(© 2018 by the authors; licensee RonPub, Liibeck, Germany. This article is an open access article distributed under the terms and conditions of
the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).

Open Journal of Cloud Computing (OJCC)
Volume 5, Issue 1, 2018

http://www.ronpub.com/ojcc
ISSN 2199-1987

Research
online
Publishing

www.ronpub.coim

A Lightweight Network-Controlled Power Strip
for Low-Cost Cluster Systems

Henry-Norbert Cocos, Christian Baun

Faculty of Computer Science and Engineering, Frankfurt University of Applied Sciences,
Nibelungenplatz 1, 60318 Frankfurt am Main, Germany,

cocos @stud.fra-uas.de, christianbaun @{b2.fra-uas.de

ABSTRACT

Low-cost clusters are not equipped with costly, sophisticated tools and cannot be controlled remotely. This
work aims at addressing this issue and develops a lightweight network-controlled power strip, which enables
administrators to monitor the cluster and perform operation via remote. The power strip is controlled via a web
interface and a RESTful web service, which are implemented with the programming language Python and the web
Jframework Flask. The solution is inexpensive and easy to implement and use. In this paper, we describe in detail the
development and construction of the prototype of the solution and discuss its purchase cost and power consumption.

TYPE OF PAPER AND KEYWORDS

Short communication: network controlled power strips, clusters, single board computers, Web services

1 INTRODUCTION

The hardware that is used to provide cloud infrastructure
and platform services are typically cluster systems,
which implement parallel computing with distributed
memory. Cluster systems usually consist of server
systems as nodes, which are equipped with powerful
administration and maintenance tools like the HPE
Integrated Lights-Out (iLO) [13] or IBM Integrated
Management Module (IMM) [14]. These tools allow to
power a system on and off via remote, no matter in which
state this system currently is.

However, if clusters are constructed by using
commodity hardware systems or even lesser expensive
components like single board computers, such cluster
systems lack advanced tools of administration and
maintenance such as iLO or IMM. The administrators
can not detect defects and perform operations on the
cluster remotely and they need to work on site with
the cluster to investigate and fix problems and switch

20

crashed nodes on or off.

Clusters of single board computers have less purchase
cost and are easy to operate, and therefore they are
a good option for education and research projects
with less funding [2]. The Faculty of Computer
Science and Engineering of the Frankfurt University of
Applied Sciences possesses a cluster of 128 nodes of
Raspberry Pi 3 single board computers with 512 physical
CPU cores [6]. This cluster serves as a testbed for
scientific research and education, and gives students
the opportunity to experiment with different parallel
computing models.

The Raspberry Pi 3 computer provides very
limited hardware resources compared with servers
or workstations that consist of commodity hardware
components. It is equipped with a CPU with four
cores (ARM Cortex A8), 1 GB of main memory and
a 10/100 Mbit Ethernet interface. Those characteristics
show the hardware limitations of the system but yet
it is capable of running different Linux distributions.

http://creativecommons.org/licenses/by/4.0/
http://www.ronpub.com/ojcc

H.-N. Cocos, C. Baun: A Lightweight Network-Controlled Power Strip for Low-Cost Cluster Systems

Table 1: The characteristics of the power strips on the market and our prototype

Brennenstuhl

ALLNET ALLA4176 [1] Our Prototype
Premium-Web-Line [8]
Interfaces LAN LAN, WLAN, USB LAN, Wi-F1, USB,
Bluetooth
. . . switch for sockets, main switch, taster,
Interaction main switch, webpage .
webpage webpage, webservice
Software not adaptable not adaptable adaptable
No. Sockets 5 (2 permanent) 6 9
max. Current 16 A 10 A 10 A
Price 129 € 269 € 160 €

The hardware resources are also sufficient to use them
for running object-based cloud storage services [4][5]
and for the investigation of the scalability of parallel
computation tasks [3].

With a cluster of low-cost nodes like Raspberry
Pi 3 computers, the crash of nodes during operation
is a common event. Since lack to powerful, costly
maintenance tools, the node crash can not be detected
and fixed remotely and the administrators have to work
on site. In order to address this issue we develop in
the paper an inexpensive tool, a lightweight network-
controlled power strip, which monitors the nodes of
cluster and enables administrators to power crashed
nodes on and off remotely. The network-controlled
power strip consists of a power strip (hardware part)
and a web application and web service (software part).
The web application and service monitor the nodes of
the cluster and allow users to reset the crashed node
over networks [9]. The run of nodes is monitored
by the command-line tool ping. The reply of ping
is used to detect whether a node is still in operation
state or has failed. An externally attached optocoupler
circuit is used to reset the failed Raspberry Pi node.
The development and construction of the prototype of
the network-controlled power strip will be presented in
detail in this paper.

Network controlled power strips offer a comfortable
and time-saving way to control connected appliances.
The technology of network controlled power strips
is also interesting in regard of the growing field of
smarthome appliances and home automation scenarios.
The prototype presented in this work is easy to construct
and the adoption of a Raspberry Pi as the central
controlling component make it very flexible in operation.
Users can build such a power strip easily for their
home environment with low costs and the potential of
extensibility. Its application is not only limited to the
control of cluster systems, and automation scenarios are
an example of other possible applications

The rest part of the paper is organized as follows.

21

We first discuss related work in Section 2. Section 3
presents our lightweight network-controlled Power Strip.
It describes in detail the architecture of hardware and
software and the development and construction of the
prototype, and reports the primary use experiences of the
prototype. The conclusions of the work are given and the
future work is discussed in Section 4.

2 RELATED WORK

A large number of network controlled power strips exist
on the market. They are usually listed under the term
“smart switch” or “smart power strip”. These smart
power strips provide different functionality and their
prices vary from 60 € to 269 € [1]. Table 1 shows the
characteristics of two popular power strips on the market
and their purchase price. For example, ALL4176 is a
smart power strip from the hardware vendor Allnet [1],
and it is equipped with six individually switchable plugs
and hardware buttons to switch the individual plugs on
and a Wi-Fi and Ethernet interface. Its current market
price is 269 €. Table 1 also compares the two products
with our prototype of power strip.

These power strips are usually built by using a
microcontroller for the access of the sockets, and the
microcontroller also provides a web server for Internet
access. This offers the users the functionality to control
the individual sockets via remote. However, the fact that
the web server is built into a microcontoller is a serious
drawback, because the used web server software is not
interchangeable and can not be adapted to further user
needs. The web server is implemented inside a closed
system and it cannot be configured by users. Therefore,
it is not as flexible and adjustable as an open solution.
Another drawback is that the web interface (webpages),
which is offered by the power strips, is not usable in a
scenario where a machine automatically communicates
with the device. For this scenario, a RESTful web
service would be beneficial and using a different web
server software is desired.

Open Journal of Cloud Computing (OJCC), Volume 5, Issue 1, 2018

Klein and Wenzel [15] developed a power strip. The
power strip is also constructed by using a Raspberry
Pi single board computer as the central component and
attach it to relays, which are used to switch the build-
in plugs. The work of Klein and Wenzel shows the
opportunities of a self-made power strip solution and
it demonstrates how to construct a smart power strip
by using a Raspberry Pi. Different from our work, the
focus of their work is on the home automation software
OpenHAB [17]. Their setup enables the integration
of the built solution into an existing home automation
environment. The solution of Klein and Wenzel makes
use of a wooden casing and is therefore (compared
with our prototype) relatively large in its dimensions.
Their solution also lacks different control methods. In
their work, the build-in plugs are controlled only via
command line but there is no work on the use of a web
page or web service to interact with the device.

Lee et al. [16] built a smart power strip by using a
microcontroller and relays. Their power strip is designed
as an adapter between the wall outlet and the power strip
line. This enables the adapter to act as a bridging device
making connected devices controllable via a smartphone
app. In contrast to our prototype, the adapter is only
controllable via an Android App using the Internet of
Things (IoT) platform software Blynk [7]. The design
of the adapter is simplistic and lacks options to extend
its functionality.

The investigation of the existing solutions led to the
development and construction of our prototype, which
focuses on small dimensions and connectivity. By using
the Linux operating system Raspbian, it is possible
to choose among different free web server software
solutions. For controlling the power plugs in our power
strip, the GPIO ports of the Raspberry Pi are used.
The programming language Python is adopted to control
the GPIO ports of the Raspberry Pi and the Python
framework Flask is used to host a web interface and a
RESTTful web service.

3 LIGHTWEIGHT NETWORK-CONTROLLED
POWER STRIP

This section presents our network-controlled power strip,
which aims at providing a lightweight tool for low-cost
clusters. Firstly, an overview of the system is given in
Subsection 3.1, where the relationship of the hardware
and software components are described. The hardware
components and the construction of the power strip are
then elaborated in Subsection 3.2. In Subsection 3.3,
the design and implementation of the software part
are presented in detail. The last part of this section
(Subsection 3.4) reposts our first observations and issues
in the use of the prototype.

3.1 The System Overview

The network-controlled power strip allows users to
control low-cost clusters remotely. Figure 1 gives
an overview of system and illustrates the players and
the communication relation between them. The web
application provides a user interface and the web service
is used for machine-to-machine. They provide users
with the capability of performing remote control to
the cluster. The design and development of the web
application and the web service will be discussed in
detail in Subsection 3.3.

The power strip is used to directly control the nodes of
cluster. Its central component is a Raspberry Pi single-
board computer. The web application communicates
over networks with the RPi.GPIO library of the Raspbian
operating system of the Raspberry Pi. This library is
set on the boundary between the software and hardware
parts and is the binding interface between the web
service and the power strip. The power strip performs
the operation on the cluster via the GPIO ports of
the Raspberry Pi. The GPIO ports are connected
to the sockets and communication between them is
unidirectional. Via the sockets the power strip can
control the cluster, but the cluster does not communicate
with it. Subsection 3.2 provides a detailed look into the
power strip.

3.2 Construction of the Power Strip

Figure 2 gives an overview of the hardware part.
As showed in this figure, a junction box is used
as an enclosure for the hardware components. The
Raspberry Pi is the central controlling component of the
power strip and connected to the network via a network
cable. A button is connected to a GPIO port of the
Raspberry Pi and can be used to start the sockets. The
GPIO ports of the Raspberry Pi are connected to the relay
card. Through those GPIO ports the relays of the relay
card are controlled and the sockets are supplied with
current.

Figure 2 shows major hardware components and
provides a simplified architecture of hardware. The
simplification aims to demonstrate the functionality of
hardware and to enhance the understanding of the
internal structure. A prototype of the power stripe
is implemented based on the architect, and Figure 3
presents the prototype and offers a comprehensive view
of the power strip. We now give a detailed look into the
prototype.

As showed in Figure 3, our power strip consists of four
major components:

e A - USB power supply for the Raspberry Pi and the
relay card

22

H.-N. Cocos, C. Baun: A Lightweight Network-Controlled Power Strip for Low-Cost Cluster Systems

User

{1

N
Web Application
and Service

[}

Networks

il

Power Strip

Figure 1: The system overview of the network-
controlled power strip

Junction|
Box

Raspberry
Pi

Network

Relay Card

Figure 2: The architecture of the power strip

e B - Button for the sequential operation of sockets

e C - GPIO-Ports of the Raspberry Pi attached to the
relay card

e D - Main switch of the system

For the housing of the hardware components, an
electrical junction box is used as enclosure. This junction

Table 2: the hardware components used to construct
the power strip and their purchase price

Component Quantity | Price
Raspberry Pi 3 1 35€
MicroSD card 1 7€
USB cable 2 5€
Junction box 1 25 €
Flush-mounted socket 10 30€
Connecting cable 3x1,5 10m 2 10€
Supply cable 1 7€
Connection terminal 2 4€
Small parts for assembly - 10€
Button 1 2€
Switch 1 2€
Status LED 1 1€
Relay card 1 8€
Female connector 40 pin 1 2€
Anker USB power supply 1 12 €
Sum 160 €

box is selected because it features pre-drilled holes
which carry the power plugs. It is also suitable for
carrying electrical components because it is made of a
non conductive material and has a bolted cover to house
the internal components. The power plugs are integrated
into the predilled holes and are internally connected to
a relay card via wires. The free space of the junction
box is sufficient for up to 10 power plugs. One of the
power plugs is used for the USB power supply (see the
component A in Figure 3) of the internal Raspberry Pi
computer and the relay card.

The relay card is used because the power plugs have
an output voltage of 230 Volts. The GPIO ports of the
Raspberry Pi are not able to switch such a voltage level.
Therefore, a relay card is located between and connected
to the Raspberry Pi and the power plugs. The used relays
operate with a voltage of 230 Volts and a maximum
current of 10 Ampere. The connection between the
Raspberry Pi and the relay card is established with
jumper cables. Figure 3 C shows the connection between
the Raspberry Pi and the relay card.

Component B in Figure 3 is the button which starts
the sequential power up of all sockets. The powerup is
implemented in a sequential manner because powering
up all sockets at the same time causes a load peak,
which triggered the fuse of the electrical grid of our lab
where the cluster is operated. Close to the button (the
component B) is a LED, which is installed to inform
about the state of the system. The color of the LED turns
yellow when the Raspberry Pi is in ready state and did
boot up. If the sockets are all in operation state, the LED

23

Open Journal of Cloud Computing (OJCC), Volume 5, Issue 1, 2018

Figure 3: A prototype of the power strip

turns green. The LED is red in case the Raspberry Pi
has not finished to boot up. The system also features a
switch (see the component D in Figure 3) to startup the
whole system.

Purchase Cost: Table 2 lists the hardware
components used to construct the power strip and
their purchase price. The total cost of all components
used for the prototype is approximately 160 €. The list
of components can be scaled up and down in order to
meet the needs of the user. This prototype was built with
the objective of controlling a large cluster. A detailed
plan that shows the internal wiring of the prototype is
presented in [10].

Power Consumption:

025€
"kWh

hour

04 days
day

X 365.25 —— X
year

Cy =E X (1)
Equation (1) calculates the electric energy costs per
year [2]. For the calculation of the electric energy
costs of the Raspberry Pi 3, which is integrated into the

prototype, we assume a power consumption of 2 Watts
(F) and 0.25€ per kWh. As a result, the calculated

electric energy costs per year (Cy’) for a round-the-clock
(24/7) run of the prototype is 4,38 €. Combined with the
purchase cost of 160 € for the prototype (see Table 2)
the total cost of ownership is 164,38 € for each year. In
comparison, the power consumption of a cluster with 128
Raspberry Pi 3 worker nodes is between 350 Watts in idle
operation mode and 650 Watts during peak load [6]. The
electric energy costs of such a cluster for a 24/7 operation
is between approximately 767 € and 1,425 €. Therefore,
the adding and run of our prototype does not add much
costs to the cluster, but brings significant benefits for the
users in regards of the administration and maintenance
of the cluster.

Furthermore, the prototype was constructed in a way
that no users can be harmed when they are using it.
No conductive parts are located outside the housing and
therefore the safety of the users is ensured.

3.3 Development of the Web Application and
Service with Flask

In the prototype of power strip, a Raspberry Pi single
board computer is used to control the relay card (and
through it the power plugs) via its GPIO ports. Several
different ways exist to control the GPIO ports of the

24

H.-N. Cocos, C. Baun: A Lightweight Network-Controlled Power Strip for Low-Cost Cluster Systems

Flask Framework

Web App Web Service
- HTML Website - REST API
- Resources.py - Webserver

- Webserver

Figure 4: The overview of the Web application and
Service

Raspberry Pi via software. One option is to interact with
the GPIO ports by using shell scripts [11]. One benefit
of this option is that it allows physical hardware access
without the need for additional libraries. An alternative
solution is using the WiringPi [22] framework, which
allows to access and program the GPIO ports of the
Raspberry Pi via the programming language C/C++. The
library RP 1 . GP IO is another alternative solution for the
programming language Python [19].

In order to provide a graphical user interface that
allows the cluster administrators to interact with the
prototype via remote, several web server software
solutions have been investigated during this work. This
resulted in using the web server framework Flask [18],
which is a lightweight framework for web applications
and is entirely developed in Python. With this
framework, it is possible to host the web sever and build
web services. These features make using Flask an ideal
choice for the controlling of the power plugs. By using
Flask to implement the web application and web service,
the GPIO ports of the Raspberry Pi can be accessed from
the same application by using the RP1i.GP IO library.

Figure 4 presents an overview of the web application
and the web service. The GPIO ports of the Raspberry
Pi are physically connected with the relay card, which is
in turn connected to the power plugs of the prototype.
Table 3 presents the GPIO ports and their respective
endpoints. The web application makes use of the GPIO
numbering scheme as given in this table. The status-LED
is connected with Relay 8. When the cluster is in the
state of operation, the last relay (Relay 8) is switched to
state on and the status-LED turns green. The GPIO port

25

Table 3: GPIO ports and the connected endpoints

GPIO port | Pin Endpoint
GPIO 2 Pin 3 Relay 1
GPIO 3 Pin5 | Relay2
GPIO 4 Pin 7 Relay 3
GPIO 5 Pin 29 | Relay 4
GPIO 6 Pin 31 | Relay 5
GPIO 7 Pin 26 | Relay 6
GPIO 8 Pin 24 | Relay 7
GPIO 9 Pin 21 | Relay 8
GPIO 25 Pin 22 | Status-LED
GPIO 26 Pin 37 | Button

26 is configured as an input port and it detects the state
of the connected button (see Table 3).

The software code and documentation of the
web application and the web service are free
available at https://github.com/hcocos/
Prototype_Socket/.

3.3.1 Implementing the Web Application

Figure 4 presents the major components of the web
application. The web application contains a website
(client) and a sever. The web site provides a user
interface implemented as webpages, which allows the
users to control the power strip remotely. The web server
communicates with the client and the GPIO ports of the
Raspberry Pi in the power strip.

We use the web framework Flask for the
development of the web application. Flask can
be installed with all dependencies via the Python
package management system pip with the command
sudo pip install flask. After the installation
of the packages, the server framework can be used in
Python scripts. The web application is developed as
a Python module that incorporates all the necessary
resources for the application. The python script
resources.py implements the access to the GPIO
ports by using the RPi.GPIO library and runs the web
server. The Python backend of the web application can
access the GPIO ports and host the web pages at the
same time, and this highlights the benefits of using the
programming language Python. This design decision of
using the Python language simplified the development
and reduced the complexity of the web application.

The software of the web application is structured as
follows:

contains the

e \application_directory
entire web application

https://github.com/hcocos/Prototype_Socket/
https://github.com/hcocos/Prototype_Socket/

Open Journal of Cloud Computing (OJCC), Volume 5, Issue 1, 2018

e \application_directory\static -
contains the static data e.g. style sheets and images

e \application_directory\templates -
contains the HTML pages of the application

The dynamic part of the HTML pages can be
implemented as a Python script and therefore simplifies
the access of the GPIO ports. The Python script
accesses the GPIO ports by using the RP1 . GPIO library.
The static and dynamic HTML pages are rendered by
using the function render_template () of the Flask
framework.

Each webpage is accessed via a dedicated Python
function. Additionally, a decorator [21] is implemented,
which marks the endpoint of the web application and
points to the location of the HTML page. The
declarator @webapplication.route (’ /') points
to the index HTML page of the web application
(see the file resource.py in [10]). For different
pages, different functions and decorators need to be
implemented. The decorators can also be used for the
purpose of user logging.

The web server is automatically started with the power
strip by using the supervisorctl daemon [20].

3.3.2 Implementing the Web Service

In addition to implementing the web application, a
RESTful web service is developed. The Web service is
used for machine-to-machine communication via unique
URLs (Uniform Resource Locator). One advantage
of the RESTful web service is its their mechanism of
communication because it adopts the most-commonly-
used HTTP methods like GET, POST, UPDATE and
DELETE for communication.

The Flask framework offers useful functions and
data types for implementing RESTful web services.
One example is the function jsonify (), which
returns a JSON (Java Script Object Notation) object.
These objects implement a structured data type and
are serializable, which simplifies the communication
between a sever and its clients.

Figure 5 presents the communication diagram of the
web service. The first method of web service used
is the status function, which returns the status of the
power plugs. The method is accessed via the URL
/webservice/stem/status by using the GET
method. When invoked, the method returns a JSON
object, which contains the status of the power plugs. Just
like the web application, each Flask function is equipped
with a decorator, which defines the endpoint of the web
service and the access method used. The web service
can be tested with the command-line tool curl [12].

HTTP/1.0 200 OK

Content - Type: application/json
Content - Length: 570

Server: Werkzeug/0.9.6 Python/3.4.2

Date: Wed, 28 Feb 2018 22:10:12 GMT
{ "Dose":
{"an:
{ "name": "Steckdose Nr. 1",
"status": 0 },
"3
{ "name": "Steckdose Nr. 2",
"status": 0 },

}
Listing 1: Excerpt of the reply of the web service

The following command issues a GET request on the web
service

$ curl -i http://192.168.178.220:2789/
webservice/stem/status

Listing 1 presents an
reply of the web service behind the URL
/webservice/stem/status. The status code
inside the reply has value 200, which means that the
request was successful. The reply also informs among
others about the length of the payload and the software,
which implements the web service. The payload
contains the JSON object, which is requested from the
prototype. This JSON object contains a list of power
plugs and their current status.

The other methods of the web service, which have
been implemented in this work, are used to switch single
power plugs on and off. These methods respond with text
messages instead of JSON objects because the switching
of single power plugs is a triggered action and the
response is only needed as a confirmation of this action.

The web service provide the capability of controlling
multiple power strips from any clients, and help
to orchestrate different power strips through a web
interface. The functionality of the network-controlled
power stripe can be expanded with additional methods
of the web service in a simple way.

excerpt of the

3.4 Primary Use Experiences

The first test was carried out with a small cluster that
consists of six Raspberry Pi single board computers.
The six Raspberry Pis were attached to a six-port USB
power supply from the hardware vendor Anker with
a rating of 60 Watts. The USB power supply of the
cluster was attached to a socket of the prototype, and the
power supply was tested on every socket. We tested the
prototype using different cluster loads by increasing the
number of running nodes in the cluster.

26

H.-N. Cocos, C. Baun: A Lightweight Network-Controlled Power Strip for Low-Cost Cluster Systems

Actor

Request:GET http://192.168.178.220:2789/webservice/stem/status

Prototype Power Strip

Response: JSON-Object (Status Sockets)

Request:GET http://192.168.178.220:2789/webservice/stem/on/all

Response: HTML-Text "All Sockets switched on!"

Request:GET http://192.168.178.220:2789/webservice/stem/off/all

Respone: HTML-Text "All Sockets switched off!"

Figure 5: The communication diagram of the web service

After the prototype was successfully tested on the
small cluster, a larger cluster with 128 Raspberry Pis [6]
is then used to further test the network-controlled power
strip. The individual Raspberry Pis were attached to
USB power supply with five and six USB ports. The
USB power supplies were attached to ordinary power
strip lines, which were in turn attached to the sockets of
the prototype. With this setup, the power strip was tested
under different load schemes of the cluster by changing
the number of running cluster nodes.

The test lasted one month. In the period of time a
broken relay occurred. An investigation of this error
showed that the used relay card has a construction issue
as it uses an optocoupler with a LED indicator on the
input side. The built-in LED was designed for a different
input voltage and the switching operation of the sockets
resulted in an overload of the LED and therefore led to
the destruction of the LED. The relays were not affected
by this error and a replacement of the built-in LEDs with
LEDs that support a higher voltage should cope with this
issue.

27

4 CONCLUSIONS AND FUTURE WORK

In this paper, we develop a lightweight network-
controlled power strip and provide a solution to remotely
control low-cost clusters that lack of costly, advanced
administration tools. A prototype of the solution is
implemented and tested in this work, and the prototype
is inexpensive and easy to construct and operate. This
hardware part (the power stripe) of this prototype was
built with a Raspberry Pi single board computer as the
central controlling component and its GPIO ports are
used to control the other physical components. The
Raspberry Pi switches the relays of a relay card, which
operates the directly connected power plugs.

A web application and a RESTful web service are
developed, which enable users to operate the power
strip remotely. This software part was implemented
in the programming language Python by using the
Flask web framework. This framework offers useful
functions for the development of web applications and
web services and additionally offers a lightweight web
server. The implemented Python application is also
capable of accessing the GPIO ports of the Raspberry Pi
via the RP1.GPIO library. The implemented RESTful

Open Journal of Cloud Computing (OJCC), Volume 5, Issue 1, 2018

web service allows machine-to-machine communication
and is also implemented with the Flask framework.

The prototype was tested with different scale
of clusters of single board computers, which are
not equipped with advanced administration tools
like HPE iLO or IBM IMM. The application of
the prototype reduces the administration efforts of
low-cost cluster systems. Our web application
ansservice are implemented as free software and
licensed under the terms of the GPLv3. Their
source code and documentation can be found in the
Git repository: https://github.com/hcocos/
Prototype_Socket/

Future Work: One of the next steps is to investigate
the durability of the prototype. Therefore, suitable test
cases need to be designed and different charging states
need to be evaluated. Only longterm operation can show
how reliable the constructed prototype is. Furthermore
the functionality of the web application will be improved
further. In the current implementation, every user has full
access to the webpage and the web service and therefore
can switch the cluster off during operation. This need
to be disabled by a proper logging function and the
implementation of user accounts. Another relevant topic,
which needs to be addressed, is the synchronization of
the operation modes. In its current state, the power plugs
can be activated by pressing the button of the junction
box, while in the mean time, a remote user could switch
them off in parallel.

The prototype was connected with the local network
infrastructure by using the Ethernet interface of the
Raspberry Pi. Recent revisions of the Raspberry Pi
also offer a Wi-Fi interface. One of the next steps is
to evaluate how reliable and fast a Wi-Fi connection
would be without using an external antenna. Another
interesting functionality, which may be implemented
into the prototype, is the ability to measure the power
consumption of the devices, which are connected to the
power plugs and log the electric energy consumed by the
devices.

ACKNOWLEDGEMENTS

This work is partly funded by the Faculty of Computer
Science and Engineering Science of the Frankfurt
University of Applied Sciences in the framework of
‘Innovationsfonds Forschung” (IFOFO).

Many thanks to Rosa-Maria Spanou for her assistance
in improving the quality of the paper.

28

REFERENCES

[1] “Allnet all4176 power strip,” http://www.allnet.de/
en/allnet-brand/produkte/neuheiten/p/allnet-
all4176-ip-steckdosenleiste-6-fach-schaltbar-per-
netzwerk/, accessed 27th March 2018.

C. Baun, “Mobile clusters of single board
computers: an option for providing resources to
student projects and researchers,” SpringerPlus,
vol. 5, no. 1, 2016.

C. Baun, “Parallel image computation in clusters
with task-distributor,” SpringerPlus, vol. 5, no. 1,
p- 632, May 2016.

C. Baun, H.-N. Cocos, and R.-M. Spanou, “Ossperf
— a lightweight solution for the performance
evaluation of object-based cloud storage services,”’
Journal of Cloud Computing, vol. 6, no. 1, p. 24,
Dec 2017.

C. Baun, H.-N. Cocos, and R.-M. Spanou,
“Performance aspects of object-based storage
services on single board computers,” Open Journal
of Cloud Computing (OJCC), vol. 4, no. 1,
pp. 1-16, 2017. [Online]. Available: http://nbn-
resolving.de/urn:nbn:de:101:1-2017100112204

C. Baun, H.-N. Cocos, and R.-M. Spanou,
“Erfahrungen beim Aufbau von groflen Clustern
aus Einplatinencomputern fiir Forschung und
Lehre,” Informatik-Spektrum, vol. 41, no. 3, 2018,
https://link.springer.com/article/10.1007/s00287-
017-1083-9.

Blynk, “Democratizing the internet of things,”
https://www.blynk.io, accessed 20th May 2018.

Brennenstuhl, “Premium-Web-Line
Internet Extension Socket 5-way,” https:
/Iwww brennenstuhl.com/en-DE/products/
extension-leads/premium-web-line-internet-
extension-socket-5-way-black-3m-h05vv-f-3g1-
5-1-master-2-slave-2-permanent, accessed 29th
April 2018.

H.-N. Cocos, “Git repository automated reset,’
https://github.com/hcocos/Reset_Pi, accessed 27th
March 2018.

H.-N. Cocos, “Git repository prototype
power strip,” https://github.com/hcocos/
Prototype_Socket, accessed 28th March 2018.

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

[10]

[11] elinux, “Rpi gpio code samples,” https://elinux.org/
RPi_GPIO_Code_Samples, accessed 30th March

2018.

[12] GibBook, “Everything curl,” https://ec.haxx.se/,
accessed 20th May 2018.

https://github.com/hcocos/Prototype_Socket/
https://github.com/hcocos/Prototype_Socket/
http://www.allnet.de/en/allnet-brand/produkte/neuheiten/p/allnet-all4176-ip-steckdosenleiste-6-fach-schaltbar-per-netzwerk/
http://www.allnet.de/en/allnet-brand/produkte/neuheiten/p/allnet-all4176-ip-steckdosenleiste-6-fach-schaltbar-per-netzwerk/
http://www.allnet.de/en/allnet-brand/produkte/neuheiten/p/allnet-all4176-ip-steckdosenleiste-6-fach-schaltbar-per-netzwerk/
http://www.allnet.de/en/allnet-brand/produkte/neuheiten/p/allnet-all4176-ip-steckdosenleiste-6-fach-schaltbar-per-netzwerk/
http://nbn-resolving.de/urn:nbn:de:101:1-2017100112204
http://nbn-resolving.de/urn:nbn:de:101:1-2017100112204
https://link.springer.com/article/10.1007/s00287-017-1083-9
https://link.springer.com/article/10.1007/s00287-017-1083-9
https://www.blynk.io
https://www.brennenstuhl.com/en-DE/products/extension-leads/premium-web-line-internet-extension-socket-5-way-black-3m-h05vv-f-3g1-5-1-master-2-slave-2-permanent
https://www.brennenstuhl.com/en-DE/products/extension-leads/premium-web-line-internet-extension-socket-5-way-black-3m-h05vv-f-3g1-5-1-master-2-slave-2-permanent
https://www.brennenstuhl.com/en-DE/products/extension-leads/premium-web-line-internet-extension-socket-5-way-black-3m-h05vv-f-3g1-5-1-master-2-slave-2-permanent
https://www.brennenstuhl.com/en-DE/products/extension-leads/premium-web-line-internet-extension-socket-5-way-black-3m-h05vv-f-3g1-5-1-master-2-slave-2-permanent
https://www.brennenstuhl.com/en-DE/products/extension-leads/premium-web-line-internet-extension-socket-5-way-black-3m-h05vv-f-3g1-5-1-master-2-slave-2-permanent
https://github.com/hcocos/Reset_Pi
https://github.com/hcocos/Prototype_Socket
https://github.com/hcocos/Prototype_Socket
https://elinux.org/RPi_GPIO_Code_Samples
https://elinux.org/RPi_GPIO_Code_Samples
https://ec.haxx.se/

H.-N. Cocos, C. Baun: A Lightweight Network-Controlled Power Strip for Low-Cost Cluster Systems

[13] HPE, “HPE iLO 4 User Guide,” Hewlett Packard
Enterprise, , 2018.

[14] IBM, “Integrated Management Module — Users

Guide,” International Business Manchines
Corporation, , 2010.

[15] T Klein and D. Wenzel, “Schaltbare
steckdosenleiste mit dem raspberry pi,’
https://klenzel.de/5190, accessed 27th March
2018.

[16] Y. Lee, J. Jiang, G. Underwood, A. Sanders,
and M. Osborne, “Smart power-strip: Home
automation by bringing outlets into the IoT,” in

2017 IEEE 8th Annual Ubiquitous Computing,

Electronics and Mobile Communication
Conference (UEMCON), Oct 2017, pp. 127-
130.

[17] OpenHAB, “Empowering the smart home,” https:

/lwww.openhab.org, accessed 20th May 2018.

[18] A. Ronacher, “Flask web development, one drop
at a time,” http://flask.pocoo.org, accessed 30th
March 2018.

SourceForge, “Rpi.gpio python module,”
https://sourceforge.net/p/raspberry- gpio-python/
wiki/Home/, accessed 30th March 2018.

supervisord.org, “Supervisor: A process control
system,” http://supervisord.org/index.html,
accessed 30th March 2018.

P. Team, “View Decorators,” http://flask.pocoo.org/
docs/1.0/patterns/viewdecorators/, accessed 20th
May 2018.

[22] WiringPi, “Gpio interface library for the raspberry
pi,” http://wiringpi.com, accessed 20th May 2018.

[19]

[20]

[21]

29

AUTHOR BIOGRAPHIES

Henry-Norbert Cocos
studies computer science at
the Frankfurt University of
Applied Sciences. He earned his
Bachelor degree in Computer
Science in 2018 from the
Frankfurt University of Applied
Sciences. His research interest
includes distributed systems
and single board computers.
Currently, he analyzes a 128
node cluster of Raspberry Pi 3 nodes in regard of
different parallel computation tasks. For this work, he
analyzes which administration tasks need to be carried
out during the deployment and operation phase and how
these tasks can be automated.

Dr. Christian Baun is a
Professor at the Faculty
of Computer Science and

Engineering of the Frankfurt
University of Applied Sciences
in Frankfurt am Main, Germany.
He earned his Diploma degree
in Computer Science in 2005
and his Master degree in 2006
from the Mannheim University
of Applied Sciences. In 2011,
he earned his Doctor degree from the University of
Hamburg. He is author of several books, articles and
research papers. His research interest includes operating
systems, distributed systems and computer networks.

https://klenzel.de/5190
https://www.openhab.org
https://www.openhab.org
http://flask.pocoo.org
https://sourceforge.net/p/raspberry-gpio-python/wiki/Home/
https://sourceforge.net/p/raspberry-gpio-python/wiki/Home/
http://supervisord.org/index.html
http://flask.pocoo.org/docs/1.0/patterns/viewdecorators/
http://flask.pocoo.org/docs/1.0/patterns/viewdecorators/
http://wiringpi.com

	Introduction
	Related Work
	Lightweight Network-controlled Power Strip
	The System Overview
	Construction of the Power Strip
	Development of the Web Application and Service with Flask
	Implementing the Web Application
	Implementing the Web Service

	Primary Use Experiences

	Conclusions and Future Work

