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ABSTRACT

While computational modelling gets more complex and more accurate, its calculation costs have been increasing
alike. However, working on big data environments usually involves several steps of massive unfiltered data
transmission. In this paper, we continue our work on the PArADISE framework, which enables privacy aware
distributed computation of big data scenarios, and present a study on how linear algebra operations can be
calculated over parallel relational database systems using SQL. We investigate the ways to improve the computation
performance of algebra operations over relational databases and show how using database techniques impacts the
computation performance like the use of indexes, choice of schema, query formulation and others. We study the
dense and sparse problems of linear algebra over relational databases and show that especially sparse problems
can be efficiently computed using SQL. Furthermore, we present a simple but universal technique to improve intra-
operator parallelism for linear algebra operations in order to support the parallel computation of big data.
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1 INTRODUCTION

With increasing capabilities in gathering data,
calculating scientific models have become more
accurate, but also very hardware and time demanding.
Since time is a crucial aspect, especially for real-time
applications, modern research has been investigating
parallel computation possibilities to speed up the
calculation process over the past decades. Especially
the areas of Big Data [6] and Machine Learning [16]
have been thriving and are of interest for scientists and
members of industry.

One of the most popular developments of scalable
parallel computation is the MapReduce framework [4],
which enables developers to transparently compute
algorithms in a scalable manner. Many different
research projects have been built upon this framework,
mainly adding APIs (for instance Apache Spark [40])
or optimization techniques (like Apache Flink [7]) into
MapReduce. This development has been a point of
discussion since then, as parallel database systems
have been developed long before the MapReduce
framework, while having similar application areas.
For example, Stonebraker et. al. analyzed in [37]
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several scenarios in which parallel database systems
outperformed MapReduce, even in typical MapReduce-
applications. This circumstance is especially interesting,
since using parallel database systems comes with many
additional benefits, for instance concurrency control or
data management functionality.

As a consequence of these findings, our research
focuses on calculating machine learning and scientific
computations on parallel database systems using SQL,
while ensuring data privacy through query manipulation.
As we have extensively described in [29–31] we are
translating operators that are substantial elements of
machine learning and scientific computation algorithms
into SQL. In order to fully use the potential of database
optimization, we create query plans for successive
operations. One of the main benefits of this approach
is the possibility to extend the architecture, as depicted
in Figure 1, with back-end SQL interfaces to gain
additional functionality. As already mentioned, we
currently focus on manipulating the machine learning
queries to achieve privacy protection [15] of sensitive
sensor data.

This paper aims on deepening our previous analysis
on how to efficiently calculate matrix operations on
parallel relational database systems via SQL [29–31].
Therefore, we provide a brief description of our research
project and give an overview on frequently used groups
of methods which are essential for machine learning
and computational modeling. Currently, we have picked
a few of these methods per group to translate them
efficiently into SQL. These groups are mostly split
into two sub-categories, dealing with dense and sparse
matrices. This sub-division is crucial to determine
which kinds of problems can be calculated efficiently on
parallel database systems in comparison to highly-tuned
linear algebra libraries like LAPACK [2], ARPACK [25]
or similar.

Our main focus in this article is to analyze important
aspects of efficient linear algebra query calculation on
parallel databases. The contributions of this article
include:

• A detailed discussion on the choice of meaningful
database schemas in Section 2;

• A categorization of suitable and unsuitable
operations for database processing in
Subsection 4.2;

• A discussion on how to treat highly iterative
methods via nested queries in Subsection 4.3;

• An experimental study on the impact of indexes
(GIN, B-Tree, Hash) for basic linear algebra
operations in Subsection 4.4. The experimental

study shows that indexes have only a positive effect
on a small set of sparse basic operations, but can
greatly improve highly selective Machine Learning
algorithms;

• A discussion on why classical database
partitioning strategies are inferior to the block-
wise matrix partitioning on dense problems in
Subsubsection 5.2.2, but are well suited on sparse
problems in Subsection 5.3;

• The development of a simple, universal query
decomposition technique that allows intra-
operator parallelism for fundamental linear
algebra operations in Subsection 5.4. The
query decomposition technique is experimentally
evaluated in Subsection 5.5. The evaluation
provides extensive experimental evidences that the
technique speedups the computation of queries in
comparison to plain query evaluation plan.

Lastly, Section 6 concludes and summaries this work
and provides some insights for future research projects.

2 STATE OF THE ART

Since this paper is mostly focused on the topic
of database implementation aspects and algorithmic
enhancements, we refer to [29] for a detailed state of the
art analysis regarding existing connections of machine
learning, database techniques and big data frameworks.

As we mentioned in the introduction, the starting
point of our research can be found in [37], which
provides an experimental evaluation of parallel database
systems versus MapReduce implementations. In this
paper, it has been shown that parallel database systems
can outperform MapReduce frameworks by orders of
magnitude in several scenarios. However, it has been
mentioned that tuning the parallel database systems to
its best possible performance can be hard and tedious.

Regarding the use of SQL, to our knowledge, there
have only been few research projects that investigated
performing scientific computation via SQL. One of them
is RIOT-DB from Duke University [42], which maps
R variables to the database via new data-types. This
allows transparent database support for the user. The
researchers stated that they tried to calculate matrix
multiplications directly on the database via SQL, but did
not follow up on this method, since their approach gained
poor performance results. Since their presentation of this
aspect was rather short, it is not possible to understand
the reason of their performance problems. One possible
answer might be the use of the row-store MySQL as the
back end of their framework, which in general is not
known for high performance.

2



D. Marten et al.: Sparse and Dense Linear Algebra for Machine Learning on Parallel-RDBMS Using SQL

User

Translation

PDBMS

N1 Coord N
2
 Coord N

3
 Coord N

n
 Coord

Node N
1 Node N2 Node N3 Node Nn

Query Decomp. Scheduler

...

...

External Tools

ML-Code/Algorithm

Response

SQL-Query

Decomposed Queries Query Results

   Data for 
Visualization 

Visualization

Figure 1: Architecture for scientific computations and machine learning processing on parallel databases

Another project has been investigating the calculation
of a principal component analysis (pca) via SQL using
SQL Server [32]. In their work, they tried to compute
the pca using singular value decomposition in SQL via
user defined functions. They compared this approach to
a version implemented in Java, which used little SQL
and database support. In this case the latter version was
superior. The main reasons for poor performance might
be the excessive use of non-optimized data manipulation
statements and the low data size, which allowed in main
memory calculations. Furthermore, there has been no
information stated, how or if they tuned their database
system. This is a crucial aspect, since most systems
are working for multiple users with low-cost queries,
in comparison to analytical work that requires as much
memory and cache as possible for few users.

Other research projects have enabled scientific
calculations by rewriting internals of existing database
systems. For instance, researches have shown in [27,28],
that internal rewriting of database types and optimization
structures can have great performance enhancing effects
on calculating dense matrix multiplications. Similarly
to this, the MADlib project [19] does also provide
internally written data types and also implemented
commonly used methods for machine learning. Anyhow,

both projects need data to be fully allocated in main
memory and are not compatible with ANSI-SQL syntax
as they rely on new implementations.

At this point we would like to give a very concise
overview on some of the most noteworthy recent projects
that are combining techniques from the area of database
technologies and machine learning. One of the major
research directions that has been taken is using machine
learning to improve database technology. For instance, it
has been shown in [24] that it can be very beneficial to
use machine learning in real-world applications to learn
new kinds of indexes that consider patterns of structured
data for a given use-case, rather than traditional index
structures which are designed to fit for more general
applications. Furthermore, the OtterTune Service [41]
uses Gaussian Process Regression models to find optimal
configurations of database systems. This is a project with
high potential as tuning databases with big workloads is
very demanding and is usually done by paid experts, due
to its complexity.

Other current research in this area focuses on lowering
the costs of machine learning workflows by optimizing
data handling and resources. For instance, Ease.ml [26]
provides a declarative service platform where users only
send a high-level schema of their desired application.
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The system will then transparently choose models,
type of shared storages and allocates computations
resources in a meaningful way considering the overall
workload. Other projects like SketchML [23] combine
advanced compression techniques and statistics in order
to decrease communication costs for distributed machine
learning algorithms. Similarly, SystemML [3] provides
fused plans for linear algebra operations in order to
lower the necessity of scans and saving intermediates.
Therefore the researchers have investigated several
techniques for candidate exploration, selection of fusion
plans and code generation of local and distributed
operations over dense, sparse and compressed data.

Another promising project in this area is called
MISTIQUE [39], which does lower the storage footprint
of machine learning model diagnosis. Here, researches
have introduced a number of methods like quantization,
deduplication or summarization to lower the costs of
saving and querying intermediates when learning or
evaluating models. Finally, [17] introduces a speed up
of analytical machine learning queries on typical data
science frameworks by introducing a materialization of
machine learning plans. Therefore, the computed models
are stored with additional metadata, which allows to
merge several combinable models later on and reusing
these to get faster approximative results in comparison
to learning a new model from the data.

3 COMPUTATIONAL ENVIRONMENT

This section gives a brief overview of concepts and
the historical development of our machine learning
and scientific computation’s environment on parallel
databases. We will start with a short overview of
our PArADISE project (more detailed descriptions of
PArADISE are given in Section 3 of [29] and in [14]).

3.1 The PArADISE Project

As one of our current research projects, we are
developing the PArADISE1 framework. This framework
aims at supporting developers of assistive systems in
three development phases. In Figure 2, these phases
are shown as Development (left-hand side), Data and
Dimension Reduction (depicted by the arrow in the
middle), and Usage (right-hand side):

• Development: Developers of Machine Learning
(ML) and scientists of data are trying to detect
and predict user activities, using data from a small
amount of test persons, collecting sensor data for a
short time period (maybe some weeks), annotating
these sensor data with activity information, and then

1 Privacy-aware assistive distributed information system environment

trying to learn the activity models by means of ML
algorithms.

• Data and dimension reduction: In the
development phase, there is a small amount
of probands, but a large amount of sensors and a
high frequency of the sensor data. After having
derived the activity and intention models, one has
to reduce the dimensions of the data (e.g., the
number of sensors being evaluated) and the data
itself (e.g., measuring and transmitting sensor data
every minute instead of every milisecond).

• Usage: When using the assistive system afterwards
for a huge number of clients (millions of clients
having billions of sensors) with the reduced set
of sensor data, one has to decompose the SQL
queries detecting the activities and intentions of the
users. This query decomposition aims at better
performance because the query will be vertically
pushed down to the sources of the data (the sensors)
as close as possible. Even more importantly, the
decomposition of the query results in better privacy
protection for the user of the assistive systems, since
most of the original sensor data has not to leave his
personal equipment, his apartment, or his car. Only
a remainder query, the part of the query that cannot
be pushed down to the clients and sensors, has to
be evaluated on the large cluster computers of the
provider of the assistive system.

In this context, it is assumed that the provider of
the globally distributed system is called Poodle [13].
Poodle uses ML development tools such as R or higher-
level languages to derive the activities and intentions of
the user. This ML code will then be transformed to a
sequence of SQL statements. These SQL statements will
then be evaluated in parallel on a large computer cluster,
the parallelization will be introduced by the PArADISE
system. This phase is called ML2PSQL in Figure 2.

To be able to automatically decide about the privacy-
oriented decomposition of the queries, we have to use
SQL queries as a basis for query containment and
Anwering-Queries-using-Views techniques. Hence, it
is crucial for this approach to be able to express ML
code by a sequence of SQL queries in the development
phase of the system. Only then, one can use the privacy-
by-design principle when constructing the evaluation
algorithms in the usage phase.

In the next section, the components of the ML2PSQL
transformer will be discussed. We call this part of the
PArADISE project PaMeLA2.

2 PArallelization of MachinE Learning Algorithms and Linear Algebra
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Figure 2: The PArADISE environment [29]

3.2 Historical Development in PaMeLA

The original goal of our PaMeLA project is to support
developers of assistive systems in calculating models
using huge sets of sensor data. In order to help
them handling big data projects, we hypothesized that
parallel database systems are a reasonable choice for
most of their requirements. A possible architecture
for our proposed framework is depicted in Figure 1.
As can be seen, the main addition in this environment
is the translation interface, which translates machine
learning algorithms or general algorithms of scientific
computations into SQL statements and decomposes
these queries into sub-statements that can be calculated
more efficiently by the database system. Furthermore
the interface filters non-translatable operations (like
visualizations), so that these operations can be processed
afterwards by external software.

One of the main advantages of this approach is that the
aspect of data privacy can be implemented reasonably
well (see above, more details are given in [14, 15]).
The manipulation is based on SQL queries, since SQL’s
core is and has been widely supported by nearly every
common relational database system, making it a great
choice for long term implementations, which are (nearly)
independent from the used system. On the other hand,
the core of SQL (an extended relational algebra) is
deeply and theoretically understood so that we are able
to prove desirable properties of the rewritings.

Due to the goal of full SQL support, it is important to
note that we are not interested in internal reprogramming
of common systems, rather than maximizing the use
of established database techniques. Aside the aspect
of universal long-term usage, conceptually, sensor data
as well as vectors and matrices are usually strictly
structured and can therefore be naturally modeled using
relational databases.

Anyhow, the fundamental requirement for our
proposed approach is to have meaningful queries that
express computational modeling or machine learning
algorithms. Since matrix and vector operations are
not part of the SQL standard we needed to investigate
several different aspects on this topic, mainly leading to
questions like:

• Translation:

– What are frequently used basic sub-
methods in machine learning and scientific
computations?

– How can these sub-methods be translated?

– How can these translated queries be split into
sub-queries for efficient parallel computation?

• Performance:

– What kind of problems or methods can be
processed reasonably fast or slow ?
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– When can indexes be usefully applied?

– How should data be partitioned or replicated?

– What are other performance enhancing or
degrading aspects?

Furthermore, we realized that common provenance
management techniques are not sufficient to be used
by developers of assistive systems, raising additional
questions, like

• What sensors have the most impact on modeling
results?

With these questions as a starting point, we started
our investigation by comparing several different widely
known non-parallel relational database systems on
calculating linear regression [30, 31]. We have found
that one can compute linear regression parameters for
a single feature using column stores (MonetDB) as fast
as using the statistical software R (using LAPACK).
Furthermore, systems with advanced optimization like
IBM’s DB2 can come close to these computation times,
although using a row-storage scheme. These results
were somewhat surprising, but confirmed the power of
internal optimization potential, since row-stores usually
do perform significantly worse in comparison to column-
stores on this kind of operations.

We continued our research in [29] showing that
translating Hidden Markov models into SQL statements
is possible without any loss of information. Furthermore,
we have presented that methods like training model
parameters (in this case transition matrices) can be
calculated faster than in R even using in-memory data
sizes. This can be explained since scanning, sorting and
grouping are highly tuned methods in database systems.
Furthermore, we showed that standard filter techniques
(forward filtering) can be calculated with a reasonable
performance gap in comparison to in-memory software.
Database techniques scale according to needed floating
point operations not only in-memory but also for big data
on disks.

3.3 Frequently Used Sub-Methods and
Operations

While analyzing internal computation of several
different machine learning algorithms (such as linear/
logistic regression, Hidden Markov models, selection/
extraction operations and support vector machines), we
have found sub-methods listed in Table 1 to be crucial
for these operators.

Most of the representatives are chosen to work well
on huge sparse problems. On the contrary, some of
them perform poorly on dense problems as will be
discussed in Section 4. All of these sub-methods

have in common that they are basically composition of
fundamental operators of the euclidean vector space.
These include field operations, which are element-wise
addition, subtraction, multiplication and division, and
matrix-vector- and matrix-matrix-multiplication, which
can be seen in Table 2.

Additionally, scalar functions like the square root√
x or trigonometrical functions like the exponential

function ex or the logarithm log x are frequently used in
statistics. Examples can be found when working with
probability distributions or minimizing log-likelihoods
of models and data.

With these sets of scalar and fundamental operators we
have built the presented sub-methods. We are currently
optimizing them according to the techniques presented
in the following Section 4 and Section 5.

4 QUERY FORMULATION AND IMPACT OF
INDEXES

After the short résumé of our research project, this
section presents and discusses the general performance
influences. The main goal is to get as much performance
as possible from the database system without internal
rewriting. Therefore, general aspects like query
formulation or choice of schema are investigated,
although here the main focus is on the use of indexes.
The following Section 5 will then continue to analyze
the performance influencing aspects for parallel database
systems.

The most natural aspect of performance influence is
the amount of system resources the database system has
access to. One has to distinguish two types of systems:
the systems that can “take” resources as they need
(for instance MonetDB) and the systems that allocate
a predefined static amount of resources. The first type
usually does have a practical advantage for a single user
in comparison to the second type, as the systems get
exactly the type and amount of resources as needed.
Anyhow, the latter approach does ensure fair resource
allocation for multiple users.

However, it is extremely difficult to tune such a
static system for one user, since the resource demand of
queries can differ substantially. In general, it has to be
suspected that common settings for database systems do
not fit with requirements for analysis, since it is unlikely
that a high amount of users will work on the same data at
the same time. For our setup we have chosen parameters
according to community and developers’ suggestions
for general performance enhancement relative to the
amount of main memory, type of secondary storage and
the amount of expected simultaneously working users.
These configurations will be addressed further in Section
5.5.
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Table 1: Sub-methods in machine learning algorithms and their representatives, which have been
implemented in our research project.

Sub-Method Representative
Matrix Factorization QR Factorization
Matrix Similarity Transformation Bi- and Tridiagonalization
Eigenvalue / SVD analysis QR Method, Power Method
Feature Selection/ Extraction Principal Component Analysis
Linear System Solver Conjugated Gradient Method
Numerical Differentiation Jacobi Matrix
Optimization Solver Gradient Descent Method
Repartitioning Methods Spectral Partitioning, Reverse Cuthill McKee
Fourier Transformation to be done

Table 2: Fundamental operators used for the
sub-methods in Table 1. Here, A and B
represents matrices and v, w represent vectors with
corresponding dimension.

Operator Representative
Field Operations +,−, ·, /
Transposition AT , vT

Matrix Multiplication AB,Av, vTAw, . . .

These sections provide several insights on
performance analysis and improvement possibilities.
All of the presented results have been calculated
with PostgreSQL 10.1 on a computer with hardware
specifications described in Table 3 and parameter
reconfiguration according to Table 4. It is noteworthy
that tuning PostgreSQL is crucial at this point, since
the default configuration of the system is a “basic
configuration tuned for wide compatibility rather
than performance” [12]. Therefore, we have changed
parameters locally and on the cluster-side according
to the suggestions in [12]. Although substantially
slowing down the processing time, all of the following
calculations have been done without parallel processing
to ensure continuous behavior when scaling problem
sizes.

4.1 Choice of Schema

Another fundamental aspect of reasonable performance
besides systems resources is the “correct” or reasonable
use of relation schemas, as this choice will heavily
influence query formulation& calculation, the usage and
impact of indexes and others. As established in former
publications [29–31], a reasonable choice for a matrix
schema is

A( i int, j int , v double),

since it allows queries to address any element or kind

of sub-matrices, including rows, columns or (secondary)
diagonals. Furthermore, zero values do not have to be
explicitly stored and different indexes can be created and
used well on this schema as described in the upcoming
Section 4.4. The question whether explicit declaration
of the primary key (i,j) is useful is questionable and
heavily dependent on the way the matrix is intended to
be used. Usually, using primary keys comes along with
building indexes (e.g. B-trees) in order to ensure efficient
constraint checking. Anyhow, as will be seen in Section
4.4, using indexes is not always preferable, especially
when using queries with a lot of update operations
of intermediate relations and additional non-selective
query operations like full matrix vector multiplications
or similar operations.

Furthermore, there are many scenarios where
temporary tables hold multiple values for any pair
(i, j) for later aggregation. This mainly happens
when calculating sub-results on parallel or distributed
databases. On the other hand, besides ensuring
consistent data, there are some useful operations that
explicitly require unique constraints such as primary
keys. An example would be the MERGE operation
(SQL:2003 [21] and SQL:2008 [22], also known as
upsert), which can be beneficially used when dealing
with field operations like A = A + B or similar. While
offered in most systems, it might be noted that MERGE
is rarely found to be implemented in its standardized
syntax, which unfortunately hurts the portability of this
operation.

Apart from the primary key aspect, the schema
performs poorly on dense problems (especially on
row-stores), but better on sparse problems as will be
described in Section 4.2. On the contrary, the good
selectivity of elements and subgroups provides a wide
range of SQL functionality.

In our research, we also tested some other schemas as
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Table 3: Hardware configuration for local experiments

Component Value
Processor Intel Core i7-4600U CPU @ 2.10 GHz × 4
L1 Cache 32 KB
L2 Cache 256 KB
L3 Cache 4 MB
RAM 12 GB
Operating System Ubuntu 17.10 (64-bit)
Secondary Storage 250 GB

Table 4: Non-default parameters for PostgreSQL
10.1 used for local experiments

Parameter Value
shared buffers 3GB
temp buffers 64MB
effective cache size 9GB
work mem 1536MB
maintenance work mem 1535MB
min wal size 4GB
max wal size 8GB
checkpoint completion target 0.9
wal buffers 16MB
default statistics target 500
random page cost 4

for instance

A(i int,

c1 double,

c2 double,

...
cn double)

which represents a matrix with n columns. Additionally,
one can interpret this schema as a materialized joined
table of n vectors using the prior schema. Materialized
joins of vectors are rare to be found but are often
reasonable when possible. We initially tried this
approach in column stores on computing basic linear
regression parameters which mainly consist of several
dot products. While the performance results have
been convincing, the lack of flexibility when dealing
with matrices is a major drawback. Even fundamental
operations like transposing do lead to enormously long
SQL statements. Furthermore, most of the database
systems do not even support huge amount of attributes
in relations, so that big matrices could not even be stored
in one relation.

Another schema we have tested used arrays for the row
or column entries in order to increase the cache hit rate of

elements for fundamental operations. The corresponding
schema is

A(i int, v double array [n])

AT(i int, v double array [n])

where the transpose AT of a matrix should be stored in
AT as well to grant fast column access. This approach
was meant to increase cache hits and improve the way
that multiplications are calculated. For example, if
one considers C = A × B, the multiplication should
successively load row vectors Ai,: and multiplicate
them with B in order to obtain the desired rows Ci,:

until C is fully calculated. However, PostgreSQL or
even SQL does not directly support element-wise field
operations nor summation over arrays. Therefore, we
had to implement these operations using Postgres’ user-
defined-functions, which is unfortunate, since our goal
is to fully rely on the SQL core. In addition to these
implementation downsides, we have encountered bad
performance results as well. The main reason for this
is that Postgres does unnest any array before it calculates
summations or aggregations. Therefore, this approach
not only needs to process the algebraic operations
but also has to process a considerable overhead due
to internal data management, and is therefore not a
meaningful choice for this use case.

Ultimately, it can be stated that it is reasonable to
choose the schemas

A( i int, j int, v double )

w( i int, v double ),
(1)

with row number i, column number j and the
corresponding value v for scientific computation as they
model matrices and vectors well and also provide a wide
range of SQL functionality.

4.2 Dense and Sparse Problems

When examining the established schemas in (1), one
can already suspect that they do not behave equally
“good” for dense and sparse problems. As already
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mentioned, this can be confirmed, especially on row-
stores, where dense problems do perform significantly
worse in comparison to standard cache-hit optimized
libraries like LAPACK. In the analysis of the state of
the art analysis in Section 2, this problem was already
addressed in [19, 27, 28], where new in-memory matrix
and vector data types have been internally implemented
with great success.

Here, we would like to provide some simple analysis
on matrix multiplication in order to understand what kind
of multiplication should be avoided. Therefore, consider
a query plan for the productA×B of random matricesA
and B with fitting dimensions. The corresponding SQL
statement can be written as

SQL statement 1:

select A.i,B.j,sum(A.v*B.v)
from A join B on A.j=B.i
group by A.i,B.j.

The calculation usually consists of 2 sequential scans,
1 hash join and 1 hash aggregate. Depending on the
dimensions of A and B the relative amount of time
for each operation is varying a few percent. Usually,
scanning tables rarely exceed few percentage of the
overall calculation time, while hash joining costs around
30 % to 40 % of the time, leaving 60 % to 70 %
for the aggregation itself. Firstly, this reveals that
there is limited potential for speeding up these dense
multiplication queries using indexes, which will be
discussed later in Section 4.4. Secondly, many database
systems can not efficiently calculate the aggregation, as
they fully process each aggregated tuple one by one,
without acknowledging the potential of reusing columns
for multiple calculations. This behaviour does reflect
typical implementations of query evaluation engines,
which usually follow the Volcano iterator model [11].

This can be confirmed, when investigating simple
matrix multiplication

AB =

(
k∑

l=1

ailblj

)
ij

i ∈ {1, . . . , n}
j ∈ {1, . . . ,m}

of matrices A ∈ Rn×k, B ∈ Rk×m resulting in

f̃(k,m, n) = nm(2k − 1)

floating point operations (flops). The resulting matrix
has nm entries, needing k multiplications and k − 1
summations each. From the database point of view the
value nm does represent the number of hash buckets and
k represents the number of entries in each of the buckets.

In order to test whether database systems are scaling well
with the number of flops and the influence of the number
of hash buckets and their respective sizes, two matrices
A,B with A,BT ∈ Rn×k have been considered.

Sincem = n one can find that f(k, n) = f̃(k, n, n) =
n2(2k − 1) and further that

f(k, n+ c) = (n2 + 2nc+ c2)(2k − 1)

= n2(2k − 1)(1 + 2c/n+ c2/n2)

= f

(
k +

c

n
(2k − 1) +

c2

n2
(k − 0.5) , n

)

for c ∈ N. The parameter c ∈ N is used to display how
the number of flops change when varying the numbers
of rows in A and columns in B, and furthermore how
the same number of flops can be achieved by only
varying the numbers of columns in A and the rows in
B. This relationship can be used to check whether the
time needed to process multiplications with many small
buckets or few big buckets is roughly equal as long as the
number of flops is the same. Therefore, we did a small
experiment starting at k = 20, n = 40 following these
two different paths:

• hold k = 20, varying n = 40 + c with c = 160ζ
and ζ = 1, 2, . . .

• hold n = 40, varying k = g(k, n, c) with c = 160ζ
and ζ = 1, 2, . . .

with

g(k, n, c) = k +
c

n
(2k − 1) +

c2

n2
(k − 0.5) . (2)

Note that it is necessary to ensure that c/n is an even
number so that g(k, n, c) becomes a natural number. The
pure calculation results obtained in this experiment are
depicted in Figure 3.

It can be seen that up to a certain point (c ≈ 1400)
the system does scale according to the flops. After this
turning point, the calculation of many small buckets does
perform worse. This is most likely because of the rapid
increase of bucket handling and memory usage. As
a side note, one can observe the same behavior when
using LAPACK libraries with a much wider performance
gap, which might be caused due to non-avoidable output
costs. When adding any type of output (visual or inserts)
to the query, the performance gap naturally widens as
many more elements have to be processed in the varying
n case.

Anyhow, the relatively low gap is interesting when
noting that the case A,BT ∈ Rn+c×k uses matrices
with (n + c)k entries each, while the corresponding
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Figure 3: Performance of matrix uultiplication A × B with matrices A,BT ∈ Rn×k. The blue line with
triangle markers (few big buckets) represents multiplications with matrix dimensions n = 40 and variable
k(c) = 20+g(40, 20, c) with g from (2), as the blue line with dot markers (many small buckets) represents the
counterpart where k = 20 and n = 40+c. The function g and its parameter c assures that both cases need the
same amount of floating point operations. The red solid line showcases the relative deviation between both
approaches.

case A,BT ∈ Rn×k+g(k,n,c) uses matrices with
n
(
k + c

n (2k − 1) + c2

n2 (k − 0.5)
)

elements. These
values differ immensely as one of them is increasing in a
quadratic manner: For instance, the last points evaluated
in the experiments are on the one hand n = 2440
and k = 20 leading to 48800 elements per matrix and
on the other hand n = 40 and k = 72560 leading
to 2902400 elements per matrix, which is already two
magnitudes of order higher. This confirms the hypothesis
that database systems do way better on dense problems
that use “thin-shaped” matrices (i.e., matrices with few
columns/rows) or even vectors (see Figure 4), when
comparing them to in-memory scientific computation
software. In fact, we have tested some explicit linear
regression parameter computation using the statistic
calculation software R [35] and MonetDB [20], finding
that there is basically no performance gap for data in the
area of main memory (when using pre-calculated joins).
However, one of the big advantages is that database
systems are not bound to allocation in main memory and
could therefore calculate even a wider range of problems
than the aforementioned software.

In contrast to dense problems, the presented schema

is much more sufficient for sparse calculations, which
are problems where the numbers of non-zero matrix
entries are rare (< 1%). These cases usually have
much higher dimensions (> 1e8) and contain gigabytes
or even terabytes of data. Therefore, corresponding
calculations are usually more “selective” in comparison
to dense problems, which means that the relative
time needed for tuple-wise aggregation is lower, while
the time needed for data handling (selecting, joining,
sorting, etc.) is higher. This is, in regards of
processing, somewhat similar to thin-shaped rectangular
dense problems (except from joining, index using, etc.),
which just have been shown to scale good. Therefore,
sparse problems are an ideal use-case for database/SQL
calculations, especially since techniques like indexes can
be used to improve the effect, as will be seen in the
upcoming sections.

4.3 Modeling and Implementation in SQL

While SQL in its declarative nature is accompanied
with logical optimization, the performance of queries is
mostly independent of the way problems are formulated.

10
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Figure 4: Matrix multiplication for relations of the same size with A,B ∈ Rn×n ( blue dots) and A,BT ∈
R1×n2

(blue triangles): thin-shaped rectangular matrices are calculated faster (also according to the number
of flops needed) than quadratic ones. Therefore out-of-memory calculations can be motivated for dense
vectors and thin-shaped rectangular problems.

However, as will be described in this section, several
influencing aspects, like a reasonable handling of
iterations and nesting of SQL statements or providing
extra information for the database optimizer using
additional sub-queries for optimal index usage, need to
be considered when aiming at high performance query
processing. Here, we provide a discussion on the use
of nested queries and concatenated queries for sparse
problems.

4.3.1 Nested Queries

As established in former publications [29–31], nesting
queries is generally very beneficial since intermediate
results can be efficiently used and are not needed to be
partially stored or logged. This has been motivated even
further in Subsection 4.2 where we have shown that big
intermediates scale reasonably well on database systems
when output operations can be avoided.

We presented a comparison on a nested and successive
realization of forward filtering in Hidden Markov models
in [29], showing a performance benefit around factors
from 2.1 to 4.7, increasing with problem size. Here
we would like to provide a formal discussion on
what scientific computation methods can be beneficially

nested in SQL.

The main limitation on nesting is that one cannot
iterate efficiently over multiple intermediates at the
same time. This is due to our observation that common
sub-expression detection does usually not work with
complex queries in the from clause. Unfortunately
this occurs in multiple methods, for example
when calculating any kind of matrix factorization
(orthogonalization, eigenvalue decomposition, singular
value decomposition.). These methods require to
manipulate (update/insert) multiple matrices in every
iteration step and can therefore only be computed by
successive queries.

So what kinds of methods can be nested?
One of the major purposes of nesting is to deal
with iterative algorithms, although a simple
series of consecutive operations can be handled
alike. Most of the iteration can be expressed as
Ai+1 = f(Ai, B

(1), . . . , B(m), v(1), . . . , v(n)),
where Ai+1 depends on Ai and constant matrices
B(1), B(1), . . . , B(m) as well as constant vectors
v(1), . . . , v(n). If the corresponding relations are
only connected via the fundamental operators from
Table 2, the iteration is nestable. These methods can be
visualized as dependency graphs as depicted in Figure 5.
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Figure 5: General dependency flow graph of iterations Ai+1 = f(Ai, B
(1), B(2), v(1), v(2)) that can be nested

in a meaningful manner in SQL, where f does represent a function that connects the input relations via
fundamental operations stated in Table 2. Relations/matrices B(1) and vectors v(1) represent constant tables.
The number of constant relations can differ as needed andA0 can be composed of different finished iterations,
which have not been visualized, due to clarity.

A good example for a nestable query with common
sub-expressions is the power iteration in Algorithm 1,
which has also been depicted as a dependency graph
in Figure 6. Another point to be noted is that the
initial block A0 can be composed of two (and therefore
multiple) different finished iterations

A0 = f(f1(A
(1)
n , . . .), f2(A

(k), . . .)).

in the from clause. This can ultimately lead into a
tree shaped dependency graph. This special nesting of
multiple iterations might become relevant for certain
algorithms but has not occurred at our research yet.
Anyhow, this approach obviously does not cover every
kind of nestable queries but includes the vast majority of
iterative methods we have investigated.

4.3.2 Concatenated Queries

When investigating eigenvalue problems and principal
component analysis we encountered sub-methods that
consist of a multitude of non-nestable low-cost
operations, usually implemented by loops. In this case
theQR-factorization of a (symmetric) tridiagonal matrix
A ∈ Rn×n has been analyzed, which occurs frequently
when calculating eigenvalues via the QR method. This
means, calculating an orthogonal matrix Q ∈ Rn×n and

Algorithm 1: The power algorithm for the calculation of
the absolute greatest eigenvalue of a matrix A ∈ Rn×n

with starting vector v0 ∈ Rn

1: for i = 1, . . . ,max iterations do
2: ṽi = Apo,pl

vi−1
3: ṽi =

ṽi
‖ṽi‖2

4: if break condition then
5: break;
6: end
7: end

a triangular matrix R ∈ Rn×n so that

QR = A =


a11 a12

a12 a22
. . .

. . . . . . an−1,n
an−1,n ann

 .

This can be achieved by using Givens-Rotations,
which are rotation matrices

Gkl(θ) =



cos(θ) for i = j = k ∨ i = j = l

− sin(θ) for (i = k ∧ j = l)

sin(θ) for (i = l ∧ j = k)

1 for (i = j ∧ i 6= l ∧ i 6= k)

0 other
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Figure 6: A dependency flow graph of the power iteration in algorithm 1 as a representative of nestable
iterations.

that are specifically constructed, to eliminate the element
ak+1,k = 0 by multiplying A := Gk+1,k(θ)A. Here,
only elements in the upper triangular matrix in the k-th
and k + 1-th row are updated or inserted. Therefore,

Gn,n−1(θn−1)Gn−1,n−2(θn−2) . . . G2,1(θ1)︸ ︷︷ ︸
=:QT

A = R

forms the desired QR-factorization. As one can see,
calculating a QR decomposition takes n − 1 Givens-
Rotations, where n can possibly be a high number.
Additionally, when calculating eigenvalues with the QR
method, several decompositions have to be computed,
which increases the amount of low-cost queries even
further.

As SQL is built on set operations, it naturally does
not provide loop-syntax with the exception of system-
dependent extra functionality. Therefore, working with
large loops that cannot be expressed via joins or similar
can be demanding in SQL. Two different points have to
be addressed when one is trying to unnest large loops.
First, even when any single query has a neglectable
processing cost if examined on its own, looping over
these queries, i.e. gradually sending queries to the
system, performs very poorly. This is because network
costs create a massive overhead in this case. Even
when working on a desktop system, sending an “empty
query” and receiving a database response takes several
milliseconds, outperforming the calculation cost of the
Givens-Rotation by a margin. The obvious solution is to
send multiple queries via larger query plans. However,
the query plans cannot be too large, since this can cause
serious IO cost for the operating system and logging
cost for the database system. There is usually a wide
gap of reasonable query plan sizes that perform well,
nonetheless, we are using system-dependent loops at the
moment, since these perform even better.

4.3.3 Providing Sparsity Structure Information

Due to the data size, it is very important to avoid as
many full table scans as possible when working on sparse

problem. Hence, using indexes is a crucial component
for efficient computation for these kinds of operations,
as will be discussed in the upcoming section. While
optimization usually ensures a good logical way of query
computation, it seems that systems cannot “understand”
the logical structure of sparse matrices. Therefore, it
is sometimes advisable in sparse linear algebra to add
extra sub-queries for more efficient use of indexes. This
is especially the case when calculating operations that
will end with a selection that is caused by the sparsity
structure of matrices.

For instance, consider forward filtering in the Hidden
Markov model, which can be described as

(wTA) ◦B:,k,

with sparse matrices A ∈ Rn×n, B ∈ Rn×m and
w ∈ Rn, k ∈ {1, . . . ,m} and ◦ representing element-
wise multiplication. Using the discussed Schemas (1) for
matrices and vectors, the corresponding query in SQL
can be written as

SQL statement 2:

select wTA.i,wTA.v*B.v
from (

select A.j as i,
sum(A.v*w.v) as v

from A join w on A.i=w.i
group by A.j ) wTA join B
on wTA.i=B.i

where B.j=k.

While this query will return the correct answer, we
have encountered that database systems will calculate
the whole vector wTA before joining with B, even if
A andB have the necessary indexes. The systems do not
take advantage of the sparsity structure of B. In other
words, the systems calculate two joins fully, although
the first join results in tuples that will not be matched
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in the second one. To compensate this, it is meaningful
to add an additional sub-query that restricts the rows to
be calculated in wTA as follows

SQL statement 3:

select wTA.i,wTA.v*B.v
from (

select A.j as i,
sum(A.v*w.v) as v

from A join w on A.i=w.i
where A.j in (

select i
from B
where j=k )

group by A.j ) wTA join B
on wTA.i=B.i

where B.j=k.

This strategy filters many unnecessary calculated
tuples and usually speeds up the calculation enormously
(we have encountered factors of 17000 for medium-
sized, i.e. n = 1e7, sparse problems), depending on the
structure of B. In the following Subsection 4.4 the SQL
statement 3 will also be evaluated as a good examples for
efficient index usage.

4.4 Impact of Indexes

Indexes are one of the most powerful tools when working
with databases to tune query processing time. This
section discusses the use of indexes when calculating
scientific computations or machine learning algorithms.
As there exists little research on this topic, we
investigated several different kinds of indexes (Hash, B-
trees, GIN) in order to give a good overview of general
index behavior. Since most of the sub-methods in Table 1
are compositions of the fundamental operations in
Table 2, we have focused on the latter operations, while
distinguishing dense and sparse matrices. Furthermore,
sparse forward filtering (Hidden Markov models) will be
tested as a representative of commonly used machine
learning algorithm. Therefore, we choose the SQL
statements 2 and 3 in Subsection 4.3 to also show
the impact of meaningful query formulation. As GIN
indexing is relatively unknown or rarely implemented in
comparison to hash functions and B-trees, we would like
to start this analysis on giving a small description on how
GIN indexes work and how they can be applied to our
use-case.

4.4.1 GIN Indexes

PostgreSQL supports some index methods for multi-
column and multi-dimensional access, namely GIN and
GiST. In contrast to the common B-tree, both methods
allow for not only exact, range and prefix queries but
support also partial match queries, where only a part (e.g.
one column) of the composite search key is given in the
query.

GiST stands for generalized search tree structure [18].
Its PostgreSQL implementation is lossy in nature and
can be used on point or other geometry data, usually
derived from double precision data types. Using it on
integral matrix indices would require to provide a set of
support functions for composite integer key values. For
that reason, we used the index method supporting partial
match queries, i.e. GIN.

GIN is a generalized inverted index, as known from
information retrieval [33]. It was designed for handling
cases where the items to be indexed are composite
values, and the queries to be handled by the index need to
search for values that appear within the composite items,
i.e. partial match queries. Internally, a GIN index is a
B-tree index constructed over keys where each key is
an element of one or more indexed items. Entries in
a leaf page contain either a pointer to a B-tree of heap
pointers3, or a simple list of heap pointers if the list is
small enough to fit into a single index tuple along with
the key value. If used for multi-column indexing, the
GIN indexes are implemented by building a single B-tree
over composite values (column number, key value) and
the heap pointers. The key values for different columns
can be of different types, and in our scenario of matrix
indices they have the same integral type. This indexing
scheme seems to accommodate the sparse characteristics
of the matrices in use.

By using the GIN index, exact match queries as well
as range and partial match queries can be supported by
a single index structure. As a consequence, the index
is more compact than using one or more B-tree indexes.
Additionally, there is no preferred matrix dimension, i.e.
column-wise access is about as fast as row-wise access.

4.4.2 Problem Oriented Index Creation

The B-tree index and hash functions have been
specifically chosen to work on the respective join
conditions. When working on matrix multiplication AB
and matrix additionA+B, the following SQL statements

3 In PostgreSQL terminology, a heap pointer is an internal reference to
the tuple itself, sometimes also known as tuple identifier.
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SQL statement 4:

select A.i, B.j, sum(A.v*B.v)
from A join B on A.j=B.i
group by A.i,B.j

and

SQL statement 5:

select A.i, B.j, A.v+B.v
from A join B on

A.i=B.i and A.j= B.j,

have been used for dense problems. For sparse problems,
the element-wise operations have to be adjusted to

SQL statement 6:

select coalesce(A.i,B.i),
coalesce(A.j,B.j),
coalesce(A.v,0.0)+

coalesce(B.v ,0.0)
from A full join B

on A.i=B.i and A.j=B.j

in order to ensure that the tuples, which represent cases
like 0 + bij or aij + 0, are not neglected. However, no
matter whether problem structures are sparse or dense,
multiplications have the join condition

SQL statement 7:

A.j=B.i,

and element-wise operations have the condition

SQL statement 8:

A.i=B.i and A.j=B.j.

Therefore, B-trees and hash functions have been built
on the column attribute j for relation A and attribute
i for relation B for multiplication. On the other
hand, it is necessary to create multicolumn indexes on
(i,j) or (j,i) on both relations in order to support
element-wise operations. In conclusion, when working
with matrices that need element-wise operations and
multiplications, one would need to build trees or hash
tables using attributes (i,j),j or (j,i),i, which

can be quite costly when table updates are needed. For
this reason, one needs indexes on j for relation A and
B and on i on w when calculating forward filters. On
the contrary, when using GIN indexes, only (i,j) is
needed for all operations, which lead to smaller index
structures and less updating overhead. Additionally, we
tested (i,j,v) to check whether PostgreSQL would
even work entirely on the index structure, instead of
pointing from the index to the corresponding stored
relation entries. However, this approach did not yield
any effects, except for increasing the size of the index
structure.

4.4.3 Experimental Results

One of the first things we found was that using hash
functions on any of our use cases in Table 2 or the
forward filtering in SQL statement 2 and SQL statement
3 does perform significantly worse than B-trees or
GIN. Therefore, we have decided to neglect them in
the following experiments as they seem not to be a
reasonable choice for linear algebra operations. The
results of the other index types obtained from the
experiments are depicted in Figures 7, 8 and 9.

All matrix and vector entries are created as
random doubles using the uniform distribution. The
corresponding C++ code for creating the data can be
found in the Appendix. Experiments on sparse problems
for fundamental operations have been evaluated on a
grid with varying dimension sizes and branching factors,
which here denotes the number of entries in every row of
sparse matrices. Dense matrices do not have zero entries,
which means that inner joins are sufficient for element-
wise operations. Furthermore, we disabled sequential
scans when working with indexes, forcing the database
system to use index scans on the respective operations.

For clarity, we consistently used the following color
scheme for the representation of the results (Figure 7, 8 ,
9):

• dark blue: no index used

• green: b-tree index

• red: GIN index

It can be seen in Figure 7 that working with indexes
on dense scenarios has, in the best case, no performance
decrease, but certainly does not improve the speed of
calculations. In fact, when using matrices with a relation
size of 8.6 megabyte, forcing index usage leads to the
materialization of a more than 2 gigabyte intermediate
relation and therefore to a bad performance. The first real
improvement on fundamental operations can be observed
in Figure 8 (a) when calculating element-wise operations
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blue), a B-tree on (i,j) (green), a GIN index on (i,j)
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Figure 7: Index tests on dense fundamental operations, comparing B-tree indexes, GIN indexes and no
indexes.
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(a) Sparse multiplication Aw with no indexes (dark blue),
a B-tree (green) on (j) for A and i for w, a GIN index
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(b) Sparse Addition A + B with no indexes (dark blue),
a B-tree (green) on (j) for A and i for B, a GIN index
(red) on (i,j) on both matrices.

Figure 8: Index tests on sparse fundamental operations, comparing B-tree indexes, GIN indexes and no
indexes.

on sparse matrices using B-trees, which do scale very
good with increasing branching factor. However, sparse
multiplication does again perform poorly on GIN and
B-trees. The results on fundamental operations are
somewhat disappointing, but not a surprise, considering
that any of these operations works on entire relations.
As an example of a frequently used high-selective
operation we therefore considered forward filtering on
sparse matrices A,B for an operation that will most
likely benefit enormously from index usage. The
results we have obtained and depicted in Figure 9 do

support this assumption. In this scenario, we focused
on sparse matrices with a constant branching factor of
20. Furthermore, we tested the two different query
formulations in Subsubsection 4.4.2 for the calculation
of forward filters. Here, triangles represent the SQL
statement 2 with no extra sparsity information and the
filled circles represent the SQL statement 3 with extra
information on the sparsity structure of B.

The first obvious conclusion that can be made is
that providing extra information via extra sub-queries
does improve performance for all types of queries (with

16



D. Marten et al.: Sparse and Dense Linear Algebra for Machine Learning on Parallel-RDBMS Using SQL

5e4 1e5 2e5 3e5 4e5 5e5
10

-2

10
-1

10
0

10
1

10
2

10
3

n

t i
n 

s

No Index Fast Query
No Index Slow Query
B-Tree Fast Query
B-Tree Slow Query
GIN Fast Query
GIN Slow Query

Figure 9: Index tests on sparse forward filtering, comparing B-tree indexes (green), GIN indexes (red) and
no indexes (dark blue). Testing the two different SQL queries 2 (triangles) and 3 (filled circles).

or without indexes). Furthermore it can be observed
that working with indexes only does slightly better
than without, when using the statement without extra
information. On the contrary, the extra sub-query allows
indexes to perform really good. In fact, the processing
time is nearly constant with increasing problem size.
This can be explained with the constant branching factor
and the slowly increasing number of extra floating point
operations. However, working without indexes performs
significantly worse (here, up to 2 orders of magnitude).

We stopped experimental runs at dimensions of 5e5 as
query calculation became very costly, because every type
of run had to be processed multiple times. However, we
have tested some larger cases (n > 1e6) and saw that
query costs with index usage remains below 1 second,
while non-index-queries do increase continuously as
the former trend indicated. We observed performance
improvement factors of 20000 from non-index to index
calculation at our last runs. We have not encountered
any signs that the steady rise of the factor would stop
at this point, showing the importance of indexes when
processing filters on huge data sets.

In conclusion one can state that the only fundamental
operations that benefit from index usage are sparse
element-wise field operations when working with B-
trees. High-selective operations do heavily benefit from
index usage, no matter what kind of index is used. Since
covering every possible join or where condition leads to
very big index structures when using B-trees, it is often
meaningful to use GIN indexes instead (except when
frequently working on sparse element-wise operations).

Closing this section, it should be stated that high-

selective operations are not exclusive to sparse problems.
There exist numerous methods that will repeatedly
work on a low amount of rows or columns of a
matrix (so called matrix slices). These operations
(see for example Householder Transformation or Givens
Rotations) can also massively benefit from index usage.
Further examples can be found when working on parallel
databases systems with meaningful data partitioning and
decompositions of queries into smaller range queries.
The parallelism issues will be discussed in Section 5.

5 PARALLEL LINEAR ALGEBRA IN SQL

In this section we discuss intra-operator parallelism for
linear algebra operations in SQL on parallel database
system. As most of these systems already support
inter- and intra-operator parallelism in a traditional
database way, we will examine whether these approaches
are sufficient for linear algebra. In order to answer
this question, we split the parallelism aspect into two
parts. The first part investigates established partitioning
strategies of parallel linear algebra computations and
compares these to established strategies supported in
database systems. The second part analyses possibilities
to achieve intra-operator parallelism for fundamental
operators in SQL, which are evaluated in Section 4, using
the partitioning strategies introduced before.

5.1 Data-Partitioning

Data partitioning is a well known problem in the area of
distributed and parallel databases. Its main purpose is to
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distribute data so that the load of all nodes is balanced
as good as possible. Since the relation schemas in (1)
discussed in Section 4.1 only consist of the primary
key attributes and their corresponding value, vertical
partitioning is not possible in this scenario. Therefore,
horizontal partitioning, which is distributing partitions
of tuple sets on different nodes, needs to be considered.
Since the partitioning strategy is mainly influenced by
local data and the operations to be computed, it is
necessary

1. to understand which (linear algebra) operations
are the basis for more complex and common
algorithms,

2. to understand how these operations work and how
it is beneficial to distribute the corresponding data,
and

3. to know whether the matrices are dense or sparse.

In Section 3, we have established that the fundamental
operations in Table 2 can be used to compute the
methods in Table 1 and should therefore be a decisive
factor for the way data is stored. While physically storing
a transposed matrix is rarely needed and element-wise
operations are always local when partitioning on column
and row numbers, the main operations for partitioning
matrices and vectors are matrix-vector- and matrix-
matrix-multiplications.

As will be seen in this section, the question whether
matrices are dense or sparse is crucial for choosing the
right partitioning strategy. That is why both cases will
be dealt in Section 5.2 and 5.3 respectively.

5.2 Partitioning of Dense Matrices

In order to show that the standard database partitioning
techniques (hash, range) are not sufficient for dense
matrices, we introduce the widely used block-wise
partitioning [10], which can ideally be seen as a grid of
equally sized quadratic matrices.

Here, we consider the operation

C = AB

as it is one of the fundamental operations and does give a
good insight on why block-wise partitioning is beneficial
for dense problems. In order to decide what strategy
is sufficient we have compared the traditional database
partitioning strategies

• row-wise/column-wise (hash)

• range

• round-robin

with the established

• block-wise partitioning,

which can be interpreted as a 2-dimensional range
partitioning.

As a starting point, we constrained our analysis on the
elements that have to be communicated and the locally
needed floating point operations (FLOPs). Furthermore,
it is important to note that elements of a result matrix
have to be stored according to the chosen partitioning
strategy. That means, if matrix elements with row index
i and column index j are stored at node o, it is in most
cases not sufficient to compute a corresponding tuple
(i, j, v) at a node õ 6= o. In this case, the tuple has to
be sent back to node o in order to achieve a coherent
partitioning scheme. Closing this introductory part, it
is noteworthy that the following analysis can easily be
expanded to the case of arbitrary rectangular matrices
(and vectors). However, in regards to load balancing
this would lead to numerous special cases that would
unnecessarily inflate the given explanation.

5.2.1 Floating Point Analysis for Dense
Partitioning Strategies

All the classical database partitioning strategies are
related to this scenario in some way. For a formal
approach, we will introduce the relevant parameters for
the analysis of the partitioning strategies in the following
paragraphs (see Table 5 for an overview).

Let k ∈ N be the number of nodes, K = {1, . . . , k}
the set of all nodes, and let I = {1, . . . , n} denote the set
of row or column indices of a given matrix A ∈ Rn×n.
For convenience, we assume n = k · l, since handling
residual tuples only has a neglectable impact on the load
balance. Finally, let P = {p1, . . . , pk} an equally sized
partition of I , e.g.

∀i ∈ K : pi ∈ P(I) ∧
k⋃

i=1

pi = I ∧

∀j ∈ K\{i} : pi ∩ pj = ∅ ∧ |pi| = l

where pi is stored on node i. As the structure of any pi
is not determined in this definition, one can built several
different partitions from this.

For example, given a matrix A = (aij)ij ∈ R4×4,
when considering the row i as the partitioning attribute,
the matrix can be partitioned on 2 nodes in one of the
following ways (the different shades of blue representing
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Table 5: Variables used for the analysis of partitioning strategies

Variable Meaning
n Number of rows and columns of A,B,C
I Set of all row/column numbers
k Number of nodes
K Set of all nodes
l Number of rows per node (n = kl) [row-wise partitioning]
P Partition of I
po Set of rows in node o
K Grid-length [block-wise partitioning] (K2 = k)
l Number of rows/column of sub-matrices (l = n/K)

the different partitions):
a11 a12 a13 a14
a21 a22 a23 a24
a31 a32 a33 a34
a41 a42 a43 a44




a11 a12 a13 a14
a21 a22 a23 a24
a31 a32 a33 a34
a41 a42 a43 a44




a11 a12 a13 a14
a21 a22 a23 a24
a31 a32 a33 a34
a41 a42 a43 a44


As can be seen, all of these partitions can be expressed
using hash partitioning (or round-robin with ordered
data). The partitioning P = ({1, 2}, {3, 4}) represents
the only meaningful range partitioning.

If

Apo,:

denotes the sub-matrix of A, which holds all the rows
i ∈ po, then one can rewrite C = AB from a local
perspective of node o as

Cpo,: = Apo,:B

and calculate the network and floating point costs of any
of the meaningful classic partitioning schemas. It can be
seen that in any scenario the whole matrix B is needed
to calculate Cpo,:.

For the latter operations we have analyzed the two
general approaches:

• make B gradually available for every node

• make A gradually available for every node.

The corresponding Algorithm 2 and 3 are written
from a local perspective of a node o ∈ K. Starting

Algorithm 2: Row-wise strategy 1 for calculating
C = AB (perspective: node o)

1: Cpo,: := 0 ∈ Rl×n

2: send Bpo,: to all nodes
3: on receipt of Bpl,: (l ∈ K\{o}) do
4: Cpo,:+ = Apo,pl

Bpl,:

Algorithm 3: Row-wise strategy 2 for calculating
C = AB (perspective: node o)

1: Cpo,: := 0 ∈ Rl×n

2: send Apo,pl
to nodes l (l ∈ K\{o})

3: on receipt of Apl,po
(l ∈ K\{o}) do

4: C
(o)
pl,: = Apl,po

Bpo,:

5: send C(o)
pl,: to node l

6: on receipt of C(l)
po,: (l ∈ K\{l}) do

7: Cpo,:+ = C
(l)
po,:

with Algorithm 2, one can count the overall number of
elements, which have to be sent as

ζ1 = k︸︷︷︸
per node

other nodes︷ ︸︸ ︷
(k − 1) l︸︷︷︸

rows

columns︷︸︸︷
n

= n2(k − 1)

and the necessary FLOPs, which have to be computed
locally as

κ1 = l︸︷︷︸
rows

columns︷︸︸︷
n ( n︸︷︷︸

mult. per el.

+

sum. per el.︷ ︸︸ ︷
n− 1 )

= nl(2n− 1).

The communication costs of Algorithm 3 can be
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derived as

ζ2 = k︸︷︷︸
per node

other nodes︷ ︸︸ ︷
(k − 1) l︸︷︷︸

rows

columns︷︸︸︷
l

+ k︸︷︷︸
per node

other nodes︷ ︸︸ ︷
(k − 1) l︸︷︷︸

rows

columns︷︸︸︷
n

= n(k − 1)(l + n)

= n2
(
k − 1

k

)
elements and its local computation costs as

κ2 = n︸︷︷︸
rows

columns︷︸︸︷
n ( l︸︷︷︸

mult.

+

sum.︷ ︸︸ ︷
(l − 1)) + nl(k − 1)︸ ︷︷ ︸

subsum.

= nl(2n− 1)

FLOPs. Furthermore, the costs for the operations
ATB,ABT , ATBT are equal for the strategy that makes
B gradually available. The strategy that makes A
gradually available for any node is more costly and
therefore worse.

5.2.2 Squared Block-wise Partitioning

In contrast to the partitioning strategies that are based
on one attribute, we now consider squared block-
wise partitioning, which can be interpreted as a range
partitioning on two attributes. For convenience, the
number of nodes k is assumed to be a square number
k = K2 (K ∈ N). Interpreting the matrix A as a block
matrix

A =

A11 . . . A1K

...
. . .

...
AK1 . . . AKK


with square matrices

Aij =

a(i−1)l+1,(j−1)l+1) . . . a(i−1)l+1,jl

...
. . .

...
ail,(j−1)l+1 . . . ail,jl


∈Rl×l,

a squared block-wise partitioning can be achieved by
storing the sub-matrix Ai,j on the node ξ(i, j), where
ξ(i, j) maps the block indices to the corresponding node
number

ξ : {1, . . . ,K}2 7→ {1, . . . , k}
ξ(i, j) = (i− 1) · K+ j.

Algorithm 4: Block-wise strategy 1 for calculating
C = AB (perspective: node ξ(i, j) = o)

1: Ci,j := 0 ∈ Rl×l

2: on receipt of Ai,h, Bh,j , h ∈ {1, . . . ,K} do
3: Ci,j+ = Ai,hBh,j

Algorithm 5: Block-wise strategy 2 for calculating
C = AB (perspective: node ξ(i, j) = o)

1: Ci,j := 0 ∈ Rl×n

2: on receipt of Bj,h h ∈ {1, . . . ,K} do
3: C

(j)
i,h = Ai,jBj,h

4: Send C(j)
i,h to node ξ(i, h)

5: on receipt of C(h)
i,j h ∈ {1, . . . ,K} do

6: Ci,j+ = C
(h)
i,j

Coming back to the 4 × 4 example, the partitioning on
four nodes can be visualized as

a11 a12 a13 a14
a21 a22 a23 a24
a31 a32 a33 a34
a41 a42 a43 a44


with

n = 4 k = 4

K = 2 l = 2.

For the analysis of multiplication one considers an
additional matrixB ∈ Rn×n partitioned in the same way
as A and that the resulting matrix C ∈ Rn×n follows the
same grid schema with

Cij =

K∑
h=1

AihBhj . (3)

In order to get some insight in the costs we again
consider the two different strategies of Algorithm 4 and
5.

The first strategy needs to receive K− 1 sub-matrices
of A and B each and therefore has global network costs
of

ζb1 = k︸︷︷︸
per node

sub-matrices︷ ︸︸ ︷
2(K− 1) l2︸︷︷︸

elements

= n2(2K− 2)

elements. Since Schema (3) consists of K matrix
multiplications and K − 1 matrix additions, the floating
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Table 6: Costs for matrix multiplication variations using row-/column-wise (Strategy 1 and 2) or block-wise
partitioning (Strategy 1 and 2)

Strategy Communication ζ in elements Processing κ in FLOPs
row/column-wise 1 n2(k − 1) nl(2n− 1)
row/column-wise 2 n(k − 1)(l + n) n2(2l − 1)
block-wise 1 n2(2K− 2) nl(2n− 1)
block-wise 2 n2(2K− 1/K− 1) nl(2n− 1)

point costs can be calculated as

κb2 = K︸︷︷︸
#mult.

matrix mult.︷ ︸︸ ︷
l2(2l− 1)+ (K− 1)︸ ︷︷ ︸

#add.

add.︷︸︸︷
l2

= nl(2l− 1) + (n− l)l

= l2(2n− 1)

= nl(2n− 1).

For the second strategy, one has to distinguish the
cases i 6= j and i = j, since the diagonal case can use the
locally available Bii as well. Hence, the communication
cost can be calculated as

ζb2 = K︸︷︷︸
#diag. blocks

Bih︷ ︸︸ ︷
(K− 1) l2︸︷︷︸

elements

+ (k − K)︸ ︷︷ ︸
#non. diag.

Bjh︷︸︸︷
K l2︸︷︷︸

el.

+

nodes︷︸︸︷
k (K− 1)︸ ︷︷ ︸

C
(j)
ih

el.︷︸︸︷
l2

= n2(2K− 1)− nl

= n2
(
2
√
k − 1√

k
− 1

)
elements to be communicated and

κb2 = K︸︷︷︸
C

(j)
ih

mat. mult.︷ ︸︸ ︷
l2(2l− 1))+ (K− 1)︸ ︷︷ ︸

#add.

add.︷︸︸︷
l2

= n(2l2 − l) + nl− l2

= l2(2n− 1)

= nl(2n− 1)

floating point operations.
All of the results are summarized in Table 6. Since

K ≥ 2 and therefore k ≥ 4, it is easy to see
that the block-wise strategies have significantly less

communication costs than any row-wise (hash/range)
strategy, while having exactly the same local processing
cost. It is also noteworthy that this gap expands with
increasing K and k. This theoretically proves the use of
block-wise partitioning.

We have to mention that there exist even better
strategies, like the Strassens algorithm [38], for matrix
multiplications of very huge data sets. However, the
presented strategies are sufficient for our motivations and
also more suited for implementation in SQL.

5.3 Partitioning of Sparse Matrices

In contrast to dense problems the presented block-wise
partitioning is not useful for sparse problems. This is
mainly because of two reasons:

1. Matrix-matrix multiplication is rare (nearly non-
existent) in common sparse algorithms. Instead,
matrix-vector multiplications are substantial for
these algorithms.

2. Often, it is desired to have matrices in band matrix
form, which would heavily skew the load as will be
described in the following.

In an ideal scenario, a sparse matrix A ∈ Rn×n that
is used for multiple multiplications with vectors is in
band matrix form. Here, all non-zero entries aij hold the
restriction |i − j| ≤ p where p is the bandwidth. There
exist several similar definitions for the latter. Here we
use

p := min{|i− j| | aij 6= 0}. (4)

For example, consider a matrix

A =


a11 a13
a21 a22 a23

a32 a33
a43 a44

 .

Due to a13, this matrix has a bandwidth of p = 2 and has
another characteristic which is frequently observable: all
diagonal elements are non-zero values. This is often the
case since sparse matrices usually represent some sort of
correlation between states or objects. For instance, these
can be state transition probabilities in Markov models
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or any probabilistic state space model [36], hyper-links
between websites [5], stiffness and mass properties of
finite elements in structural analysis [43] and many more.
The correlation also motivates why most of the problems
usually use square matrices. Furthermore, depending on
model sizes, the size of such matrices can (and do) easily
exceed billions of rows and columns or giga- and tera-
bytes of data. As we have established band matrices, the
example further demonstrates why block partitioning is
not sufficient as this would take the form

a11 a13
a21 a22 a23

a32 a33
a43 a44


showing one partition consisting of only a32.

The solution presented here is to range-partition the
matrices and vectors row-wise in order to achieve as
much locality as possible. For instance, consider
range-partitioned matrix vector multiplication using the
aforementioned example:

a11 a13
a21 a22 a23

a32 a33
a43 a44




w1

w2

w3

w4



=


a11w1 + a13 ·w3

a21w1 + a22w2 + a23 ·w3

w2 ·a32 + a33w3

a43w3 + a44w4



=:


u1
u2
u3
u4

 .

As can be seen, only few elements have to be sent from
one node to another, as the band structure does mostly
match locally stored vector elements with locally stored
matrix elements, showcasing the usefulness for sparse
band matrices.

However, not every sparse problem comes in band
form. To apply the presented partitioning and speed up
further calculations, it is useful to try to transform such
matrices into band form. There exist many different
heuristic algorithms which mainly focus either on
minimizing the bandwidth or maximizing the elements
in the block diagonals. We have implemented two
different algorithms, namely: the reverse Cuthill McKee
algorithm [9] and spectral partitioning [34]. The
first algorithm is a heuristic method which is based
on set operations and showed very good results and
performance in first tests. The latter method mainly
consists of an eigenanalysis and has been implemented

with a slightly changed version of the nestable power
method presented in Algorithm 1.

The established matrix partitioning strategies have
now been presented. In the following subsection, we will
present the possibilities for intra-operator parallelism
based on these partitioning cases.

5.4 Intra-operator Parallelism via Query-
Decomposition

After the discussion of established partitioning schemas
for dense and sparse matrices, we will discuss the
possibility and the need of intra-operator parallelism for
linear algebra operations in SQL.

Parallel systems usually support some intra-operator
parallelism by processing scans, hashs, aggregates or
groupings in parallel, and this is unsurprising as they
represent very basic components of query processing.
However, as will be seen in the evaluation part
(Section 5.5), relying on these parallel operations is
not sufficient for linear algebra operations, even with
meaningful partitioning. Loosely speaking, the main
problem about this approach is that the systems do
not seem to understand the structure behind matrices
and methods. For example, consider again matrix
multiplication AB with 2 × 2 block-wise partitioned
matrices A,B ∈ Rn×n. The whole computation can be
described as(

A1,1 A1,2

A2,1 A2,2

)(
B1,1 B1,2

B2,1 B2,2

)
=

(
A1,1B1,1 +A1,2B2,1 A1,1B1,2 +A1,2B2,2

A2,1B1,1 +A2,2B2,1 A2,1B1,2 +A2,2B2,2

)
Following Algorithm 4, it can be seen that for

the computation of AB, essentially four smaller sub-
matrices need to be calculated while every node needs
to receive sub-matrices from different nodes. We have
found when a database system receives the basic matrix
multiplication query

SQL statement 9:

select a.i,b.j,sum(a.v*b.v)
from a join b on a.j=b.i
group by a.i,b.j,

it creates the full intermediate table A ./ B usually
by hash joining, since the system does not realize
how the operation is influenced by the partitioning
strategy. Besides the point that this approach works on
a comparatively large intermediate relations A ./ B
(n3 tuples), rather than smaller intermediate relations
Ai,h ./ Bh,j (n3/8 tuples), the main troubling aspect is
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Figure 10: Intra-operator Parallelism using 4 processes on a PRDBMS setup with at least 4 datanodes. The
interface decomposes the operation C = AB into the respective range queries for the operations CIj ,Ik =
AIj ,:B:,Ik and starts 4 processes which sends the queries to the database. If consecutive queries are scheduled,
the interface has to ensure that all processes have successfully finished.

that one cannot influence how and where aggregations
are finalized, and how many nodes work on the
aggregate. As will be evaluated in the next section,
it seems that the whole aggregation might even be
calculated by one node only.

As transparent parallel calculation of queries is
desired and usually implemented, the easiest way to
achieve real parallel processing is to decompose the
original query in multiple meaningful smaller queries,
rather than rewriting the whole system, which is even
often not possible.

We have implemented an interface which creates K
processes (K = number of nodes) that simultaneously
send sub-queries to the database system for some
methods in Tables 1 and 2. Currently, there are two
main types of methods that we distinguish. Firstly,
methods, which mainly consist of few huge fundamental
operations, cannot be processed efficiently with a single
process. The most obvious choice are fundamental
operations itself. These operations are also a convenient
starting point as these operations only need one phase
of simultaneous sub-querying and final synchronization.
This approach has been visualized in Figure 10 for
a matrix multiplication on four nodes. The second
category of methods is to calculate a high amount
of low cost fundamental operations. An example for
this would be calculating a QR−decomposition using
Givens rotation as presented in Subsection 4.3.

5.5 Evaluation

This subsection describes experiments that use the
techniques for parallel query calculation explained in
the previous Subsection 5.4. We evaluated the different
partition strategies discussed in Subsection 5.1 for dense
and sparse problems on fundamental operators, to prove
our claim that the block-wise partitioning technique
presented in Subsubection 5.2.2 outperforms traditional
database strategies on the dense fundamental operations
in Table 2.

5.5.1 Experimental Setup

I. Choice of Database Systems

We are currently using Postgres-XL 9.5 R1.6 [1] as
the parallel relational database systems. The choice
is mainly based on the fact that PostgresXL is a free
system with high functionality, since it is based on
the widely known and used PostgreSQL. However, it
has been shown in previous tests [30] that PostgreSQL
is comparatively slow in comparison to other database
systems like MonetDB. One of the key aspects here
is the row-wise storage scheme of PostgreSQL, which
has been shown to be inferior to column-based schemes
for scientific computational queries. In the future, we
are aiming at column and vector-wise storage based
systems to ensure better performance especially for
dense problems.

23



Open Journal of Big Data (OJBD), Volume 5, Issue 1, 2019

II. Database Architecture and Configuration

We now briefly explain the architecture of Postgres-XL
9.5 R1.6 in order to understand how the simultaneously
processed queries are computed. Parallel database
systems often consist of three main components:

• Global Transaction Managers (GTM),

• Coordinators,

• Data Nodes.

Data nodes store data and process local queries.
Data nodes need the most computing power as most
of the (sub-)queries are computed on the data nodes.
The Coordinators connect the data nodes and fulfill
multiple roles, coordinating queries, ensuring load
balancing, and finalizing aggregates. Finally, the main
task of the Global Transaction Manager is to ensure
the Multiversion Concurrency Control (MVCC) and
therefore does not need much computational power.

Depending on the average amount of simultaneously
processed queries, it is useful to use multiple transaction
managers or proxy versions. Since this does not apply
to our analysis, we are currently using one GTM, five
GTM-Proxys, five coordinators, and ten data nodes as
can be seen in Figure 11. Besides the GTM, which is
using its own node, every node contains two data nodes
and one coordinator. We have chosen ten data nodes as at
least nine processing nodes are needed for a reasonable
test of the block-wise partitioning technique presented
in Subsubsection 5.2.2 and the query decomposition
strategy in Subsection 5.4 and the local machines we
use have two cores each. The respective setup regarding
the number of GTMs, GTM-proxys and coordinators
has been motivated by suggestions in the official
documentation of Postgres-XL [1]. The main reasoning
here is to balance load and provide data locality as
much as possible. The hardware specifications of the
5 processing nodes can be found in Table 7. As the
default settings of the Postgres-XL components are not
designed for few load intense queries, we changed them
according to the Table 8 and 9, and these tables show
only the parameters that we have changed.

5.5.2 Experiments

After setting up the hardware and implementing the
different processing methodologies for multiplications in
Subsection 5.2 and 5.3, we here present the results of
the different experiments. Each experiment is executed
three times, and the average value of the three runs is
presented. The code for creating matrices and vectors
can be found in Appendix A.

I. Partitioning: Matrix Multiplication

The first evaluation on a parallel database system is a
simple matrix multiplication A × B with A,B ∈ Rn×n

using different partitioning types, but the same basic
SQL statement:

SQL statement 10:

select A.i,B.j,sum(A.v*B.v)
from A join B on A.j=B.i
group by A.i,B.j.

Postgres-XL supports two different ways to create
different partitioning schemes. The first one is the
distribute by statement, which is an system specific
extension of the create table statement. This allows
transparent partitioning of different standard schemes
like hash, modulo, or round-robin. The second approach
is to use a master table and several child nodes that
inherit the schema from the master table. Each child
table is stored on a different data node and a set of rules
on insertion into the master table distributes the data
accordingly to the child tables. This approach seems
pretty handy for block partitioning as it gives users a
relatively easy way to partition over multiple attributes.

In the experiment we compared block partitioning
using the master child approach, hash partitioning on the
row and the column index, as well as block partitioning
via round-robin using the distribute by statement. The
results of this test are depicted in Figure 12. It can
be seen that using master and child tables (black solid
line) is performing significantly worse then any approach
using distribute by. Furthermore, block partitioning via
distribute by (green dashed line) performs only slightly
better (about 13 % at n = 1800) than the hashed row
(red dashed line) or column (blue dashed line) versions.

The bad performance of the master child approach
can be easily explained when looking at the execution
plan of the database system. As Postgres-XL 9.5r1.6 is
incapable of using any of the partitioning information
given by internal statistics or the insertion rules, it
materializes the master tables and executes the join and
the aggregation accordingly. As this is the worst case
scenario, one can only speculate that this behavior might
change in future releases and perform significantly better
on other systems.

It is difficult to reason why the performance gap
between hash and block partitioning is not wider.
Postgres-XL supports query execution plans, but does
not offer many details on its intra-operator parallelism.
What can be seen is that Postgres uses parallel
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Figure 11: The parallel database architecture setup: The Global Transaction Manager (GTM) is installed
on an additional Node. Note that the Coordinators (C i) are connected to every Datanode (DN i). These
internode connections are only shown for the first Coordinator for simplicity. Additionally, GTM proxy
nodes have been established on every processing node in order to relieve the GTM.

Table 7: Hardware Specifications of the processing nodes containing 2 data nodes and 1 coordinator each.

Parameter of processing nodes Parameter Value
Operating System CentOS 7
Processors 2 × 1.9GHz
Cache Size 2 × 4 MB
RAM 16 GB DDR4 (2133 Mhz)
Secondary Storage (Data) 1 TB
Secondary Storage (OS) 50 GB
Secondary Storage (Temporary Table Processing) 20 GB SSD

Table 8: Non-default parameters of PostgreSQL as
used for Coordinators

Parameter Value
shared buffers 1GB
effective cache size 3GB
work mem 52428kB
maintenance work mem 512MB
min wal size 4GB
max wal size 8GB
checkpoint completion target 0.9
wal buffers 16MB
default statistics target 500
random page cost 4
max pool size 100
max connections 400
autovacuum vacuum scale factor 0.01
autovacuum vacuum cost limit 1000

Table 9: Non-default parameters of PostgreSQL as
used for Data Nodes

Parameter Value
shared buffers 1536MB
effective cache size 4608MB
work mem 78643kB
maintenance work mem 768MB
min wal size 4GB
max wal size 8GB
checkpoint completion target 0.9
wal buffers 16MB
default statistics target 500
random page cost 4
max pool size 100
max connections 400
autovacuum vacuum scale factor 0.01
autovacuum vacuum cost limit 1000
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Figure 12: Results of matrix multiplication on different partitioning schemes. Green represents block
partitioning, red depicts hash partitioning on the column attribute, blue represents hash partitioning on
the row attribute and the solid black line depicts block partitioning using master and child tables.

hash aggregation and parallel hash joins on all three
calculations. It seems that Postgres computes some sub-
results of the whole matrix on each node and aggregates
these results at the end, rather than computes whole sub-
matrices on different nodes as described in Algorithm 4
and 5. However, it can surely be stated that the block-
partitioning scheme is speeding up calculations in a
proportional manner to its problem size.

II. Multi-Query Matrix Multiplication

In the second experiment we investigated how good
the multi-query approach is performing on block
partitioning over a dense matrix. We tested the
two different partitioning schemes described in the
former experiment. When using the distribute by
partitioning, the corresponding sub-queries for the multi-
query method are simple range query variations, like

SQL statement 11:

select A.i,B.j,sum(A.v*B.v)
from A join B on A.j=B.i
where A.i between min ai and max ai

and B.j between min bi and max bi
group by A.i,B.j.

When working with child tables, one can directly
implement the block partitioning multiplication of
Algorithm 4. On a 3× 3 node-grid, one sub-matrix Ci,j

can be computed as follows

SQL statement 12:

select i,j, sum(v) from (
select ai1.i as i, b1j.j as j,

sum(ai1.v*b1j.v) as v
from ai1

join b1j on ai1.j=b1j.i
group by ai1.i,b1j.j
union all
select ai2.i as i, b2j.j as j,

sum(ai2.v*b2j.v) as v
from ai2 join b2j

on ai2.j=b2j.i
group by ai2.i,b2j.j
union all
select ai3.i as i, b3j.j as j,

sum(ai3.v*b3j.v) as v
from ai3 join b3j

on ai3.j=b3j.i
group by ai3.i,b3j.j

) temp
group by i,j;

Here, the lower case relations aik and bkj denote the
child tables, representing the partition corresponding to
Ai,k and Bk,j .

The results of the experiment are depicted in
Figure 13. The black dashed line represents the

26



D. Marten et al.: Sparse and Dense Linear Algebra for Machine Learning on Parallel-RDBMS Using SQL

240 480 720 960 1200 1440
10

0

10
1

10
2

10
3

10
4

n

t i
n 

s

Block Part.
MultiQuery
Block Master Child
MultiQuery Master Child
Local

Figure 13: Results of matrix multiplication with block partitioning and multi-query processing. Blue
lines represent block partitioning using Postgres-XLs distribute by-statement. Black lines depict block
partitioning using master and child tables. Dashed lines are to associate with standard one-query processing
fully managed by the database system, as solid lines represent the proposed multi-query approach. Finally,
the red line represents matrix multiplication on the local setup in Table 3 and 4.

master child approach with one query (full database
management), whereas the solid black line represents
the aggregate multi-query approach. It can be seen
that the multi-query approach does constantly perform
better than the normal approach. The speedup factor
is consistently between 3 and 4. As mentioned before,
using distribute by at table creation seems to be better
implemented in Postgres-XL as it transparently uses
intra-operator parallelism in form of parallel hashs and
aggregations. Therefore, the gap between the one-query
version (blue dashed line) and the multi-query version
(blue solid line) is not wide, but still significant Here,
the speedup factor is between 1.25 and 1.45, with a
suspected limit at 1.25. In other words, the multi-
query approach takes a fifth of the time less than the
one-query approach, making it a preferable choice for
multiplication.

For a better grading of these results, we added the
processing speed of local computation (red) with the
setup from Table 3 and 4 into Figure 13. The local setup
is slightly faster than one processing node of the parallel
database setup. Additionally, there is no coordination
overhead and network traffic, and therefore one can
expect that the parallel system will not be 9 times faster
than the local version. Indeed, the speedup factor for
the multi-query approach is between 5.5 and 7, whereas
the speedup factor for the one-query approach is between
4 and 5.2. This again emphasizes the benefit of the
proposed decomposition-technique in Section 5.4.

III. Sparse Matrix-Vector Multiplication

In this last experiment we tested the effect of different
partitioning strategies and possible multi-query methods
for sparse matrix vector multiplication A × w with A ∈
Rn×n andw ∈ Rn. For this, we created random matrices
A ∈ Rn×n with constant branching factor, i.e. in any
row the diagonal value is non-zero as well as in 20 non-
diagonal elements. We have tested two main partitioning
strategies:

1. round-robin

2. range

where one can already expect that the range partitioning
will surpass the round-robin one because of its data
locality as presented in Section 5.3 The non-diagonal
column indices are all randomly chosen (uniform
distribution) within a (relatively wide) ±3n/40 band
around the diagonal element to simulate the benefit of
data locality when using range partitioning.

In contrast to the prior experiments, it is possible
in Postgres-XL to achieve 100% local calculations
in this setup using replicated vectors w ∈ Rn

and the execute direct on statement, which enables
complete local processing (but currently no inter-node
computation).

The result of the experiment is depicted in Figure 14.
It can be seen that the round-robin partitioning of A
(dashed blue line) performs way worse than the range
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Figure 14: Sparse Multiplication Aw with 21 elements per row for matrix A ∈ Rn×n and dense vector
w ∈ Rn. The vector w has been replicated for this setup on every datanode. The dashed blue line represents
runtimes of a one-query approach with round-robin matrix partitioning, whereas the blue solid line depicts
the runtime of a range partitioned matrix A. Finally, the red line represents the multi-query approach.

partitioning strategy (solid blue line). This is expected,
since when processing with range partitioning, the data
nodes already have all the tuples needed to fully calculate
the desired results, whereas in the case of round-robin
partitioning the nodes either calculate sub-aggregates,
which have to be merged and finalized, or are demanding
all needed tuples from other datanodes.

However, the range partitioned multi-query approach
(red line) does heavily outperform the one query
approach with a speedup factor of around 2. The
comparatively wide gap in this setup can be explained as
in this scenario the nodes operate completely local with
no communication needed between coordinators and
datanodes. This is especially meaningful as Postgres-
XL often calculates each query on multiple nodes,
even in the multi-query dense matrix multiplication
scenario, where reasonable data partitioning has been
offered. Similarly to this setup, one can benefit from
this approach when calculating element-wise matrix
operations.

In conclusion it can be said that the presented
experiments have shown that providing meaningful
partitioning and decomposing big linear algebra queries
into respective sub-queries do improve significantly the
performance of these operations and should therefore be
considered when needed.

6 CONCLUSION AND FUTURE WORK

In this article we have presented our research about the
efficient computation of common scientific calculations
needed for machine learning algorithms and several
other areas of data science. A concise historical overview
of former results has been given, which included
motivational reasons for the use of parallel database
systems and SQL for these non-traditional computations.

After that, several key aspects of performance for
local and parallel computations have been discussed.
Limitations for this approach, like dense matrix
multiplication on row-stores or loops that consist of
many low-cost queries, have been explained and possible
solutions have been discussed. One of the main
techniques that we have introduced and motivated
is the parallel computation of common sub-methods
using multiple synchronized database processes that
simultaneously send sub-queries to the systems, in order
to achieve intra-operator parallelism. This approach has
been shown to perform consistently and significantly
better than one-query processing fully managed by a
database system (Postgres-XL 9.5 R1.6).

In the near future, we will focus on three main aspects.
First, we will further tune query plans and develop
meaningful intra-operator parallelism for the established
sub-methods. Additionally, we will investigate the
computation of fast fourier transformations in SQL.
Secondly, since Postgres-XL has not been performing as
good as we initially hoped (mainly on dense problems),
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Figure 15: Local matrix multiplication AB with A,B ∈ Rn×n on different database systems and BLAS/R
(3.4.2): red (BLAS/R (3.4.2) no data saving), yellow (BLAS/R with storing result into a CSV file), blue (Actian
Vector 5.0), green (PostgreSQL 10.1) and turquoise (MonetDB v11.27.5).

we will putting efforts into testing different parallel
database systems with the parallel methods we have
implemented in SQL so far. Therefore, we have recently
looked into Actian’s column store Vector [44], which
has been performing very well on TCP benchmarks, and
its parallel version VectorH (also known as Vector in
Hadoop) [8]. A first simple test has been depicted in
Figure 15, where a simple matrix multiplication C =
A × B (with insert for C) has been tested on different
database systems on the hardware outlined in Table 3.
As explained throughout the article, testing dense matrix
multiplication is somewhat crucial as this operation
does perform significantly worse in comparison to linear
algebra libraries.

In Figure 15, we compared the database systems
Actian Vector 5.0 (blue), PostgreSQL 10.1 (green)
(tuned according to Table 4), MonetDB v11.27.5
(turquoise) and the linear algebra library BLAS called
from R 3.4.2 (red and yellow). MonetDB and Actian
Vector have been used on default settings. Since it
is unfair to compare R’s full in-memory calculation
(yellow) to database systems writing on disk, we
added an R calculation (yellow), which writes the
resulting matrix C into a CSV file. As can be seen,
Postgres performs around factor 50 slower than Vector.
The behavior of MonetDB is not fully understood as
it performs really fast on small problems and then
becomes significantly slower for increasing dimensions.
However, the gap between the CSV writing BLAS/R
and Actian Vector is only around one magnitude, which
is impressive, considering the lack of SIMD/cache-hit

possibilities on this kind of operations as explained in
Subsection 4.2.

This result leaves us confident that it is a reasonable
choice to use Vector and VectorH for our proposed
framework. Therefore, as a last step, we will compare
our implemented methods to implementations on several
different MapReduce-based big data systems. Currently,
we consider Apache Hadoop, Apache Flink, and Apache
Spark as meaningful choices for this comparison.
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Datenbankunterstützung für Analysen auf Big
Data,” in Proceedings of the 27th GI-Workshop
Grundlagen von Datenbanken, Gommern,
Germany, May 26-29, 2015, pp. 36–41.

[32] M. Navas and C. Ordonez, “Efficient computation
of PCA with SVD in SQL,” in Proceedings of
the 2nd ACM SIGKDD Workshop on Data Mining
Using Matrices and Tensors, Paris, France, June
28, 2009.

[33] PostgreSQL Global Development Group,
“PostgreSQL 9.6 Documentation, GIN index,”
2017. [Online]. Available: https://www.postgresql.
org/docs/9.6/static/gin-implementation.html

[34] A. Pothen, H. D. Simon, and K.-P. Liou,
“Partitioning Sparse Matrices with Eigenvectors of
Graphs,” SIAM J. Matrix Anal. Appl., vol. 11, no. 3,
pp. 430–452, May 1990.

[35] R Core Team, R: A Language and Environment for
Statistical Computing, R Foundation for Statistical

Computing, Vienna, Austria, 2016. [Online].
Available: https://www.R-project.org/

[36] L. R. Rabiner, “A Tutorial on Hidden Markov
Models and Selected Applications in Speech
Recognition,” in Readings in Speech Recognition,
A. Waibel and K.-F. Lee, Eds. San Francisco, CA,
USA: Morgan Kaufmann Publishers Inc., 1990, pp.
267–296.

[37] M. Stonebraker, D. J. Abadi, D. J. DeWitt,
S. Madden, E. Paulson, A. Pavlo, and A. Rasin,
“MapReduce and parallel DBMSs: friends or
foes?” Commun. ACM, vol. 53, no. 1, pp. 64–71,
2010.

[38] V. Strassen, “Gaussian Elimination is Not
Optimal,” Numer. Math., vol. 13, no. 4, pp.
354–356, Aug. 1969.

[39] M. Vartak, J. M. F. da Trindade, S. Madden,
and M. Zaharia, “MISTIQUE: A System
to Store and Query Model Intermediates for
Model Diagnosis,” in Proceedings of the 2018
International Conference on Management of Data,
ser. SIGMOD ’18. New York, NY, USA: ACM,
2018, pp. 1285–1300.

[40] M. Zaharia, R. S. Xin, P. Wendell, T. Das,
M. Armbrust, A. Dave, X. Meng, J. Rosen,
S. Venkataraman, M. J. Franklin, A. Ghodsi,
J. Gonzalez, S. Shenker, and I. Stoica, “Apache
Spark: A Unified Engine for Big Data Processing,”
Commun. ACM, vol. 59, no. 11, pp. 56–65, Oct.
2016.

[41] B. Zhang, D. V. Aken, J. Wang, T. Dai, S. Jiang,
J. Lao, S. Sheng, A. Pavlo, and G. J. Gordon,
“A Demonstration of the OtterTune Automatic
Database Management System Tuning Service,”
PVLDB, vol. 11, no. 12, pp. 1910–1913, 2018.

[42] Y. Zhang, H. Herodotou, and J. Yang, “RIOT:
I/O-Efficient Numerical Computing without SQL,”
CoRR, vol. abs/0909.1766, 2009.

[43] O. Zienkiewicz, R. Taylor, and D. Fox, “The
Finite Element Method for Solid and Structural
Mechanics,” in The Finite Element Method for
Solid and Structural Mechanics, 7th ed. Oxford:
Butterworth-Heinemann, 2014.

[44] M. Zukowski and P. Boncz, “From x100 to
Vectorwise: Opportunities, Challenges and
Things Most Researchers Do Not Think About,”
in Proceedings of the 2012 ACM SIGMOD
International Conference on Management of Data,
ser. SIGMOD ’12. New York, NY, USA: ACM,
2012, pp. 861–862.

31

http://nbn-resolving.de/urn:nbn:de:101:1-2017100112181
http://nbn-resolving.de/urn:nbn:de:101:1-2017100112181
https://www.postgresql.org/docs/9.6/static/gin-implementation.html
https://www.postgresql.org/docs/9.6/static/gin-implementation.html
https://www.R-project.org/


Open Journal of Big Data (OJBD), Volume 5, Issue 1, 2019

APPENDIX A: CREATION OF MATRICES AND VECTORS

The following C++ code has been used for the creation of matrices and vectors for all of the
presented experiments. Both methods create dense matrix(int argc, char *argv[]) and
create random sparse bandmatrix(int argc, char *argv[]) create csv-files using the
established database schemas (1) presented in Section 4.1. In our experiments we have chosen a maximum
value of l = max(n, 750000) for the bandwidth l in order to loosely simulate the neighborhood of states/nodes,
interpreting matrices as adjacency matrices of directed graphs or transition matrices of markov chains [29].

#include <iostream>
#include <fstream>
#include <ctime>
#include <sstream>
#include <algorithm>
#include <random>

using namespace std;

template<typename T>string to_string(const T& t)
{

std::stringstream ss;
ss << t;
return ss.str();

}

int create_dense_matrix(int argc, char *argv[])
{

if (argc < 3) {
cout << "Not enough input arguments" << endl
<< "Input needed:" << endl
<< "1. matrix dimension" << endl
<< "2. file_name" << endl;

return(-1);
}

double lv = -1.0, mv = 1.0;
long n = atol(argv[1]);

srand((unsigned)time(0));
ofstream fileDB((string(argv[2]) + ".csv").c_str());

for (int ig = 0; ig < n; ig++) {
for (int jg = 0; jg < n; jg++) {

double val = lv + (mv - lv) * ((double)rand() / RAND_MAX);
fileDB << 1 + ig << ", " << 1 + jg << ", " << val << endl;

}
}

fileDB.close();
return(0);

}

int create_random_sparse_bandmatrix(int argc, char *argv[])
{

if (argc < 5) {
cout << "Not enough input arguments" << endl
<< "Input needed:" << endl
<< "1. matrix dimension" << endl
<< "2. file_name" << endl
<< "3. rows per file" << endl
<< "4. elements per row" << endl;

return(-1);
}
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// -------------------------
// ---- Variables
// -------------------------

double lower_value_bound = -1.0,
upper_value_bound = 1.0;
string file_prefix = string(argv[2]) + "_";
long n = atol(argv[1]), // matrix dimension
rows_per_file = min(n, atol(argv[3])), // elements per file
l = (3 * rows_per_file) / 4, // bandwwidth
elements_per_row = atol(argv[4]), // elements per row
nofiles = n / rows_per_file; // number of files

if ((2 * l) <= elements_per_row) {
cout << "bandwidth too low";
return -2;

}

if (n % elements_per_row != 0) nofiles++;
srand((unsigned)time(0)); // random seed

// -----------------------
// ---- Calculation / Writing
// -----------------------

for (long number_of_file = 0; number_of_file < nofiles; number_of_file++) {
ofstream fileDB((file_prefix +
to_string<int>(number_of_file) + ".csv").c_str());

long start_row = number_of_file * rows_per_file;

for (long i = 1 + start_row; i <= min(start_row + rows_per_file, n); i++) {
vector<int> columns;
columns.push_back(i);

fileDB << i << ", " << i << ", "
<< lower_value_bound + (upper_value_bound -
lower_value_bound) * ((double)rand() / RAND_MAX) << endl;

for (long j = 0; j < elements_per_row; j++) {
long new_column;

while (true) {
new_column = static_cast<long>

(i + pow(-1, rand() % 2) * (rand() % l));
new_column = min(n, max((long)1, new_column));

if (find(columns.begin(), columns.end(),
new_column) == columns.end()) {
columns.push_back(new_column);
break;

}
}

fileDB << i << ", " << new_column << ", " << lower_value_bound
+ (upper_value_bound - lower_value_bound)

* ((double)rand() / RAND_MAX) << endl;
}

}
fileDB.close();

}
cout << endl;
return(0);

}
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