season’s period. The period of the phenomenon is
then taken as the domain of the grid described. This
makes it possible to bear with the otherwise infinite
domain of periodic streams. Each stream’s period is
taken as a 1-period stream by itself.

This way we are capable of characterizing the
underlying behaviour of some event, based on the
behavioural patterns of some related streams. We say
this method is based on first order Markov chains since
it assumes that there is little to no knowledge lost by
only considering direct transitions along the x axis. This
means that we do not use all the previous values a stream
took before a given xi when computing the probability
of being in some other area in the time slot following
(with xi+1 ≡ xi + ∆x). This is done to minimize the
computational complexity that would arise from doing
so.

The representation mentioned above can still have a
problem: the notion of “area” itself. If it is too wide
or too narrow, the model fails to capture the relevant
pattern of the event. If any of ∆x or ∆y are too broad,
information about the event will be lost. On the other

hand, if these values are too narrow, the computation’s
complexity of the probabilities will start to degrade.
Even worse, it can make the whole representation too
specific (resulting in overfitting).

In order to minimize this issue we propose to keep
the following values associated to each slot, as shown
in Figure 2:

Probability vector: this is the function which makes
possible representing the nature of the stream using
probabilities. Each Pi maps to the probability of
jumping to the yi following along the x axis (the
transition).

Histogram of values: each slot maintains a histogram
of values, allowing the model to identify which
values are more commonly found within that slot,
minimizing the penalization of having large bins
values. In a sense this adds another dimension to
the model.

Other statistical values: other statistical values may
be kept for further improvements. For example,
keeping the average and the standard deviation of
the values within the slot. These are both cheap
computationally wise and may be of significance
when evaluating how well a given point fits within
the slot.

Our model also supports the generation of multiple
continuum periods. We modelled this behaviour by
computing the probabilities of wrapping around the
matrix representation (i.e. going from the last column to
the first). This way, with the same Markov simplification
made throughout the document, we gave the model
the knowledge to generate continuous stream (in a true

5



Open Journal of Big Data (OJBD), Volume 4, Issue 1, 2018

infinite stream scenario). This property will become
rather important when considering time shifts in a
similarity metric.

3.2 Period Detection

In order to automate the usage of the generator (and
later the similarity component), we have developed a
module for automatic period detection. It works by
first computing a periodogram of a stream, and selecting
the k strongest frequencies from it — commonly
named candidate frequencies. Then, for each of these
candidates, an autocorrelation factor (ACF) with lag of
the inverse of the frequency (the period) is computed.
The period which gives the best ACF is selected.

Since the sample points of a stream may not be equally
spaced, we drop portions of the stream that do not meet
a minimum percentage of points given the period being
considered. Furthermore, the portions which will be
used are linearly interpolated in order to bring equal
spacing between samples (which is important for the
autocorrelation, otherwise the point-wise operations do
not match). The interpolation is evaluated every 2∆t,
where ∆t is the mean time difference along each original
pair of succeeding sample points. Initially we did not
use interpolation, making the autocorrelation fail due to
the mismatch between samples’ spacing. With linear
interpolation the problem was solved.

3.3 Stream Generation

Apart from stream characterization and similarity
estimation, our model can also be used to generate
streams. Context-aware platforms, or indeed any
platform that deals with context information (IoT/M2M
data included), benefits from a realistic stream generator.
As these platforms become smarter it also becomes
imperative to validate and evaluate the platform in a
controlled environment. In our specific case, initial work
demanded the use of large datasets to carry on tests
and to evaluate the capability of representation of our
organization model. This lead to the development of a
stream generator general enough to be used in a wide
class of streams, which is used to build synthetic datasets
from real ones we have, but which were not as big as
needed.

Such generator would have to output plausible
streams, and not just a stream which would for instance
minimize the errors between itself and the set of streams
given as examples. This constituted an opportunity to
test our proposed representation. The internal structure
of the generator is, thus, a matrix of slots, each with
the values as described in Subsection 3.1. This matrix
is built for each type of pattern we want to learn,

Figure 3: Generation process
1. At each gap, generate a random value that represents
the transition probability; 2. Use the transition matrix to
identify the next bin; 3. At the destination bin, generate
a new value (based on its histogram).

from a set of streams representative of the pattern (e.g.
temperature or humidity). After having the matrix
built, we can traverse it (along its x axis) according to
the probabilities and histograms found along the path
in order to generate streams similar to the underlying
pattern of the ones which were previously presented (as
depicted in Figure 3).

Preliminary tests show how good is the capability of
the generator to learn the most relevant motifs of the
streams, being capable of generating realistic streams
from the representation built. This is further discussed
in Section 5.

3.4 Stream Similarity

For computing the similarity of a given stream when
compared with a certain model, the stream is fitted into
the model (similarly to what is done when building
the model itself). Since at this stage we are dealing
with a scale-dependant technique, streams and models
whose domains are not directly comparable are not being
considered.

The similarity value itself is obtained by traversing the
stream and evaluating, at each transition, the likelihood
(i.e. probability) of having both the stream’s point at the
bin being considered and the transition that the stream
suggests.

Taking the definitions

Phi := Normalized probability of point i of stream
Pti := Normalized probability of the transition i

6



R. Jesus, M. Antunes, D. Gomes, R. L. Aguiar: Modelling Patterns in Continuous Streams of Data

The similarity expression is then given by Equation 3,
with both sums running over all the stream’s transitions
(and hence points).

S =

∑
Pti · Phi∑

Pti
, (3)

In case there is no bin (in the model) to characterize
the point being considered at a given time, then Ph = 0
and Pt = 1 for that parcel. Otherwise, if the bin exists
but there is no possible transition, then Ph = 0 and Pt
is taken as the (normalized) probability of the strongest
transition of the bin. This measures are taken so as to
penalize to different degrees the stream’s parcels which
cannot be compared.

4 IMPLEMENTATION

So far some ideas presented in this paper have appeared,
in a sense, as isolated units. With this in mind, the goal of
this section is to describe how they are brought together,
answering two major scenarios: stream generation and
stream similarity. Usual stages of machine learning
pipelines (e.g. preprocessing stages where outliers are
removed) are omitted, so as to keep the text concise and
centered around the ideas previously presented.

The first algorithm that shall be presented,
Algorithm 1, builds a model from a set of streams.
The function FindResolutionOf is still only
theoretical. The resolutions that were used during
testing were found by experimentation. Also, the goal
of the function SnapToResoltution is to fit each
stream into the grid that is being built, for example
deciding in which bin each portion of the stream fits.
This is later used when computing the probabilities of
each transition.

The next algorithm to be presented is Algorithm 2,
which given a model generates a stream. The function
GeneratePoint uses the histogram of a model’s bin
to generate a point in accordance with its distribution.
The function GenerateNextBin uses the probability
vector of a bin to determine where the generated stream
will flow through. Both of these notions are discussed in
Subsection 3.3.

Finally, the similarity algorithm, Algorithm 3, is
described, which assigns a similarity score for a stream
against a model. Even though it is stated that the
initialization is similar to the first lines of Algorithm 1,
both the period and resolution values used are the ones
of the model. Despite this, they are still computed for the
stream itself. They are compared against the respective
values associated with the model, and in case they are not
comparable within certain bounds, the similarity value
is penalized. Also, exception handling is not included

Algorithm 1 Model Building

1: function BUILDMODEL(streams)
2: period← FindPeriod(streams)
3: SplitStreamsByPeriod(streams, period)
4: ∆x, ∆y ← FindResolutionOf(streams)
5: for all stream ∈ streams do
6: SnapToResoltution(stream,∆x,∆y)
7: end for
8: model← ComputeProbabilities(streams)
9: return model

10: end function

Algorithm 2 Stream Generation

1: function GENERATESTREAM(model, yinit)
2: bin← (0, yinit)
3: genstream← {GeneratePoint(model, bin)}
4: for i← 1,#ColumnsOf(model)− 1 do
5: bin← GenerateNextBin(model, bin)
6: genstream←

genstream
+
{GeneratePoint(model, bin)}

7: end for
8: return genstream
9: end function

Algorithm 3 Stream Similarity

1: function SIMILARITY(model, stream)
% Initialization as in lines 2 to 7 of Algorithm 1

2: m1sum← 0
3: m2sum← 0
4: for i← 0,#ColumnsOf(model)− 1 do
5: t← Pt(model, stream, i)
6: h← Ph(model, stream, i)
7: m1sum← m1sum + t · h
8: m2sum← m2sum + t
9: end for

10: return m1sum/m2sum
11: end function

in this description for brevity. For example, in case a
stream’s value is not present in the model’s bin that it
is being compared with, then default values are used
instead (which are mentioned in Subsection 3.4).

As a final note, the actual implementation of these
methods and associated data structures was carried in
Python3, resorting mainly to the standard libraries,
numpy and scipy.

7



Open Journal of Big Data (OJBD), Volume 4, Issue 1, 2018

5 PERFORMANCE EVALUATION

This section will present our current results. First, we
evaluate the period detection algorithm. Second, we
present the evaluation of stream generation based upon
our model. Finally, we evaluate the accuracy of our
stream similarity metric. We used a home automation
dataset1 to evaluate our model, it was composed of
three different kinds of natural phenomena: environment
temperature, humidity and light intensity. Each set
considered was composed of approximately one hundred
streams.

5.1 Period Detection

We expected a periodicity of approximately 1 day
(around 86400 s) for each phenomenon, which is further
suggested by visual inspection of the plots of the
streams we used. Figure 4 shows three histograms,
each depicting the computed periods over approximately
fifty streams of the respective phenomena. Although
including some outliers, we highlight that the maximums
of each plot stand well above the rest of the values and
are indeed close (within a 5% margin) to the expected 1
day period.

5.2 Stream Generation

We use MSE (mean-square error) and visual
representations to evaluate the generative performance
of our model. This evaluation was carried by k-cross
validation, and is displayed at Table 1. We obtained
these values by selecting one real stream and comparing
it with all the others, and doing the same for a generated
stream (and repeating selecting/generating other
streams). It is interesting to see that the differences
between the real and generated results are not far off.
Meanwhile, Figure 5 enables a more visual evaluation
of our results, plotting real vs generated streams.

We would like to highlight that not only are the curves
similar, but the standard deviation at each point is also
comparable. This suggests that our model does not
seem to be over fitting — the set of learning curves was
composed of heterogeneous samples, which is indeed
propagated to the generated streams. The MSE values
also validate that our generated curves are not too far off
the real ones. Even regarding “Light”, which scored a
much bigger MSE than the other sets, our model agrees
with the results from real streams.

Our model also supports the generation of multiple
periods. We have called this the “continuum” mode,
which Figure 6 presents a plot of. We find it relevant

1 available at http://db.csail.mit.edu/labdata/
labdata.html

Table 1: MSE values computed for the streams
generated

Real
Mean Median Stdev

Temperature 10.5 9.3 3.9
Humidity 51.4 37.3 27.9
Light 217360 175633 100361

Generated
Mean Median Stdev

Temperature 10.0 9.3 3.0
Humidity 48.3 49.1 11.8
Light 221271 222265 39933

Table 2: Similarity scores obtained

Stream Model Similarity

humidity 0.68 ± 0.03
humidity light 0.12 ± 0.04

temperature 0.03 ± 0.04

humidity 0.00 ± 0.00
light light 0.71 ± 0.05

temperature 0.00 ± 0.00

humidity 0.11 ± 0.05
temperature light 0.08 ± 0.01

temperature 0.67 ± 0.03

to say that the transitions between periods are smooth
and that, without the colouring to tell them apart, the
transition points would probably be unnoticeable.

5.3 Stream Similarity

The stream similarity technique previously discussed
(Subsection 3.4) was tested by continuously selecting
two different features. A stream of each feature would
be picked, with the remaining streams being used to
build a model. Finally, each of the streams would be
matched against each of the models (including streams
and models relative to the same feature), with the
similarity of the stream to the model being computed.
This procedure was repeated until around two thousand
stream-model matches were obtained. The results are
illustrated in Table 2.

As it can be seen, there is an undeniable abyss
between correct stream-model matches and incorrect
ones. Following this test a threshold could easily be built,
which would predict with very high confidence whether
a stream was or not a match to a model. In the future
we intend to test with more features in order to verify

8

http://db.csail.mit.edu/labdata/labdata.html
http://db.csail.mit.edu/labdata/labdata.html


R. Jesus, M. Antunes, D. Gomes, R. L. Aguiar: Modelling Patterns in Continuous Streams of Data

0.2 0.4 0.6 0.8 1.0
Period (s) 1e6

0.0

0.2

0.4

0.6

0.8

1e 4 Periodogram for temperature. Max : 86270.03

(a) Temperature

0.2 0.4 0.6 0.8 1.0
Period (s) 1e6

0

1

2

3

4

5

1e 5 Periodogram for humidity. Max : 86749.63

(b) Humidity

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Period (s) 1e6

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5
1e 5 Periodogram for light. Max : 84294.85

(c) Light

Figure 4: Periodograms for the three phenomena analysed

whether this pattern holds.

Despite these results it is noticeable that none of the
correct matches produced a score above 0.80, which
was our expectation when we first thought of this
test. This can be justified by the disparity that streams
naturally hold, and which were brought to light in past
experiments (Table 1, “real” row). With this in mind, one
cannot expect a stream to match a model with extremely
high similarity, since the model itself is built to bare with
the (many) natural differences of the streams. Extremely
high values of similarity would also indicate that the
model was overfitting. Further validations need to be
carried in order to better verify this, but nonetheless for
the time being this is an idea that seems to be sound.

6 SUMMARY AND CONCLUSIONS

The number of sensing devices is increasing at a steady
step. Each one of them generates massive amounts of
information. However, each device/manufacture shares
context information with different structures, hindering
interoperability in IoT/M2M scenarios.

We tackled this issue by developing an organization
model agnostic to context representation. Our
organization model uses tailored features to
automatically organize data and improve its accuracy.
By using our generative stream model as a tailored
feature to describe stream patterns we believe that our
organization model will be further improved. It is
worthwhile to mention that there are several academic
works based on stream prediction and mining [20], but
the same cannot be said about stream similarity and
stream characterization. Further work needs to be done

9



Open Journal of Big Data (OJBD), Volume 4, Issue 1, 2018

0 2 4 6 8 10 12 14 16 18 20 22 24
Time (h)

16

18

20

22

24

26

28

30

Te
m

pe
ra

tu
re

 (
C)

Real
Generated

(a) Temperature

0 2 4 6 8 10 12 14 16 18 20 22 24
Time (h)

25

30

35

40

45

Hu
m

id
ity

 (R
H 

%
)

Real
Generated

(b) Humidity

0 2 4 6 8 10 12 14 16 18 20 22 24
Time (h)

0

250

500

750

1000

1250

1500

Lu
x

Real
Generated

(c) Light

Figure 5: The three kinds of generated streams: temperature, humidity and light
The vertical bars represent the standard deviation (at each point) of 20 different streams.

Day 1 Day 2 Day 3 Day 4 Day 5
Time (days)

18

20

22

24

26

28

30

T
e
m

p
e
ra

tu
re

 (
C

)

Figure 6: 5 temperature streams generated as a continuum
The generator had been trained with around 100 streams prior to the generation.

10



R. Jesus, M. Antunes, D. Gomes, R. L. Aguiar: Modelling Patterns in Continuous Streams of Data

to assert some ideas expressed in this paper, but our
stream characterization model appears to be a viable
option.

We are currently devising a similarity metric to
estimate the similarity between two stream models.
Being able to analyse if two different stream models are
similar allow us to better organize context information
based on similarity. This allows us to organize data
based not only on semantic features [4], but also on
stream patterns. Furthermore, our model will serve
as a strong filter, trimming the search space so that
more advanced techniques can used. For example, IoT/
M2M platforms can use machine learning techniques
over our context organization model to provide smart and
proactive services, high level inference, amongst others.

There is room to further improve our stream
characterization model. Specially to cope with the
variability associated with IoT/M2M scenarios. Some
questions which are yet to be answered include: Is scale
(along the y axis) important? If yes, in which cases
and how to work with it? How to cope with time and
location differences across the different sensors? We
will continue our research on these topics and hopefully
answer these questions in future publications.

Meanwhile, the ability to generate streams resembling
a given set of learning ones can be useful in
many situations. For instance, to generate large
synthetic datasets where otherwise there is no specific
generator available. Our general purpose generator
has another big advantage, since it improves the
repeatability and validity of IoT/M2M and context-aware
platforms. Currently these platforms use advanced
machine learning algorithms to improve and optimize
several processes. Having the ability to test them for
a long time in a controlled environment is extremely
important.

ACKNOWLEDGEMENTS

The present study was developed in the scope of
the Smart Green Homes Project [POCI-01-0247-
FEDER-007678], a co-promotion between Bosch
Termotecnologia S.A. and the University of Aveiro. It
is financed by Portugal 2020 under the Competitiveness
and Internationalization Operational Program, and by
the European Regional Development Fund. This
work was also partially supported by research grant
SFRH/BD/94270/2013.

REFERENCES

[1] G. D. Abowd, A. K. Dey, P. J. Brown, N. Davies,
M. Smith, and P. Steggles, “Towards a better

understanding of context and context-awareness,”
in Proc. of the 1st international symposium on
Handheld and Ubiquitous Computing, 1999, pp.
304–307.

[2] S. Aghabozorgi and Y. W. Teh, “Stock market
co-movement assessment using a three-phase
clustering method,” Expert Systems with
Applications, vol. 41, no. 4, pp. 1301–1314,
2014.

[3] M. Antunes, D. Gomes, and R. Aguiar, “Context
storage for m2m scenarios,” in Communications
(ICC), 2014 IEEE International Conference on.
IEEE, 2014, pp. 3664–3669.

[4] M. Antunes, D. Gomes, and R. Aguiar, “Learning
semantic features from web services,” in Future
Internet of Things and Cloud (FiCloud), 2016 4rd
International Conference on. IEEE, 2016.

[5] M. Antunes, D. Gomes, and R. L. Aguiar,
“Scalable semantic aware context storage,” Future
Generation Computer Systems, vol. 56, pp. 675–
683, Mar. 2016.

[6] M. Antunes, R. Jesus, D. Gomes, and R. Aguiar,
“Improve iot/m2m data organization based on
stream patterns,” in 2017 IEEE 5th International
Conference on Future Internet of Things and Cloud
(FiCloud). IEEE, 2017.

[7] G. Avram, “At the crossroads of knowledge
management and social software,” Electronic
Journal of Knowledge Management, vol. 4, no. 1,
pp. 1–10, January 2006.

[8] A. Camerra, J. Shieh, T. Palpanas,
T. Rakthanmanon, and E. Keogh, “Beyond
one billion time series: indexing and mining
very large time series collections with iSAX2+,”
Knowledge and Information Systems, vol. 39,
no. 1, pp. 123–151, 2014.

[9] R. Cattell, “Scalable sql and nosql data stores,”
SIGMOD Rec., vol. 39, no. 4, pp. 12–27, May
2011.

[10] K.-C. Chen and S.-Y. Lien, “Machine-to-machine
communications: Technologies and challenges,”
Ad Hoc Networks, vol. 18, pp. 3–23, 2014.

[11] M. Danieletto, N. Bui, and M. Zorzi, “Improving
internet of things communications through
compression and classification,” in 2012 IEEE
International Conference on Pervasive Computing
and Communications Workshops, March 2012, pp.
284–289.

[12] S. K. Datta, C. Bonnet, R. P. F. D. Costa, and
J. Härri, “Datatweet: An architecture enabling

11



Open Journal of Big Data (OJBD), Volume 4, Issue 1, 2018

data-centric iot services,” in 2016 IEEE Region 10
Symposium (TENSYMP), May 2016, pp. 343–348.

[13] A. K. Dey, “Understanding and using context,”
Personal and Ubiquitous Computing, vol. 5, no. 1,
pp. 4–7, 2001.

[14] R. Fantacci, T. Pecorella, R. Viti, and C. Carlini,
“Short paper: Overcoming iot fragmentation
through standard gateway architecture,” in 2014
IEEE World Forum on Internet of Things (WF-IoT),
March 2014, pp. 181–182.

[15] T. Gruber, “Ontology of folksonomy: A mash-
up of apples and oranges,” International Journal
on Semantic Web and Information Systems, vol. 3,
no. 2, pp. 1–11, 2007.

[16] S. Hirano and S. Tsumoto, “Cluster analysis of
time-series medical data based on the trajectory
representation and multiscale comparison
techniques,” in Sixth International Conference
on Data Mining (ICDM’06), Dec 2006, pp.
896–901.

[17] S. Jeon, B. Hong, and V. Chang, “Pattern graph
tracking-based stock price prediction using big
data,” Future Generation Computer Systems, 2017.

[18] R. Jesus, M. Antunes, D. Gomes, and R. Aguiar,
“Extracting knowledge from stream behavioural
patterns,” in Proceedings of the 2nd International
Conference on Internet of Things, Big Data and
Security. SCITEPRESS - Science and Technology
Publications, 2017.

[19] S. Kessler, E. Buchmann, T. Burghardt,
and K. Böhm, “Pattern-sensitive time-series
anonymization and its application to energy-
consumption data,” Open Journal of Information
Systems (OJIS), vol. 1, no. 1, pp. 3–22, 2014.
[Online]. Available: http://nbn-resolving.de/urn:
nbn:de:101:1-201705194696

[20] G. Krempl, I. Žliobaite, D. Brzeziński,
E. Hüllermeier, M. Last, V. Lemaire, T. Noack,
A. Shaker, S. Sievi, M. Spiliopoulou, and
J. Stefanowski, “Open challenges for data stream
mining research,” SIGKDD Explor. Newsl., vol. 16,
no. 1, pp. 1–10, Sep. 2014.

[21] N. Leavitt, “Will nosql databases live up to their
promise?” Computer, vol. 43, no. 2, pp. 12–14,
February 2010.

[22] P. Lopes and J. L. Oliveira, “Coeus: Semantic web
in a box for biomedical applications,” Journal of
Biomedical Semantics, vol. 3, no. 1, p. 11, 2012.

[23] A. Marascu, S. A. Khan, and T. Palpanas, “Scalable
similarity matching in streaming time series,”

in Advances in Knowledge Discovery and Data
Mining: 16th Pacific-Asia Conference, PAKDD
2012 Proceedings, Part II. Springer Berlin
Heidelberg, June 2012, pp. 218–230.

[24] G. A. Miller, “Wordnet: A lexical database for
english,” Commun. ACM, vol. 38, no. 11, pp. 39–
41, November 1995.

[25] T. Mota, N. Baker, B. Moltchanov, R. Ioanna, and
K. Frank, “Towards pervasive smart spaces: A
tale of two projects,” in Future Network & Mobile
Summit 2010. The Second International Workshop
on Information Quality and Quality of Service for
Pervasive Computing in Conjunction with IEEE
PERCOM 2010, 2010.

[26] R. Pereira and L. Seabra Lopes, Learning Visual
Object Categories with Global Descriptors and
Local Features. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2009, pp. 225–236.

[27] C. Perera, A. Zaslavsky, P. Christen, and
D. Georgakopoulos, “Context aware computing
for the internet of things: A survey,” IEEE
Communications Surveys Tutorials, vol. 16, no. 1,
pp. 414–454, 2014.

[28] J. Robert, S. Kubler, Y. L. Traon, and K. Främling,
“O-mi/o-df standards as interoperability enablers
for industrial internet: A performance analysis,”
in IECON 2016 - 42nd Annual Conference of the
IEEE Industrial Electronics Society, October 2016,
pp. 4908–4915.

[29] C. Shirky, “Ontology is overrated: Categories,
links, and tags,” http://shirky.com/writings/
ontology overrated.html, May 2005, accessed:
22-07-2013.

[30] G. Sun, V. Chang, G. Yang, and D. Liao, “The cost-
efficient deployment of replica servers in virtual
content distribution networks for data fusion,”
Information Sciences, 2017.

[31] A. Ukil, S. Bandyopadhyay, and A. Pal, “Iot data
compression: Sensor-agnostic approach,” in 2015
Data Compression Conference, April 2015, pp.
303–312.

[32] S. von Stackelberg, S. Putze, J. Mülle, and
K. Böhm, “Detecting data-flow errors in bpmn
2.0,” Open Journal of Information Systems
(OJIS), vol. 1, no. 2, pp. 1–19, 2014. [Online].
Available: http://nbn-resolving.de/urn:nbn:de:101:
1-2017052611934

[33] T. Winograd, “Architectures for context,” Hum.-
Comput. Interact., vol. 16, no. 2, pp. 401–419,
December 2001.

12

http://nbn-resolving.de/urn:nbn:de:101:1-201705194696
http://nbn-resolving.de/urn:nbn:de:101:1-201705194696
http://shirky.com/writings/ontology_overrated.html
http://shirky.com/writings/ontology_overrated.html
http://nbn-resolving.de/urn:nbn:de:101:1-2017052611934
http://nbn-resolving.de/urn:nbn:de:101:1-2017052611934


R. Jesus, M. Antunes, D. Gomes, R. L. Aguiar: Modelling Patterns in Continuous Streams of Data

[34] F. Wortmann, K. Flüchter et al., “Internet
of things,” Business & Information Systems
Engineering, vol. 57, no. 3, pp. 221–224, 2015.

AUTHOR BIOGRAPHIES

Ricardo Jesus is a MSc student
in Computers and Telematics
Engineering from the University
of Aveiro. He received his
bachelor’s in Computers and
Telematics Science from the
same university in 2017. His
current research interests
include subjects such as number

theory and artificial intelligence (namely machine
learning). He has been a member of ATNoG, a
research group of the Instituto de Telecomunicações
(Telecommunications Institute) since 2015. At ATNoG
his main research has been targeted towards pattern
characterization using probabilistic models, being
involved in projects such as TVPulse and SCoT.

Mário Antunes received
his computer and telematics
engineering M.Sc. degree
in 2011, with first class
honors, from the Electronics,
Telecommunication and
Informatics Department,
University of Aveiro, Portugal.
He is currently working as a

researcher for the Advanced Telecommunications and
Networks Group at IT-Aveiro. His main research areas
focus on Knowledge Extraction and Context Storage
in Internet of Things (IoT) Scenarios using Machine
Learning techniques and Big Data repositories. His
works include developing efficient ways to deal with
unstructured information. These techniques are being
implemented and evaluated in advance machine-to-
machine projects, such as APOLLO and SCOT.

Diogo Gomes graduated in
Computers and Telematics
Engineering from the University
of Aveiro in 2003 with first
class honors, and concluded his
Ph.D. by the same University
on Resource Optimization for
Broadcast Networks in 2009.
He is currently an Auxiliar

Professor at the University of Aveiro. In the last 15 years
has participated in several EU funded projects such as
IST-Mobydick, IST-Daidalos, IST-Akogrimo, IST-C-
MOBILE, ICT-C-Cast, ICT-Onelab2 and ICT-Medieval
where besides conducting research on QoS, IP Mobility,
Multicast/Broadcast and Service & Application
Development has always been deeply involved in
the deployment of prototypes and demonstrations.
Recently his research interest are related to Knowledge
Extraction and Context Storage in Internet of Things
(IoT) Scenarios using Machine Learning techniques and
Big Data repositories.

Rui L. Aguiar is full Professor
at the University of Aveiro
where he received his Ph.D.
degree in 2001 in electrical
engineering. He has been
an adjunct professor at
the INI, Carnegie Mellon
University and is invited

researcher at Universidade Federal de Uberlandia. His
current research interests are centered on advanced
communication systems and he has more than 400
published papers. He is a member of the steering Board
of the Networld 2020 ETP. He has served as Technical
and General Chair of multiple conferences and is
Associate Editor of several journals. He is a member of
ACM and a senior member of IEEE.

13


	Introduction
	Related Work
	Generative Model for Stream Characterization
	Stream Characterization
	Period Detection
	Stream Generation
	Stream Similarity

	Implementation
	Performance evaluation
	Period Detection
	Stream Generation
	Stream Similarity

	Summary and Conclusions

