
c© 2020 by the authors; licensee RonPub, Lübeck, Germany. This article is an open access article distributed under the terms and conditions of
the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).

Open Access

Open Journal of Cloud Computing (OJCC)
Volume 7, Issue 1, 2020

http://www.ronpub.com/ojcc
ISSN 2199-1987

Hardware Accelerating the Optimization of
Transaction Schedules via Quantum Annealing

by Avoiding Blocking
Tim Bittner, Sven Groppe

Institute of Information Systems (IFIS), University of Lübeck, Ratzeburger Allee 160, D-23562 Lübeck, Germany,
tim.bittner96@gmx.de, groppe@ifis.uni-luebeck.de

ABSTRACT

The isolation property of database theory guarantees to avoid problems of not synchronized parallel execution of
several transactions. In this paper we propose an algorithm for an optimal transaction schedule for the different
cores of a multi-core CPU with minimal execution time ensuring the isolation property. Optimizing the transaction
schedule is a combinatorial problem, which is ideal to be solved by quantum annealers as special form of quantum
computers. In our contribution we show how to transform an instance of the transaction schedule problem into
a formula that is accepted by quantum annealers including a proof of validity and optimality of the obtained
result. Furthermore, we analyze the number of required qubits and the preprocessing time, and introduce an
approach for caching formulas as result of preprocessing for the purpose of reducing the preprocessing time. In
an experimental evaluation, the runtime on a quantum annealer outperforms the runtime of traditional algorithms
to solve combinatorial problems like simulated annealing already for small problem sizes.

TYPE OF PAPER AND KEYWORDS

Regular research paper: Quantum computing, quantum annealing, transaction processing, synchronization, 2-
phase-locking, database, schedule, D-Wave

1 MOTIVATION

Transactions are a basic concept of databases: A
transaction is a series of operations, carried out by
a single user or application program, which reads or
updates the contents of a given database. Transactions
of several users and applications are typically processed
in parallel for optimal performance. Database
management systems apply sophisticated methods to
avoid problems of not synchronized parallel execution
of several transactions by guaranteeing the so called
isolation property, which requires concurrently executed
transactions to not influence each other.

To ensure the isolation property, conflicts between

transactions must be dealt with. The most widely
approach to dealing with the conflicts that arise is the use
of locks: Each transaction acquires a lock for an object
before access and releases it after access, which prevents
concurrent access to an object. If a transaction wants
to acquire a lock held by another transaction, then this
transactions is blocked until the lock is released. Hence
there is some delay of executing a set of transactions with
conflicts due to blocking.

In this paper we deal with optimizing the transaction
schedule, which determines the order of parallel
executions of transactions on different cores of a multi-
core CPU, such that delays are avoided by running
only transactions in parallel, which do not block

1

http://creativecommons.org/licenses/by/4.0/
http://www.ronpub.com/ojcc

Open Journal of Cloud Computing (OJCC), Volume 7, Issue 1, 2020

Database Server

Hardware
Accele-

rator

Quantum
Annealer

CPU

Client

Transaction

Result

Client

Transaction

Result

…

Optimize
Transaction

Schedule

Process
Trans-
actions

Figure 1: Hardware accelerating transaction
schedules via quantum annealing

each other. The problem of finding an optimal
transaction schedule is basically a job shop scheduling
problem, which additionally needs to consider conflicts
between transactions1. Note that the job shop
scheduling problem is among the hardest combinatorial
optimization problems [16], such that utilizing hardware
acceleration [20] of the optimization of transaction
schedules is a key technology for optimizing transaction
schedules. Besides massive parallel hardware like GPUs
and FPGAs, hardware acceleration includes quantum
computing with special forms like quantum annealing
solving quadratic unconstrained binary optimization
(QUBO) problems [10, 17]. After preprocessing of
a given problem like the optimization of transaction
schedules by reformulating it to a QUBO problem,
quantum annealers solve the problem in constant
time in contrast to other hardware accelerators [19].
Please see Figure 1 for our proposed approach to
utilize quantum annealing as hardware accelerator for
optimizing transaction schedules.

Our main contributions are
• proposing a formula runnable on quantum

annealers for an optimal scheduling of transactions
synchronized by 2-phase-locking protocol with
preclaiming of all locks at begin of transaction and
holding all locks until end of transaction,

1 We can actually reduce the job shop scheduling problem to the
transaction schedule problem by considering the jobs as transactions,
which do not have any conflicts between each other.

• proof of validity and optimality of the proposed
approach,

• proposing a cache of precomputed formulas in order
to speed up the preprocessing time for generating the
formulas for quantum annealing,

• a complexity analysis of the preprocessing time, the
number of possible keys for a cache of precomputed
formulas and the number of required qubits, and

• an extensive experimental evaluation comparing the
runtimes of quantum annealers with the simulated
annealing algorithm.
This paper is an extended paper of [6], which extends

[6] by detailing more about the basics, providing the
proofs of validity and optimality, discussing approaches
to reduce the preprocessing times by caching parts of
the formulas to be generated, analyzing the influence of
the number of required variables in the formulas on the
runtimes and discussing further related work.

We introduce the basics about transactions,
transaction management and quantum computers in
Section 2. Section 3 covers the main part of the work,
the formal model for the problem and the transformation
from this model into a formula suitable for a quantum
annealer including proofs of validity and optimality and
an approach for caching the generated formulas. We
provide a short insight into the implementation and the
used software in Section 4. We estimate the number
of required qubits, and analyze the complexity of
preprocessing, the number of possible keys for a cache
of precomputed formulas and experiments on a quantum
annealer in Section 5. We finally summarize and provide
a small outlook for future work in Section 7.

2 BASICS

This section is dedicated to the basics of transaction
management (see Section 2.1) and quantum computers
(see Section 2.2) with special focus on quantum
annealing.

2.1 Transaction Management

A transaction t =< s1, ..., sn > of length n is a
series of operations si, carried out by a single user or
application program, which reads or updates the contents
of the database [8]. Each operation si = ai(ei) consists
of the type of access ai ∈ {r, w}, where r represents a
read access and w a write access, and the object ei to be
accessed.

For example, the transaction t =< r(A), w(A), r(B),
w(B) > is of length |t| = 4.

Since transactions often need to access a database
at the same time and thereby often reference the same
objects, transactions in a database system are required

2

T. Bittner, S. Groppe: Hardware Accelerating the Optimization of Transaction Schedules via Quantum Annealing by Avoiding Blocking

to fulfill the so-called ACID properties [8]. The focus
here is on the fulfillment of the (I)solation property,
which guarantees to avoid problems of unsynchronized
parallel execution of several transactions and requires
concurrently executed transactions to not influence each
other.

2.1.1 Conflict Management

To ensure the isolation property, conflicts between
transactions must be dealt with. The simplest strategy to
deal with conflicts would be to execute the transactions
serially. Since this is too slow for operational systems
and also many transactions do not conflict with each
other at all, in practice transactions are executed in
parallel. There are various approaches to dealing with
the conflicts that arise, one of them is the use of locks.
For this purpose, each transaction acquires a lock for
an object before access and releases it after access, thus
preventing concurrent access to an object.

The two-phase-locking protocol (see Figure 2) is a
locking protocol that requires each transaction consisting

h

e
ld

lo
ck

s
o

f
tr

an
sa

ct
io

n

time
Locking
Phase

Release
Phase

h

el
d

lo
ck

s
o

f
tr

an
sa

ct
io

n

time

Preclaiming
of locks

(avoids deadlocks)

Holding all locks
until End of Transaction
(avoids cascading aborts)

Transaction T

Transaction T

a) 2 Phase Locking

b) Strict Conservative 2 Phase Locking

Figure 2: a) Two-phase-locking protocol with
locking phase and release phase, and b) the strict
conservative two-phase locking protocol

of two subsequent phases, the locking phase and the
release phase. During the locking phase, the transaction
may acquire locks but not release them, whereas the
release phase requires the release of previously required
locks. If a transaction has released a lock, it may not
acquire any new ones. There is a distinction between
read locks (also called shared locks) and write locks
(also called exclusive locks). Variants of the protocol
include the conservative two-phase-locking protocol and
the strict two-phase-locking protocol. The conservative
variant (preclaiming) requires that all locks that are
required during a transaction are acquired before the
transaction is started.2 The strict variant holds all locks
until the end of a transaction, which avoids cascading
aborts occurring in case of so called dirty reads of
objects written by transactions, which are later aborted
resulting in an abort of the current transaction as well.
In this contribution, we consider the combination of the
conservative and the strict two-phase-locking protocol in
our transaction model, which results in a serial execution
of all transactions that access the same objects.

2.1.2 Conflicts

Let T be the set of transactions, D be the set of data
objects. Two transactions i ∈ T and j ∈ T are in
conflict with each other if there exists two operations of
these transactions being in conflict with each other. Two
operations ai(e) ∈ i and aj(e) ∈ j of the transactions
i and j are in conflict with each other if they access the
same object e ∈ D and at least one of the operations is
writing the object:

ai(e) in conflict with a′j(e) if

∃i, j ∈ T, e ∈ D, ai(e) ∈ i, a′j(e) ∈ j :

i 6= j ∧ (ai = w ∨ a′j = w)

We assume that accesses to the same object e ∈ D
are serialized and we use the notation ai(e) → a′j(e)
in order to denote that the operation ai(e) is executed
before a′j(e). The isolation property is therefore fulfilled
if all conflict operations of conflicting transactions i ∈ T
and j ∈ T (i 6= j) are processed in the same order of
transactions: (

∀ai(e) ∈ i, a′j(e) ∈ j :

(ai = w ∨ a′j = w)⇒ ai(e)→ a′j(e)
)

2 Please note that for those transactions, for which the required
locks are not known before processing, the required locks can be
determined by an additional phase before transaction processing. The
contribution in [41] describes such an approach which can be also
applied in our scenario.

3

Open Journal of Cloud Computing (OJCC), Volume 7, Issue 1, 2020

∨(
∀ai(e) ∈ i, a′j(e) ∈ j :

(ai = w ∨ a′j = w)⇒ a′j(e)→ ai(e)
)

The two-phase-locking protocol fulfills the isolation
property by guaranteeing that each object is continuously
locked from its first to last access and during the entire
processing. An operation ai(e) of a transaction i is
suspended if another transaction j (i 6= j) already holds
a lock to the object e (and the held lock or the lock
to be acquired is an exclusive lock). In this way it is
guaranteed that all conflicting operations of transaction
j are executed before those operations of transaction i.
When using preclaiming of locks, according to [41] there
are no real limits (by determining the required locks
before transaction processing in an additional phase),
while the occurrence of deadlocks is eliminated, where
transactions wait for releasing the locks of each other.

2.2 Quantum Computer

Quantum computers are computers that are not based on
classical mechanics, instead they exploit the effects of
quantum mechanics.

2.2.1 Basic Idea

Quantum mechanics describes the states and behavior of
particles that are smaller than the size of an atom and do
not follow the laws of classical physics. At this scale,
there occur effects that the quantum computer makes
use of, especially the principle of superposition and
that of quantum entanglement. The quantum computer
uses qubits, which can take on 2 states simultaneously
due to the principle of superposition. While a bit can
assume the state 0 or 1, a qubit assumes the states 0
and 1 simultaneously. If a measurement of the state
is made, the qubit changes to one of the two states.
Both states have relative probabilities with which they
are assumed in the measurement. The principle of
quantum entanglement enables the mutual influence of
qubits, since entangled qubits mutually influence their
probabilities. Imagining the principle of superposition
as a special form of parallel computing opens up a
new world of computation beyond polynomial time and
allows in theory an exponential speedup compared to
classical computers.

2.2.2 Quantum Computing

Quantum computing finds desired solutions of a problem
by clever manipulation of single qubits as well as
entangled qubits. For the purpose of manipulating

qubits, gates provide elementary operations on one or
two qubits. For example, the Hadamard-Gate puts one
qubit into superposition and a Controlled-NOT(CNOT)-
Gate inverts a second qubit depending on the first [3].
A quantum computer is thus able to execute quantum
algorithms like Shor’s algorithm for factorizing large
numbers [38] or Grover’s algorithm for searching in
huge unsorted databases [22, 23].

2.2.3 Quantum Annealers

Quantum annealers are a special form of quantum
computers [14, 33], which are designed to solve hard
optimization problems, but cannot execute quantum
algorithms like Shor’s algorithm. Quantum annealers
find the global minimum of a given objective function
by transforming a simplified objective function with
known global minimum into the objective function of
interest, so that the quantum annealer always remains
in the state of the global minimum, which represents
the desired result. The most widely-known quantum
annealers are manufactured by the canadian company D-
Wave [9], which produced the first commercial quantum
computers.

Input format: Quantum annealers have very
limited input formats, such that all problems have
to be transformed into this input format before
being solved and transformed back after annealing.
Quantum annealers solve quadratic unconstrained
binary optimization (QUBO) problems [10, 17], which
belong to the class of NP-hard problems. A QUBO-
problem is defined by N weighted binary variables
X1, ..., XN ∈ {0, 1}, either as linear or quadratic term:∑

0<i≤N

wiXi +
∑

i≤j≤N

wijXiXj , where wi, wij ∈ R

The quantum annealer transforms these weightings
into energy levels of single qubits or between two
qubits, and by minimizing the energy level the quantum
annealer finds a minimization of the objective function,
in other words a variable assignment for the QUBO-
problem. The idea of quantum annealing is very close
to the simulated annealing approach [36] on traditional
computers (see Figure 3).

3 MODELLING

In this section, we describe the formal model of
instances of the considered scheduling problem (see
Section 3.1) and afterwards formulate the scheduling
problem as QUBO-problems (see Section 3.2) for valid
solutions (see Section 3.3) and optimal solutions (see

4

T. Bittner, S. Groppe: Hardware Accelerating the Optimization of Transaction Schedules via Quantum Annealing by Avoiding Blocking

Energy/
Cost

Function

System Configuration/
Solution

Quantum
Tunnel
Effect

Quantum
Tunnel
Effect

Classical Path
for Simulated

Annealing

Global
Minimum

Local
Minima

Figure 3: Simulated annealing (sa) [36] versus
quantum annealing (qa) to reach a global minimum
(simplified discussion): Quantum tunneling driven by
an external magnetic field “passes” high energy/cost
function “peaks” instead of climbing them as in sa.
Larger tunnels can be passed (qa) and bigger peaks
climbed (sa) with a high magnetic field (qa) and a
high temperature (sa). Then lower magnetic fields
(qa) and lower temperatures (sa) hinders to get out
of a valley of the energy (qa) and cost function (sa)
respectively with a global minimum. As long as the
function fits into the system configuration size, qa
determines the minimum in constant time in contrast
to sa, which takes longer times for more complex
functions.

Section 3.3.1), and optimize the total solution further
(see Section 3.3.2). Furthermore, we prove our proposed
formulation of optimizing transaction schedules as
QUBO-problems in Section 3.4. We finally propose a
cache for the formulas to be generated in order to speed
up preprocessing time in Section 3.5

3.1 Formal Model

The goal of this optimization is to reduce, or in the
best case completely eliminate, the waiting times of
transactions that use the two-phase-locking protocol. A
transaction must wait whenever it requests a lock, but
this lock is held by another transaction. In this case, one
transaction blocks the other and only one of the two can
be executed at a time. For simplicity of presentation, we
consider the conservative and strict two-phase-locking
protocol3. We assume that k machines are available
for processing n transactions. Thus k transactions can

3 As discussed in Section 2.1.1 and by using the approach in [41],
transactions can be also processed, which do not have a fixed set of
required locks, by introducing an additional processing phase before
transaction start.

run parallel to each other, if they do not block each
other. We hence consider the scheduling problem, where
n transactions have to be distributed to k machines,
taking into account that two transactions blocking each
other are never executed simultaneously. Thereby the
maximum execution time R (see Section 3.3.3) should
be minimized over all machines. An instance of this
scheduling problem consists of a set T of transactions
with |T | = n, a set M of machines with |M | = k (see
Figure 7) and a set O ⊆ T × T of blocking transactions
(see Figure 6). Each transaction ti ∈ T has a certain
length li (see Figure 4) and thus an upper bound ri =
R− li for its start time (see Figure 5).

3.1.1 Running Examples

This paper contains two running examples:
ExampleE1: The first running exampleE1 deals with

a rather complex scenario and contains 8 transactions for
illustrating the model in Figure 4, 5, 6, 7, 8 and 10.

Example E2: The second running example E2

contains a simpler configuration of transactions, but is
especially designed for illustrating the generated formula
to be minimized by a quantum annealer. In E2, three
transactions are to be distributed on two machines. The
first transaction has a length of 2, the other two a length
of 1. Furthermore, the second and third transactions are
blocking each other in their execution. We use R = 2
for the maximum execution time4.

Overall we have the following configuration for the
running example E2:

R = 2

T = {t1, t2, t3} with |T | = 3

M = {m1,m2} with |M | = 2

O = {(t2, t3)}
l1 = 2, l2 = 1, l3 = 1

r1 = 0, r2 = 1, r3 = 1

3.2 Formulation as QUBO-Problem

A QUBO-problem consists of binary variables that occur
weighted in linear or quadratic terms. The binary
variables

Xi,j,s for 1 ≤ i ≤ n, 1 ≤ j ≤ k, 0 ≤ s ≤ ri

contain the value 1 if transaction ti is started at time s on
machine mj , otherwise 0. For a valid schedule n of the
variables must hold the value 1 and all others 0, so that
4 We have to use a reasonable maximum execution time for minimizing

the formulas proposed in the following sections and describe an
approach for a clever determination of R in Section 3.3.3.

5

Open Journal of Cloud Computing (OJCC), Volume 7, Issue 1, 2020

length
0 1 2 3 4 5 6 7 8 9 10

tr
an

sa
ct

io
n

1
2

3
4

5
6

7
8

Figure 4: n = 8 transactions with their respective
lengths (Example E1)

maximum start time
0 1 2 3 4 5 6 7 8 9 10

tr
an

sa
ct

io
n

1
2

3
4

5
6

7
8

Figure 5: n = 8 transactions with their respective
maximum start times (Example E1)

Figure 6: Black fields indicate blocking transactions
(Example E1)

runtime
0 1 2 3 4 5 6 7 8 9 10

m
ac

hi
ne

1
2

3

Figure 7: Transactions are scheduled on three
machines, the maximum runtime here is R = 10
(Example E1)

runtime
0 1 2 3 4 5 6 7 8 9 10

m
ac

hi
ne

1
2

3

Figure 8: Binary variables set for this schedule:
X110, X312, X420, X721, X623, X526, X230, X835

(Example E1)

for each transaction the respective start time is expressed.
The solution to this problem is the distribution of the
transactions to the different machines (see Figure 8).

3.3 Valid Solution

Constraints for a valid schedule are now formulated in
such a way that the resulting formula takes on high
values whenever the constraints for validity are not
satisfied and low values whenever they are satisfied.
Three constraints must be formulated so that minimizing
the formula guarantees a valid schedule:
A: Each transaction starts exactly once,

6

T. Bittner, S. Groppe: Hardware Accelerating the Optimization of Transaction Schedules via Quantum Annealing by Avoiding Blocking

B: two or more transactions cannot be executed at the
same time on the same machine, and

C: transactions that block each other cannot be
executed at the same time.

To ensure that each transaction starts exactly once, it
may only start once across all machines and possible
start times:

A =

n∑
i=1︸︷︷︸

transactions

(

k∑
j=1︸︷︷︸

machines

ri∑
s=0︸︷︷︸

start times

Xi,j,s − 1)2

For the example configuration E2 of Section 3.1.1:

A = (X1,1,0 +X1,2,0 − 1)2

+ (X2,1,0 +X2,1,1 +X2,2,0 +X2,2,1 − 1)2

+ (X3,1,0 +X3,1,1 +X3,2,0 +X3,2,1 − 1)2

A holds the value 0 if each transaction starts exactly
once, a higher one otherwise. If for a transaction the rear
term in brackets is multiplied with k · ri variables, only
terms with variables appear and offsets of 1 = −1 · −1.
Hence we obtain n offsets for n variables. Since a
QUBO-problem consists solely of linear and quadratic
terms, the offset has no place there and is ignored. Hence
during running the problem on a quantum annealer, A
finally retrieves only the value −n and the offset of n is
ignored. After the final formula has been minimized and
a variable assignment has been found, the offset can of
course be added again, but it does not play any role in
solving the problem.

To ensure that transactions do not run at the same time
on the same machine, the runtime is calculated in the
following way using the start time and the length of the
transactions:

B =

k∑
j=1︸︷︷︸

machines

transactions
without tn︷︸︸︷

n−1∑
i1=1

ri1∑
s1=0︸︷︷︸

start times

remaining
transactions︷ ︸︸ ︷

n∑
i2=i1+1

p∑
s2=q︸︷︷︸

invalid start times

Xi1,j,s1Xi2,j,s2

for q = max{0, s1 − li2 + 1}, p = min{s1 + li1 , ri2}

For the example configuration E2 of Section 3.1.1:

B = X1,1,0X2,1,0 +X1,1,0X2,1,1 +X1,1,0X3,1,0

+X1,1,0X3,1,1 +X2,1,0X3,1,0 +X2,1,1X3,1,1

+X1,2,0X2,2,0 +X1,2,0X2,2,1 +X1,2,0X3,2,0

+X1,2,0X3,2,1 +X2,2,0X3,2,0 +X2,2,1X3,2,1

If no transactions are running at the same time on
the same machine, at most one of the variables pairwise

runtime
0 1 2 3 4 5 6 7 8 9 10

m
ac

hi
ne

1 q p

Figure 9: The green line represents a starting time
4 of a transaction of length 4 on a machine. The
value q indicates that a second transaction of length
3 must not be started in the red area in front of
the green line, because otherwise the runtimes will
overlap. The value p expresses the time until when the
first transaction runs, so that no other transactions
may be started in the second red area either.

takes the value 1 and B overall takes the value 0.
For each machine, transaction and associated start time,
all invalid start times of all remaining transactions are
calculated and this combination is added to the formula.
B reaches the maximum, i.e., exactly the value of
all sums of the formula, in the case of pairwise both
variables take the value 1. The values q and p delimit the
range in which two transactions overlap in their runtimes
for certain start times (see Figure 9).

To avoid transactions that block each other being
executed at the same time, similar constraints are
established as for B:

C =
∑

{ti1 ,ti2}∈O︸ ︷︷ ︸
blocking transactions

machines︷︸︸︷
k∑

j1=1

ri1∑
s1=0︸︷︷︸

start times

remaining
machines︷︸︸︷∑
j2∈J

p∑
s2=q︸︷︷︸

invalid start times

Xi1,j1,s1Xi2,j2,s2

for J = {1, ..., k} \ {j1},

q = max{0, s1 − li2 + 1}, p = min{s1 + li1 , ri2}

For the example configuration E2 of Section 3.1.1:

C = X2,1,0X3,2,0 +X2,1,1X3,2,1

+X2,2,0X3,1,0 +X2,2,1X3,1,1

Similar to B, C takes the value 0, if no transactions
that block each other are executed at the same time
and so again only one of the variables pairwise takes
the value 1. For all pairs of blocking transactions, the
different invalid start combinations are determined and
added to the formula. C reaches the maximum, i.e.,
exactly the value of all sums of the formula, in the case
of pairwise both variables take the value 1.

7

Open Journal of Cloud Computing (OJCC), Volume 7, Issue 1, 2020

3.3.1 Optimal Solution

For an optimal solution, the variables are now weighted
so that minimizing the formula requires the earliest
possible start time for each transaction. Therefore the
calculated end time is weighted so that its weight exceeds
the sum of all weights of all machines for each smaller
end time. This is necessary because otherwise many
short transactions that are started early would keep the
weight lower than long transactions. As a result, long
transactions with a different weight distribution would
only be started at the end and thus the actual goal of
minimizing the maximum execution time would not be
achieved. The weight for an end time s + li looks like
this (see Figure 10):

ws+li =
(k + 1)s+li−1

(k + 1)R

By dividing by (k + 1)R, ws+li ∈ (0, 1) applies, which
requires that a valid solution is preferred to an optimal
one, since the weights in A, B and C always assume the
value |1| or higher. This results in the following formula:

D =

n∑
i=1

k∑
j=1

ri∑
s=0

ws+liXi,j,s

For the example configuration E2 of Section 3.1.1:

D =
3

9
X1,1,0 +

3

9
X1,2,0

+
1

9
X2,1,0 +

3

9
X2,1,1 +

1

9
X2,2,0 +

3

9
X2,2,1

+
1

9
X3,1,0 +

3

9
X3,1,1 +

1

9
X3,2,0 +

3

9
X3,2,1

3.3.2 Total Solution

Together A, B, C and D form the actual formula, the
QUBO-problem, the solution of which is the solution of
the actual problem, a valid and optimal distribution of the
transactions to the different machines, so that if possible
there are no idle times and if possible each transaction
has no waiting time:

P = A+B + C +D

A valid solution always assumes the value −n for A +
B + C and is increased by the value of D whenever an
optimal solution is reached.

For the example configuration E2 of Section 3.1.1,
the formula P is minimized if all three constraints for
a valid schedule are satisfied and the weights across all
variables are minimal. In this example, the formula is
minimized by four different variable assignments, all of

weight
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

nu
m

be
ro

fm
ac

hi
ne

s
1

2
3

4

runtime = 10
runtime = 9
runtime = 8
runtime = 7
runtime = 6
runtime = 5
runtime = 4
runtime = 3
runtime = 2
runtime = 1

Figure 10: Display of weights for various numbers of
machines and end times (Example E1)

which represent a valid schedule (here, only the variables
with the value 1 are specified, the rest take the value 0
accordingly):

X1,1,0, X2,2,0, X3,2,1

X1,1,0, X2,2,1, X3,2,0

X1,2,0, X2,1,0, X3,1,1

X1,2,0, X2,1,1, X3,1,0

The solution represents which transaction is started when
and on which machine. P assumes the following value
for all four different variable assignments:

P = A+B + C +D = −3 + 0 + 0 +
7

9
= −22

9

If the offset is added (optional), then the result is:

P = A+B + C +D = −3 + 0 + 0 +
7

9
+ 3 =

7

9

Both solutions are correct, for the purpose of simplicity
the offset is omitted here. The solution is illustrated in
Figure 11.

3.3.3 Minimization of Execution Time

The (maximal) execution time R is a critical parameter
during generation of the formula and its solving: If R is
too large, then we need too many unnecessary variables,
which increases the problem size and hence also the
time of preprocessing (but we still retrieve the correct
solution). If R is too small, then we do not obtain any
solution. In the latter case, we need to rerun the formula
generation and solving it on a quantum annealer with an
increased R.

8

T. Bittner, S. Groppe: Hardware Accelerating the Optimization of Transaction Schedules via Quantum Annealing by Avoiding Blocking

runtime
0 1 2

m
ac

hi
ne

1
2

(a) X1,1,0, X2,2,0, X3,2,1

runtime
0 1 2

m
ac

hi
ne

1
2

(b) X1,1,0, X2,2,1, X3,2,0

runtime
0 1 2

m
ac

hi
ne

1
2

(c) X1,2,0, X2,1,0, X3,1,1

runtime
0 1 2

m
ac

hi
ne

1
2

(d) X1,2,0, X2,1,1, X3,1,0

Figure 11: Different Schedules (transaction 1 in blue,
transaction 2 in green and transaction 3 in red) for
example configuration E2

The execution time R should therefore be reasonably
estimated in advance to avoid unnecessarily many runs
on a quantum annealer. Since a quantum annealer
executes many runs of the same problem, by slowly
increasing the previously estimated execution time, the
minimum execution time allowed by a valid schedule can
be determined. The lower bound of the execution time is
obviously the sum of all lengths divided by the number
of machines:

R =

∑n
i=1 li
k

This value can be estimated even better when
considering the length of transactions. Two transactions
with lengths 1 and 9 cannot be executed by two machines
in time R = (1 + 9)/2 = 5. A more reasonable
estimation is:

R = max{
∑n

i=1 li
k

, max
i∈{1,...,n}

li}

For the example configuration E2 of Section 3.1.1:

R = max{4
2
, 2} = 2

If there is one very long transaction and many short
ones, the maximum execution time is obviously defined
by the length of the very long transaction. By slowly
increasing R the minimum execution time and a suitable
schedule are found. A valid schedule is identified by its
value, since this value does not differ significantly from
−n, but is significantly larger for an invalid schedule.

3.4 Proofs

We prove the correctness of the formula P described
in Section 3.2 in two steps: We first show that a
valid variable assignment minimizes the formula. Then
we reason about an optimal solution among all valid
solutions minimizes the formula.

3.4.1 Proof of Validity

The proof of validity consists of four steps:
• The formula P is minimized if each transaction is

started a maximum of once,
• P is minimized if each transaction is started at least

once,
• P is minimized if transactions are not executed at the

same time on the same machine, and
• P is minimized if transactions that block each other

are not executed at the same time.

Lemma 1. The formula P is minimized if each
transaction is started a maximum of once.

Proof. Suppose the formula would be minimized if a
transaction is started twice, so if Xi,j1,s1 = Xi,j2,s2 = 1
for any transaction ti. If one of the two variables is now
set to the value 0, the value of A decreases by 1, the
values of B and C remain unchanged and the value of
D decreases by at least 1

(k+1)R
. Thus, if one of the two

variables is set to the value 0, the value of the formula
decreases, contradicting the initial assumption.

Lemma 2. The formula P is minimized if each
transaction is started at least once.

Proof. Assuming the formula would be minimized if a
transaction is not started at all, so

∑k
j=1

∑ri
s=0Xi,j,s =

0 for any transaction ti. If one of the variables is now
set to the value 1, the value of A decreases by 1, the
values of B and C remain unchanged and the value of D
increases by a maximum of 1

k+1 , i.e., by a maximum of
1
2 . Thus, if one of the variables is set to the value 1, the
value of the formula decreases, contradicting the initial
assumption.

Lemma 3. The formula P is minimized if transactions
are not executed at the same time on the same machine.

Proof. All transactions executed at the same time on
the same machine increase the value of B and thus the
value of the formula by 1. This minimizes the formula
if transactions are not executed at the same time on the
same machine.

Lemma 4. The formula P is minimized if transactions
that block each other are not executed at the same time.

9

Open Journal of Cloud Computing (OJCC), Volume 7, Issue 1, 2020

Proof. All transactions that block each other and are
executed at the same time increase the value of C and
thus the value of the formula by 1. This minimizes the
formula when transactions that block each other are not
executed at the same time.

Theorem 1. A valid variable assignment minimizes the
formula P .

Proof. This results from lemmas 1, 2, 3 and 4.

3.4.2 Proof of Optimality

Lemma 5. A minimum execution time minimizes
formula D.

Proof. Assuming R is the minimum execution time and
D would be minimized by a non minimum execution
time R + 1. Hence a weight wR+1 must appear in D.
wR+1 >

∑k
j=1

∑R
s=0 ws contradicts the assumption.

Analogous remarks apply for larger execution times R+
a with a > 1.

Theorem 2. An optimal solution among all valid
solutions minimizes the formula P .

Proof. A, B and C take the same value for each valid
solution. Hence D alone decides the selection among all
valid solutions. Since D requires for each transaction
the earliest possible end time and considering also
lemma 5, a minimal solution of P represents an optimal
transaction schedule with the earliest possible end time
of all transactions.

3.5 Caching Formulas to Reduce the
Preprocessing Time

The preprocessing time to generate the formulas for the
quantum annealer depends on the length of the generated
formula. We will show in Section 5.1.1 that this length
and hence the preprocessing time is inO((n·k ·R)2). We
discuss in this section how to reduce this preprocessing
time by caching and reusing generated formulas.

We propose to optimize the transaction schedule of
batches. By using pipelining we can optimize the
transaction schedule already of the next batch during
the processing of the current batch of transactions (see
Figure 12).

In order to increase reusability of the generated
formulas and hence reduce cache misses, we assume the
following parameters to be fixed:
• the number k of machines is typically fixed, because

the system does not change during runtime, and
• the number n of transactions is fixed whenever batches

of transactions of the same sizes are processed.
We observe the following facts:

Database Server

Hardware
Accele-

rator

Quantum
Annealer

CPU

Client

Transaction

Result

Client

Transaction

Result

…

Optimize
Transaction

Schedule

Process
Trans-

actions
Batch i

Batch i+1

Batch i+2

Batch i+j
Result of
Batch i-1

…

Figure 12: Pipelining the optimization of transaction
schedules and the processing of transaction batches:
The batches i + 2 to i + j of transactions are in the
queue for optimizing their schedule and processing,
the schedule of batch i + 1 is currently optimized by
the quantum annealer, batch i is currently processed
and the results of batch i− 1 are being transmitted to
the clients.

• The (maximal) execution time R depends on the
lengths of the transactions (see Section 3.3.3),

• hence the upper bounds of start times ri, ..., rn
depends also on the lengths of transactions,

• the formulas A, B and D depend on the fixed
parameters k and n, and on the lengths of the
transactions, and

• the formula C is a sum of sub-formulas depending
on the fixed parameter k and the lengths of blocking
transactions as well as the identifiers of blocking
transactions.
Hence we propose to use the lengths of transactions

as key to index the formulas A, B and D in a cache. In
order to achieve unique keys and avoid symmetric cases,
we sort the lengths of transactions and use this unique
representation as key. The transactions are renumbered
according to the position in the sorted list of their
lengths.

For looking up the formulas A, B and D in the cache,
the keys are < 1, 2, 2, 3, 3, 4, 5, 6 > for the running

10

T. Bittner, S. Groppe: Hardware Accelerating the Optimization of Transaction Schedules via Quantum Annealing by Avoiding Blocking

In Cache?
Return
Cache

Content

Generate
Formula

Add
Generated
Formula
to Cache

Return
Generated
Formula

yes

no

Figure 13: Caching generated formulas

example E1 with transactions t1: , t2: , t3: , t4: ,
t5: , t6: , t7: and t8: (see Figure 4) and< 1, 1, 2 >
for the running example E2.

For the formula C we propose to index its sub-
formulas for each pair of blocking transactions in another
cache. Hence the key of this cache is composed of the
two lengths of blocking transactions. In order to achieve
unique keys and avoid symmetric cases, we sort the
lengths of the blocking transaction pairs. For the purpose
of a better reusing of the generated sub-formulas and in
order to reduce cache misses, we store sub-formulas only
for transactions t′ representing the shorter transaction
and t′′ for the longer transaction, but have to rename the
binary variables in looked up formulas to the ones of the
blocking transactions after cache access.

For looking up the sub-formulas of C, the keys are <
2, 3 >, < 2, 4 > and < 3, 7 > for the running example
E1 and < 1, 1 > for the running example E2.

In the following description, we use the function key
to determine the keys in form of a sorted sequence of the
lengths of transactions of a transaction configuration E
or of a pair of transactions {ti1 , ti2}.

Every time we optimize a transaction schedule, we
first check our cache of formulas with a given key if
the formulas have already been determined before and
return the cache content if this is the case (see Figure 13).
If they have not been determined before, we compute
the formulas, store the result in the cache and return

the result. We use the notation cacheA+B+D(key(E))
for this caching functionality of the sum of the formulas
A, B and D for a transaction configuration E. We use
the notation cacheC(key(t

′, t′′)) for caching the sub-
formulas

machines︷︸︸︷
k∑

j1=1

r′∑
s1=0︸︷︷︸

start times

remaining
machines︷︸︸︷∑
j2∈J

p∑
s2=q︸︷︷︸

invalid start times

Xt′,j1,s1Xt′′,j2,s2

of C for a pair {t′, t′′} of transactions and l′ length of t′,
l′′ length of t′′, r′ = R−l′, r′′ = R−l′′, J = {1, ..., k}\
{j1}, q = max{0, s1 − l′′ + 1}, p = min{s1 + l′, r′′}.
We use a renaming function ρti1←t′,ti2←t′′(F), which
renames all variables in F , which are of the form Xt′,j,s

to Xi1,j,s and Xt′′,j,s to Xi2,j,s.
Hence we alter the computation of P for a transaction

configuration E with a set O of blocking transactions in
the following way:

P = cacheA+B+D(key(E))

+
∑

{ti1 ,ti2}∈O︸ ︷︷ ︸
blocking transactions

ρti1←t′,ti2←t′′(cacheC(key(ti1 , ti2)))

For the running exampleE1, we compute P according
to the following formula:

P = cacheA+B+D(< 1, 2, 2, 3, 3, 4, 5, 6 >)
+ ρt3←t′,t4←t′′(cacheC(< 2, 3 >))
+ ρt2←t′,t6←t′′(cacheC(< 2, 4 >))
+ ρt4←t′,t8←t′′(cacheC(< 3, 7 >))

If the main memory is full up, entries in the cache can
be removed to free up space according to least-recently-
used or other cache replacement policies. Alternatively
a disk-based index (like a B+-tree or LSM tree) can be
used as main data structure for the cache in order to cache
a larger set of formulas exceeding main memory space.

4 IMPLEMENTATION OF THE QUBO-
PROBLEM

We implement the QUBO-problem described in Section
3.2 by using the Ocean Software of the company D-
Wave [10]. The Ocean Software consists of a set of tools
that help to formulate a problem for quantum annealers
and solves the problem using either a classical computer
or a quantum annealer. By only adapting the code for
communicating with the quantum annealer, the same
code is runnable on a classical computer as well as on
a quantum annealer with minimal code modification.

11

Open Journal of Cloud Computing (OJCC), Volume 7, Issue 1, 2020

The software provides tools for communication with
the quantum annealer, for problem formulation through
various constraints, for problem solving through various
approaches, for embedding the problem on the quantum
annealer and many more. Additionally, the software
“PyQUBO” [30] is used, which allows to design QUBO
formulations from mathematical expressions. Since both
software is developed for Python, the implementation
is also written in Python. The packages “dimod” [1]
(for supporting QUBO models) and “dwave-neal” [2]
(for comparing the runtimes of quantum with those of
the simulated annealing) are additionally used. The
implementation calculates the QUBO-problem from a
list of transactions and their lengths, a number of
machines and a list of blocking transactions. The
execution time R for these transactions is estimated
in advance according to Section 3.3.3. The resulting
QUBO-problem is precisely solvable by testing all
possible variable assignments and thus those with the
lowest total value represent the optimal and valid
solution. For determining a solution on a classical
computer the Simulated-Annealing-Solver [2], one of
the Ocean Software tools, is used. For quantum
annealing the D-Wave Quantum-Annealer [11] offered
as cloud service is used.

5 EVALUATION

In this section, we analyze the complexity (see
Section 5.1) in terms of preprocessing time (see
Section 5.1.1), cache sizes (see Section 5.1.2) and
required qubits (see Section 5.1.3), and experimental
results comparing simulated with quantum annealing
(see Section 5.2).

5.1 Formal Analysis

A time analysis for quantum computers as a function
of problem variables such as number of transactions or
number of machines is generally not possible, since for
quantum computers the number of annealing runs as well
as the times per annealing run and the times for readout
can be determined in advance.

We first determine the number of required qubits
and the time of preprocessing in terms of a complexity
analysis in Section 5.1.1. The problem sizes remain n for
the number of transactions, k for the number of machines
and R for the maximum execution time.

5.1.1 Preprocessing Time Without Caching

O(n · k · R) binary variables are used within the
formula for distributing transactions to k machines to
be minimized. A and D contain O(n · k · R) terms, B

containsO(n2·k·R2) terms andC in case all transactions
block each other O((n · k · R)2) terms. Calculating
the weights for D is performed in constant time. For
the worst case, we overall achieve a quadratic time for
preprocessing depending on the problem sizes:

O((n · k ·R)2)

For cases, where the number of conflicting transactions
is at most linear to n (which might be the typical case
for transaction workloads in operational systems), the
number of terms is dominated by the number of terms
in B (assuming n > k) and is hence O(n2 · k ·R2).

5.1.2 Caching

Whenever the formula A + B + D is already given in
the cache cacheA+B+D and all sub-formulas of C in
cacheC , then we can determine the formula P in time
O(c + c · |O| · k2 · R2), where c represents the time
of an index access, which is constant for hash tables
and quasi-constant (in practice with a logarithmic time
in theory) for indices typically used in databases like
B+-tree, LSM tree and similar5. The factors k2 · R2

are due to renaming the binary variables, but may be
reduced by implementation tricks. Dependent on the
application, |O| is also constant having few entries, is in
O(n) whenever each transaction has a constant number
of conflicts, or is in O(n2) in the worst case whenever
each transaction is in conflict with (nearly) all the other
transactions.

We achieve optimal preprocessing times whenever
there are no cache misses, i.e., the caches contain all
queried sub-formulas. This is definitely the case for
caches filled with formulas for all possible keys.

Let RT ≤ R be an upper bound for the transaction
length, i.e., ∀i ∈ {1, ..., n} : li ≤ RT . Whenever k and
n are also fixed, we can determine the number of possible
keys in the following way: Due to sorting the lengths of
transactions for unique keys, the number of possible keys
is a n-combination with repetitions and hence is in
• O(

(
RT+n−1

n

)
) = O((RT+n−1)!

n!·(RT−1)!) for cacheA+B+D,
and in

• O(
(
RT+2−1

2

)
) = O((RT+2−1)!

2!·(RT−1)!) for cacheC .
While the number of possible keys is moderate for

small RT and n and hence all formulas can be computed
in advance, these numbers are very large for bigger RT

and n. The only feasible approach is to use a cache for
bigger RT and n, such that the formulas for the different
keys are computed one after the other and reused for
following computations. For example, RT ≤ 10 and

5 However, for cache implementations there is still tool support missing
for precompiling only parts of the formulas, which can be combined
afterwards quickly for deployment on the quantum annealer.

12

T. Bittner, S. Groppe: Hardware Accelerating the Optimization of Transaction Schedules via Quantum Annealing by Avoiding Blocking

n ≤ 20 causes at most 10, 015, 005 possible keys,
which might be suitable for precomputing all formulas
in advance (using a big cluster), while there are above 1
billion possible keys for RT = 20 and n ≥ 15.

Real-world applications often use some form of
transaction templates [34], such that transaction
configurations and hence the keys for the caches may
often repeat. According to this observation, the cache
miss rate will quickly decrease when using a cache for
precomputed formulas.

5.1.3 Required Qubits

In quantum annealers from D-Wave, qubits are arranged
in the Chimera structure, which simply states that each
qubit is entangled with a maximum of six other qubits.
If the binary variables occur in quadratic terms, the
entanglements are weighted accordingly. Since only
entanglements can be weighted, but no single qubits and
binary variables usually occur weighted with more than
six other variables together, several qubits are defined as
one variable. The individual weights are now distributed
over the entanglements of the qubits of a variable. For
the entanglements one qubit per variable is selected and
the entanglement is weighted. Consequently, the number
of qubits required depends on how many connections the
binary variables have with each other. A and D do not
contain quadratic terms and are therefore not important.
In B each variable is connected to a maximum of
O(n ·R) others, in C to a maximum of O(n ·k ·R). The
number of required qubits thus increases quadratically
dependent on the problem sizes:

O((n · k ·R)2)

The maximum number of variables is thus limited by
the root of the number of qubits. Figure 14 shows the
number of required qubits as a function of the number
of variables, where the horizontal lines represent the
numbers of qubits of available quantum annealers.

5.2 Experimental Analysis

For the experimental analysis, the time of solving
is measured using simulated annealing and quantum
annealing. We present the details about the test
configurations (i.e., number of cores, maximum
execution times, transactions and conflicts between
them, their start times and lengths) in the Appendix.

For quantum annealing we use the cloud-service
available at [11], which offers free access to a D-Wave
2000Q quantum computer for some time. The offered
free time was enough to run the experimental evaluation
described in Section 5.2.1.

number of variables
0 10 20 30 40 50 60 70 80

nu
m

be
ro

fr
eq

ui
re

d
qu

bi
ts

0
5
1
2

1
1
5
2

2
0
4
8

5
6
4
0 2020:Pegasus P16

2017:D-Wave 2000Q

2015:D-Wave 2X

2013:D-Wave Two

2011:D-Wave One

Figure 14: Required qubits depending on the
number of variables and available qubits of D-Wave
Quantum-Annealers

The experiments for preprocessing and simulated
annealing are run on an i7-4510U dual core CPU with
2.0 GHz and 8 GB main memory running Windows 10.
Every simulated annealing run and quantum annealing
run was measured a hundred times and the lowest value
is determined as an (almost) optimal solution. We
present the overall total time of these hundred runs in
the following sections.

5.2.1 Runtimes Quantum Annealing

Due to the limited number of qubits only small problem
instances could be measured by quantum annealing (see
Figure 15). The preprocessing time for generating the
formula is the same for simulated as well as for quantum
annealing, as both take the formula as input and find a
minimal solution for it.

For every quantum annealing run the determined
runtime is 20 microseconds as well as 274 microseconds
for the readout, such that we verify the constant runtimes
of quantum annealing in the experiments. Measuring
a hundred times takes hence 29.4 milliseconds. While
for the runtime of two transactions simulated annealing
is still faster than quantum annealing, already problem

13

Open Journal of Cloud Computing (OJCC), Volume 7, Issue 1, 2020

number of transactions and R

2 3 4 5

ru
nt

im
e

in
m

ill
is

ec
on

ds
0

2
0

4
0

6
0

8
0

1
0
0

R = 8 R = 5 R = 4 R = 2

Preprocessing
Simulated Annealing
Quantum Annealing

Figure 15: Runtimes of simulated annealing versus
quantum annealing for k = 2

sizes with 3 transactions and above are faster with
quantum annealing with an observed speedup up to
approx. 2.65. Once quantum annealers supporting more
qubits are available, larger problem sizes can be solved
with quantum annealing. As the times for quantum
annealing and readout are constant, but simulated
annealing runs become slower for larger problem sizes
due to the more complex evaluation of larger formulas,
larger speedups will be probably achieved when running
on future quantum annealers.

5.2.2 Runtimes Simulated Annealing

For simulated annealing, we don’t have limitations
concerning the number of variables used in the formula
to minimize. Hence we measure the runtimes of
simulated annealing for larger problem sizes (see Figure
16 and 17). With a total of around 30 milliseconds the
(constant) runtime of pure optimization by the quantum
annealer is significantly better than that of simulated
annealing even for relatively small problem instances.
Assuming that also future quantum annealers will have
approximately the same (constant) runtimes, speedups
of quantum in comparison to simulated annealing up
to 3300 for the problem sizes in Figure 16 and 17 are
achievable.

5.2.3 Runtimes versus Number of Required
Variables

The runtimes of the preprocessing phase as well as
simulated annealing are dependent on the number
of required variables in the generated formulas (see

number of transactions
10 15 20

ru
nt

im
e

in
se

co
nd

s
0

6
1
2

1
8

2
4

3
0

3
6

Preprocessing
Simulated Annealing

k = 2

k = 4

k = 8

Figure 16: Runtimes for R = 20

number of transactions
10 15 20

ru
nt

im
e

in
se

co
nd

s
0

2
0

4
0

6
0

8
0

1
0
0

1
2
0

Preprocessing
Simulated Annealing

k = 2

k = 4

Figure 17: Runtimes for R = 50

Figure 18). The number of required variables is hence
a better and more simple measure for the problem size
than considering all information of the configuration of
transactions.

The runtimes of quantum annealing is obviously
constant and hence does not depend on the number of
required variables, but only small problem sizes can be
solved due to the limited number of qubits supported by
the quantum annealer.

6 FURTHER RELATED WORK

We introduce related work about the job shop scheduling
problems in Section 6.1, optimizing transaction
schedules in Section 6.2, simulated annealing in
Section 6.3, quantum computing in Section 6.4,

14

T. Bittner, S. Groppe: Hardware Accelerating the Optimization of Transaction Schedules via Quantum Annealing by Avoiding Blocking

101 102 103

10−2

10−1

100

101

102

Required Variables

R
un

tim
e

in
m

ill
is

ec
on

ds

Preprocessing
Quantum Annealing
Simulated Annealing

Figure 18: Execution times in relation to number of
required variables

quantum databases in Section 6.5 and hardware-
accelerated databases in Section 6.6.

6.1 Job Shop Scheduling Problems

The job shop scheduling problems (JSSP) are among
the hardest combinatorial optimization problems [16].
Many heuristic approaches have been used to solve
JSSP like simulated annealing [29], neural network
[15], genetic algorithm [12], ant colony optimization
[26], evolutionary algorithms [40], tabu search [35],
and other approaches [7, 44, 28]. The contribution in
[43] discusses solving job shop scheduling problems
with quantum computers. The transaction schedule
problem is similar to the job shop scheduling problem,
but additionally considers that transactions can block
each other when accessing the same data objects.

6.2 Optimizing Transaction Schedules

The authors in [13] have investigated reordering for
optimistic concurrency control (OCC) approaches and
introduce
• storage batching for reordering transaction reads and

writes at the storage layer (in order to reduce conflicts
on the same object), and

• validator batching for reordering transactions before
validation (in order to reduce conflicts between
transactions).

Transaction reordering for OCC is a non-trivial problem
because of the dependencies between transactions. The
authors in [13] hence introduce several approaches
considering various transaction precedence policies like
reducing tail latency. The presented approaches are

parallel approaches in order to speed up reordering.
The contributions in [13] investigate only backward
validation for OCC, but we consider optimizing
transaction schedules for 2 phase locking.

6.3 Database Tasks and Simulated Annealing

Simulated Annealing [36] has early been used for
query optimizing [27], where a state space representing
the equivalent algebraic forms of the query is defined
together with a cost function for the states. Using
simulated annealing the state with minimal costs are
searched for.

[31] proposes a simulated annealing approach to select
an optimal set of views to be materialized.

The authors of [25] formulate the data clustering
problem as a graph partition problem by introducing
a decomposition-based approach for reducing excessive
disk accesses during simulated annealing. In [5]
the horizontal fragmentation selection problem defining
optimal disjoint sets of rows in relational warehouse
tables to be separately stored and processed in parallel is
solved by proposing a hybrid method combining genetic
and simulated annealing algorithms.

Liu proposes in [32] a data mining algorithm for
association rules mining by combining quantum-inspired
genetic algorithm and simulated annealing.

[46] introduces spiders for internet search engines
based on simulated annealing adjusting themselves
according to the search progress or personalizations
considering users’ preferences or behavior.

6.4 Quantum Computing Including Quantum
Annealing and Adiabatic Quantum
Computation

In the last decade quantum computing including
special forms like quantum annealing solving quadratic
unconstrained binary optimization (QUBO) problems
[10, 17] has become more and more popular and the
range of applications wider and wider [22, 24, 37, 38],
leading to a lot of time and money being spent on
research in this area. Many scientific papers deal with
the comparison of standard algorithms and quantum
algorithms [4] and quite a few of them belong to the
field of optimization problems [39, 42, 43]. For example,
quantum annealing has been used to calculate urban
motion flows for traffic control purposes [18] in a large
city like Barcelona for the prediction of who wants to use
which means of transport when and where6.

6 investigated by Volkswagen, see
https://www.volkswagenag.com/en/news/stories/2018/11/intelligent-
traffic-control-with-quantum-computers.html

15

https://www.volkswagenag.com/en/news/stories/2018/11/intelligent-traffic-control-with-quantum-computers.html
https://www.volkswagenag.com/en/news/stories/2018/11/intelligent-traffic-control-with-quantum-computers.html

Open Journal of Cloud Computing (OJCC), Volume 7, Issue 1, 2020

6.5 Quantum Databases

There are only few contributions dealing with optimizing
database problems with quantum computers like query
optimization [42].

The contribution in [42] deals with the problem of
multiple query optimization (MQO) by transforming a
MQO problem instance into a mathematical formula that
can be solved by the quantum annealer. In experiments
the quantum annealer is already up to three orders of
magnitude faster than other MQO algorithms executed
on a traditional computer, although a limited number
of qubits of a quantum annealer results in only small
problem sizes of MQO that can be solved by a quantum
annealer.

The authors in [37] introduce an execution model for
resource transactions enabling deferred assignment of
values to variables in committed transactions. Their
approach maintains the database in a partially uncertain
state, which they call quantum state, and updating
it according to succeeding transactional operations.
While the authors call the resulting database a quantum
database, we prefer to call all databases that make use of
a quantum computer as hardware accelerator quantum
databases, which is more general than restricting the
term quantum database to the authors’ transaction model.
Although the authors’ transaction model seems to be
quite suitable to be executed on a quantum computer, the
authors run only experiments on traditional computers
and did not prove the suitability of their model for
quantum computers.

We introduce in [6] our approach to optimize
transaction schedules in order to avoid blocking by
a quantum annealer. In this paper we extend the
contributions of [6] by detailing more about the basics,
provide the proofs of validity and optimality, discuss
approaches to reduce the preprocessing times by caching
parts of the formulas to be generated and discuss further
related work.

6.6 Hardware-Accelerated Databases

Hardware-accelerated servers [20] speed up database
tasks by utilizing the massive parallelism of special
hardware behind today’s multi-core CPUs. Most
contributions of hardware-accelerated servers in
research use graphical processing units (GPUs)
consisting of several thousand computing cores or
field-programmable gate arrays (FPGAs) supporting to
reconfigure interconnects for connecting programmable
logic blocks with each other. The massive parallel
processing of execution plans are ideal for many-
core CPUs and GPUs as well as whenever the
best possibilities among enumerated ones must be

found (like in query optimization and multi-version
concurrency control (MVCC)). Complex operations
like joins processing large data inputs are very suitable
for GPU-acceleration, too (see e.g. [47] for especially
designed joins for SPARQL processing on GPUs). Other
contributions include approximate searching [21].

FPGAs are ideal suitable for data-flow-driven
algorithms (like processing an execution plan for
evaluating queries in a streaming way without block-
wise materialization of intermediate steps like it is the
case for many-core CPUs and GPUs), but also any
arbitrary type of parallelism can be offered by FPGAs.
FPGA-acceleration of SPARQL query processing as
discussed in e.g. [45] achieves scalable speedups
even increasing with larger data sets. Dynamic
partial reconfiguration enables FPGAs to dynamically
exchange their configurations to process different
queries at runtime [45].

While GPUs and FPGAs are suitable to find all
solutions in a huge problem space, quantum computers
are able to find only one of the best solutions, which
limits the kinds of problems to be solved.

7 SUMMARY AND CONCLUSIONS

In this paper, we show how to transform the optimization
problem of distributing transactions to cores of multi-
core CPU machines, such that they are not blocking
each other and are finished at the earliest possible time,
into a QUBO-problem that can be solved by quantum
annealers, which are quantum computers specialized to
solve QUBO-problems. We prove our transformation
scheme to be valid and optimal. We propose to use
a cache of transformed problems in order to further
decrease processing times. In the evaluation, the number
of qubits required for the QUBO-problem of distributing
transactions and the time needed for the transformation
(with and without caching) are analyzed. Furthermore,
we determine the size of a fully materialized cache
for all possible problems (when fixing the number of
cores, transactions and maximum processing time). We
achieve runtime speedups of up to 2.6 of a quantum
annealer compared to the one of simulated annealing
on a classical computer in comprehensive experiments,
although we tested so far only relatively small problem
sizes due to limited number of qubits of current quantum
annealers. However, these experiments promise much
higher speedups for future generations of quantum
annealers supporting many more qubits. Thus an
increased interest in solving these kinds of optimization
problems by quantum computers is very likely in the
future.

In our future work we will investigate how to improve

16

T. Bittner, S. Groppe: Hardware Accelerating the Optimization of Transaction Schedules via Quantum Annealing by Avoiding Blocking

e.g. the preprocessing time by using heuristics and
allowing suboptimal solutions, which are close to the
optimal one. Furthermore, we will investigate how to
solve the problem of optimizing transaction schedules by
applying quantum computers following the gate model
and will compare it with our proposed approach utilizing
quantum annealing. We may also consider to accelerate
other transaction models and synchronization problems
as well as other areas of database research by quantum
computers.

REFERENCES

[1] Arcondello, “dimod,” 2017. [Online]. Available:
https://github.com/dwavesystems/dimod

[2] Arcondello, “dwave-neal,” 2017. [Online].
Available: https://github.com/dwavesystems/
dwave-neal

[3] A. Barenco, D. Deutsch, A. Ekert, and R. Jozsa,
“Conditional quantum dynamics and logic gates,”
Physical Review Letters, vol. 74, no. 20, p. 4083,
1995.

[4] C. Barrón-Romero, “Classical and quantum
algorithms for the boolean satisfiability problem,”
arXiv preprint arXiv:1510.02682, 2015.

[5] L. Bellatreche, K. Boukhalfa, and H. I. Abdalla,
“Saga: A combination of genetic and simulated
annealing algorithms for physical data warehouse
design,” in British National Conference on
Databases, 2006.

[6] T. Bittner and S. Groppe, “Avoiding blocking by
scheduling transactions using quantum annealing,”
in 24th International Database Engineering &
Applications Symposium, Seoul, Republic of Korea,
2020.

[7] H. Chen and P. B. Luh, “An alternative framework
to lagrangian relaxation approach for job shop
scheduling,” European Journal of Operational
Research, vol. 149, no. 3, pp. 499 – 512, 2003.

[8] T. M. Connolly and C. E. Begg, Database systems:
a practical approach to design, implementation,
and management. Pearson Education, 2005.

[9] D-Wave, “The d-wave 2000qTM system,” 2017.
[Online]. Available: https://www.dwavesys.com/
d-wave-two-system

[10] D-Wave, “D-wave’s ocean software,” 2017.
[Online]. Available: https://ocean.dwavesys.com

[11] D-Wave, “Take the leap,” 2020. [Online].
Available: https://www.dwavesys.com/take-leap

[12] R. Q. dao-er ji and Y. Wang, “A new hybrid genetic
algorithm for job shop scheduling problem,”
Computers & Operations Research, vol. 39, no. 10,
pp. 2291 – 2299, 2012.

[13] B. Ding, L. Kot, and J. Gehrke, “Improving
optimistic concurrency control through transaction
batching and operation reordering,” Proc. VLDB
Endow., vol. 12, no. 2, p. 169–182, 2018.

[14] E. Farhi, J. Goldstone, S. Gutmann, and M. Sipser,
“Quantum computation by adiabatic evolution,”
arXiv preprint quant-ph/0001106, 2000.

[15] D. J. Fonseca and D. Navaresse, “Artificial neural
networks for job shop simulation,” Advanced
Engineering Informatics, vol. 16, no. 4, pp. 241 –
246, 2002.

[16] M. R. Garey, D. S. Johnson, and R. Sethi, “The
complexity of flowshop and jobshop scheduling,”
Mathematics of Operations Research, vol. 1, no. 2,
pp. 117–129, 1976.

[17] F. Glover, G. Kochenberger, and Y. Du, “Quantum
bridge analytics i: a tutorial on formulating and
using qubo models,” 4OR, vol. 17, no. 4, pp. 335–
371, 2019.

[18] P. Goddard, S. Mniszewski, F. Neukart, S. Pakin,
and S. Reinhardt, “How will early quantum
computing benefit computational methods?” in
Proc. SIAM Annu. Meeting, 2017.

[19] S. Groppe, “Emergent models, frameworks, and
hardware technologies for big data analytics,” The
Journal of Supercomputing, vol. 76, no. 3, pp.
1800–1827, 2020.

[20] S. Groppe and J. Groppe, “Hybrid multi-model
multi-platform (hm3p) databases,” in Proceedings
of the 9th International Conference on Data
Science, Technology and Applications (DATA),
2020.

[21] T. Groth, S. Groppe, M. Koppehel, and T. Pionteck,
“Parallelizing approximate search on adaptive
radix trees,” in Proceedings of the 28th Italian
Symposium on Advanced Database Systems,
Villasimius, Sud Sardegna, Italy (virtual due
to Covid-19 pandemic), 2020. [Online]. Available:
http://ceur-ws.org/Vol-2646/16-paper.pdf

[22] L. K. Grover, “A fast quantum mechanical
algorithm for database search,” arXiv preprint
quant-ph/9605043, 1996.

[23] L. K. Grover, “Quantum computers can search
arbitrarily large databases by a single query,”
Physical review letters, vol. 79, no. 23, p. 4709,
1997.

17

https://github.com/dwavesystems/dimod
https://github.com/dwavesystems/dwave-neal
https://github.com/dwavesystems/dwave-neal
https://www.dwavesys.com/d-wave-two-system
https://www.dwavesys.com/d-wave-two-system
https://ocean.dwavesys.com
https://www.dwavesys.com/take-leap
http://ceur-ws.org/Vol-2646/16-paper.pdf

Open Journal of Cloud Computing (OJCC), Volume 7, Issue 1, 2020

[24] T. Hogg, “Adiabatic quantum computing for
random satisfiability problems,” Physical Review
A, vol. 67, no. 2, p. 022314, 2003.

[25] K. A. Hua, S. D. Lang, and W. K. Lee, “A
decomposition-based simulated annealing
technique for data clustering,” in Proceedings
of the Thirteenth ACM SIGACT-SIGMOD-SIGART
Symposium on Principles of Database Systems,
ser. PODS ’94. New York, NY, USA: Association
for Computing Machinery, 1994.

[26] K.-L. Huang and C.-J. Liao, “Ant colony
optimization combined with taboo search for the
job shop scheduling problem,” Computers &
Operations Research, vol. 35, no. 4, pp. 1030 –
1046, 2008.

[27] Y. E. Ioannidis and E. Wong, “Query optimization
by simulated annealing,” in Proceedings of the
1987 ACM SIGMOD International Conference on
Management of Data, ser. SIGMOD ’87, New
York, NY, USA, 1987.

[28] K. Jansen, M. Mastrolilli, and R. Solis-Oba,
“Approximation schemes for job shop scheduling
problems with controllable processing times,”
European Journal of Operational Research, vol.
167, no. 2, pp. 297 – 319, 2005.

[29] M. Kolonko, “Some new results on simulated
annealing applied to the job shop scheduling
problem,” European Journal of Operational
Research, vol. 113, no. 1, pp. 123 – 136, 1999.

[30] Kotarotanahashi, “Pyqubo,” 2017.
[Online]. Available: https://github.com/
recruit-communications/pyqubo

[31] T. V. Kumar and S. Kumar, “Materialized
view selection using simulated annealing,” in
International Conference on Big Data Analytics.
Springer, 2012, pp. 168–179.

[32] D. Liu, “Improved genetic algorithm based on
simulated annealing and quantum computing
strategy for mining association rules,” Journal of
Software, vol. 5, no. 11, pp. 1243–1249, 2010.

[33] A. Marchenkova. (2016) What’s the difference
between quantum annealing and universal gate
quantum computers? [Online]. Available: https:
//medium.com/quantum-bits

[34] M. Morsey, J. Lehmann, S. Auer, and A. N.
Ngomo, “Dbpedia SPARQL benchmark -
performance assessment with real queries on real
data,” in The Semantic Web - 10th International
Semantic Web Conference (ISWC 2011), Bonn,
Germany, 2011, pp. 454–469.

[35] F. Pezzella and E. Merelli, “A tabu search
method guided by shifting bottleneck for the job
shop scheduling problem,” European Journal of
Operational Research, vol. 120, no. 2, pp. 297 –
310, 2000.

[36] M. Pincus, “Letter to the editor-a monte carlo
method for the approximate solution of certain
types of constrained optimization problems,”
Operations Research, vol. 18, no. 6, pp. 1225–
1228, 1970.

[37] S. Roy, L. Kot, and C. Koch, “Quantum databases,”
in Proc. CIDR, no. CONF, 2013.

[38] P. W. Shor, “Algorithms for quantum computation:
Discrete logarithms and factoring,” in Proceedings
35th annual symposium on foundations of
computer science. Ieee, 1994, pp. 124–134.

[39] T. Stollenwerk and A. Basermann, “Experiences
with scheduling problems on adiabatic quantum
computers,” in Proceedings of the 1st International
Workshop on Post-Moore Era Supercomputing
(PMES), Future Technologies Group Technical
report FTGTR-2016-11, 2016, pp. 45–46.

[40] I. T. Tanev, T. Uozumi, and Y. Morotome, “Hybrid
evolutionary algorithm-based real-world flexible
job shop scheduling problem: application service
provider approach,” Applied Soft Computing,
vol. 5, no. 1, pp. 87 – 100, 2004.

[41] A. Thomson, T. Diamond, S.-C. Weng, K. Ren,
P. Shao, and D. J. Abadi, “Calvin: Fast distributed
transactions for partitioned database systems,” in
Proceedings of the ACM SIGMOD International
Conference on Management of Data (SIGMOD),
ser. SIGMOD ’12, 2012, p. 1–12.

[42] I. Trummer and C. Koch, “Multiple query
optimization on the d-wave 2x adiabatic quantum
computer,” Proc. VLDB Endow., vol. 9, no. 9, pp.
648–659, May 2016.

[43] D. Venturelli, D. J. J. Marchand, and G. Rojo,
“Quantum annealing implementation of job-shop
scheduling,” arXiv, 2015. [Online]. Available:
https://arxiv.org/abs/1506.08479

[44] H. Wenqi and Y. Aihua, “An improved shifting
bottleneck procedure for the job shop scheduling
problem,” Computers & Operations Research,
vol. 31, no. 12, pp. 2093 – 2110, 2004.

[45] S. Werner, D. Heinrich, S. Groppe, C. Blochwitz,
and T. Pionteck, “Runtime adaptive hybrid query
engine based on fpgas,” Open Journal of Databases
(OJDB), vol. 3, no. 1, pp. 21–41, 2016. [Online].
Available: http://nbn-resolving.de/urn:nbn:de:101:
1-201705194645

18

https://github.com/recruit-communications/pyqubo
https://github.com/recruit-communications/pyqubo
https://medium.com/quantum-bits
https://medium.com/quantum-bits
https://arxiv.org/abs/1506.08479
http://nbn-resolving.de/urn:nbn:de:101:1-201705194645
http://nbn-resolving.de/urn:nbn:de:101:1-201705194645

T. Bittner, S. Groppe: Hardware Accelerating the Optimization of Transaction Schedules via Quantum Annealing by Avoiding Blocking

[46] C. C. Yang, J. Yen, and H. Chen, “Intelligent
internet searching agent based on hybrid simulated
annealing,” Decision Support Systems, vol. 28,
no. 3, pp. 269–277, 2000.

[47] X. Zhang, M. Zhang, P. Peng, J. Song, Z. Feng,

and L. Zou, “A scalable sparse matrix-based
join for sparql query processing,” in International
Conference on Database Systems for Advanced
Applications. Springer, 2019, pp. 510–514.

19

Open Journal of Cloud Computing (OJCC), Volume 7, Issue 1, 2020

APPENDIX

We present the test configurations for Figure 15,16 and 17 in the following tables. For each test configuration, we
assume T = {t1, ..., tn} and M = {m1, ...,mk}. The last column of the following table contains the number of
required variables.

Fig. k n R O l1, ..., ln r1, ..., rn req. var.

15 2

2 8 {} 8, 4 0, 4 8
3 5 {(t1, t3)} 4, 5, 1 1, 0, 4 10
4 4 {(t2, t4)} 3, 2, 1, 2 1, 2, 3, 2 16
5 2 {(t1, t2), (t4, t5)} 1, 1, 1, 1, 1 1, 1, 1, 1, 1 10

16

2

10

20

{(t1, t3), (t3, t4),
(t7, t8)}

5, 7, 1, 1, 3, 4, 4, 2, 8,
5

15, 13, 19, 19, 15, 16, 16, 18,
12, 15

320

4 {(t1, t2), (t9, t10)} 10, 14, 8, 5, 4, 7, 6,
10, 3, 13

10, 6, 12, 15, 16, 13, 14, 10,
17, 7

480

8 {(t1, t2), (t3, t4),
(t5, t6)}

16, 20, 5, 15, 4, 6, 14,
10, 6, 12

4, 0, 15, 5, 16, 14, 6, 10, 14, 8 736

2

15

{(t2, t3), (t4, t6),
(t5, t10), (t1, t15)}

4, 2, 3, 1, 4, 6, 2, 1, 5,
1, 1, 3, 2, 4, 1

16, 18, 17, 19, 16, 14, 18, 19,
15, 19, 19, 17, 18, 16, 19

520

4 {(t1, t2), (t3, t4),
(t7, t8)}

6, 4, 3, 1, 2, 8, 7, 10,
6, 11, 1, 3, 6, 4, 8

14, 16, 17, 19, 18, 12, 13, 10,
14, 9, 19, 17, 14, 16, 12

880

8 {(t2, t4), (t3, t6),
(t3, t14)}

9, 12, 5, 3, 8, 14, 3, 7,
8, 1, 2, 4, 20, 1, 3

11, 8, 15, 17, 12, 6, 17, 13, 12,
19, 18, 16, 0, 19, 17

1600

2

20

{(t5, t12), (t6, t18),
(t7, t20), (t8, t20)}

1, 1, 1, 2, 4, 1, 1, 2, 1,
1, 2, 2, 2, 1, 1, 1, 1, 6,
5, 4

19, 19, 19, 18, 16, 19, 19, 18,
19, 19, 18, 18, 18, 19, 19, 19,
19, 14, 15, 16

720

4 {(t1, t2), (t2, t17),
(t5, t9)}

3, 4, 1, 2, 4, 1, 1, 7, 1,
10, 1, 9, 5, 3, 8, 5, 2,
7, 1, 8

17, 16, 19, 18, 16, 19, 19, 13,
19, 10, 19, 11, 15, 17, 12, 15,
18, 13, 19, 12

1268

8 {(t2, t4), (t8, t19),
(t11, t13)}

7, 16, 8, 4, 11, 4, 6, 5,
7, 12, 19, 13, 1, 9, 1,
2, 3, 4, 15, 14

13, 4, 12, 16, 9, 16, 14, 15, 13,
8, 1, 7, 19, 11, 19, 18, 17, 16,
5, 6

1912

17

2

10

50

{(t2, t10), (t3, t4)} 15, 17, 10, 10, 4, 9, 8,
12, 2, 13

35, 33, 40, 40, 46, 41, 42, 38,
48, 37

800

4 {(t1, t2), (t9, t10)} 20, 21, 12, 25, 24, 16,
27, 15, 18, 22

30, 29, 38, 25, 26, 34, 23, 35,
32, 28

1200

2

15

{(t1, t2), (t3, t11),
(t5, t10)}

6, 7, 3, 1, 12, 8, 7, 10,
4, 11, 1, 13, 6, 4, 8

44, 43, 47, 49, 38, 42, 43, 40,
46, 39, 49, 37, 44, 46, 42

1298

4 {(t1, t3), (t3, t4),
(t7, t9), (t11, t12)}

15, 12, 9, 1, 12, 22,
23, 14, 9, 8, 14, 17,
24, 13, 7

35, 38, 41, 49, 38, 28, 27, 36,
41, 42, 36, 33, 26, 37, 43

2200

2

20

{(t4, t5), (t5, t6),
(t12, t13), (t17,
t18)}

3, 4, 1, 2, 4, 1, 10, 7,
1, 11, 1, 9, 8, 3, 8, 5,
2, 7, 1, 12

47, 46, 49, 48, 46, 49, 40, 43,
49, 39, 49, 41, 42, 48, 42, 45,
48, 43, 49, 38

1800

4 {(t3, t17), (t5, t7),
(t6, t8)}

12, 17, 19, 4, 11, 22,
3, 14, 23, 2, 9, 12, 2,
12, 12, 4, 5, 2, 3, 14

38, 33, 31, 46, 39, 28, 47, 36,
27, 48, 41, 38, 48, 38, 38, 46,
45, 48, 47, 36

3192

20

T. Bittner, S. Groppe: Hardware Accelerating the Optimization of Transaction Schedules via Quantum Annealing by Avoiding Blocking

AUTHOR BIOGRAPHIES

Tim Bittner studied computer
science at the University
of Lübeck. He earned his
bachelor’s degree in 2020. His
bachelor thesis deals with the
optimization of transaction
synchronization by quantum
computing.

Sven Groppe earned his
diploma degree in Computer
Science in 2002 and his Doctor
degree in 2005 from the
University of Paderborn. He
earned his habilitation degree
in 2011 and his Professor title
in 2019 from the University
of Lübeck. He worked in
the European projects B2B-
ECOM, MEMPHIS, ASG and

TripCom. He was a member of the DAWG W3C
Working Group, which developed SPARQL. He was
the project leader of the DFG project LUPOSDATE,
an open-source Semantic Web database, and one of
the project leaders of two research projects, which
research on FPGA acceleration of relational and
Semantic Web databases. He is leading a DFG
project on GPU and APU acceleration of main-
memory database indexes, and a DFG project about
Semantic Internet of Things. He is also the chair
of the Semantic Big Data workshop series, which is
affiliated with the ACM SIGMOD conference (so far
2016 to 2020), and of the Very Large Internet of Things
workshop in conjunction with the VLDB conference
(so far 2017 to 2020). His research interests include
databases, Semantic Web, query and rule processing
and optimization, Cloud Computing, acceleration
via GPUs and FPGAs, peer-to-peer (P2P) networks,
Internet of Things, data visualization and visual query
languages. Updated information is available at https:
//www.ifis.uni-luebeck.de/˜groppe/.

21

https://www.ifis.uni-luebeck.de/~groppe/
https://www.ifis.uni-luebeck.de/~groppe/

	Motivation
	Basics
	Transaction Management
	Conflict Management
	Conflicts

	Quantum computer
	Basic idea
	Quantum computing
	Quantum annealers

	Modelling
	Formal model
	Running Examples

	Formulation as QUBO-problem
	Valid solution
	Optimal solution
	Total solution
	Minimization of execution time

	Proofs
	Proof of validity
	Proof of optimality

	Caching Formulas to reduce the Preprocessing Time

	Implementation of the QUBO-problem
	Evaluation
	Formal analysis
	Preprocessing time without Caching
	Caching
	Required qubits

	Experimental analysis
	Runtimes Quantum Annealing
	Runtimes Simulated Annealing
	Runtimes versus Number of Required Variables

	Further Related Work
	Job Shop Scheduling Problems
	Optimizing Transaction Schedules
	Database Tasks and Simulated Annealing
	Quantum Computing including Quantum Annealing and Adiabatic Quantum Computation
	Quantum Databases
	Hardware-Accelerated Databases

	Summary and Conclusions

