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ABSTRACT

Many application domains such as surveillance, environmental monitoring or sensor-data processing need upper
and lower bounds on areas that are covered by a certain feature. For example, a smart-city infrastructure might need
bounds on the size of an area polluted with fine-dust, to re-route combustion-engine traffic. Obtaining such bounds
is challenging, because in almost any real-world application, information about the region of interest is incomplete,
e.g., the database of sensor data contains only a limited number of samples. Existing approaches cannot provide
upper and lower bounds or depend on restrictive assumptions, e.g., the area must be convex. Our approach in
turn is based on the natural assumption that it is possible tospecify a minimal diameter for the feature in question.
Given this assumption, we formally derive bounds on the areasize, and we provide algorithms that compute these
bounds from a database of sensor data, based on geometrical considerations. We evaluate our algorithms both with
a real-world case study and with synthetic data.
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1 INTRODUCTION

Determining the size of a surface area that is covered
by a certain attribute or feature from a database of sam-
ples is a standard task in many application domains. For
example, meteorologists are interested in the area size
where the thickness of the ozone layer is below200Dob-
son units, traffic planners need to know the size of the
area where the density of the particlesPM10 is above
50µg/m3, and firefighter units that are approved for ra-
diation zones must know the size of the area where radia-
tion is higher than15mSv. However, in many real-world
applications it is an expensive and time-consuming task
to take samples of the feature in question, be it by de-
ploying sensor networks, by constructing weather sta-
tions or by taking samples manually. In consequence, the
surface area frequently must be estimated from a rather
small database. Furthermore, in many situations, some
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Figure 1: Temperature Anomalies [6]

samples in the database may well be correlated. This
makes it difficult to impossible to reliably determine the
error of the surface area estimated. In such scenarios,
upper and lower bounds of the area sizes allow a precise
assessment of the information provided by the samples.

To provide a concrete example, Figure 1 shows a

1

http://creativecommons.org/licenses/by/3.0/
http://www.ronpub.com/journals/ojdb


Open Journal of Databases (OJDB), Volume 2, Issue 1, 2015

color-encoded map of the database of five-year global
temperature anomalies [6] from 1880 to 2012. Tem-
peratures that are higher than the global mean temper-
ature over a time interval of five years are shown in
red, and lower than normal temperatures are shown in
blue. Figure 1 has been estimated according to the con-
textual knowledge that temperature anomalies correlate
strongly [7] for measuring stations separated by up to
1000km. However, due to incomplete spatial coverage
in the era before satellite-aided meteorology, the degree
of uncertainty of the estimated temperature anomalies in
this figure can be high.

Existing estimation methods, e.g., Random Sampling,
Spline Lattices, or Voronoi Diagrams (cf. Section 2 for a
more extensive list), are best-effort approaches. That is,
such methods try to estimate the area in question as well
as possible, but cannot provide guarantees on the min-
imal or maximal size of the area. The well-researched
skyline database operator [13] does not solve this prob-
lem either. This is because it is based on the assumption
that the values of interest describe a convex area that does
not consist of multiple isolated regions. We strive for a
different approach towards a database operator that pro-
vides bounds on area sizes. Our starting point is the as-
sumption that one can specify a minimal diameter for the
feature in question. This is typical in many scenarios:

• Temperature anomalies have a minimal radius of
rmin = 500km ([7], Figure 1).

• In meteorology a low pressure area is never smaller
than some hundred kilometers.

• Thunderstorms have a minimal size and a border-
line without sharp angles.

• The diffusion of fluids follows a circular pattern,
and the minimal radius can be calculated from the
Brownian motion depending on the temperature of
the fluid.

• The minimal diameter of a car is70cm (Bubble Car,
e.g., BMW Isetta).

We formally derive upper and lower bounds on the
size of an area that is covered by a certain feature. In par-
ticular, we ensure that, given a database of samples and
a minimal radius of the feature, the area covered can-
not be smaller or larger than what is expressed by our
bounds. Except for straightforward bounds such as zero
as the minimal area size, this is challenging. In particu-
lar, it is unclear how to specify these bounds, and how to
transform this specification into a computable problem.
In this paper, we make the following contributions:

1. We motivate the concept of computing bounds on
the size of an area that is partly covered by a feature
which in turn has a minimal radius.

2. We formally specify a lower boundLBpresent on
the size of an area where the feature measured is
present, and a lower boundLBabsent for an area
where the feature measured is absent. The corre-
sponding upper bounds are the total area considered
minusLBpresent andLBabsent, respectively.

3. We develop measures to verify if the data set is con-
sistent with the minimal radius, and if taking more
samples is likely to bring the bounds much closer to
the real area sizes.

4. We provide proof-of-concept algorithms that com-
pute the boundsLBpresent andLBabsent from a
database of samples by geometrical considerations,
and we evaluate our approach by means of a real-
world case study and by experiments with synthetic
data.

Our experiments confirm the applicability of our ap-
proach with real-world problems and indicate directions
for future research, e.g., to optimize the processing of
our bounds for application scenarios that depend on “big
data”.

Paper Structure: The next section contains a running
example and reviews related work. Section 3 describes
our upper and lower bounds, followed by an experimen-
tal evaluation in Section 4 and a discussion of our ap-
proach in Section 5. Section 6 concludes.

2 BACKGROUND

In this section, we introduce an application scenario
which we use as our running example, and we outline
related work.

2.1 Application Scenario

Think of a smart-city-infrastructure that has been de-
ployed in an urban area to execute Directive 2008/50/EC
on ambient air quality and cleaner air for Europe [5].
2008/50/EC specifies that the smallest polluted area to
be considered must have a size of at least250m · 250m,
i.e., the minimal radius of the area covered by the fea-
ture “PM10 > 50µg/m3” is explicitly given. To en-
force the directive, the infrastructure contains a number
of measuring points that observe the air pollution with
particlesPM10, and it controls a number of electronic
road signs to re-route local motor-vehicle traffic out of
each area where the density ofPM10 exceeds the limit
of 50µg/m3. Thus, the infrastructure possesses informa-
tion of positions within a city where the pollution with
PM10 is above and below the limit, but it does not know
about the spatial extent of the pollution at these positions.
The infrastructure must use this information to assess the
size of the polluted areas in each city district, and it must
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Figure 2: Real data set, Monte Carlo approach

take action in a way that local traffic is affected as little
as possible.

A straightforward solution to obtain the size of the pol-
luted area would be random sampling [4]: If the measur-
ing points have been deployed independently from the
sources of pollution, the polluted area can be estimated
as the total area surface, multiplied with the number of
sensors that have detectedPM10 > 50µg/m3, divided
by the number of all sensors. However, the uncertainty
of this approach is high for a number of sensor nodes that
is realistic.

We illustrate this with a simple Monte Carlo simula-
tion (Figure 2) where 100 to 5000 sensors have been dis-
tributed over the surface of the earth, i.e., over a grid
with (latitude · longitude)180◦ · 360◦ = 64, 800(◦)2.
The ratio of the unpolluted area from the total area is
Aabsent = 29.68%. We have simulated each number of
sensors 100 times. The vertical axis of Figure 2 shows
the area size in 1.000 square degrees. The real area size
is drawn in gray. The estimated area sizes are drawn as a
standard box plot, where the whiskers denote the mean,
the minimal and the maximal values of the estimation,
and the boxes show the25%- and75% quantiles. The
figure confirms that the Monte Carlo approach has a high
degree of uncertainty, with few sensor tuples in particu-
lar. For example, with 200 sensor tuples the maximal
and minimal estimations of the area size are10, 690(◦)2

( ≈ 131 Mio. km2) away from each other. Since the sur-
face of the earth has510 Mio. km2, this is a lot. Even
with 5,000 samples, the maximal and minimal values
differ by about1, 940(◦)2 (≈ 24 Mio. km2), and it is
impossible to tell if this is an over- or underestimation of
the real area.

In our scenario, the smart-city-infrastructure wants to
know the size of the areas within city districts that have
been polluted in the best and in the worst case, to take
actions with a minimal impact. Assume that, due to gas
dispersion and wind drift, air-borne particles spread over

an area of at least50m radius around the source of pollu-
tion. Based on this information, it is possible to identify
locations that definitively have not been polluted, e.g., if
a disc with a radiusrmin = 50m does not fit into a group
of sensors that are close together and have not detected
PM10 above the allowed limit. We will exploit this idea
to obtain bounds on the area size.

2.2 Related Work

To the best of our knowledge, we are first to compute
bounds on the area size based on the weak assump-
tion that the feature observed has a minimal diameter.
Besides the random sampling method sketched in the
last subsection, a number of approaches have been re-
searched to estimate the size of a feature without this as-
sumption. Such approaches can provide stochastic guar-
antees, i.e., that the border is inside a certain interval with
a given confidence. However, they cannot provide upper
and lower bounds, as required by our application sce-
nario.

Geographic Information Systems(GIS) frequently use
splines or polygon lattices to interpolate areas from a
limited set of sampling points (“Kriging”, [9]). Such ap-
proaches can provide stochastic guarantees. Neverthe-
less, in real settings, 3% of the values interpolated with
well-researched methods fall into the percentile “30% er-
ror and more” [8], i.e., it is impossible to obtain bounds
this way.

In the context of wireless ad-hoc networks, ap-
proaches forBoundary Recognition[14] have been re-
searched. Such approaches strive to detect holes and fail-
ures in the routing graph of the ad-hoc network. Bound-
ary recognition approaches can be used to approximate
position and perimeter of an area of interest if it is cov-
ered by sensor nodes. However, we want to provide guar-
antees even for areas that are not observed by sensors.

Approaches likeVoronoi Diagramsor Delaunay Tri-
angulation[1] partition a region into cells, according to
a given set of discrete points. Each cell of a Voronoi
Diagram contains one point at the center. The border
between two cells is orthogonal to the straight line con-
necting their centers and is exactly in the middle between
them. The Delaunay Triangulation is the dual graph of
the Voronoi diagram. Both approaches are frequently
used to visualize measured values, but it remains unclear
how well the partitioning of the area matches reality.
Minimum Bounding Rectangles[3] and Spatial Skyline
Queries[13] approximate a region from a set of points.
However, minimum bounding rectangles assume that a
rectangle is a good approximation for a region, and sky-
line queries assume that the area is convex. Furthermore,
both approaches require that the area in question does not
consist of multiple isolated regions.
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Aabsent

Apresent

Figure 3: Scenario

The Meeting Scheduling Problemanswers the ques-
tion where and when a meeting should take place, given
that all participants start at different places and need
some time to reach the meeting location. Related algo-
rithms [2] compute spatial and temporal bounds, based
on a set of points. However, such approaches cannot be
used to estimate the size of an area that is covered by
a certain feature: In contrast to the meeting scheduling
problem, our data set is incomplete, i.e., the feature in
question might be present at unknown positions.

3 BOUNDS

In this section, we specify bounds in line with the sce-
nario described, and we provide algorithms that compute
these bounds based on geometric models. We also pro-
pose measures to verify if the data set is consistent with
the minimal radius, and to evaluate if taking more sam-
ples brings the bounds closer to the real area sizes.

3.1 Formal Framework

Figure 3 serves as our running example. It shows sen-
sor positions where the feature has been detected, repre-
sented as filled dots. Sensor positions where the feature
has not been detected are shown as empty dots. The area
Apresent where the feature is present is in light gray. We
compute upper and lower bounds on the area sizes where
the feature is present/not present for sure, based on the
sensor positions and a minimal radius of the feature in
question.

We formalize this problem as follows: We consider a
geographic region of interestA in the Euclidean plane
R

2. In Figure 3, this is the entire area. Regions are
infinite sets of points so that we can use set opera-
tions to express operations on geometric objects, e.g.,
Aabsent ∩ Apresent = ∅. A sensor tuplet = (pos, ft)
stores a positionpos = (lat, long) ∈ A, together with a
feature valueft ∈ {present, absent}.

We consider two sensor databasesPpresent and
Pabsent. DatabasePpresent is a finite set containing
the positionsPpresent := {pos1, pos2, · · · posn} of all
sensor tuples where the feature has been detected, i.e.,

ft = present. Analogously, databasePabsent stores all
positions whereft = absent. Ppresent ∩Pabsent = ∅,
and each positionp ∈ Ppresent∪Pabsent corresponds to
a unique point inA. This is because no sensor can ob-
serve the presence and absence of the feature at the same
time, and no two sensors can be located at identical po-
sitions.

We assume that the feature we want to observe has
a minimal radiusrmin, i.e., it has at least the size and
shape of a disc with radiusrmin, but can be any larger.

Definition 1 (Feature Region): A regionApresent

in the region of interest A is aFeature Region if the
following holds: There exists a set of overlapping discs
D such that

1. ∀d ∈ D : drad = rmin

2. ∀p ∈ Apresent : p ∈
⋃

d∈D d
3. ∀p ∈

⋃

d∈D d : p 6∈ Aabsent

�

The properties require that it is possible for each point
in the areaApresent to construct a discdwith radiusrmin

which does not overlap withAabsent. Thus, the perime-
ter of the feature must not contain sharp bulges. Figure 4
illustrates this. This definition of a feature region is is in
line with our application scenario.

Apresent Apresent

rmin

Aabsent Aabsent
X

rmin

Figure 4: Feature Region with and withoutrmin

Definition 1 implies that if a sensor measuresft =
present at a certain positionpos, we know for sure that
at least an area of sizeπ · (rmin)

2 is covered by the fea-
ture. This is true even if the real feature has an irregular
shape (cf. Figure 4). Some of this area may be outside
of A (cf. Figure 3). Our objective is to obtain upper and
lower bounds on the size of the area where the feature is
present (Apresent ⊆ A, the light gray area in Figure 3)
or absent (Aabsent ⊆ A, the white area in Figure 3). Ob-
viously, valid upper and lower bounds onApresent areA
and0. However, such bounds are hardly useful in prac-
tice. We strive for bounds that are close to the real values.
To do so, we define several auxiliary functions:dist() re-
turns the distance between two pointsp, q. Without loss
of generality, we use the Euclidean distance:

dist(p, q) =
√

(p.lat− q.lat)2 + (p.long − q.long)2

(1)
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A A region of interest
rmin Radius of a disc describing the minimal size of the feature inquestion
Ppresent, Pabsent Databases of points where the feature is present (Ppresent) and absent (Pabsent)
LBpresent, LBabsent Lower bounds on the area size inA whereft = present or ft = absent
V Ipresent, V Iabsent Volatility indicators for the boundsLBpresent, LBabsent

dist(p1, p2) Distance of two pointsp1, p2
area(E) Total area of elementE
intpts(D1, D2) The intersection points of the borders of two discsD1, D2

Table 1: Symbols and Notations

Furthermore, we define a functionarea(E) that re-
turns the total area of a geometric figureE, which might
be a disc, a triangle or an area of interest. Finally,
intpts() returns the set of all intersection points of the
borders of two discsD1, D2. Thus,intpts(D1, D2) re-
turns∅ if D1, D2 do not overlap, the two intersection
points if D1, D2 overlap, and one point for touching
discs.

3.2 Lower BoundLBabsent

In this subsection, we define a lower boundLBabsent on
the size of an areaAabsent where the feature is absent.
Furthermore, we present an algorithm to calculate this
value based on geometric considerations. Translated to
our running example, we compute the size of the area
Aabsent that is within our region of interestA, and is
not polluted withPM10 for sure. Note thatarea(A) −
LBabsent is an upper bound on the size of the area where
the feature measured is present. Thus, in our example it
is an upper bound on the size of the area that might have
been polluted in the worst case.

rmin

Γabsent

Figure 5: Bound
LBabsent with a small
rmin

rmin

Γabsent

Figure 6: Bound
LBabsent with a large
rmin

Intuitively, we exploit that a disc with the minimal ra-
dius of the feature might not fit in between some points
whereft = absent. This is true if the distances between
these points are smaller thanrmin. In Figure 5, our lower
bound is the size of the dark gray area. Given the place-
ment of the sensors that have measuredft = absent

(empty dots) and the minimal radiusrmin, it can be ex-
cluded that any point in the gray area hasft = present,
even if it has not been measured. However, all locations
outside of this area might be polluted in the worst case.

Note that an increasedrmin increases the area be-
tween the measurements withft = absent where we
can exclude the presence of the feature. To illustrate,
compare Figures 5 and 6: Ifrmin is increased, the
boundLBabsent (the gray area in the figure) becomes
larger. Having clarified this, we will be able to com-
pute a lower boundLBabsent on the size of the area
Aabsent ⊆ A where a feature with a minimal radiusrmin

is not present.
We computeLBabsent by constructing a geometric

objectΓabsent (cf. Figures 5 and 6) from all points inA
where we can exclude the presence of the feature. That
is, the lower boundLBabsent proposed in the following
is based on geometric considerations: We refer to a disc
dposrad in the Euclidean planeR2 by means of its center
dpos and radiusdrad. Our starting point for the compu-
tation of a lower boundLBabsent is the set of all discs
possibly having the feature everywhere inA, as follows:

Definition 2 (Possible DiscsDftpossible): The set of
Possible DiscsDftpossible contains all discsd that fulfill
the following properties:

1. drad = rmin

2. ∃p ∈ d : p ∈ A
3. 6 ∃q ∈ d : q ∈ Pabsent

�

That is, any disc inDftpossible has radiusrmin (first
property). Furthermore, it includes at least one point
in the region of interestA (second property), but does
not contain a point where a sensor has measuredft =
absent (third property). The area ofA minus each point
in any disc inDftpossible is ourLBabsent, i.e., it is the
dark gray area in Figures 5 and 6:

LBabsent = area
(

A \
⋃

d∈Dftpossible

d
)

(2)

Lemma 1: LBabsent is a lower bound on the size of
the areaAabsent ⊆ A. �
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Figure 7: Outside Figure 8: Inside

Proof sketch:This follows from the construction of pos-
sible discs. In particular, since no disc inDftpossible must
include a point inPabsent and the set of discs is exhaus-
tive, the area that is not overlapped by any disc must be a
lower bound onAabsent. This holds ifrmin is a minimal
radius for the feature in question.

3.2.1 ComputingLBabsent

To arrive at a value forLBabsent, we determine the area
size of a geometric objectΓabsent. Γabsent is described
by two components where the first one is subtracted from
the second one: a set of discs that are justoutsideof
Γabsent (the discs with solid lines in Figure 7), and a set
of triangles that overlaps with itsinside(the gray area in
Figure 8).

Observation 1: Γabsent and Apresent are disjoint.
�

In the following, we will show how to construct the
components ofΓabsent so that we obtain the lower bound
sought.

Outside: To distinguish the inside from the outside of
Γabsent, we define a set of discsDcloseby ⊂ Dftpossible

(solid-line discs in Figure 7). The discs are outside of
the areaAabsent, but as close as possible to all positions
whereft = absent has been measured:

Definition 3 (Close-by DiscsDcloseby): The set
Close-by DiscsDcloseby consists of all discsd that fulfill
two properties:

1. drad = rmin

2. ∃p, q ∈ Pabsent : d
pos ∈ intpts(discprmin

,
discqrmin

)∧∀x ∈ Pabsent \{p, q} : dpos 6∈ discxrmin

�

The first property specifies the radiusdrad of the discs.
The second property requires that the centerdpos of each
disc d ∈ Dcloseby is an intersection point of the discs
around any two points inPabsent (dashed discs in Fig-
ure 7). Furthermore, this intersection point must not lie
within another disc around a position inPabsent \{p, q}.

Note that the set of discs is exhaustive, i.e., there is no
discd′ 6∈ Dcloseby which fulfills the properties described.

Observation 2: For a given sensor databasePabsent,
there is only one set of discsDcloseby that fulfills these
properties, i.e., the set of close-by discs is unambiguous.
�

Only discs which overlap with the border ofΓabsent

are required to compute the bound. Thus,Dcloseby might
contain more discs than necessary to obtainΓabsent.

Inside: We now define a set of trianglesTinside that
includeAabsent.

Definition 4 (Interior Triangles Tinside): The set
Interior Triangles Tinside consists of all trianglest that
fulfill three properties:

1. t is bounded by a set of three pairwise different ver-
tices{v1, v2, v3} s.t. v1, v2, v3 ∈ Pabsent

2. ∀t1, t2 ∈ Tinside : t1 ∩ t2 = ∅
3. ∀{v1, v2, v3} ∈ Tinside : max

(

dist(v1, v2),
dist(v2, v3), dist(v1, v3)

)

≤ 2 · rmin

�

The first property says that each triangle is a 3-tuple of
disjoint vertices from the set of sensor positions where
the feature is absent. The second property requires non-
overlapping triangles which may have a common edge
or vertex. Finally, we rule out that an area withft =
absent and minimal diameter is inside a triangle by re-
quiring that the edges of each triangle have a length of
at most2 · rmin. The set of triangles is exhaustive, i.e.,
there is no trianglet′ 6∈ Tinside which fulfills the prop-
erties described. Figure 8 shows the set of triangles that
follows from this definition.

Observation 3: Definition 4 allows several different
decompositions ofPabsent into triangles. However, all
decompositions allowed have the same area size.�

A concrete decomposition might depend on the algo-
rithm used to create the triangles. However, since Defini-
tion 4 requires that all points inPabsent are part of at least
one triangle, the area size ofΓabsent does not depend on
the particular layout of the triangles.

Figure 9: Subtracting the outside from the inside
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Area Size of Γabsent: Finally, we introduce
Fabsent : (Ppresent, Pabsent, A, rmin) → R, a function
that returns the area size ofΓabsent. Intuitively, Fabsent

returns the area of the trianglesTinside clipped by the
discsDcloseby, as illustrated in Figure 9. This results in
the dark gray areaΓabsent shown in Figure 5.

Fabsent = area
(

⋃

t∈Tinside

t \
⋃

d∈Dcloseby

d
)

(3)

We conclude:

Lemma 2: Fabsent returns the lower boundLBabsent.
�

Proof sketch:The lemma holds, becauseFabsent returns
the size of the area ofΓabsent, andΓabsent is a geometric
object consisting of all points inA not overlapped by any
disc inDftpossible (see Lemma 1).

3.2.2 An Algorithm for Fabsent

We now discuss how a lower bound onAabsent can be
computed. Note that our algorithm is a proof-of-concept,
i.e., performance considerations will be part of our future
work.

Algorithm 1 computesFabsent in three steps: First,
we compute all intersection points between the borders
of all discs around points inPpresent (Lines 1 and 2),
but remove intersection points that are inside another
disc (Line 3). This corresponds to computing all cen-
ter points inDcloseby. Second, we compute the set of
trianglesTinside that overlap with the inside ofAabsent

(Line 4). We do so by adapting the Flip-algorithm for
Delaunay-Triangulation so that it removes all triangles
where one or more edges are longer than2 · rmin. Third,
we subtract from the surface ofTinside all overlapping
segments of the discs inDcloseby. Thus, this step com-
putesΓabsent. We use an R-tree to do this efficiently
(Line 5). The bound is the size of the remaining area
(Line 6).

3.3 Lower BoundLBpresent

Now we specify a lower boundLBpresent on the size
of the areaApresent where the feature is present, and
we introduce an algorithm to calculate this value. Re-
garding our running example, we obtain the size of
an area that is placed within the region of interestA,
and is polluted with certainty. Furthermore, the value
area(A) − LBpresent is an upper bound on the size of
the area where the feature is absent, i.e., on the size of
the area that is unpolluted in the best case.

Intuitively, since the feature in question is at least a
disc with radiusrmin, a lower bound on the size of the

Input : Set of pointsPabsent

Result: Fabsent

// Compute the outside
1 DiscsD := generateDiscs(rmin,Pabsent);
2 PointsI := computeIntersections(D);
3 I := pruneIntersections(I);
// Compute the inside

4 Triangles
T := generateT riangles(rmin,Pabsent);
// Obtain the bound

5 GeoShapeG := subtract(T, generateDiscs(I));
6 return computeSurface(G);

Algorithm 1: computeFabsent

area whereft = present is the area size of a geometric
objectΓpresent that is a set of overlapping discs with
a minimal area that can explain all sensor positions in
Ppresent andPabsent.

Figure 10 depictsΓpresent as a dark gray area. In the
figure, it is the area of two disc segments with radius
rmin that contain all points where the feature has been
detected, and that have been placed s.t. its surface within
A is as small as possible. This corresponds to a scenario
where two places just outside of the observed urban area
have been polluted withPM10, and only a small part of
the traffic within a city district needs to be re-routed.

Note that our lower bound depends on the measure-
ments andrmin. For example, with a smallrmin multi-
ple overlapping discs are needed to construct aΓpresent

that covers all positions where the feature has been mea-
sured with a minimal total area size (Figure 11). In con-
trast, a largermin means that large parts of the feature
might be outside ofA. A comparison of Figure 3 with
Figure 10 provides an intuition for this effect.

Γpresent Γpresent

Figure 10: Bound
LBpresent with a large
rmin

Γpresent
Γpresent

Figure 11: Bound
LBpresent with a small
rmin

In the following, we introduce a lower bound
LBpresent on the size of the areaApresent ⊆ A where a
feature with a minimal radiusrmin is present. Our start-
ing point is a set of discs:

7
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Definition 5 (Covering DiscsDcover): Covering
DiscsDcover is a set of discs so that:

1. ∀d ∈ Dcover : drad = rmin

2. Ppresent \
⋃

d∈Dcover
d = ∅

3. Pabsent ∩
⋃

d∈Dcover
d = ∅

4. LetD be the family of discs fulfilling Axioms 1, 2,
3. Then6 ∃D′ ∈ D s.t.
area(A ∩

⋃

d′∈D′ d′) < area(A ∩
⋃

d∈Dcover
d)

�

Thus,Dcover contains a set of discs with radiusrmin

(first property) that overlap with all points inPpresent

(second property), but no points inPabsent (third prop-
erty). The fourth property requires that there does not
exist any set of discs whose area size inA is smaller than
the one ofDcover.

Observe that this definition allows an infinite num-
ber of valid instances ofDcover if the points inPpresent

andPabsent do not enforce a certain placement of discs.
For example, with our example in Figure 10 only one
setDcover with a minimal area size exists (fourth prop-
erty). On the other hand, Figure 12 shows a scenario
where multiple placements of discs exist that have the
same minimal area size. However, the rightmost in-
stance in Figure 12 is invalid becauseDcover overlaps
with Pabsent.

X
Figure 12: Valid and invalid covering discs

Observation 4: Dcover andAabsent are disjoint. �

LBpresent then is the area size of the set of discs
Dcover in A:

LBpresent = area
(

A ∩
⋃

d∈Dcover

d
)

(4)

Lemma 3: LBpresent is a lower bound on the size of
the areaApresent ⊆ A. �

Proof sketch: This follows from our construction of
Dcover. In particular, since all points inPpresent are cov-
ered by at least one disc, and the total area size of all
discs inDcover is required to be minimal, this area size
must be a lower bound onApresent. This holds as long
asrmin is a minimal radius for the feature in question.

3.3.1 ComputingLBpresent

To compute our lower boundLBpresent, we determine
the area size of a geometric objectΓpresent that consists
of one concrete set of discs, as shown in Figure 10. In
the following, we will show how to constructΓpresent so
that we obtainLBpresent. For this purpose, we consider
the properties of the set of discs, the number of the discs
and their placement inA.

Properties of the Discs Our construction ofΓpresent

is based on the following discs:

Definition 6 (All Possible DiscsDallpres): The setAll
Possible DiscsDallpres contains all discsd that fulfill the
following properties:

1. drad = rmin

2. ∀p ∈ Ppresent : p ∈
⋃

d∈Dallpres
d

3. ∀q ∈ Pabsent : {q} ∩
⋃

d∈Dallpres
d = ∅

�

Thus,Dallpres is a set of discs with radiusrmin (first
property). The second property requires that all positions
where a sensor has measuredft = present are cov-
ered by at least one disc. No disc contains a point where
ft = absent (third property). Note that these properties
overlap with Definition 5. However, in order to arrive at
a computable bound, it is not sufficient to define that the
set of discs has a minimal area size. Instead, we need
to pay attention to the number and the locations of the
discs, as we will explain.

Number and Placement of Discs: We construct
Γpresent from a subsetDoptpres of the infinite set of discs
Dallpres. We derive this subset from the following obser-
vation:

Observation 5: Definition 6 does not imply a certain
minimal number of discs inDoptpres greater than 1.
�

An upper bound on the number of discs inDoptpres is
the number of sensors|Ppresent | that have observed the
feature. However, in many cases it is optimal to cover
multiple points inPpresent with the same disc (cf. Fig-
ure 10). That is, two or more discs might be congruent,
i.e., share the same center point. Thus, in a first step we
define a setDoptpres that contains one disc per point in
Ppresent. In a second step we obtainΓpresent by plac-
ing the discs inDoptpres so that they overlap as much as
possible, i.e.,Γpresent fulfills Definition 5.

Definition 7 (Optimal Present DiscsDoptpres): The
setOptimal Present DiscsDoptpres ⊂ Dallpres contains
one disc per point inPpresent, i.e.,∀p ∈ Ppresent : ∃d ∈
Doptpres with p = dpos. �

8
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We formulate the placement of discs as an
optimization problem. The objective function
Fpresent : (Ppresent,Pabsent, A, rmin) → R calculates
the part ofA covered byDoptpres. The optimization
variables are the centersdpos of the discsd ∈ Doptpres.
The goal of the optimization is to minimizeFpresent

without violating the properties ofDallpres from
Definition 6:

min
∀dpos∈Doptpres

(

area
(

A ∩
⋃

d∈Doptpres

d
)

)

(5)

After having obtained the optimal placement of discs
in Doptpres, we calculate the area size ofΓpresent:

Fpresent = area(A ∩
⋃

d∈Doptpres

d) (6)

We conclude:

Lemma 4: Fpresent returns the lower bound
LBpresent. �

Proof sketch: The lemma holds, becauseFpresent re-
turns the size ofΓpresent, andΓpresent is the result of
an optimization problem that computes one realization
of Dcover (see Lemma 3).

3.3.2 An Algorithm for Fpresent

In this subsection, we propose a proof-of-concept algo-
rithm to computeFpresent. This includes a nonlinear op-
timization problem that can be solved by different meth-
ods. Quasi-Newton approaches like DFP and BFGS [12]
rely on the Hessian matrix, which is very difficult to cal-
culate for complex nonlinear problems. We propose to
use the Downhill Simplex [11], which transforms the op-
timization problem so that hill-climbing can solve it. The
disadvantage of downhill simplex is a very small proba-
bility of ending up in a local optimum. However, both
the runtime performance and the probability of avoiding
a local optimum can be improved by using a good initial
solution as a starting point.

Our algorithm consists of two steps. The first step
(Line 1 in Algorithm 2) computes an initial solution. The
second step (Lines 2-10) iteratively solves the optimiza-
tion problem, i.e., it places the discs so that the area of
Γpresent is minimal and Lemma 4 holds.

Optimization Algorithm: Our optimization algo-
rithm starts by generating a set of discs from all points in
Ppresent (Line 1 in Algorithm 2). Thus, this step obtains
Dallpres. The next step creates the simplex (Line 2). For
this purpose, the methodgenSimplex(D) adds random
values to the initial solutionD and verifies that each node

Input : Set of pointsPpresent, Pabsent, threshold,
counter

Result: Fpresent

// Obtain initial solution
1 DiscsD := setOfDiscs(Ppresent);
// Optimization procedure

2 SimplexS := genSimplex(D);
3 doubled := ∞;
4 while counter > 0 &&
d− alternatingSum(D) > threshold do

5 counter := counter − 1;
6 d := alternatingSum(D);
7 S := downhillSimplex(S);
8 D := selectBest(S);
9 end

10 return alternatingSum(D);

Algorithm 2: computeFpresent

in the simplex still meets the optimization constraints, as
specified in Definition 6.

With each iteration, the placement of discs will be
modified in a way that the total area size withinA is
reduced, i.e., the algorithmm converges towards the set
Doptpres. In particular, the Downhill Simplex algorithm
(Line 7) folds the simplex [11] from the solution with
the highest area size (worst solution) towards the so-
lution with the smallest area size (best solution). We
compute the area size of a set of discs as the alternat-
ing sum of overlapping disc segments, i.e.: (1) Compute
the total surfaces of all discs, (2) subtract all surfaces of
two overlapping discs, (3) add all surfaces of three over-
lapping discs, (4) subtract all surfaces of four overlap-
ping discs, and so forth (MethodalternatingSum()).
Our optimization procedure uses two stop conditions
(Line 4 in Algorithm 2): A maximal number of iterations
(counter) and a convergence criterion (threshold). If a
stop condition is met, the algorithm returns the area size
of the best solution (Line 10).

Since Algorithm 2 assigns each pointp ∈ Ppresent its
own disc (Line 1), the number of discs is equal to the
number of points where the feature has been observed,
i.e., |D| = |Ppresent |. The properties in Definition 6
ensure that the optimization procedure does not produce
a placement of discs where a pointp ∈ Ppresent is not
covered by any disc.

Algorithm 2 returns the exact value ofLBpresent only
if it converges to the optimal solution (threshold = 0).
Otherwise, it returns an approximation. Note that, in
some scenarios, multiple optimal solutions might exist.

9
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Initial Solution: To let the Downhill Simplex (Line 7
in Algorithm 2) converge quickly towards the optimum,
we strive for an initial solution that is already close to
an optimal one. Furthermore, this initial solution should
be efficiently computable. We have devised a recursive
algorithm, shown in Algorithm 3, that is inspired by the
Smallest Enclosing Discs approach [15]. However, our
approach differs from [15], since we do not search for
one smallest enclosing disc, but for a set of discs with
fixed radius.

The input of Algorithm 3 is the set of pointsPpresent.
The algorithm starts by calculating a set of discs in a
way that each disc overlaps with a different set of points
(Lines 5-8). The Methodd.shiftPos(Pabsent,Ppresent)
in Line 6 moves the center of a disc so that it overlaps
with the old center and as many points inPpresent as pos-
sible, but does not overlap with a point inPabsent. In a
second step (Line 13), we insert all indispensable discs
into the result setD. We say that a disc is indispensable
if it contains one point from the input set which is not
contained in any other disc. Finally, the algorithm recur-
sively invokes itself with all points that are not contained
in any indispensable disc (Line 15).

Input : Set of points P
Result: Set of discs D
// Stop condition

1 if P = ∅ then return ∅;
2 ;
// Create a set of unique discs

3 DiscsU := ∅;
4 foreachp ∈ P do
5 Discd := disc(p, rmin);
6 d.shiftPos(Pabsent,Ppresent);
7 if 6 ∃d′ ∈ U : P ∩ d = P ∩ d′ then

U := U ∪ {d};
8 ;
9 end
// Identify indispensable discs

10 DiscsD := ∅;
11 foreachd ∈ U do
12 if ∃p ∈ P ∩ d : p 6∈ P ∩

⋃

i∈D−{d} i then
D := D ∪ {d};

13 ;
14 end

// Recursively assign remaining
points

15 return D ∪ setOfDiscs
(

P −
⋃

j∈D j
)

;

Algorithm 3: setOfDiscs

3.4 Time Complexity of our Algorithms

Our algorithm to obtainFpresent requires to compute the
alternating sum of overlapping disc segments (cf. Sub-
section 10). In theory, every disc might overlap with
each other disc. Thus,Fpresent has a worst-case time
complexity ofO(|P |2).

The time complexity of our algorithm forFabsent is
O(|Pabsent |

2). This is because the algorithm generates
Dcloseby from intersection points of the borders of the
discs around any position inPabsent. In the worst case,
each of these discs might have two intersection points
with any other one (cf. Subsection 3.2.1). However, the
worst case requires that any pair of points is very close
together. In real settings, such cases are unlikely, and
spatial indexes such as R-trees can speed up the process-
ing.

3.5 Correctness of Radiusrmin

In some application areas, to compute the bounds derived
so far a user might have to estimate the minimal diameter
of the feature in question (cf. Section 2). Thus, it is
important to find out ifrmin is not correct, according to
the values measured.

With a rmin value that is smaller than the real mini-
mal diameter of the feature in question,LBpresent and
LBabsent would produce bounds that are too small (cf.
Figures 5 and 6). Thus, in use cases where the minimal
radius of the feature in question cannot be obtained, we
recommend to conservatively overestimatermin.

Without knowing the real layout of the feature in the
area, one cannot verify if the estimate ofrmin is too
small. On the other hand, we can prove thatrmin is too
large if the feature has been detected in between a set of
measurements withft = absent in a way that would be
forbidden, given the value ofrmin. For example, con-
sider Figure 13: The feature has been observed in be-
tween the three points where the absence of the feature
has been measured. Thus,rmin is too large.

Lemma 5: rmin is incorrect if the following holds:
∃p ∈ Ppresent : 6 ∃pos s.t.p ∈ discposrmin

∧ discposrmin

∩Pabsent = ∅ �

Proof sketch:rmin is incorrect if there is a pointp ∈
Ppresent so that all discs with radiusrmin containingp
also contain a point inPabsent. Since this property is
mutually exclusive with Definition 6,rmin must be in-
correct.

Regarding Algorithm 2, we have identified an incor-
rectrmin if the optimization process cannot converge to-
wards an optimal solution.

10
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Figure 15: Synthetic test cases
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Figure 14: Bound
Volatility

3.6 Volatility of our Bounds

From a practical point of view it is important to know
how volatile our computed bounds are. For example, the
operator of the smart-city infrastructure of our running
example would like to compute the gain of taking more
samples, i.e., to deploy more measuring points in order
to have bounds that are closer to the real values.

Most well-known approaches to estimate the confi-
dence of random samples cannot be used to quantify the
volatility of our bounds. This is because such approaches
usually require stochastically independent values. In our
scenario, the feature in question has a minimal radius,
and the sensor tuples measured depend on each other. In
particular, sensors that have positions close to each other
are likely to measure the same feature value.

Our volatility indicators have been inspired from the
stop criteria of heuristics like Genetic Programming or

Evolutionary Algorithms. Such algorithms use an itera-
tive process to search for a quasi-optimal solution. The
algorithms stop if the current solution improves the pre-
ceding one only marginally, i.e., the volatility measure is
the difference between the current and the last solution.
We define volatility indicatorsV Ipresent, V Iabsent ∈
[0, 1] for the bound functionsFpresent, Fabsent by bor-
rowing from this concept:

Definition 8 (Volatility Indicators V I∗): TheVola-
tility Indicators VIpresent,VIabsent are as follows:

LetP = Ppresent∪Pabsent and∗={present, absent}

V I∗ =

{

1 if F∗ = 0

1−min
p∈P

(

F∗(P\{p},A,rmin)
F∗(P,A,rmin)

)

otherwise

�

The volatility indicators calculate the relative differ-
ence between the bound computed on databaseP =
Ppresent∪Pabsent and the bound computed onP minus
the sensor tuple that has the highest impact on the bound.
Thus, V I = 1 means that removing one value from
the database changes the computed bound by 100%, i.e.,
taking more samples is likely to change the bound very
much.V I = 0 refers to the opposite situation.

Figure 14 illustrates this volatility measure. In the
figure, the sensor tuples with the highest impact on the
bounds are highlighted with arrows. Consider func-
tion Fpresent. Without the feature detected (filled dot)

11
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in the middle of the area, the left part of the area
Apresent would be reduced to the dashed area, result-
ing in V Ipresent = 0.302. Thus, the volatility indica-
tor tells us that the computed bound is volatile. This is
because it would decrease by up to 30.2% if one tuple
was removed from the database of points. Now con-
siderFabsent. Without any of the three values where
ft = absent in the upper part of the areaA, the com-
puted bound decreases to zero, i.e.,V Iabsent = 1. Thus,
our volatility measure indicates that, in this case, the
bounds might be far away from the real size of the area
and could be improved by taking more samples.

4 EVALUATION

In this section, we evaluate our algorithms with synthetic
data and with real data from climatology research. We
describe our experimental setup first, then our experi-
ments.

4.1 Experimental Setup

In a nutshell, we want to find out how well our bounds
converge towards the real area sizes with an increas-
ing number of sensor tuples and with different coverage
Apresent of the area with the feature in question. Note
that we do not have to investigate the effect of the ra-
dius rmin or the total size ofA. This is becausermin,
Apresent andA are related:rmin cannot be larger than
the feature in question, and an increasedA has the same
effect as decreasingApresent andrmin at the same time.
Thus, it is sufficient to vary the areaApresent that is cov-
ered by the feature.

We have computed the bounds with our algorithms for
Fpresent andFabsent on a Sun X2200 M2 server with
two dual-core Opteron 2218 CPUs and 24 GB RAM.
We have calculated the minimal, maximal, average val-
ues and the variance of the bounds calculated for syn-
thetic and real data sets, which we will describe in the
following. Since performance optimizations are not part
of this paper, we will leave aside systematic runtime ex-
periments.

Synthetic Setting: Experiments with synthetic data
allow us to explore extreme cases and deviations be-
tween settings systematically. Our data set generator
starts with an empty, squared area with a given size. We
then iteratively add discs with a predefined radius at ran-
dom positions. The stop criterion is the desired coverage
of the area. Figure 15 shows exemplarily three of our
synthetic test cases for an area where the coverage with
the feature is 25%, 50% and 75%. By varying the cov-
erage of the feature between 10% and 60% in steps of
2.5%, we have obtained 210 different data sets. Thus,
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Figure 18: Real data set,Fabsent vs. |P |

for each coverage percentage, we have 10 data sets. Fur-
thermore, we have varied the database size from 10 to
1600, we have used the area sizes500 · 500 points and
800 ·800 points, and the radiirmin = 35 andrmin = 50.

Our settings are difficult, because our feature has ex-
actly radiusrmin, and we generate data sets where the
feature is distributed equally overA. In typical use cases,
e.g., meteorology or pollution control, the feature is al-
most always much larger thanrmin and usually forms
several large clusters (cf. Figures 1 and 16). This makes
it easier to identify an allowed decomposition into trian-
gles (cf. Subsection 3.2.1) or a good placement of discs
(cf. Subsection 3.3.1).

Real Setting: To assess the applicability of our ap-
proach on real data, we use data from the International
Satellite Cloud Climatology Project [10]. It contains the
mean Tropopause temperature of the earth since Decem-
ber 2009 (left part of Figure 16). The resolution of the
data set is a144 · 72 (longitude· latitude) grid with an
edge length of 2.5◦. Thus, we have a total of 10,368 data
points, and a point on the equator is equivalent to a rect-
angle of277.5 · 278.4km2.

To distinguishApresent from Aabsent we have used
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Figure 19: Synthetic data set,Fabsent vs. coverage

a threshold of 200 Kelvin, which results in a coverage
of 29.68% of the area (right part of Figure 16). Pre-
liminary experiments have shown that different thresh-
olds produce similar test results. We assume that our
feature has a minimal radius of 7.5◦. This is a realistic
assumption, since it has been observed [7] that tempera-
ture anomalies correlate strongly for measuring stations
up to 1000km apart: 1000km corresponds to≈ 3.6◦ on
the Equator and≈ 10◦ in Central Europe. Note that this
scenario is the one which we have used for our Monte-
Carlo simulation in Section 2.

4.2 Lower BoundFabsent

The Figures 17 and 18 show the output of our algorithm
for Fabsent, i.e., a bound on the size ofAabsent. Fig-
ure 17 has been obtained with our synthetic data set with
800 · 800 points, 50% coverage and a radiusrmin = 50.
In comparison, Figure 18 results from experiments with
our real data set (29.68% coverage). We have varied the
number of points|P |, and we have repeated each exper-
iment 10 times. The vertical axis of the figures show
the area size in 1.000 square points (synthetic setting) or
square degrees (real setting). The real size ofAabsent

is drawn as a thick gray line. The estimated area sizes
are drawn as a standard box plot, where the whiskers de-
note the mean, the minimal and the maximal values of
the estimation, and the boxes show the 25%- and 75%
quantiles. The figures confirm that the computed bound
is well below the real area size, and that the variability of
the operator output is low, even for a very small number
of 50 sensor tuples.

Furthermore, the figures confirms the expectation that,
with an increasing number of sensor tuples, our algo-
rithm strives towards the real size ofAabsent. Recall that
our synthetic setting (Figure 17) describes a challenging
scenario. With our real data set (Figure 18), the result
of Fabsent comes closer to the real size of areaAabsent,
given a sufficient number of sensor tuples.

0

20

40

60

80

100

120

0 50 100 150 200 250 300 350 400 450 500

A
re

a
 S

iz
e

 i
n

 1
,0

0
0

 P
o

in
ts

2

Number of Values |P|

Apresent

Fpresent

Initial Solution

+ Dh. Simplex

Initial Solution

Figure 20: Synthetic data set,Fpresent vs. |P |
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Figure 21: Real data set,Fpresent vs. |P |

In direct comparison, a Monte Carlo approach (Fig-
ure 2) converges faster and is independent from the spa-
tial distribution of the feature, but it cannot provide hard
lower bounds and does come with a high variance of the
values.

Figure 19 shows a series of experiments where we
have varied the size ofAabsent from 10% to 60% of our
area of800·800points. For all experiments we have used
|Pabsent | = 200 sensor tuples, i.e., since only positions
whereft = absent are used to calculateFabsent, we
have kept|Pabsent | constant. Thus, in a scenario where
the feature covers 50% of the area, the total number of
values in the database would be|P | = 2·|Pabsent |, given
an equi-distributed placement of sensors. Again, the gray
line shows the size ofAabsent, and the box plot shows
the computedFabsent. The figure indicates that, with
our challenging setting, 200 sensor positions inPabsent

result in a bound of about 25% of the real size ofAabsent.
This is in line with Figure 17.

With 200 values inPabsent, our algorithm requires ap-
prox. 10 seconds to computeFabsent. Preliminary run-
time experiments have shown that the runtime increases
less than logarithmically with the number of values in
Pabsent.
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4.3 Lower BoundFpresent

To test our algorithm forFpresent, we have used the
initial solution described in Subsection 3.3 as a starting
point, and we have used Downhill Simplex [11] to solve
the optimization problem.

Figures 20 and 21 graph the output of our algorithm
for Fpresent for the size ofApresent. We have tested
our synthetic setting with a grid of500 · 500 points,
rmin = 35 and 50% coverage. Figure 21 showsFpresent

for our real setting, whereft = present has a cover-
age of 70.32%. We have varied the number of sensor
tuples|P |, and we have repeated each experiment five
times. The axes and units of the figures are the same as
in Figures 17 and 18. The figures confirm the expecta-
tion that, similarly toFabsent, our algorithm forFpresent

converges towards the real area size with an increasing
number of sensor tuples|P |.

Note that we have omitted the optimization stage for
data sets of|P | > 50 in Figure 21, because, with our
hardware configuration, the time per experiment exceeds
30 minutes for such data sets. The right side of the figure
only shows our initial solution.

Figure 22 shows the computed boundFpresent for a
series of experiments with the synthetic data set where
we have varied the coverage ofApresent from 10% to
60%. For all experiments we have used|Ppresent | = 50
sensors that have measuredft = present. The fig-
ure indicates that for a feature with 10% to 30% cover-
age, 50 sensors insideApresent are sufficient to obtain a
bound that is close to the real area size. This results from
the fact that a few evenly-distributed sensors are suffi-
cient for our algorithm, to identify the positions where
the discs describingΓpresent should be placed (cf. Fig-
ure 10). Furthermore, the figure indicates that our ini-
tial solution provides a reasonable bound in many cases.
With our Sun X2200 M2 server,Fpresent was computed
in less 10 seconds from 30 values inPpresent. Prelimi-
nary runtime experiments have shown that the runtime of

0

20

40

60

80

100

10 50 200

V
o

la
ti
lit

y
 I
n

d
ic

a
to

r 
(%

)

Number of Values |Pabsent|

VIabsent

Figure 23: Volatility Indicator V Iabsent

our algorithm increases logarithmically with an increas-
ing number of values inPpresent.

4.4 Volatility Indicators

Finally, we evaluate the applicability of our volatility in-
dicatorV Iabsent with an synthetic setting of500 · 500
points andrmin = 35, 50% coverage. We have tested
the database sizes|P | = {10, 50, 200} five times each.
We expect thatV Iabsent tends to have relatively small
values for large sets of sensors. This is because a single
value might not have a high impact onFabsent if the data
set is large.

Figure 23 shows the results of our experiments. The
figure shows that for each of the five experiments with
database size|P | = 10 the volatility indicator is 100%.
This indicates that the output of our algorithm for
Fabsent can be expected to change much with additional
sensor tuples. Our experiments with|P | = 200 show
a different outcome: Only one of the experiments uses
a data set where taking additional samples might result
in a Fabsent that is much closer to the real value of
area(Aabsent). Experiments withV Ipresent have pro-
duced similar results.

5 DISCUSSION

In this section, we will discuss options to improve the
runtime of our algorithms, and we will point to further
use cases for our bounds.

Surface Calculation: Computing the size of the to-
tal surface area of a large number of overlapping discs
can be time-consuming. This issue appears with the op-
timization function ofFpresent and with the computa-
tion of the exterior ofFabsent. An option to improve this
computation is to apply a stochastic approach that allows
to compute the area of overlapping discs with low accu-
racy but quickly at the first iterations of the optimization
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problem, and with higher precision at later iterations. In
particular, a Monte-Carlo simulation, combined with an
R+ Tree, could randomly select points inA and verify
if it is inside one of the discs. The number of points that
fall in one of the discs multiplied with the area size and
divided by the number of all points is an estimate of the
size of the surface area of all overlapping discs. The ac-
curacy of this estimation of the area size depends on the
number of points, i.e., it can be quick when a coarse es-
timation is sufficient to find out if two discs overlap to a
large extent or not.

Optimization: A promising option to speed up the
computation ofFpresent is to reduce the complexity of
the optimization problem. One approach is to compute
Fpresent from the maximal square that is enclosed by the
disc describing the minimal size of the feature. Since this
square is inside of a disc with radiusrmin, the bound is
still correct, although the difference to the real area size
would be larger. This approach reduces the constraints to
a set of linear equations. However, a function that com-
putes the size of the area of overlapping squares is still a
nonlinear one.

Sensor Placement In Subsection 3.6 we have de-
scribed an approach to assess the volatility of the bounds,
according to the deviation of the bounds when removing
the most impacting sensor tuple fromD. This volatil-
ity measure cannot only be used to find out if deploy-
ing more sensors is likely to result in bounds that are
closer to the real size. It can be also used to identify
ideal positions for the deployment of further sensors. An
approach to determine such ideal positions according to
our volatility measure would be to successively compute
the position inA where a an observed presence or ab-
sence of the feature maximizesFpresent and/orFabsent.

Spatial Boundaries: Fabsent is not only a bound of
the total surface size ofAabsent, but also its spatial
boundaries. In particular, the sequence of disc segments
that is defined by the interior minus the exterior (see
Subsection 3.2) describes the total circumference and the
spatial placement of the area where the feature is absent
for sure. Note thatFpresent computes only the area size.
This is because the optimization approach searches for
the minimal set of discs that can ’explain’ a set of mea-
surements without taking into account the actual place-
ment of the disc borders.

6 CONCLUSION

Estimating upper and lower bounds on the surface of
an area that is covered by a certain feature is an im-

portant task in many application domains. This is chal-
lenging, due to databases containing incomplete infor-
mation, small samples and correlated values. Existing
work does not tackle this problem. For example, best-
effort approaches like random sampling do not provide
upper and lower bounds, and database operators like sky-
line queries depend on the assumption of having a con-
vex area.

In this paper, we have introduced formal specifications
of upper and lower bounds on the size of the area where a
certain feature with a minimal radius is or is not present
for sure. Thus, we have taken the first steps towards a
database operator that computes bounds on area sizes.
To this end, we have proposed algorithms that compute
the bounds, based on geometrical models. We have eval-
uated our algorithms with a real-world scenario and with
synthetic data sets. Our experiments have shown that our
approach can be readily applied to real world-problems
up to a certain size.
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