

Open Journal of Databases (OJDB), Volume 1, Issue 1, 2014

26

Eventual Consistent Databases:

State of the Art

Mawahib Musa Elbushra A, Jan Lindström B

A College of Graduate Studies, Sudan University of Science &Technology,

 Steen Street block 85 house no. 207, 111 Khartoum, Sudan, mawahib.elbushra@hotmail.com
B SkySQL – The MariaDB Company, Tekniikantie 12, FIN-02150 Espoo, Finland, jan.lindstrom@skysql.com

ABSTRACT

One of the challenges of cloud programming is to achieve the right balance between the availability and

consistency in a distributed database. Cloud computing environments, particularly cloud databases, are rapidly

increasing in importance, acceptance and usage in major applications, which need the partition-tolerance and

availability for scalability purposes, but sacrifice the consistency side (CAP theorem). In these environments, the

data accessed by users is stored in a highly available storage system, thus the use of paradigms such as eventual

consistency became more widespread. In this paper, we review the state-of-the-art database systems using

eventual consistency from both industry and research. Based on this review, we discuss the advantages and

disadvantages of eventual consistency, and identify the future research challenges on the databases using

eventual consistency.

TYPE OF PAPER AND KEYWORDS

Research review: eventual consistency, consistency models, cloud databases, distributed databases

1 INTRODUCTION

Cloud computing and big data have become

increasingly popular and are changing our way of

thinking about the world by providing new insights and

creating new forms of value. The research of cloud data

management is to address the challenges in managing

large collections of data in the cloud computing

environment, and in identifying information of value to

business, science, government, and society. The huge

volume of data in cloud computing environments poses

major challenges, including data storage at Petabyte

scale, massively parallel query execution, facilities for

analytical processing, online query processing,

resource optimization, data privacy and security.

Consistency is an important area of study in

distributed systems. A consistency model in distributed

systems is a guarantee about the relation between an

update to an object and the access to an updated object.

In this paper, our focus will be on the eventual

consistency model, which is particularly important in

the RDBMS and "NoSQL" worlds.

The literature of distributed systems defines several

popular consistency models. They include:

linearizability [33]; serializability [10, 30, 47] that

ensures a global ordering of transactions; sequential

consistency [50] that ensures a global ordering of

operations [34]; causal consistency [3, 36] that ensures

partial orderings between dependent operations;

eventually consistent transactions [41, 49, 50] that

ensure that different orders of updates in all copies

eventually converge to the same value, and session

consistency [44].

 Open Access

Open Journal of Databases (OJDB)

Volume 1, Issue 1, 2014

www.ronpub.com/journals/ojdb

ISSN 2199-3459

© 2014 by the authors; licensee RonPub, Lübeck, Germany. This article is an open access article distributed under the terms and conditions

of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).

www.ronpub.com/journals/ojdb

Mawahib Elbushra, Jan Lindström: Eventual Consistent Databases: State of the Art

27

Eventual consistency is a consistency model, which

is used in many large distributed databases. Such

databases require that all changes to a replicated piece

of data eventually reach all affected replicas.

Furthermore, the conflict resolution is not handled in

these databases, and the responsibility is pushed up to

the application authors in the event of conflicting

updates.

Eventual consistency is a specific form of weak

consistency: the storage system guarantees that if no

new updates are made to the object, eventually all

accesses will return the last updated value [49]. If no

failures occur, the maximum size of the inconsistency

window can be determined based on the factors such as

communication delays, the load on the system, and the

number of replicas involved in the replication scheme.

A few examples of eventually consistent systems

are:

 DNS

 Asynchronous master/slave replication on an

RDBMS, e.g. MariaDB (www.mariadb.org)

 Memcached in front of MariaDB, which caches

reads

The most popular system that implements eventual

consistency is DNS (Domain Name System). Updates

to a domain name are distributed according to a

configured pattern and time-controlled caches.

Eventually, all clients will see the same state. Eventual

consistency means that given enough time, over which

no changes are performed, all updates will propagate

through the system and all replicas will be

synchronized. At any given point of time, there is no

guarantee that the data accessed is consistent, thus the

conflicts have to be resolved.

In this paper, we make the following major

contributions:

1. We present the history of eventual consistency and

define rigorously eventual consistency.

2. Based on the literature, we review the databases

using eventual consistency both from research and

industry. To the authors’ knowledge, this is the

first paper presenting a review on the databases

using eventual consistency.

3. We evaluate the database systems reviewed. To

the authors’ knowledge, this is the first paper

trying to evaluate the database systems using

eventual consistency.

4. Based on the research work above, we discuss the

advantages and disadvantages of eventual

consistency.

5. Finally, we identify future research issues on

eventual consistency.

The rest of this paper is organized as follows. In

Section 2, we present the history of eventual

consistency and some related systems using eventual

consistency. Based on the literature we review

databases using eventual consistency in Section 3.

Section 4 evaluates the reviewed systems, and Section

5 identifies the advantages and disadvantages of

eventual consistency. We present future research issues

in Section 6, and conclusions of this paper are given in

section 7.

2 HISTORY OF EVENTUAL CONSISTENCY

Eventual consistency states that in an updatable

replicated database, eventually all copies of each data

item converge to the same value. The origin of eventual

consistency can be traced back to Thomas’ majority

consensus algorithm [46]. The term was coined by

Terry et al. [44] and later on popularized by Amazon in

their Dynamo system, which supported only eventual

consistency [26, 27, 43].

The CAP theorem, also called as Brewer's theorem

by its author Dr. Erik A. Brewer, was introduced at

PODC 2000 [14, 15]. The theorem was formally

proven by Gilbert and Lynch [29]. Brewer introduced

consistency, availability and partition tolerance as three

desired properties of any shared-data system, and made

the conjuncture that maximally two of them can be

guaranteed in one time [16, 17].

In general, this theorem perfectly matches the needs

of today's internet systems. Ideally, we expect a service

to be available during the whole time period of network

connection. Therefore, if a network connection is

available, the service should be available as well [24,

45, 48, 51]. If the number of servers is increased, the

probability of server failure or of network failure is

also increased. A system hence needs to take this into

account and be designed in such a way that these

failures are transparent for the client and the impact of

such failure is minimized.

The abbreviation of the CAP theorem comes from

the following three properties:

 Consistency: This property requires that each

operation executed in a distributed system, where

data is spread among many servers, ends with the

same result as if executed on one server with all

data.

 Availability: This property requires that in a

distributed system sending a request to any

functional node should be enough for a requester

to get the response. By complying with this

Open Journal of Databases (OJDB), Volume 1, Issue 1, 2014

28

property, a system is tolerant to failure of any

nodes, which are caused, for instance, by network

throughput issues.

 Partition Tolerance: A distributed system

consists of many servers interconnected by a

network. A frequent requirement is distributing

the system across more data centers to eliminate

the failure of one of them. During network

communication, failures are frequent. Hence, a

system needs to be fail-proof against an arbitrary

number of failed messages among servers.

Temporary communication interruption among a

server set must not cause the whole system to

respond incorrectly [29].

Next we define eventual consistency informally.

DEFINITION 1: Eventual consistency.

 Eventual delivery: An update executed at one

node evenly executes at all nodes.

 Termination: All update executions terminate.

 Convergence: Nodes that have executed the

same updates eventually reach an equivalent

state (and stay).

EXAMPLE 1: Consider a case where data item R=0

on all three nodes. Assume that we have the following

sequence of writes and commits: W(R=3) C W(R=5) C

W(R=7) C in node 0. Now read on node 1 could return

R=3 and read from node 2 could return R=5. This is

eventually consistent as long as eventually read from

all nodes return the same value. Note that this final

value could be R=3. Eventual consistency does not

restrict the order in which the writes must be executed.

To understand eventual consistency deeper, we

establish some precise terminology and we do this

similarly as in [19]. For uniformness, we require that

all operations are part of a transaction and thus all

operations are inside the transactions. We can describe

the interaction between transactions and the database

by the following three types of operations (query-

update interface):

 Updates u∈U issued by the transactions

 Pairs (q, v) representing a query q∈Q issued by

the transaction together with a response v∈V by

the database system.

 The end of transaction operations issued by the

transactions.

Formally, we can represent the activity as a stream

of operations, which form a history.

DEFINITION 2: A history H for a set of transactions

T and a query-update interface (Q, V, U) is a map H,

which maps each transaction t∈T and a client to a finite

or infinite sequence H(t) operation from alphabet

∑=U ∪(Q x V)∪{end}.

Furthermore, we need to define a program order,

i.e., the order in which operations are executed on a

transaction.

DEFINITION 3: Program order. For a given history

H, we define a partial order ≺p over events in H such

that e ≺p e' iff e appear before e' in some sequence

H (t).

Then we need to define an equivalence relation.

DEFINITION 4: Factoring: We define an equivalence

relation ∼t over events such that e ∼t e’ iff transaction

(e) = transaction (e'). For any partial order ≺ over

events, we say that ≺ factors over ∼t iff for any events

x and y from different transactions x ≺ y implies x'≺ y'

for any x, y such that x ∼t x' and y ∼t y'. This induces a

corresponding partial order on the transactions.

With the following formalization, we can specify

the information about relationships between events

declaratively, without referring to implementation-level

concepts, such as replicas or messages.

Eventual consistency relaxes other consistency

models by allowing queries in a transaction t to see

only a subset of all transactions that are globally

ordered before t. It does so by distinguishing between a

visibility order (a partial order that defines what

updates are visible to a query), and an arbitration order

(a partial order that determines the relative order of

updates).

DEFINITION 5: A history H is eventually consistent

if there exist two partial orders ≺v (the visibility order)

and ≺a (the arbitration order) over events in H, such

that the following conditions are satisfied for all events

e1, e2, e ⊂ EH:

1. Arbitration extends visibility: if e1≺v e2 then
e1≺a e2.

2. Total order on past events: if e1≺v e and

e2≺v e, then either e1≺a e2 or e2≺a e1.

3. Compatible with program order: if e1≺p e2 then

e1≺v e2

4. Consistent query results: for all (q, v) ∈EH, v=q#

(apply ({e∈H) ∥e ≺v q}, ≺a, s0)). Thus the query

returns the state as it results from applying all

preceding visible updates (as determined by the

Mawahib Elbushra, Jan Lindström: Eventual Consistent Databases: State of the Art

29

visibility order) to the initial state, in the order

given by the arbitration order.

5. Atomicity: Both ≺v and ≺a factor over ∼t.

6. Isolation: If e1∉committed (EH) and e1≺v e2, then
e1≺p e2. That is, events in uncommitted

transactions are visible only to later events by the

same client.

7. Eventual delivery: For all committed transactions

t, there exist only finitely many transactions

t' ∈ TH such that t ≮v t'.

The reason why eventual consistency can tolerate

temporary network partitions is that the arbitration

order can be constructed incrementally, i.e. it may

remain only partially determined for some time after a

transaction commits. This allows conflicting updates to

be committed even in the presence of network

partitions.

Some database solutions support the Availability

and Partition tolerance of Brewer’s CAP theorem.

These database solutions do not support consistency in

the same way as the relational database systems do, but

they support eventual consistency where data is

replicated to the remaining nodes at any given time, as

Cassandra does. These systems, along with the others,

mainly focus on achieving as low latency as possible

by combined with as high performance as possible [35,

45, 52].

There are other database solutions that focus on

supporting Consistency and Partition tolerance, and

partially supporting Availability. Their partition

tolerance may often be obtained by mirroring database

clusters between different data centers. The main

advantage is the possibility to achieve quicker response

by splitting the workload into different sub-tasks, and

these sub-tasks are then executed simultaneously across

all available nodes/servers [32, 40].

The consistency level may be important for some

systems like a stock market. The stock prices and

number of stocks available will always have to be up to

date. It is the same principle for an e-commerce

website - it would not be good for the business if the

customer finds out that the product is out of stock only

after he or she submitted the payment.

Eventual consistency means that writes to one

replica will eventually appear at other replicas, and if

all replicas have received the same set of writes, they

will have the same values for all data. This weak form

of consistency does not restrict the ordering of

operations on different keys in any way, thus forcing

programmers to reason about all possible orderings and

exposing many inconsistencies to users. For example,

under eventual consistency, after Alice updates her

profile, she might not see that update after a refresh.

Or, if Alice and Bob are commenting back-and-forth

on a blog post, Carol might see a random non-

contiguous subset of that conversation.

Burckhardt et al. [19, 20, 21] proposed a novel

consistency model based on eventually consistent

transactions, which are ordered by two order relations

(visibility and arbitration) rather than a single order

relation. The consistency model establishes a handful

of simple operational rules for managing replicas,

versions and updates, based on graphs called revision

diagrams. These authors have also proved a theorem,

which states that the revision diagram rules are

sufficient to guarantee eventual consistency.

Bailis et al. [8] stated that dozens of architects

support eventual consistency, and this can be taken as a

reference of that the eventual consistency had done a

"good enough job". An application designer needs to

know how database consistency is obtained and what

the costs of each inconsistency or anomalies are, in

order to decide if she/he needs to implement the

eventual consistency with high availability in the

application. Dealing with abnormalities, consistency is

intuitive and depends on thinking in the correct

sequence, and is therefore more difficult than high

consistency.

In [3] Abdallah et al. proposed a new atomic

commitment protocol that contains single-phase and is

non-blocking. However, this method requires that all

participants are ruled by a rigorous concurrency

control. Therefore, while sites are autonomous on

decision, it assumes exactly the same method on all

sites. Furthermore, rigorous concurrency control, where

transaction does not release any locks until it commits

or aborts, decreases the concurrency.

In [13] Bermbach and Tai proposed a novel

approach to benchmark staleness in distributed data

stores. It was implemented in Amazon S3. The

approach has one writer periodically writing a local

timestamp plus a version number to the storage system,

which considers the difference between the timestamp

versions. This achieved satisfactory results. The work

provides a criterion for the application developer to

determine if consistency in the data store eventually

provides guarantees of acceptable consistency.

However, they found that S3 frequently violates

monotonic read consistency.

In [25] Cooper et al. described PNUTS, a massively

parallel and geographically distributed database system

for Yahoo!’s web applications. PNUTS provides data

storage organized as hashed or ordered tables, low

latency for large numbers of concurrent requests

including updates and queries, and novel per-record

consistency guarantees. The consistency model is a

per-record timeline consistency, i.e. all replicas of a

given record apply all updates to the record in the same

Open Journal of Databases (OJDB), Volume 1, Issue 1, 2014

30

order. This provides a consistency model that is

between the two extremes of serialized transactions and

eventual consistency.

In [38] Merrel et.al. presented Bitbox, which is an

application that synchronizes distributed repositories of

data. It can be used as a backup or sharing application,

similarly to popular cloud-based storage systems.

Bitbox supports arbitrary and changing topologies, thus

allowing residential gateways to be used as caches for

synchronizing nomadic devices that connect only

periodically. The Bitbox synchronization scheme

achieves strong eventual consistency.

In [6] Anderson et.al. presented Pahoehoe that is

designed to support extreme availability, and offers a

key-value-based get-put interface. Pahoehoe is

composed of three main entities: proxies, key lookup

servers (KLS), and fragment servers (FS). On a put, the

proxy splits the value into multiple erasure-coded

fragments. The FSs are responsible for storing the

fragments, which form the bulk of the data. The KLSs

maintain a mapping of the user-provided keys to the

locations of corresponding fragments. In a typical

setup, each data center has a few KLSs for availability

and many FSs for reliability and scaling capacity.

Currently, Pahoehoe only guarantees the eventual

consistency and can tolerate temporary inconsistency,

because the availability is paramount for our initial

applications. Its protocols are eager in that they provide

a useful result as soon as possible, thus offering a

highest availability. For example, a put returns success

as soon as it has updated any one of the KLSs and a

minimum number of FSs, thus ensuring that the value

is durable. The remainder of the put completes in the

background. A get will try the list of values referenced

by the first responding KLS, from newest to oldest, and

will return as soon as it succeeds. If none of the

referenced values is available, the get tries contacting

other KLSs. Thus, puts can return success before they

are complete and repeated gets may sometimes return

earlier versions after newer ones.

Pahoehoe is a partition-tolerant storage system,

where key-value pairs can be kept in a redundant

manner. The novelty with this system is that the

redundancy is achieved using erasure-coding rather

than normal replication. Eventual consistency is

achieved by regularly trying to spread data items that

do not have a satisfactory level of redundancy.

Conflicts will not occur in the system since there are no

integrity constraints, and concurrent put operations for

the same key are ordered according to timestamps.

However, Pahoehoe is not really a database system

based on the authors’ categorization.

3 DATABASES USING EVENTUAL CONSISTENCY

In this section, we review the databases using eventual

consistency. To the authors’ knowledge this review

contains all currently available and published database

systems supporting eventual consistency.

3.1 MongoDB

MongoDB [1, 37] is a document-oriented NoSQL

DBMS written in C++ and developed by 10gen. The

word mongo in its name comes from the word

humongous [1]. MongoDB focuses on ease of use,

performance and high scalability. MongoDB is

available for Windows and Unix-like environments.

MongoDB uses a binary form of JSON called

Binary JSON, or BSON, to store data. BSON is

designed to be easily and efficiently traversed and

parsed. Users use regular JSON, which is then

transformed into the BSON format. When data is

retrieved, it is again transformed into regular JSON. A

JSON document is zero or more key-value pairs, and a

MongoDB document is simply a JSON document.

Since MongoDB uses JSON, it is schema-less. This

means that there is no grouping of documents, which

has exactly the same keys, like in the relational model.

Instead, similar documents with different key-value

pairs are stored together in collections. A database, in

its turn, can be seen as a collection of collections.

MongoDB supports indexing on any attribute of a

document, similar to how RDBMS offer indexing on

any column. Indexes are implemented using

B-Trees [3]. MongoDB indexes are created from

JavaScript shell by using the ensureIndex() function.

Indexes can be created on simple keys, embedded keys

and entire documents. MongoDB uses JSON as its

query languages. A JSON query is a JSON document,

which describes what is to be searched for.

In MongoDB, replica sets are used as the

replication strategy, instead of the conventional master-

slave replication. Replica Sets improves master-slave

replication with failover capabilities. A replica set is a

cluster of MongoDB nodes, and consists of a primary

node and multiple secondary nodes. The primary node

is responsible for answering queries, and secondary

nodes periodically update their data by reading logs

from the primary node.
If a primary node is down, one of the secondary

nodes is chosen as new primary. The secondary node

calls for an election among secondary nodes, when it

cannot reach the primary node. Nodes in the system are

classified by a priority scheme that ranges from 1

(high) to 0 (low). The priority setting affects elections,

and nodes will prefer to vote for the nodes with the

highest priority value. If the old primary comes back to

http://docs.mongodb.org/manual/reference/glossary/#term-replica-set
http://docs.mongodb.org/manual/reference/replica-configuration/#local.system.replset.members[n].priority

Mawahib Elbushra, Jan Lindström: Eventual Consistent Databases: State of the Art

31

life, it will act as a secondary node and update its data

according to the new primary’s log.

Replicates can be used for scaling out reads and

writes. In read scale out, secondary nodes will respond

to requests for reading data. Because replication is

asynchronous, and there is always a time interval

between a write request reaching the primary node and

the read request reaching a secondary node, data can be

inconsistent. When scaling out writes, secondary nodes

will accept conflicting operations without negotiating

with the primary node. In this case, data replicated

from the primary node will always take preference over

the locally written data. Therefore, updates to

secondary nodes might be unused due to replication.

From the point of view of client applications,

whether a MongoDB instance is running as a single

server or a replica set is transparent, read operations to

a replica set by default return results from the primary,

and are consistent with the last write operation.

Applications may configure the read preference based

on a per-connection basis, and prefer that the read

operations return the replicas on the secondary node.

When reading from a secondary, a query may return

data that reflects a previous state. This feature is

sometimes characterized as the eventual consistency

because the secondary member’s state will eventually

reflect the primary’s state. MongoDB cannot guarantee

strict consistency for read operations from secondary

members. To guarantee the consistency for reads from

secondary members, one can configure the client and

driver to ensure that write operations succeed on all

members before reads complete successfully.

MongoDB uses a readers-writer lock, which allows

concurrent read access to a database but exclusive write

access to a single write operation. Before the version

2.2 of MongoDB, this lock was implemented on a per-

MongoDB basis. Since the version 2.2, the lock is

implemented at the database level. One approach to

increasing concurrency is to use sharding. In some

situations, reads and writes will yield their locks. If

MongoDB predicts that a page is unlikely to be in

memory, operations will yield their lock while the

pages load. The use of lock is expanded greatly in 2.2.

MongoDB offers the following C-A tradeoff

options:

 For writes:

 Write to a master, which may be the only

master for the shard, is scalable.

 For reads:

 Read from the master guarantees consistency

at the cost of performance.

 Read from a slave may return old data but

with higher performance.

3.2 CouchDB

CouchDB [5] is also a document-oriented NoSQL

database management system, developed and

maintained by the Apache Software Foundation.

CouchDB is written in the functional programming

language Erlang. The name CouchDB is derived from

its developers' idea of it being easy to use. At

CouchDB server startup, the phrase “It's time to relax"

is outputted on the console. What makes CouchDB

unique is its RESTful API, which supports the database

access over HTTP.

CouchDB stores JSON documents in a binary

format, like MongoDB. CouchDB stores documents

directly to its databases, and its database files have an

extension .couch. Each document has a unique ID,

which can be assigned manually when inserting

documents, or automatically by CouchDB. There is no

maximum number of key-value pairs for documents

and there is no maximum size; the default max size is

4 GB, but this can be changed by editing the CouchDB

configuration file.

CouchDB is normally queried by direct identifier

lookups, or by creating MapReduce “views”, which

CouchDB runs to create an index for querying or

computing other attributes. In addition, the

ChangesAPI of CouchDB shows documents in the

order they were last modified. CouchDB replicates the

document versions between nodes, thus making the

CouchDB databses an eventually consistent system.

Because of the CouchDB append-only value mutation,

individual instances will not lock. When distributed,

CouchDB will not allow updating the same document

without a preceding version number, and conflicts must

be manually resolved before concluding a write.

CouchDB uses a B-tree storage engine for all

internal data, documents, and views. In CouchDB,

MapReduce is used to compute the results of a view.

MapReduce makes use of two functions, “map” and

“reduce,” which are applied to each document in

isolation. The two functions produce key/value pairs,

and CouchDB insert them into the B-tree storage

engine. Documents and results in CouchDB are

accessed and viewed by key or key range. CouchDB

uses Multi-Version Concurrency Control (MVCC) to

provide concurrent access to the database. CouchDB

documents are versioned. Changing a document means

that CouchDB creates an entirely new version of that

document and saves it over the old one. After doing

this, CouchDB ends up with two versions of the same

document, one old and one new.

Let us consider a set of requests wanting to access a

document. The first request reads the document. While

this is being processed, a second request changes the

document. Since the second request includes a

Open Journal of Databases (OJDB), Volume 1, Issue 1, 2014

32

completely new version of the document, CouchDB

can simply append it to the database without having to

wait for the read request to finish. When a third request

wants to read the same document, CouchDB will point

it to the new version that has just been written. During

this whole process, the first request could still be

reading the original version.

Maintaining consistency inside a single database

node is quite easy. On the contrary, maintaining

consistency between multiple database servers is

difficult. If a client performs a write operation on

server A, how do we make sure that this is consistent

with server B, or C, or D? For relational databases, this

is a very complex problem, and whole books are

needed for discussing its solutions. One could use

multi-master, master/slave, partitioning, sharding,

write-through caches, and all sorts of other complex

methods for achieving consistency between multiple

database servers.

The operations of CouchDB take place within the

context of a single document. CouchDB achieves

eventual consistency between multiple databases by

using incremental replication. Incremental replication

is a process where document changes are periodically

copied among servers. Considering a case where the

same document is changed in two different databases

and this change is synchronized with each other. For

this situation, CouchDB’s replication system offers

automatic conflict detection and resolution. When

CouchDB detects that a document has been changed in

both databases, it flags this document as being in

conflict.

When two versions of a document conflict during

replication, the winning version is saved as the most

recent version in the document’s history. The losing

version is not deleted. Instead, CouchDB saves this as a

previous version in the document’s history, so that it

can be accessed. This happens automatically and

consistently, and both databases will make exactly the

same choice. It is up to the application to handle

conflicts in a way that makes sense for your

application. You can leave the chosen document

versions in place, revert to the older version, or try to

merge the two versions and save the result.

3.3 Amazon SimpleDB

Amazon [4] is a public cloud computing provider, and

offers services (AWS) based on the IaaS approach.

Amazon AWS (Amazon Web Services) is a set of Web

Services (WS) [5], and relies on the cloud computing

infrastructure for delivering its services. These services

can be accessed using REST (Representational State

Transfer) and SOAP (Simple Object Access Protocol)

protocols.

Within a number of services provided by Amazon,

EC2 (Elastic Compute Cloud) and S3 (Simple Storage

Service) are the most popular and well-known services.

Other services have also been developed around these

basic services such as EBS (Amazon Elastic Block

Store), AWS Management Console, etc. one of the

latest services provided by Amazon consists in Cloud

watch for monitoring the applications that are running

in the cloud.

Amazon services are paid according to the user's

consumption (number of requests, amount of

bandwidth, etc.). However, in February 2011, Amazon

released a free tier account for the developers in order

to foster the creation of applications based on their

cloud infrastructure. In the context of mobile

technologies, Amazon provides support for Android.

Amazon SimpleDB service works with S3 [2] and EC2

[1], and provides the ability to store, process and query

data sets in the cloud. Each dataset is organized into

domains, and can run queries across all of the data

stored in a particular domain. Domains are collections

of items that are defined by attribute-value pairs

Amazon SimpleDB stores multiple geographically

distributed copies of each domain to offer high

availability and data durability. A successful write

means that all copies of the domain will durably

persist. Amazon SimpleDB supports two read

consistency options: eventually consistent reads and

consistent reads. The Eventually Consistent option

gives the best read performance and it is used by

default. However, an eventually consistent read might

not return the most recently completed write.

Consistency across all copies of data is usually reached

within a second; repeating a read after a short time

should return the updated data. Amazon SimpleDB also

provides the flexibility and control when requesting a

consistent read. A consistent read returns a result, and

this result reflects all writes that received a successful

response prior to the read.

Amazon SimpleDB is not a relational database and

sacrifices complex transactions and relations (i.e.,

joins) in order to provide unique functionality and

performance. However, Amazon SimpleDB does offer

transactional semantics such as: Conditional put and

conditional delete are new operations, which were

added in February, 2010. They address a problem that

arises when accessing SimpleDB concurrently.

Considering a simple program that uses SimpleDB to

store a counter, i.e. a number that can be incremented,

the program must do three things:

 Retrieving the current value of the counter from

SimpleDB.

 Adding one to the value.

Mawahib Elbushra, Jan Lindström: Eventual Consistent Databases: State of the Art

33

 Storing the new value in the same place as the

old value in SimpleDB.

If this program runs while no other programs access

SimpleDB, it will work correctly. However, it is often

desirable for software applications (particularly web

applications) to access the same data concurrently.

When the same data is accessed concurrently, a race

condition arises, which would result in a undetectable

data loss.

Consistent read was a new feature that was released

at the same time as conditional put and conditional

delete. As the name suggests, consistent read addresses

problems that arise due to SimpleDB's eventual

consistency model. Considering the following sequence

of operations:

1. Program A stores some data in SimpleDB.

2. Immediately after that, A requests the data it just

stored.

SimpleDB's eventual consistency only guarantees

that Step 2 reflects the complete set of updates in Step

1, or none of those updates. Consistent read can be

used to ensure that the data retrieved in Step 2 reflect

changes in Step 1.

The reason why inconsistent results can arise when

the consistent read operation is not used is that

SimpleDB stores data in multiple locations (for

availability), and the new data in Step 1 might not be

written at all locations when SimpleDB receives the

data request in Step 2. In that case, it is possible that

the data request in Step 2 is serviced at one of the

locations where the new data has not been written.

Amazon discourages the use of consistent read,

unless it is required for correctness. The reason for this

recommendation is that the rate, at which consistent

read operations are serviced, is lower than for regular

reads.

3.4 DynamoDB

DynamoDB [26, 27] is a NoSQL database service. All

data items are stored on Solid State Drives (SSDs), and

are replicated across 3 Availability Zones for high

availability and durability. With DynamoDB, one can

offload the administrative burden of operating and

scaling a highly available distributed database cluster.

DynamoDB is different from the traditional NoSQL

solutions in that it maintains the relational model of

tables. Availability is increased with multiple replicas

distributed geographically across three different

Availability Zones in order to maintain a fault-tolerant

architecture.

This is much like MongoDB's replica sets in order

to ensure that, if one node goes down, the data is still

available in another geographically distributed node.

As a consequence, data along the network is increased.

DynamoDB also uses a solid state storage method to

further improve the performance. This increases the

speed of reads and writes, and aims to minimize the

amount of latency when performing operations on the

server.

DynamoDB stores multiple copies of each data

item to ensure durability. When you receive an

"operation successful" response to your write request,

the server ensures that the write is durable on several

servers. However, it takes time for the update to

propagate to all copies. The data is eventually

consistent, and this means that a read request

immediately after a write operation might not show the

latest version. However, DynamoDB offers the option

to request the latest version of the data.

When one reads data (GetItem, BatchGetItem,

Query or Scan operations), the response might not

reflect the results of the latest completed write

operation (PutItem, UpdateItem or DeleteItem), and the

response might include old versions of data. By default,

the Query and GetItem operations use eventually

consistent reads, but one can optionally request

strongly consistent reads. BatchGetItem operations are

eventually consistent by default, but one can specify

strongly consistent on a per-table basis. Scan

operations are always eventually consistent.

When one client issues a strongly consistent read

request, DynamoDB returns a response with the most

up-to-date data that reflects the updates from all prior

related write operations, to which DynamoDB returned

a successful response. A strongly consistent read might

be less available in the case of a network delay or

outage. For the query or get item operations, you can

request a strongly consistent read result by specifying

optional parameters in your request.

DynamoDB supports a "conditional write" where

you specify a condition when updating an item.

DynamoDB writes the item if and only if the specified

condition is met; otherwise, it returns an error.

DynamoDB also provides an "atomic counter" feature

where you can send a request to add or subtract from

an existing attribute value without interfering with

another simultaneous write request. For example, a

web application might want to maintain a counter per

visitor to its site. In this case, the client only wants to

increment a value regardless of what the previous value

was.

Open Journal of Databases (OJDB), Volume 1, Issue 1, 2014

34

3.5 Riak

Riak (http://docs.basho.com/riak/latest/) is an open-

source, fault-tolerant key-value NoSQL database. It

implements the principles from Amazon's Dynamo

paper [26], and shows a heavy influence from Dr. Eric

Brewer's CAP Theorem. Written in Erlang, Riak is

known for its ability to distribute data across nodes by

using consistent hashing in a simple key/value scheme

in namespaces called buckets.

Riak supports a REST API through HTTP and

Protocol Buffers for basic PUT, GET, POST, and

DELETE operators. Additional query choices are

offered, including secondary indices, Riak Search using

the Apache Solr Engine with Solr client query APIs,

and MapReduce. MapReduce has native support for

both JavaScript and Erlang. Riak evenly distributes

data across nodes with consistent hashing and can

provide an excellent latency profile, even in the case of

multiple node failures. Key/Values can be stored in

memory, disk, or a combination, depending on which

pluggable backend one chooses.

Riak also supports the feature of checking if the

server is available. An instantiation of the client will

automatically execute a “Client Ping” command to

ensure that the node defined by the client is available

for requests. This will provide some reference to the

users about whether they need to check their

installation before continuing. When multiple

datacenters are used on replication, one cluster acts as a

"primary cluster". The primary cluster handles

replication requests from one or more "secondary

clusters". If the datacenter with the primary cluster

goes down, a secondary cluster can take over as the

primary cluster. There are two modes of operation:

fullsync and real-time. In fullsync mode, a complete

synchronization occurs between primary and secondary

cluster(s), by default every 360 minutes. In real-time

mode, continual, incremental synchronization occurs -

replication is triggered by new updates.

Riak provides the highest degree of flexibility, and

allows to trade off availability and consistency on a

per-request basis. It achieves such a feature by

allowing reads and writes with three different

parameters: (N) for nodes, (W) for writes, and (R) for

reads. N represents the number of nodes where data

will be replicated. W is the number of nodes that must

be written successfully before a response is returned. R

is the number of nodes from which data must be read in

order to reply to a request.

Let us consider an example of a simple Riak cluster

with five nodes and a default quorum of 3, which

means every data item is stored on 3 nodes. In this

setup, reads use a quorum of 2 to ensure at least two

copies, and writes also use a quorum of 2 to enforce

strong consistency. When data is written with a quorum

of 2, Riak sends the write request to all three replicas

anyway, but returns a successful reply when two of

them respond with a successful write.

Every key belongs to N primary virtual nodes

(vnodes), which are running on the physical nodes

assigned to them in the ring. Secondary virtual nodes

are run on nodes, which are close to the primaries in

the key space and stand in for primaries when they are

unavailable (also called fallbacks). The basic steps of a

request in Riak are as follows:

1. Determining the vnodes responsible for the key

from the preference list

2. Sending a request to all the vnodes determined in

the previous step

3. Waiting until enough requests return the data to

fulfill the read quorum (if specified) or the basic

quorum

4. Returning the value to the client

In a typical failure scenario, at least one node fails

and two replicas are intact in the cluster. Clients can

expect that reads with an R of 2 will still succeed, until

the third replica comes back up again.

3.6 DeeDS

DeeDS [7, 28, 31] is a prototype of a distributed, active

real-time database system. It aims to provide a data

storage for real-time applications, which may have hard

or firm real-time requirements. As database, DeeDS

uses OBST (Object Management system of

STONE) [22] and TDBM (DBM with transactions),

which replaces the OBST storage manager. One main

reason for introducing TDBM is to add support of

nested transaction into DeeDS. TDBM is a transaction

processing data store with a layered architecture [18],

and provides DeeDS with:

 Nested Transactions

 Volatile and persistent databases

 Support for very large data items

To meet real-time constraints, all operations

supported by DeeDS have to be predictable. This is

ensured by avoiding delays for disk access, network

communication and distributed commit through main

memory residency, full replication and local commit of

transactions. Local commit means that transactions are

allowed to commit on a node by updating only the local

database of that node.

The other nodes are informed eventually. This

behavior not only avoids the unpredictable execution

time of distributed commit protocols like the “Two

Mawahib Elbushra, Jan Lindström: Eventual Consistent Databases: State of the Art

35

Phase Commit Protocol”, but also weakens global

consistency. Instead of immediate global consistency,

DeeDS supports eventual global consistency. Local

commit also introduces some concurrency problems

like concurrent updates of different replicas belonging

to the same object.

To handle these problems, DeeDS uses conflict

detection and forward conflict resolution, which

resolves conflicts without rolling back transactions [7].

Conflict resolution is done deterministically on all

nodes so that global consistency is reached eventually,

if there are no new updates to the database. Local

consistency at each node is ensured at all times by the

pessimistic concurrency control offered by

OBST/TDBM.

To achieve better portability, an extra layer called

DOI (Deeds Operating systems Interface) is used

between DeeDS and the operation system. This makes

it possible to run Deeds not only on POSIX compliant

systems like UNIX or LINUX, but also on real-time

OSE Delta.

3.7 Zatara

The Zatara database [22] is a distributed database

engine that features an abstract query interface and

plug-in-able internal data structures. Zatara is designed

for the framework, where it is flexible enough to be

used by any software application, and guarantees data

integrity and achieves high performance and

scalability.

In Zatara, nodes are organized in groups, each

group contains at least two nodes, and the actual size of

the group depends on the developer. A node has a

NodeID and a GroupID. NodeIDs are 32 bit integers,

and GroupIDs are 16 bit integers. The developer

chooses between two key storage caches: in the first

cache, data is stored in a single node and is not resistant

to single node failure; in the other cache, data is stored

in persistent storage and is resistant to node failures,

and the eventual consistency is used between nodes.

The distributed database ZATARA also tries to address

most of the limitations presented in other systems, and

proves that it is technically possible to scale almost

linearly as long as there are no ACID requirements.

ZATARA uses the algorithm of the consistent

hashing. With the algorithm, the client will read or

write the information from/on a particular node. If a

node is not accessible, a decision on what to do further

is based on the class of the requested key. The keys

that are stored persistent can be read/write from another

node in the group. Consistent hashing does not

guarantee a fair data distribution across nodes. When

adding new nodes, some keys must be redistributed. In

order to perform the consistent hashing, the client

should have an overview of the infrastructure.

4 EVALUATION OF SYSTEMS

MongoDB is a cross-platform document-oriented

NoSQL database system, and uses BSON to store data.

as its data mdoel. MongoDB is free and open source

software, and has official drivers for a variety of

popular programming languages and development

environments. Web programming language Opa also

has built-in support for MongoDB, and offers a type-

safety layer on top of MongoDB. There are also a large

number of unofficial or community-supported drivers

for other programming languages and frameworks.
CouchDB is an open source NoSQL database, and

uses JSON as its data mdoel, JavaScript as its query

language and HTTP as API. CouchDB was first

released in 2005 and later became an Apache project in

2008. One of CouchDB’s distinguished features is

multi-master replication. The features of MongoDB

and CouchDB are summarized in the

Table 1.

Table 1: MongoDB and CouchDB features

Feature MongoDB CouchDB

Interface Custom HTTP/REST

Data Model BSON, NOSQL JSON, NOSQL

Storage Model Caching

Consistency Strong +

eventual

Eventual

Collection Collection

Replication Master slave Multi master

Concurrency Update in place MVCC

Transactions No atomicity Atomicity

Availability Open Open

Query language Javascript Javascript,

REST, Erlang

Amazon SimpleDB is a distributed database written

in Erlang by Amazon.com. It is used as a web service

with Amazon Elastic Compute Cloud (EC2) and

Amazon S3, and is part of Amazon Web Services. It

was announced on December 13, 2007.

Amazon DynamoDB is a fully managed proprietary

NoSQL database service that is offered by

Amazon.com as part of the Amazon Web Services

portfolio. DynamoDB uses a similar data model as

Dynamo, and derives its name also from Dynamo, but

has a different underlying implementation: DynamoDB

has a single master design. DynamoDB was announced

by Amazon CTO Werner Vogels on January 18, 2012.
Riak is an open-source, fault-tolerant key-value

NoSQL database, and implements the principles from

Open Journal of Databases (OJDB), Volume 1, Issue 1, 2014

36

Amazon's Dynamo. Riak uses the consistent hashing to

distribute data across nodes, and buckets to store data.

Both DeeDS and ZATARA are the result from

research projects and not yet mature enough for

production usage. The features of DynamoDB,

SimpleDB and Riak are summarized in the Table 2.

Table 2: DynamoDB, SimpleDB and Riak features.

Feature DynamoDB SimpleDB Riak

Interface Table REST,

SOAP

Erlang

Data Model key-value Key-value

Storage

Model

API backend

Consistency strong +

eventual

strong +

eventual

configurable

eventual

Collection Collection

of key-value

Replication master slave master slave Master less

multisite

replication

Concurrency Optimistic

Transactions Atomicity

Availability Commercial Commercial Open

Query

language

API calls Erlang

Map-reduce

We use the following criteria to evaluate the

database systems that support the eventual consistency:

 Popularity

 Maturity

 Consistency

 Use cases

4.1 Popularity

We evaluate the popularity of the presented database

systems based on DB-Engines ranking (http://db-

engines.com/en/ranking). The DB-Engines Ranking

ranks database management systems according to their

popularity.

 At the beginning of 2014, MongoDB was ranked

7th with a score of 96.1. In February 2014, it is

ranked 5th with the score 195.17.

 At the beginning of 2014, CouchDB was ranked

16th. In February 2014, CouchDB is ranked 19th

with the score 23.34.

 At the beginning of 2014, Riak was ranked 27th.

In February 2014, Riak is ranked 30th with the

score 10.77.

 At the beginning of 2014, DynamoDB was

ranked 35th with a score of 7.20. In February

2014 DynamoDB is ranked 33rd with the score

8.36.

 At the beginning of 2014, SimpleDB was ranked

46th. In February 2014 SimpleDB, is ranked

48th with the score 3.30.

According to this ranking, MongoDB is clearly the

most popular and widely known database system

supporting the eventual consistency

4.2 Maturity

Based on the authors’ research, MongoDB is clearly

the most mature database system using eventual

consistency. It has a large user and customer base and

is actively developed. MongoDB has official drivers

for several popular programming languages and

development environments. There are also a huge

number of unofficial or community-supported drivers

for other programming languages and frameworks.

Riak is available for free under the Apache 2

License. In addition, Riak uses Basho Technologies to

offer commercial licenses with subscription support

and the ability for MDC (Multi Data Center)

Replication. Riak has official drivers for Ruby, Java,

Erlang, Python, PHP, and C/C++. There are also many

community-supported drivers for other programming

languages and frameworks.

CouchDB is a NoSQL database. CouchDB uses

JSON to store data, supports MapReduce query

functions in JavaScript and Erlang. CouchDB was first

released in 2005 and became an Apache project in

2008. The replication and synchronization features of

CouchDB make it ideal for mobile devices, where

network connection is not guaranteed but the

application must keep on working offline. CouchDB is

also suited for applications with accumulating,

occasionally changing data, on which pre-defined

queries are to be run and where versioning is important

(CRM, CMS systems, for example). The master-master

replication is an especially interesting feature of

CouchDB, which allows easy multi-site deployments.

CouchDB is clearly a mature system and used in

production environments.

DynamoDB is a commercially managed NoSQL

database service, offered by Amazon.com as part of the

Amazon Web Services portfolio. There is also a local

development version of DynamoDB, with which

developers can test DynamoDB-backed applications

locally. The programming languages with DynamoDB

binding include Java, Node.js, .NET, Perl, PHP,

Python, Ruby, and Erlang. Therefore, DynamoDB is a

mature and production-quality service.

Amazon SimpleDB is on the Beta phase and thus

we do not suggest its use in production.

ZATARA and DeeDS are in the research phase and

there are no publicly available systems for testing.

Mawahib Elbushra, Jan Lindström: Eventual Consistent Databases: State of the Art

37

Therefore, they are at most in the Alpha phase and we

do not recommend their use in production as well.

4.3 Consistency

From earlier research, we know that Amazon

SimpleDB’s inconsistency window for eventually

consistent reads was almost always less than 500ms

[49], while another study found that Amazon S3’s

inconsistency window lasted up to 12 seconds [2, 12].

However, to the author’s knowledge, there is not a

widely known and accepted workload for the databases

using eventual consistency. Therefore, the comparison

of consistency or inconsistency must be based solely on

system features.

From a point of view of consistency, Riak offers the

most configurable consistency feature, which allows

selecting the consistency level. MongoDB, SimpleDB

and DynamoDB offer the possibility to read the latest

version of the data time, thus providing strong

consistency as well as eventual consistency. All other

systems offer only eventual consistency, and may

return an old version of the data when performing read

operations.

4.4 Use cases

MongoDB has been successfully used on operational

intelligence, especially on storing log data, creating

pre-aggregated reports and in hierarchical aggregation.

Furthermore, MongoDB has been used on product

management systems to store product catalogs, manage

inventory and category hierarchy. In content

management systems, MongoDB is used to store

metadata, asset management and store user comments

on content, like blog posts and media.

Riak has been successfully used on simple high

read-write applications for session storage, serving

advertisements, storing log data and sensor data.

Furthermore, Riak has been used in content

management and social applications for storing user

accounts, user settings and preferences, user events and

timelines, and articles and blog posts.

The replication and synchronization capabilities of

CouchDB are well suited in mobile environment,

where network connection is not guaranteed, but the

application must keep on working offline. CouchDB is

also ideal for the applications with accumulating,

occasionally changing data, on which pre-defined

queries are to be run, and where versioning is

important. CRM, CMS systems are the examples of

such applciations. CouchDB has an especially

interesting feature: master-master replication, which

allows easy multi-site deployments.

SimpleDB is well suited for logging, online games,

and metadata indexing. However, one cannot use

SimpleDB for aggregate reporting: there are no

aggregate functions such as SUM, AVERAGE, MIN,

etc. in SimpleDB. Metadata indexing is a very good

use case for SimpleDB. One can also have data stored

in S3 and use SimpleDB domains to store pointers to

S3 objects with more information about them.

Another class of applications, for which SimpleDB

is ideal, is sharing information between isolated

components of an application. SimpleDB also provides

a way to share indexed information, i.e., the

information that can be searched. A SimpleDB item is

limited in size, but one can use S3 for storing bigger

objects, such as images and videos, and point to them

from SimpleDB. This could be called the metadata

indexing.

5 ADVANTAGES AND DISADVANTAGES OF

EVENTUAL CONSISTENCY

5.1 Advantages

Eventual consistency is easy to achieve and provides

some consistency for the clients [11]. Building an

eventually consistent database has two advantages over

building a strongly-consistent database: (1) It is much

easier to build a system with weaker guarantees, and

(2) database servers separated from the larger database

cluster by a network partition can still accept writes

from applications. Unsurprisingly, the second

justification is the one given by the creators of the first

generation NoSQL [9] systems that adopted eventual

consistency.

Eventual consistency is often strongly consistent.

Several recent projects have verified the consistency of

real-world eventually consistent stores [12]. One study

found that Amazon SimpleDB’s inconsistency window

for eventually consistent reads was almost always less

than 500ms [49], while another study found that

Amazon S3’s inconsistency window lasted up to 12

seconds [2, 12]. Other recent work shows similar

results from Cassandra, where the inconsistency

window is around 200ms [37].

5.1 Disadvantages

While eventual consistency is easy to achieve, the

current definition is not precise [8, 39]. Firstly, from

the current definition, it is not clear what the state of

eventually consistent databases is. A database always

returning the value 42 is eventually consistent, even if

42 were never written.

One possible definition would be that eventually all

accesses return the last updated value, and thus the

Open Journal of Databases (OJDB), Volume 1, Issue 1, 2014

38

database cannot converge to an arbitrary value [49].

Even this new definition has another problem: what

values can be returned before the eventual state of the

database is reached?

If replicas have not yet converged, what guarantees

can be made on the data returned? In this case, the only

possible solution would be to return the last known

consistent value. The problem here is how to know

what version of data item was converged to the same

state on all replicas [4].

Eventual consistency requires that writes to one

replica will eventually appear at other replicas, and that

if all replicas have received the same set of writes, they

will have the same values for all data. This weak form

of consistency does not restrict the ordering of

operations on different keys in any way, thus forcing

programmers to reason about all possible orderings and

exposing many inconsistencies to users. For example,

under eventual consistency, after Alice updates her

profile, she might not see that update after a refresh.

Or, if Alice and Bob are commenting back-and-forth

on a blog post, Carol might see a random non-

contiguous subset of that conversation.

When an engineer builds an application on an

eventually consistent database, the engineer needs to

answer several tough questions every time when data is

accessed from the database:

 What is the effect on the application if a

database read returns an arbitrarily old value?

 What is the effect on the application if the

database sees modification happen in the wrong

order?

 What is the effect on the application if a client is

modifying the database as another tries to read

it?

 And what is the effect that my database updates

have on other clients, which are trying to read

the data?

That is a hard list, and developers must work very

hard in order to answer these questions. Essentially, an

engineer needs to manually do the work to make sure

that multiple clients do not introduce inconsistency

between nodes.

One way to address these questions at least partly is

to use a stronger version of eventual consistency. Let

us define the strong eventual consistency.

DEFINITION 6: Strong Eventual consistency.

 Eventual delivery: An update executed at one node

evenly executes at all nodes.

 Termination: All update executions terminate.

 Strong Convergence: Nodes that have executed the

same updates have equivalent state.

To the authors’ knowledge, there is currently no

database system that uses strong eventual consistency.

This could be because it is harder to implement.

Eventual consistency represents a clear weakening

of the guarantees that traditional databases provide, and

places a requirement for software developers.

Designing applications, which maintain correct

behavior even if the accuracy of the database cannot be

relied on, is hard. In fact, Google addressed the pain

points of eventual consistency in a recent paper on its

F1 database [42] and noted:

“We also have a lot of experience with eventual

consistency systems at Google. In all such systems, we

find developers spend a significant fraction of their

time building extremely complex and error-prone

mechanisms to cope with eventual consistency and

handle data that may be out of date. We think this is an

unacceptable burden to place on developers and that

consistency problems should be solved at the database

level.”

6 RESEARCH ISSUES

For the future research, one interesting direction is to

design encapsulated solutions that offer good isolation

for common scenarios. Examples are use of convergent

and commutative replicated data types, and convergent

merges for non-commutative operations. Another

direction is scenario-specific patterns, such as

compensations and queued transactions, which can be

leveraged to achieve high availability, and provides

consistency that applications can reason about.

Based on this review, it is clear that there is a need

for a stronger consistency level that can provide the

most of the CAP features. Strong eventual consistency

is a step in this direction, but in our opinion more

research is needed. The most important research

question is: What is the strongest consistency level that

can provide the essence of CAP. This study could also

be extended to find out what potential stronger

consistency guarantees or isolation levels can be

provided for transactions containing multiple

statements.

Another important research question is what kind of

workload would best emulate and measure the

performance and inconsistency window of eventual

consistent databases. “Availability” in the CAP sense

means that every node remains being able to read and

write even when it is not able to communicate with the

rest of the system. This is more than desirable, but it is

easy to see the impossibility highlighted by the CAP

theorem: If a node cannot communicate with anything

else, of course it cannot remain consistent.

There is an excellent alternative: A system, which

keeps some, but not all, of its nodes being able to read

Mawahib Elbushra, Jan Lindström: Eventual Consistent Databases: State of the Art

39

and write during a partition, is not available in the CAP

sense, but is still available in the sense that clients can

talk to the nodes that are still connected. In this way

fault-tolerant databases with no single point of failure

can be built without using eventual consistency.

Developers should not have to deal with eventual

consistency. Vendors should stop hiding behind the

CAP theorem as a justification for eventual

consistency. New distributed, consistent systems like

Google Spanner concretely demonstrate the falsity of a

trade-off between strong consistency and high

availability.

The next generation of commercial distributed

databases with strong consistency will not be easy to

build, but they will be much more powerful and usable

than their predecessors. Like the first generation, they

will have true shared-nothing distributed architectures,

fault tolerance and scalability. However, rather than

accepting weak eventual consistency, they will adopt

far stronger models like ACID transactions or strong

eventual consistency, making them more powerful and

productive tools in the enterprise.

7 CONCLUSIONS

In this paper, we have presented a history of eventual

consistency, and defined eventual consistency

rigorously. We have reviewed several database systems

that use eventual consistency and presented their

significant features. Based on this review, we have

evaluated these systems and discussed the advantages

and disadvantages of eventual consistency and

identified the future research issues.

Clearly, there are several very mature and popular

database systems using eventual consistency. Most of

these are actively developed and there is a strong

community behind them. We believe that we will see

more database systems in the future using eventual

consistency or strong eventual consistency.

REFERENCES

[1] MongoDB: 10gen Inc. Agile and Scalable.

http://www.mongodb.org/, 2011.

[2] Amazon. Simple Storage Service (S3).
http://aws.amazon.com/s3/, Aug. 2009.

[3] Mustaque Ahamad, Gil Neiger, Prince Kohli,

James Burns, and Phil Hutto: Causal memory:

Definitions, implementation, and programming.

Distributed Computing, 9(1), 1995.

[4] Tom J. Ameloot, Jan Van den Bussche: Deciding

eventual consistency for a simple class of

relational transducer networks. ICDT 2012, pp.

86-98

[5] Anderson, C. J., Lehnardt, J., and Slater, N. 2010.

CouchDB: The Definitive Guide. Published by

O’Reilly Media, Inc., 1005 Gravenstein Highway

North, Sebastopol, CA 95472. January 2010, First

Edition.

[6] Eric Anderson, Xiaozhou Li, Arif Merchant,

Mehul A. Shah, Kevin Smathers, Joseph Tucek,

Mustafa Uysal, Jay J. Wylie: Efficient eventual

consistency in Pahoehoe, an erasure-coded key-

blob archive. DSN 2010, pp.181-190.

[7] S. F. Andler, J. Hansson, J. Mellin, J. Eriksson,

and B. Eftring: An overview of the DeeDS real-

time database architecture. In Proc. of 6th

International Workshop on Parallel and

Distributed Real-Time Systems, 1998.

[8] Bailis, P., and Ghodsi, A: Eventual consistency

today: limitations, extensions, and beyond, In

communications of the ACM vol. 56, no. 5, PP.

55-63, May 2013.

[9] Bartholomew Daniel: SQL vs. NOSQL. Linux J.,

2010, July 2010.

[10] Philip A. Bernstein and Nathan Goodman:

Concurrency control in distributed database

systems. ACM Computer Surveys, 13(2), June

1981.

[11] Philip A. Bernstein, Sudipto Das: Rethinking

Eventual Consistency, SIGMOD 2013, June 22–

27.

[12] Bermbach, D. and Tai S: Eventual Consistency:

How soon is eventual? In Proc. of ACM

MW4SOC '11 and 6 other workshop on Service

Oriented Computing, New York, December,

2011, no.1.

[13] Bermbach David, Jörn Kuhlenkamp, Bugra Derre,

Markus Klems, Stefan Tai: A Middleware

Guaranteeing Client-Centric Consistency on Top

of Eventually Consistent Datastores. IC2E 2013,

pp. 114-123.

[14] Brewer, E: PODC keynote.

http://www.cs.berkeley.edu/~brewer/cs262b-

2004/PODC-keynote.pdf, 2000.

[15] Brewer, E.: Towards Robust Distributed Systems,

(invited Talk) Principles of Distributed

Computing, Portland, Oregon, SIGOPS, And

SIGACT News, July 2000.

[16] Brewer, E.: CAP twelve years later: How the

“rules” have changed. IEEE Computer, vol. 45,

no. 2, pp. 23-29, February 2012.

Open Journal of Databases (OJDB), Volume 1, Issue 1, 2014

40

[17] Brewer, E.: Towards robust distributed systems.

In Proceedings of the Annual ACM Symposium

on Principles of Distributed Computing, 2000, pp.

710.

[18] Brachman, B., G. Neufeld: TDBM: A DBM

Library with Atomic Transactions, In Proc.

USENIX, San Antonio, 1992.

[19] Burckhardt, S., Leijen, D., Fähndrich, M.,Sagiv,

M.: Eventually Consistent Transactions, ESOP

2012, pp. 67-86,

[20] Burckhardt, S., Manuel Fähndrich, Daan Leijen,

Benjamin P. Wood: Cloud Types for Eventual

Consistency. ECOOP 2012, pp. 283-307.

[21] Sebastian Burckhardt, Alexey Gotsman, and

Hongseok Yang: Understanding Eventual

Consistency. TechReport MSR-TR-2013-39.

March 2013.

http://research.microsoft.com/apps/pubs/default.as

px?id=189249.

[22] Bogdan Carstoiu and Dorin Carstoiu: Zatara, the

Plug-in-able Eventually Consistent Distributed

Database. AISS, 2(3), 2010.

[23] E. Casais, M. Ranft, B. Schiefer, D. Theobald, W.

Zimmer: STONE – An Overview,

Forschungszentrum Informatik (FZI), Germany,

1992.

[24] Cerami, E., S. Laurent: Web services essentials,

O'Reilly & Associates, Inc. Sebastopol, CA,

USA, 2002.

[25] Cooper Brian, Raghu Ramakrishnan, Utkarsh

Srivastava, Adam Silberstein, Philip Bohannon,

Hans-Arno Jacobsen, Nick Puz, Daniel Weaver,

and Ramana Yerneni: PNUTS: Yahoo!’s hosted

data serving platform. VLDB, August 2008.

[26] Decantia, G., Hastorun, D., Jampani, M.,

Kakulapati, G., Lakshman, A., Pilchin, A.,

Sivasubramanian, S., Vosshall, P., and Vogels,

W: Dynamo: Amazon's highly available key-value

store. In Proceeding 21st ACM Symposium on

Operating Systems Principles (SOSP), pp. 205-

220, 2007.

[27] DynamoDB, http://aws.amazon.com/dynamodb/

[28] Eriksson, D.: How to implement Bounded-Delay

replication in DeeDS, B.Sc. dissertation,

Department of Computer Science, Högskolan i

Skövde, 1998.

[29] Lynch, S. Gilbert, N: Brewer's conjecture and the

feasibility of consistent, available, partition-

tolerant web services. ACM SIGACT News.

2002, 33(2), p. 5159.

[30] Gray, J.N., Lorie, R.A., Putzolu, G.R., and

Traiger, I.L: Granularity of locks and degrees of

consistency in a shared data base. In Modelling

in Data Base Management Systems, IFIP, January

1976, pp. 365-294,

[31] Gustavsson, S., S. F. Andler: Continuous

Consistency Management in Distributed Real-

Time Databases with Multiple Writers of

Replicated Data. Workshop on Parallel and

Distributed Real-Time Systems (WPDRTS'05),

Denver, Co, USA, 2005.

[32] Hale, C.: You can’t sacrifice partition tolerance;

Available from http://codahale.com/you-cant-

sacrificepartition-tolerance.

[33] Herlihy, Maurice P. and Jeannette M. Wing.:

Linearizability: A correctness condition for

concurrent objects. ACM TOPLAS, 12(3), 1990.

[34] Lamport Leslie: How to make a multiprocessor

computer that correctly executes multiprocess

programs. IEEE Trans. Computer, 28(9), 1979.

[35] Lipton Richardand Jonathan S. Sandberg: PRAM:

A scalable shared memory. Technical Report TR-

180-88, Princeton Univ., Dept. Comp. Sci., 1988.

[36] Wyatt Lloyd, Michael J. Freedman, Michael

Kaminsky, David, G. Andersen: Don't settle for

eventual: scalable causal consistency for wide-

area storage with COPS. SOSP 2011, pp. 401-

416.

[37] Membrey P. Plugge E. and Hawkins T: The

Definitive Guide to MongoDB. Apress, 2010.

[38] E. Le Merrer, N. Le Scouarnec, Straub. G.:

Bitbox: eventually consistent file sharing.

NETYS, May 2013.

[39] Rahman, M., Golab, W., AuYoung, A., Keeton,

K. and Wylie, J.: Toward a principled framework

for benchmarking consistency. Workshop on Hot

Topics in System Dependability, 2012.

[40] Marc Shapiro: A Principled Approach to Eventual

Consistency. WETICE 2011, p. 1.

[41] Marc Shapiro, Bettina Kemme: Eventual

Consistency. Encyclopedia of Database Systems,

2009, pp. 1071-1072.

[42] Shute Jeff, Vingralek Radek, Samwel Bart,

Handhy Ben, Whipkey Chad, Rollins Eric,

Oancea Mircea, Littlefield Kyle, Menestina

David, Ellner Stephqan, Cieslewicz John, Rae

Ian, Stancescu Traian, Apte Himani: F1: A

Mawahib Elbushra, Jan Lindström: Eventual Consistent Databases: State of the Art

41

Distributed SQL Database That Scales, VLDB,

2013.

[43] Sivasubramanian, S. Amazon DynamoDB: a

seamlessly scalable non-relational database

service. In proceeding SIGMOD International

Conference on Management of Data, ACM New

York, NY, USA, 2012, pp. 729-730.

[44] Terry, D. B., Demers, A. J., Petersen, K.,

Spreitzer, M.J., Theimer, M.M., Welch, B. B.:

Session guarantees for Weakly Consistent

Replicated Data. In PDIS, 1994: pp. 140-149.

[45] Tharakan, R.: Brewers CAP Theorem on

distributed systems, Scalable Web Architecture,

February 14, 2010.

[46] Thomas, R. H.: A majority consensus approach to

concurrency control for multiple copy databases.

ACM Trans. on Database Systems, vol. 4, no. 2,

pp. 180–209, June 1979.

[47] Traiger, I. L. Gray, J., Galtieri, C. A. and Lindsay,

B. G.: Transactions and consistency in distributed

database systems, In ACM Transactions on

Database Systems, New York, vol. 7, no. 3, pp.

323–342, September 1982.

[48] Vaquero, L. M., Rodero-Merino, L., Caceres, J.,

and Lindner. M.: A Break in the Clouds: Towards

a Cloud Definition. ACM SIGCOMM Computer

Communication Review, vol. 39, no. 1, pp. 50–

55, January 2009.

[49] Vogels, W.: Scalable Web services: Eventually

Consistent, ACM Queue, vol. 6, no. 6, pp. 14-16,

October 2009.

[50] Vogels, W.: Eventually consistent,

Communications of the ACM, vol. 52, no. 1, pp.

40–44, January 2009.

[51] Wawa, H., Fekete, A., Zhao, L., Lee, K., A. and

Liu, A.: Data consistency and the tradeoffs in

commercial cloud storage: the consumers’

perspective. In Proceedings of the Conference on

Innovative Data Systems Research. Asilomar,

CA, USA, January 2011.

[52] Feng Yan, Alma Riska, Evgenia Smirni: Fast

Eventual Consistency with Performance

Guarantees for Distributed Storage. ICDCS

Workshops 2012, pp. 23-28.

AUTHOR BIOGRAPHIES

Mawahib Elbushra received her

MSc on Computer Science from the

College of Graduate Studies, Sudan

University of Science &

Technology. She is currently

aiming PhD on Computer Science

in Sudan University of Science

&Technology. Her research interests include cloud

databases, distributed databases and eventual

consistency.

Dr. Jan Lindström is the principal

engineer at SkySQL working on

InnoDB storage engine and Galera

cluster. Before joining SkySQL he

was software developer for IBM

DB2 and development manager for

IBM solidDB core development.

He joined IBM with the acquisition

of Solid Information Technology in

2008. Before joining Solid in 2006, Jan worked on

Innobase and spent almost 10 years working in the

database field as a researcher, developer, author, and

educator. He has developed experimental database

systems, and has authored, or co-authored, a number of

research papers. His research interests include real-time

databases, in-memory databases, distributed databases,

transaction processing and concurrency control. Jan has

an MSc. and Ph.D. in Computer Science from the

University of Helsinki, Finland.

