

Veronika Abramova, Jorge Bernardino, Pedro Furtado: Which NoSQL Database? A Performance Evaluation

17

Which NoSQL Database?

A Performance Overview

Veronika Abramova A, Jorge Bernardino A, B, Pedro Furtado B

A Polytechnic Institute of Coimbra - ISEC / CISUC, Coimbra, Portugal, veronika@student.dei.uc.pt

B University of Coimbra – DEI / CISUC, Coimbra, Portugal, pnf@dei.uc.pt, jorge@isec.pt

ABSTRACT

NoSQL data stores are widely used to store and retrieve possibly large amounts of data, typically in a key-value

format. There are many NoSQL types with different performances, and thus it is important to compare them in

terms of performance and verify how the performance is related to the database type. In this paper, we evaluate

five most popular NoSQL databases: Cassandra, HBase, MongoDB, OrientDB and Redis. We compare those

databases in terms of query performance, based on reads and updates, taking into consideration the typical

workloads, as represented by the Yahoo! Cloud Serving Benchmark. This comparison allows users to choose the

most appropriate database according to the specific mechanisms and application needs.

TYPE OF PAPER AND KEYWORDS

Short communication: NoSQL databases, performance evaluation, execution time, benchmark, YCSB

1 INTRODUCTION

Nowadays, databases are considered a vital part of the

organizations and are used all over the globe.

Relational databases allow data storage, extraction and

manipulation using a standard SQL language. Until

now, relational databases were an optimal enterprise

choice. However, with the constant growth of stored

and analyzed data, relational databases exhibit a variety

of limitations, e.g. the limitations of scalability and

storage, and efficiency losing of query due to the large

volumes of data, and the storage and management of

larger databases become challenging.

In order to overcome these limitations, a new

database model was developed with a set of new

features, known as NoSQL databases [1]. Non-

relational databases emerged as a breakthrough

technology, and can be used sole or as complement to

the relational database. NoSQL increases the

performance of relational databases by a set of new

characteristics and advantages. In comparison to

relational databases, NoSQL databases are more

flexible and horizontally scalable [2]. They are capable

of taking advantage of new clusters and nodes

transparently, without requiring additional database

management or manual distribution of information.

Since database administration may be a difficult task

with such amounts of data, NoSQL databases are

projected to automatically manage and distribute data,

recover from faults and repair the whole system

automatically [3].

When NoSQL technology started to emerge,

NoSQL databases were known and characterized by

the lack of consistency of its stored data. For the

companies and systems, where strong consistency was

essential, the lack of consistency could be a big

limitation. With the increase of popularity of non-

relational databases, such features and system

 Open Access

Open Journal of Databases (OJDB)

Volume 1, Issue 2, 2014

www.ronpub.com/journals/ojdb

ISSN 2199-3459

© 2014 by the authors; licensee RonPub, Lübeck, Germany. This article is an open access article distributed under the terms and conditions

of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).

www.ronpub.com/journals/ojdb

Open Journal of Databases (OJDB), Volume 1, Issue 2, 2014

18

characteristics started to evolve. Currently, there are

over 150 NoSQL databases with diverse features and

optimizations [1], and a number of NoSQL databases

provide all new features and advantages while keeping

data consistent or even eventually consistent,

depending on the system needs [4]. For example,

MongoDB1, DynamoDB2 and SimpleDB3 supports

strong and eventual consistency, and CouchDB4

provides the feature of the eventual consistency.

Furthermore, in order to increase execution speed of

querying, non-relational databases began to use volatile

memory. Since I/O data access is slower, mapping

database or its parts into volatile memory increases

performance and reduces the overall execution time of

querying.

Yet, although the use of non-relational databases

has increased over past years, their capabilities have

not been fully disclosed. In order to choose a database

that would be more appropriate for a specific business,

it is important to understand its main characteristics.

Similar to relational databases, each NoSQL database

provides different mechanisms to store and retrieve

data, which directly affects performance. Each non-

relational database has also different optimizations,

resulting in different data loading time and execution

times for reads or updates. The performed evaluation

allows us to compare different types of NoSQL

databases, and test the execution times of read and

update operations.

We tested five popular NoSQL databases:

Cassandra5, HBase6, MongoDB7, OrientDB8 and

Redis9, and evaluate their execution speeds for

different types of requests. Although there are a variety

of solutions available for different types of NoSQL

databases, those five NoSQL databases are most

popular solutions for respective type. Some of the other

popular NoSQL solutions are BigTable [19] (used as

reference for HBase and Cloudata10), DynamoDB,

Couchbase11 Server, etc. During evaluation we used a

benchmark with a typical range of workloads, Yahoo!

Cloud Serving Benchmark [5], which provides

execution of get and put operations, allowing to better

understand the performance of a specific database: e.g.

1 MongoDB: http://www.mongodb.org/
2 DynamoDB, http://aws.amazon.com/dynamodb/
3 SimpleDB: http://aws.amazon.com/simpledb/
4 CuchDB: http://couchdb.apache.org
5 Cassandra: http://cassandra.apache.org/
6 Hbase: http://hbase.apache.org/
7 MongoDB: http://www.mongodb.org/
8 OrientDB: ttp://www.orientdb.org/
9 Redis: http://redis.io/
10 Cloudata: http://www.cloudata.org/
11 Couchbase: http://www.couchbase.com/

if it is faster for reads or inserts. The analysis and

comparison of the results allowed us to verify how the

different features and optimizations influence the

performance of these databases.

In our previous work [6, 7], we evaluated the

scalability of Cassandra and compared Cassandra and

MongoDB. Differently, in this paper, we compared a

higher number of the databases, and this work allowed

us to understand which NoSQL database performs

better in terms of operation types.

The remainder of this paper is organized as follows.

The next section describes NoSQL databases. Section 3

presents the setup used for the evaluation of the

NoSQL databases. The experimental evaluation is

performed in the section 4. The section 5 discusses

related work. Finally, in section 6 we present our

conclusions and suggest future work.

2 NOSQL DATABASES

NoSQL databases are based on BASE (Basically

Available, Soft State, and Eventually Consistent)

principle that is characterized by high availability of

data, while sacrificing its consistency [8, 9, 11]. On the

other hand, relational databases are represented by

ACID (Atomic, Consistent, Isolated, and Durable)

principle where all the transactions committed are

correct and do not corrupt database, and data is

consistent [8]. Both principles come from the CAP

theorem - Consistency, Availability, and Partition

Tolerance [12]. According to this theorem, when it

comes to working with distributed systems, only two of

the three guarantees (C, A or P) can be achieved, so we

need to choose the most important. When the

consistency of data is crucial, relational databases

should be used. When comparing these two models, it

may be considered that BASE is more flexible than

ACID. When data is distributed across multiple

servers, the consistency becomes hard to achieve.

NoSQL databases can be divided into four categories

according to different optimizations [13]:

 Key-value store. In this type of databases all the

data is stored as a pair of key and value. This

structure is also known as “hash table”, where

data retrieval is usually performed by using key

to access value.

 Document Store. Such databases are designed to

manage data stored in documents that use

different format standards, such as, XML [15]

or JSON [11]. This type of storage is more

complex in comparison to storage used by

Key-value Stores.

Veronika Abramova, Jorge Bernardino, Pedro Furtado: Which NoSQL Database? A Performance Evaluation

19

 Column Family. Similar to RDBMS (Relational

Database Management System), in this model

all the data is stored as a set of rows and

columns. Columns are grouped according to

the relationship of data. When the data stored

in some columns are often retrieved together,

these columns are arranged in one group.

 Graph Database. The best use of these databases

is when stored information can be represented

in the form of a graph with interlinked

elements, for example, social networking, road

maps or transport routes.

Hence, Key-value Store databases would be more

appropriate for the management of stocks and products,

and data analysis in real time, due to the fact that these

databases have good retrieving speed – retrieving

values given specific keys - when the greatest amount

of data can be mapped into memory. Document Store

databases are a good choice when working with large

amounts of documents that can be stored into

structured files, such as text documents, emails or

XML and CMS and CRM systems. Column Family

databases should be used when the number of write

operations exceeds reads, and this occurs, for example,

during system logging. Finally, graph databases are

more appropriate for working with connected data, for

example, to analyze social connections among a set of

individuals, road maps and transport systems.

In summary, NoSQL databases are built to easily

scale across a large number of servers (by

sharding/horizontal partitioning of data items), and to

be fault tolerant (through replication, write-ahead

logging, and data repair mechanisms). Furthermore,

NoSQL supports achieving high write throughput (by

employing memory caches and append-only storage

semantics), low read latencies (through caching and

smart storage data models), and flexibility (with

schema-less design and denormalization). In addition,

the different systems offer different approaches to

issues such as consistency, replication strategies, data

types, and data models.

The NoSQL databases evaluated in this paper are

from the following categories:

 Cassandra and HBase: Column Family

databases.

 MongoDB and OrientDB: Document Store

databases.

 Redis: Key-value Store database.

In the next section we will describe the

experimental setup, which are used during evaluation

of the databases, and specify the benchmark and

versions of the databases that were tested.

3 EXPERIMENTAL SETUP

For the experimental analysis, we used the YCSB -

Yahoo! Cloud Serving Benchmark [5], which allows us

to evaluate and compare the performance of NoSQL

databases. This benchmark consists of two

components: a data generator and a set of performance

tests consisting, in a simplistic way, of read and insert

operations. Each of the test scenarios is called

workload and is defined by a set of features, including

a percentage of read and update operations, total

number of operations, and number of records used. The

benchmark package provides a set of default workloads

that may be executed and are defined by read, update,

scan and insert percentages. Default workloads are: A

(50% read and 50% update), B (95% read and 5%

update), C (100% read), D (95% read and 5% insert), E

(95% scan and 5% insert) and F (50% read and 50%

read-modify-write). Our focus is on comparing

execution speed of get and put operations, which are

most used operations. Therefore, we only executed

workloads A, C and an additional workload H, defined

by us, which is 100% update. Table 1 shows the

executed workloads and the respective operations.

Table 1: Executed Workloads

Workload % Read % Update

A 50 50

C 100 0

H 0 100

In order to evaluate the databases, we randomly

generated 600,000 records, each with 10 fields of 100

bytes over the key registry identification, resulting in

roughly 1kb total per record. The execution of

workloads was made using 1000 operations, and this

means that there were 1000 requests to the database

under test, while varying the number of stored records

and operations. There are other benchmarks available,

such as, TPC-H or SSB, which could be used to

evaluate database performance. We used YCSB

because in a simplistic way NoSQL databases have

only two operations: get and put, whereas TPC

benchmarks are more suited for evaluation of SQL

databases while executing decision support queries

over non-synthetic data.

All the tests were executed on a Virtual Machine

Ubuntu Server 32bit with 2GB RAM available, hosted

on a computer with Windows 7 and a total of 4GB

RAM. In this study, Graph databases have not been

evaluated. Because as stated in [16], Graph databases

Open Journal of Databases (OJDB), Volume 1, Issue 2, 2014

20

should not be evaluated according to the scenarios used

in the analysis of the other types of NoSQL databases

(Key-value Store; Document Store; Column Family),

with requests formed by read and update operations.

Usage of links between records requires a different

approach, so there are specific benchmarks developed

to evaluate the performance of Graph databases, such

as, XGDBench [17].

During the experimental evaluation, we tested the

following NoSQL databases, which are most used

ones:

 Cassandra: Column Family database, version

1.2.1 (http://cassandra.apache.org/).

 HBase: Column Family database, version

0.94.10 (http://hbase.apache.org/).

 MongoDB: Document Store database, version

2.4.6 (http://www.mongodb.org/).

1. OrientDB: Document Store database, version

1.5 (http://www.orientdb.org/).

 Redis: Key-value Store database, version 2.6.14

(http://redis.io/).

4 EXPERIMENTAL EVALUATION

In the following subsections we present and analyze the

execution times based on only reads and only updates,

and both operations at the same time. We executed

YCSB workloads A, C and H.

4.1 Evaluation over Workload A

Figure 1 show the results, in seconds, obtained while

executing workload A that consists of 50% reads and

50% updates, over 600.000 records.

Figure 1: Execution time of workload A

(50% reads and 50% updates over 600.000 records)

When analyzing the results of execution of

workload A, a good performance is achieved by the

Key-value Store database, Redis. This database highly

uses volatile memory for data storage and retrieval,

which allows lower execution time of requests. Among

the tested databases of Column Family type, Cassandra

exhibited a performance of 7.89 seconds, 2.70 times

faster than HBase. The worst performance was

presented by the Document Store database OrientDB

(30.09 seconds), with an execution time 1.75 times

higher compared to another Document Store database

MongoDB. The worst execution time of OrientDB is

due to the fact that records have to be read from disk,

which is much slower in comparison to the volatile

memory.

4.2 Evaluation over Workload C

Figure 2 shows the results obtained while executing

workload C that consists of execution of 1000 read

operations over 600.000 records.

Figure 2: Execution time of workload C

(100% reads over 600.000 records)

The results of the execution of workload C indicate

that the Document Store databases, HBase and

OrientDB, showed the slow execution time during read

operations. HBase presented the worst result, and it is

1.86 times lower compared to the Column Family

database Cassandra. Given a large number of records,

HBase showed more difficulty during execution of

reads. In HBase, parts of the same record may be

stored in different disk files, and this results in an

increased execution time. HBase is optimized for the

execution of updates, but for reads, as we will see later

on, HBbase shows a good performance over the

workload H with 100% updates.

The second worst outcome was shown by

OrientDB, which stores data records in disk and does

not load data into memory. Redis had good execution

time: it kept records in memory and thus showed

minimal execution time for read operations. Database

Veronika Abramova, Jorge Bernardino, Pedro Furtado: Which NoSQL Database? A Performance Evaluation

21

Redis is projected to fast record retrieval using key due

to mapping data in memory.

4.3 Evaluation over Workload H

Figure 3 shows the results of the execution of the

workload H, which is 1000 updates over 600.000

records.

Figure 3: Execution time of workload H

(100% update over 600.000 records)

With the execution of the workload H with 1000

updates, we observed better optimization of some

databases for the execution of writes (in a simplistic

way one update is one write). Two Column family

databases, Cassandra and HBase, are optimized for

performing updates: they load records as much as

possible into memory, and thus the number of

operations performed on the disk is reduced and the

performance is increased.

Among the evaluated Document Store databases,

OrientDB had the highest execution time with a total of

36.75 seconds, thus having a performance 1.69 times

lower compared to the performance shown by

MongoDB. The cause for this difference in execution

time is the distinction of the storage type used by these

databases: The OrientDB keeps records on disk rather

than loading data into memory. The poor results of

MongoDB are due to the use of locking mechanisms to

perform update operations, and this increases execution

time. Key-value Store databases are in-memory

databases: they use volatile memory to map records,

and thus database performance is increased

significantly.

4.4 Overall Evaluation

Over previous subsections we presented results

obtained over different workloads and data loading. In

order to show more clearly the overall performance of

these evaluated databases regardless of the type of

performed operations, Figure 4 is generated. This

figure shows the total execution time, values in

seconds, for each of the tested databases. These values

were obtained by summing the execution times of all

workloads (A + C + H), and sorted in ascending order,

from lowest execution time to highest.

Figure 4: Overall execution time

of workloads A+C+H

The overall results show that the in-memory

database, Redis, had the best performance. Redis is a

Key-value Store database and is highly optimized for

performing get and put operations due to mapping data

into RAM. It is well-known that in-memory databases

are more efficient in query processing, but quantitative

accuracy still lacks. One of our contributions in this

study is presenting the quantitative results of the

execution speed of the in-memory NoSQL database.

Cassandra and HBase, as Column Family

databases, showed good update performance, since

they are optimized for update operations. Nevertheless,

from the overall evaluation results, those databases

were more than 15 times slower than the Key-value

Store database, Redis. Finally, Document Store

databases had the worst execution times, and OrientDB

is the database with the lowest overall performance.

OrientDB was 1.61 times slower than MongoDB and

had 58.32 times lower performance in comparison with

Redis.

5 RELATED WORK

The concept of NoSQL was first used in 1998 by Carlo

Strozzi to refer to an open source database that does not

use SQL interface [18]. Strozzi prefers to refer to

NoSQL as "noseequel" or "Norel" (non-relational),

since it is the main difference between this technology

and relational model. Its origin can also be related to

the creation of Google’s BigTable model [19]. This

database system, BigTable, is used for storage of

projects developed by Google, for example, Google

Earth. Amazon subsequently developed its own system,

Dynamo [20]. These projects allowed taking a step

Open Journal of Databases (OJDB), Volume 1, Issue 2, 2014

22

towards the evolution of NoSQL. However, the term

reemerged only in 2009, at a meeting in San Francisco

organized by Johan Oskarsson [21]. The name for the

meeting, “NoSQL meetup”, was given by Eric Evans

and from there on NoSQL became a buzzword.

Over the last years, NoSQL databases have been

tested and studied, and their performance has been

evaluated. There is a variety of papers, such as [22, 23,

24], which given overall analysis and presented

theoretical approaches to describing characteristics and

mechanisms of NoSQL databases. However, due to

increased interests in non-relational technology,

NoSQL databases have been analyzed not only from

application perspective, but as enterprise ready and

advantageous databases. Therefore, the research of

their performance, characteristics and used

mechanisms, has been increased. Some of those

studies, such as [5], evaluate advantages of use of

NoSQL technology by analyzing the throughput and

the advantages that are brought by scalability of

NoSQL databases. Different from these previous

contributions, which evaluate throughput, we compare

and analyzed the performance in terms of execution

time of widely used NoSQL databases. Although in-

memory databases are obviously more efficient than

disk-based databases, but the efficiency and

performance of NoSQL databases have not been

compared quantitatively. Our work in this paper gives

the quantitative results.

6 CONCLUSIONS AND FUTURE WORK

The popularity of NoSQL databases has increased as

massive amounts of data are being collected and

processed today. These databases bring a number of

advantages, compared to relational databases,

especially for large volumes of data, that are non-

structured or semi structured. There are different types

of NoSQL databases and each has its own set of

features and characteristics, and these lead to the

performance difference. The performance is an

important factor for deciding which database will be

used for enterprises and applications. Therefore, it is

necessary to compare and analyze the execution time of

difference NoSQL databases, and provide a

performance reference.

In this paper, we evaluate five most popular non-

relational databases from three types: Cassandra and

HBase from Column Family databases, MongoDB and

OrientDB from Document Store databases, and Redis

from Key-value Store database. We use Yahoo! Cloud

Serving Benchmark [5], and compare the execution

times of these NoSQL databases over different types of

workloads. Apart from the experimental evaluation, we

also analyze the performance differences from the

optimization mechanisms and data store approaches

used by these databases.

 The databases, which load data into volatile

memory, like Redis, exhibited extremely fast response

times regardless of workloads, due to the fast speeds of

volatile memory compared to the extraction of the files

stored on the hard drive. However, such databases

depend on the amount of volatile memory, which is a

much more expensive storage type compared to the

disk.

The database with worst performance was the

Document Store database, OrientDB, over different

workloads. By analyzing obtained results we discover

that this database requires more system capacities

compared with the capacities provided by the

environment used in the evaluation. Therefore, their

performances were limited by the memory

management, the operating system and the use of

virtual machine environment.

HBase and Cassandra are databases that use a log

for storing all performed changes, meanwhile the

records are stored in memory for subsequent disk flush.

The use of these mechanisms and following sequential

writing to disk reduces the amount of disk operations

that are characterized by low speed compared to the

speed of the volatile memory. Thus, these databases are

especially optimized for performing updates, while

reads are more time consuming when compared with

in-memory databases.

MongoDB is the database that showed largest

increase in the execution time directly related to the

increase of the number of updates performed. This

database uses locking mechanisms, which increase

execution time. On the other hand, the reads are not

exclusive, so the mapping of records in memory

increases performance. OrientDB performance also

degraded with the increasing number of update

operations.

As an overall analysis, in terms of optimization,

NoSQL databases can be divided into two categories,

the databases optimized for reads and the databases

optimized for updates. Thus, MongoDB, Redis, and

OrientDB are databases optimized to perform read

operations, while Colum Family databases, Cassandra

and HBase, have a better performance during execution

of updates.

As future work, we will compare and analyze the

performance of NoSQL databases further: we will

increase the number of operations performed and run

NoSQL databases over multiple servers. This

evaluation will allow us to better understand how

NoSQL behaves while running in distributed and

parallel environments. We also plan to evaluate the

performance of Graph databases.

Veronika Abramova, Jorge Bernardino, Pedro Furtado: Which NoSQL Database? A Performance Evaluation

23

ACKNOWLEDGMENTS

This work is financed by National Funds through FCT

Foundation for Science and Technology (Fundação

para a Ciência e a Tecnologia) in the framework of

PEst-OE/EEI/UI0326/2014 project.

REFERENCES

[1] NoSQL - http://nosql-database.org/.

[2] Stonebraker, M.: SQL databases vs. NoSQL

databases. Communications of the ACM, 53(4):

10-11, 2010.

[3] Gajendran, S.: A Survey on NoSQL Databases,

http://ping.sg/story/A-Survey-on-NoSQL-

Databases---Department-of-Computer-Science,

2012.

[4] Elbushra, M. M. and Lindström, J.: Eventual

Consistent Databases: State of the Art. Open

Journal of Databases (OJDB), RonPub, 1(1): 26-

41, 2014. Online: http://www.ronpub.com/

publications/OJDB-v1i1n03_Elbushra.pdf.

[5] Cooper, B., Silberstein, A., Tam, E.,

Ramakrishnan, R., and Sears, R.: Benchmarking

cloud serving systems with YCSB. In Proceedings

of the 1st ACM Symposium on Cloud Computing

(SoCC '10). ACM, New York, NY, USA, 143-154,

2010.

[6] Abramova, V. and Bernardino, J.: NoSQL

databases: MongoDB vs Cassandra. In

Proceedings of the International C* Conference

on Computer Science and Software Engineering

(C3S2E '13). ACM, New York, NY, USA, 14-22,

2013.

[7] Abramova, V., Bernardino, J. and Furtado, P.,

Testing Cloud Benchmark Scalability with

Cassandra, in IEEE 10th World Congress on

Services, Anchorage, USA, June 27 -- July 2,

2014.

[8] Pritchett, D.: BASE: An Acid Alternative. ACM

Queue, 6(3): 48-55, 2008.

[9] Cook, J. D.: ACID versus BASE for database

transactions, http://www.johndcook.com/blog/

2009/07/06/brewer-cap-theorem-base/, 2009.

[10] S. Groppe, Data Management and Query

Processing in Semantic Web Databases. Springer,

May 2011.

[11] Massimo Carro, NoSQL Databases, CoRR, 2014.

http://arxiv.org/abs/1401.2101.

[12] Browne, J.: Brewer's CAP Theorem,

http://www.julianbrowne.com/article/viewer/brew

ers-cap-theorem, 2009.

[13] Indrawan-Santiago, M.: Database Research: Are

We at a Crossroad? Reflection on NoSQL.

Network-Based Information Systems (NBiS), 15th

International Conference on Network-Based

Information Systems, pp.45-51, 2012.

[14] Zhang, H. and Tompa, F.W.: Querying XML

documents by dynamic shredding. InPro-ceedings

of the 2004 ACM symposium on Document

engineering (DocEng '04). ACM, New York, NY,

USA, 21-30, 2004.

[15] Crockford, D.: JavaScript: The Good Parts.

Sebastopol, CA: O'Reilly Media, 2008.

[16] Armstrong, T., Ponnekanti, V., Dhruba, B., and

Callaghan, M.: LinkBench: a database benchmark

based on the Facebook social graph. In

Proceedings of the 2013 ACM SIGMOD

International Conference on Management of Data

(SIGMOD '13). ACM, New York, NY, USA,

1185-1196, 2013.

[17] Dayarathna, M. and Suzumura, T.: XGDBench:

A benchmarking platform for graph stores in

exascale clouds. Cloud Computing Technology

and Science (CloudCom), IEEE 4th In-ternational

Conference on, Taipei, 363 – 370, 2012.

[18] NoSQL: a non-SQL RDBMS -

http://www.strozzi.it.

[19] Chang, F., Jeffrey, D., Ghemawat, S., Hsieh, W.,

Wallach, D., Burrows, M., Chandra, T., Fikes, A.

and Gruber, R.: Bigtable: A Distributed Storage

System for Structured Data. ACM Transactions on

Computer Systems, 26(2), Article 4, 2008.

[20] Decandia, G., Hastorun, D., Jampani, M.,

Kakulapati, G., Lakshman, A., Pilchin, A.,

Sivasubramanian, S., Vosshall, P., and Vogels, W.:

Dynamo: amazon's highly available key-value

store. In Proceedings of twenty-first ACM

SIGOPS Symposium on Operating Systems

principles (SOSP '07). ACM, New York, NY,

USA, 205-220, 2007.

[21] YDN -- http://developer.yahoo.com/blogs/ydn/

posts/2009/06/nosql_meetup/.

[22] Hecht, R. and JABLINSKI, S.: NoSQL

Evaluation A Use Case Oriented Survey.

Proceedings International Conference on Cloud

and Service Computing, pp. 12-14, 2011.

Open Journal of Databases (OJDB), Volume 1, Issue 2, 2014

24

[23] Han, J.: Survey on NOSQL Databases.

Proceedings 6th International Conference on

Pervasive Computing and Applications, pp. 363-

366, 2011.

[24] Leavitt, N.: Will NoSQL Databases Live up to

Their Promise?, Computer Magazine, 43(2): 12-

14, 2010.

AUTHOR BIOGRAPHIES

Veronika Abramova is

currently a researcher at CISUC

– Centre for Informatics and

Systems of the University of

Coimbra. Previously she has

received a bachelor degree at

Instituto Superior Engenharia

de Coimbra (ISEC). She is

currently working in an

industrial project, with an

electricity sector company, focused on transferring part

of the company’s data to the non-relational storage.

She has evaluated and studied different NoSQL

databases, focusing on their performance comparison

and characteristics. Her main research fields are

business intelligence, big data, database knowledge

management, NoSQL and SQL databases performance

evaluation.

Dr. Jorge Bernardino received

the PhD degree in computer

science from the University of

Coimbra in 2002. He is a

Coordinator Professor at ISEC

(Instituto Superior de

Engenharia de Coimbra) of the

Polytechnic of Coimbra, Portugal. His main research

fields are big data, data warehousing, business

intelligence, open source tools, and software

engineering, and in these fields he has authored or co-

authored dozens of papers in refereed conferences and

journals. Jorge Bernardino has served on program

committees of many conferences and acted as referee

for many international conferences and journals. He

was President of ISEC from 2005–2010. Actually, he is

serving as General Chair of IDEAS’2014 conference

and visiting professor at Carnegie Mellon University

(CMU).

Dr. Pedro Furtado is Professor

at University of Coimbra,

Portugal, where he teaches

courses in both Computer and

Biomedical Engineering. His

main research interests are data

scalability and Big Data, data

mining, service-oriented

systems and real-time systems. Lately, his research has

focused both on scalable and real-time warehousing,

and also on middleware for wireless sensors in

industrial and health-care applications. He has

published books and more than 100 papers in

international conferences and journals, and has several

research collaborations with both industry and

academia. Besides a PhD in Computer Engineering

from U. Coimbra (UC) in 2000, Pedro Furtado also

holds an MBA from Universidade Catolica Portuguesa

(UCP).

