
c© 2017 by the authors; licensee RonPub, Lübeck, Germany. This article is an open access article distributed under the terms and conditions of
the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).

Open Access

Open Journal of Databases (OJDB)
Volume 4, Issue 1, 2017

http://www.ronpub.com/ojdb
ISSN 2199-3459

Machine Learning on Large Databases:
Transforming Hidden Markov Models

to SQL Statements
Dennis Marten, Andreas Heuer

Institute of Computer Science, Rostock University, Albert-Einstein-Strae 22, 18059 Rostock, Germany,
{dm, heuer}@informatik.uni-rostock.de

ABSTRACT

Machine Learning is a research field with substantial relevance for many applications in different areas. Because of
technical improvements in sensor technology, its value for real life applications has even increased within the last
years. Nowadays, it is possible to gather massive amounts of data at any time with comparatively little costs. While
this availability of data could be used to develop complex models, its implementation is often narrowed because
of limitations in computing power. In order to overcome performance problems, developers have several options,
such as improving their hardware, optimizing their code, or use parallelization techniques like the MapReduce
framework. Anyhow, these options might be too cost intensive, not suitable, or even too time expensive to learn
and realize. Following the premise that developers usually are not SQL experts we would like to discuss another
approach in this paper: using transparent database support for Big Data Analytics. Our aim is to automatically
transform Machine Learning algorithms to parallel SQL database systems. In this paper, we especially show how
a Hidden Markov Model, given in the analytics language R, can be transformed to a sequence of SQL statements.
These SQL statements will be the basis for a (inter-operator and intra-operator) parallel execution on parallel
DBMS as a second step of our research, not being part of this paper.

TYPE OF PAPER AND KEYWORDS

Regular research paper: Machine Learning, Hidden Markov Model, Big Data Analytics, Database Support, SQL,
R language

1 INTRODUCTION

Assistive or smart systems are and will be a great
part of our everyday lives. It is not surprising that
in recent years researchers, especially in the areas of
Big Data Analytics and Artificial Intelligence, have
been putting a lot of effort into the development of
assistive systems [35]. The basis for such systems is a
large set of sensors providing data of the context, the
situation, and the activities of those persons that want
to use assistance functions. These sensors can be part

of the Internet of Things (IoT) and can be available
in appartments, cars, mobile phones, coffee machines,
home media equipment, as well as glasses and watches
[39]. By analyzing these sensor data with Machine
Learning (ML) algorithms [3], the developers of assistive
systems can on the one hand derive information about
the current situation which the user is in, and the current
activity which the user is doing, and on the other hand
also predict the user’s activities in the near future.

Deriving and predicting situations and activities with
ML techniques can be done with model-based or data-

22

http://creativecommons.org/licenses/by/4.0/
http://www.ronpub.com/ojdb

D. Marten, A. Heuer: Machine Learning on Large Databases: Transforming Hidden Markov Models to SQL Statements

driven techniques. At the University of Rostock, one
research group in the Department of Computer Science
concentrates on the data-driven aspect when researching
and developing methods to detect and predict user
activities [25, 45]. In this case, the researchers and
developers need a small amount of probands or test
persons (from 10 to 100), collecting sensor data for a
short time period (maybe some weeks), annotate these
sensor data with activity information by experts knowing
what was going on during these weeks, and then trying to
learn the activity models by means of ML algorithms. In
this learning phase, one has a small amount of probands,
but a large amount of sensors and a high frequency in the
sensor data (e.g., measuring data every milisecond).

To support this data-driven development of assistive
systems, one of the most challenging problems is usually
the handling of enormous amounts of data, normally
some Terabytes for the ML learning phase. However,
due to the massive amounts of data, conventional
statistical and ML tools suffer from performance issues.
Therefore, supporting ML tools by database technology
is one of the most challenging research directions in
computer science, especially in information systems [1].

In [32], we already introduced and discussed
a framework that combines the popular statistical
development tool R, database technology and the widely
known MapReduce framework. R was used in this
approach since the ML algorithms of assistive systems
have been implemented in R. In this paper, we want to
show why and how one can transform the ML algorithms
into SQL, also called intergalactic data speak. Though
SQL seems to be old-fashioned for modern Big Data
Analytics problems, it is shown that transforming ML
algorithms to SQL is not only possible, but has a lot of
advantages in

• using parallel database techniques to improve the
performance of the ML algorithms, without having
the need to design and implement the distribution
by hand,

• using privacy-by-design construction techniques to
automatically push (parts of the) analytics functions
closer to the sensors preserving the privacy of the
user of the assistive systems, and

• using data provenance (or data lineage) techniques
to tell the developer of the assistive systems
which of the thousands of sensors in the IoT
environment and which frequency of measuring,
aggregating, and transmitting these sensor data are
really necessary to detect and predict situations and
activities.

To support automatic parallelization, privacy-by-design
construction, and data provenance, we can use

fundamental database resarch results after having
transformed the ML algorithms to SQL statements.

The aim of this paper is to show how a specific
ML algorithm (the Hidden Markov Model (HMM) [34],
introduced in Section 6) can be transformed to SQL
statements (Section 7), and how efficient this solution
is for a centralized (non-parallel) database system on
a computer with one processor and one disk (Section
8). Before analyzing the HMM, we will discuss what
kind of subroutines can be supported on a database in a
natural way (Section 5). The paper starts with the State
of the Art (Section 2), where we focus on approaches
to implementing ML algorithms with R and Big Data
Analytics environments. The overall structure and aim
of the PArADISE project is presented in Section 3, and
the system architecture of the parallel ML engine based
on a SQL DBMS in Section 4.

2 STATE OF THE ART

To understand the importance of processing Machine
Learning algorithms via SQL it is useful to give a
quick overview of several projects that are designated to
process ML algorithms on Big Data.

Machine Learning meets Databases

In [19] one can find a concise summary on Machine
Learning, its recent rise and its link to the research
area of databases. Furthermore, existing projects and
criteria for successful future projects are discussed. They
present several extensions of relational database systems
that allow to process Machine Learning algorithms via
external user defined (UDFs) functions or extensions
of their SQL dialect. Additional information regarding
Machine Learning and databases can be found in
[28] where technical aspects and open problems like
compression, scan sharing, query generation, and others
are presented.

Machine Learning and Big-Data-Analytics
Environments

When computing Machine Learning algorithms on
Big Data, one has to think about massively parallel
computation techniques as introduced in the area of
Big Data Analytics. This field is dominated by
projects that are built on the MapReduce framework.
Perhaps the most popular one is Apache Hadoop
[44] introducing the well-known Hadoop File Systems
(HDFS) and offering transparent compression and
support for unstructured and structured file formats
like CSV or JSON. Additionally, several other Apache
projects are based on Hadoop. Regarding Machine

23

Open Journal of Databases (OJDB), Volume 4, Issue 1, 2017

Learning and database technology the most interesting
ones are Apache Hive [22], Apache Flink [6] and Apache
Spark [46].

Apache Hive introduces an SQL-like language called
HiveSQL and a procedural language called HPL-SQL
to provide a pleasant way to access, process, and
manipulate data. It supports larger parts of the SQL
standard functionality and also introduces database
techniques like indexes [22].

Apache Flink extends Hadoop-like processing of data
with different stages of optimization, which are well-
known in the database community. The optimization
and the comparatively pleasant API makes Flink a
good and promising choice for Big Data Analytics
[6]. Furthermore, several interesting research projects
can be found using Apache Flink. For example, the
project Gilbert [37] combines a Matlab-like language
with Apache Flink and an optimizer for sparse linear
algebra operations.

Apache Spark provides four different main libraries
supporting SQL, streaming, Machine Learning, and
graph functionalities. It is also possible to write code
in different languages like Java, Scala, Python, or R.
Spark uses an advanced directed acyclic graph engine
that supports in-memory processing, and can therefore
outperform Hadoop in several Machine Learning
applications [46].

Apart from Hadoop there exist other promising
projects that are built on the MapReduce framework.
One of the most noteworthy is IBMs System ML [4,12]
that can also run on Apache Spark. It provides an R-
like language to express Machine Learning algorithms
improving the usability for data scientists. Furthermore,
SystemML provides multiple possible processing plans
for single base operations like matrix multiplication,
runtime optimization, data compression, and other
techniques [11].

Coupling of R and SQL

Since this paper considers possible translations from R to
SQL, the following discussion presents projects directly
adressing the connection between database technology
and R.

One of the most obvious possibilities to connect R and
a database system is to use an R package that establishes
a connection via a JDBC driver. Many of the popular
systems, like PostgreSQL [33], MySQL [38], MonetDB
[23], and others even have their own R-JDBC-Package
offering some minor additional features. However, their
main purpose is to establish an API for queries in R.
Since we assume that the R developer is not an expert in
using SQL, this approach does not fit our requirements.

MonetDB’s R-Integration [24] is making R a first

class citizen of the database system. This offers the user
the possibility to use R code on the database within SQL.
The communication between both instances is working
without actually sending the data through the network.
This is crucial since network costs are one of the main
bottlenecks in many Big Data problems. However, this
approach still lacks transparency and is more suited for
database experts using R.

SciDB [43] is a parallel database system with an array
data model, which the authors claim to work faster for
ML problems than classical relational database systems,
due to its better compatibility to multi-dimensional
problems. SciDB offers an R Integration version, in
which it is possible to map database variables from
R to the database. This R-API offers a somewhat
transparent R-SQL connection for operations like matrix
multiplication using few extra annotations in the R script.
Anyhow, there are currently no papers available that
elaborate on the way this connection works. Also, since
this database works with arrays instead of tuples, it is not
suitable for SQL analysis.

Other research projects like RIOT-DB of Duke
University [47] have investigated whether relational
database systems (in this case MySQL) are suitable
for scientific calculations. This project extends R with
new datatypes that map to data on the database. The
mapping allows RIOT-DB to work transparently on
the database rather than R. However, the researchers
mention performance problems while working with
matrices. This may have several reasons, starting by
using the row-store MySQL as a backend system.

Other approaches

There are several other projects that are worth to study,
like the highy developed LINQ [31], Database Supported
Haskell [14] and many other.

While many projects share some of the criteria that we
also want to adress in our framework, all of these projects
do not combine R as a source language, (parallel) DBMS
technology as a computation platform, general parallel
processing techniques, and SQL as the target language
as we intend to do.

But why stick to DBMS technology and SQL as the
target language for Machine Learning problems? As
one will see in the next section, translating ML to SQL
will give us the opportunity to use fundamental results
of database research to design a support system for the
privacy-aware and development of efficient and highly
parallel assistive systems.

24

D. Marten, A. Heuer: Machine Learning on Large Databases: Transforming Hidden Markov Models to SQL Statements

3 THE PARADISE PROJECT

As one of our current research projects, we are
developing the PArADISE1 framework. This framework
aims at supporting developers of assistive systems in
three development phases. In Figure 1, these phases
are shown as Development (left-hand side), Data and
Dimension Reduction (depicted by the arrow in the
middle), and Usage (right-hand side):

• Development: ML Developers and Data Scientist
are trying to detect and predict user activities, using
data from a small amount of test persons, collecting
sensor data for a short time period (maybe some
weeks), annotating these sensor data with activity
information, and then trying to learn the activity
models by means of ML algorithms.

• Data and Dimension Reduction: In the
development phase, there is a small amount
of probands, but a large amount of sensors and a
high frequency in the sensor data. After having
derived the activity and intention models, one has to
reduce the dimensions of the data (e.g., the number
of sensors being evaluated) and the data itself
(e.g., measuring and transmitting sensor data every
minute instead of every milisecond). To derive
the most important dimensions and data, we adapt
well-known techniques of data provenance [21]
and data reduction [20].

• Usage: When using the assistive system afterwards
for a huge number of clients (millions of clients
having billions of sensors) with the reduced set
of sensor data, one has to decompose the SQL
queries detecting the activities and intentions of the
users. This query decomposition aims at better
performance because the query will be vertically
pushed down to the sources of the data (the sensors)
as close as possible. Even more importantly, the
decomposition of the query results in better privacy
for the user of the assistive systems, since most
of the original sensor data has not to leave his
personal equipment, his apartment, or his car. Only
a remainder query, the part of the query that cannot
be pushed down to the clients and sensors, has
to be evaluated on the large cluster computers
of the provider of the assistive system. For the
query decomposition, we adapt query containment
techniques [7] and the principle of Answering
Queries using Views (AQuV) [9, 30] to our case of
Answering Queries Using Restricted Capabilities of
Query Processors [17, 18].

1 Privacy-aware assistive distributed information system environment

In this context, it is assumed that the provider of the
globally distributed system is called Poodle [16]. Poodle
uses ML development tools such as R or higher-level
languages to derive the activities and intentions of the
user. This ML code will then be transformed to a
sequence of SQL statements. These SQL statements
will then be evaluated in parallel on a large computer
cluster, and the parallelization will be introduced by the
PArADISE system. This phase is called ML2PSQL
in Figure 1. The parallel database environment will
later also be used in the usage phase, to implement
the evaluation of the remainder queries that cannot
be precalculated by the lower levels of the vertically
distributed system. In the area of cloud computing,
this computing on lower levels, being the sensors and
the ensemble of the local equipment of the user, is
called fog, edge, or dew computing [18, 40, 41]). While
fog computing supports IoT applications with real-
time requirements, dew computing aims at pushing
applications, data, and low level services away from
centralized virtual nodes to the end users.

Before going into details of the ML2PSQL
transformation process (being the the main focus
of this paper), we conclude the PArADISE overview
with some aspects of the query decomposion, aiming at
the users’ privacy. In [15], we present a simple XML
schema in which the user can formulate his privacy
claims towards the assistive system. The user can
specify for each function, which information, in what
level of detail, is forwarded to Poodle, the provider of
the system. For this purpose, individual attributes can be
summarized to attribute combinations which are allowed
to be queried by the system.

Even for an experienced user it is difficult to set up
his privacy preferences, e.g. which data are worth to be
protected. For the identification of sensitive data so-
called quasi-identifiers [8] are used and computed by the
PArADISE system.

To be able to automatically decide about the privacy-
oriented decomposition of the queries, we have to use
SQL queries as a basis for query containment and
Anwering-Queries-using-Views techniques. Hence, it
is crucial for this approach to be able to express ML
code by a sequence of SQL queries in the development
phase of the system. Only then, one can use the privacy-
by-design principle when constructing the evaluation
algorithms in the usage phase.

In the next section, the components of the ML2PSQL
transformer will be discussed.

25

Open Journal of Databases (OJDB), Volume 4, Issue 1, 2017

ML-Code

ML2PSQL

PSQL-Code

Privacy
Decomposition

PD PD PD…

PD PD PD…

…
Client 1 Client 2 Client n

Privacy
Decomposition

Privacy
Decomposition

Privacy
Decomposition

Poodle

ML2PSQL

PDBS
PDBMS

…

ML-Code

PSQL-Code
Remainder Query

PDBS
PDBMS

…

Data Scientist /
ML Developer

Figure 1: The PArADISE framework: privacy-aware support for assistive systems

4 SYSTEM ENVIRONMENT

In this section, more details of our development phase
(left part of Figure 1) will be presented. In [32], we
already introduced a general framework of processing
ML algorithms implemented in R by means of SQL
DBMS. As a first DBMS, the main-memory system
MonetDB was used which turned out to be one of
the best suited systems for analytics purposes. The
ML algorithms have been splitted into SQL parts and
additional computations in R.

In the revised architecture of the ML2PSQL
transformer presented in Figure 2, we will stick to SQL
as the target language, but decided to be independent
of any particular DBMS such as MonetDB. More
specifically, besides using main-memory DBMS for
small data sets, we also want to use parallel DBMS
for Big Data Analytics tasks, consisting of Terabytes of
sensor data to be analyzed.

The new ML to parallel SQL transformation
environment shown in Figure 2 translates the ML
Code to SQL statements first. Parts of the ML
Code, which cannot be transformed to database queries
will be handled separately in a post-processor step.
Afterwards, the SQL statements are parallelized onto
n nodes of the computer cluster serving as a hardware
basis for computation. For parallelization, techniques
provided by parallel DBMSs such as Postgres-XL are
used, or our own fragmentation and parallelization
algorithms are developed, specifically for cases of intra-

operator parallelism not provided by most of the parallel
relational DBMSs.

In the remainder of this paper, the transformation step
from ML algorithms implemented in R to a sequence
of SQL statements will be presented in more detail.
These transformations are explained in detail using the
Hidden Markov Model as a special example of an ML
algorithm. The techniques are applied to a special
assistive systems that was developed at the University
of Rostock. This assistive systems aimed at assistive
support in a meeting scenario. The Hidden Markov
Model and the meeting scenario is introduced in Section
6. Before that, relational schemes and SQL statements
are used for basic operations of Scientific Computing,
such as matrices and matrix multiplication in Section 5.

5 ML-INTO-SQL TRANSLATION PROCESS

In this section, possible SQL solutions for basic
operations from the area of scientific computations will
be discussed. Since we introduce an experiment written
in the well-known statistical language R, R-code will
be used as a basis for the analysis. Furthermore,
we would like to state that the long time aim is to
develop a purely mathematical formula language (matrix
equations) to minimize language restrictions and make
the programming process for the researcher as easy as
possible.

Before starting to analyze methods it is worth noting

26

D. Marten, A. Heuer: Machine Learning on Large Databases: Transforming Hidden Markov Models to SQL Statements

...

...

Query Decomp.

Decomposed Queries

Figure 2: The ML to parallel SQL transformation environment

on how R objects can be translated into SQL types
and schemes. Firstly, all R data types following the
IEC 60559 (IEEE 754) standard are also supported in
most of the common database systems. Therefore,
one can assure that partial processing on the database
system can be done without loss of information. With
respect to R objects, we will concentrate on vectors
and matrices since they are the most important when
regarding statistical analysis. Here it is important to state
that it is possible in R to name columns and rows and
even select entries by adressing them:

A <− matrix (1 : 4 , nrow = 2)
colnames (A) <− c (’ Col1 ’ , ’ Col2 ’)
rownames (A) <− c (’Row1 ’ , ’Row2 ’)
A[’Row2 ’ , ’ Col1 ’]
[1] 2 .

This will ultimately lead to a matrix scheme with data
type T in the form of

A(i int,
j int,
rownames varchar,
colnames varchar,
v T)

which basically follows the well known scheme for
storing sparse matrices in non-database systems. In an
analogous manner a vector scheme can be defined as

V(i int,
names varchar,
v T)

If possible it would surely be beneficial to map the
names to the indices and therefore make a storing of
names for calculations obsolete. However, this might
not work in every case, especially not in interactive
programming. Anyhow, names will not be used in the
upcoming analysis, which will shorten our scheme to

A(i int,
j int,
v double)

and

V(i int,
v double).

Finally, it has to be mentioned that this approach may
suffer performance disadvantages regarding calculations
on small datasets when facing optimized matrix
operations (for instance the LAPACK library [2]) that
can be done entirely in main memory. But this
methodology is supposed to work on big data sets,
where database systems can surpass common in-memory
environments, due to their optimized data management
with respect to secondary storage besides their logical
and physical optimization capabilities.

27

Open Journal of Databases (OJDB), Volume 4, Issue 1, 2017

5.1 Basic Operations

Now, basic operations and translation possibilities are
presented. After this, a Hidden Markov Model will be
introcuded and an analysis of its subroutines will be
provided.

While simple discrete algebraic operations like
+,−, ·, / can be naturally implemented via SQL we
would like to distinguish two cases for the addition and
the subtraction. Here, the decisive factor is whether zero-
values should be explicitily stored or be neglected like it
is common in sparse-matrix-algorithms. If zero-values
are stored one can simply use an inner join to calculate a
discrete operator (here +) as

select A.i, A.j, A.v+B.v as v
from A join B on A.i = B.i and

A.j = B.j

Anyhow, if zero-values are missing, the inner join will
neglect value pairs where at least one of the values is
zero and therefore returns an incorrect result. There are
multiple ways to work around this problem, depending
on the database system one uses. A simple solution is to
use an outer join, which would return the NULL-value
on the aforementioned pairs. If possible, one should
set default values for the NULL case. Unfortunately,
this is not possible in many systems but overwriting the
method could be an option. Another possibility, with
the down side of extra operations, is to replace NULL
values with the value 0. As an example we use the
isNULL(v) then else end syntax for the example above:

select A.i, A.j,
isNULL(A.v)

then 0.0
else A.v end

+ isNULL(B.v)
then 0.0
else B.v end

from A outer join B on A.i = B.i
and A.j = B.j

It is also possible to calculate the inner join query and
afterwards insert the tuple values without corresponding
match into the result table. But, due to additional scans
of both matrix tables, it is advisable to use the outer-join-
method. On a side note: handling “divided-by 0” tuples
can be dealt with anologously by catching NULL values
in the second matrix.

Overall, these approaches will certainly need more
processing time than the inner join method using dense
matrices. On the other hand, if one tries to process big
and sparse matrices, which are used in many applications
(for instance PageRank [5], Finite Element Method

a b

0
f(

a)
f(

b)

Figure 3: Graphical illustration of the trapezoidal
rule for approximative integral calculation

[36], etc.), this method will heavily outperform the first
one and additionally save storage. It is also worth
noting that other fundamental basic operations, like
matrix multiplication (see Section 5.2), do not need extra
workarounds for their sparse approach, so that the user
can fully benefit from the performance speed-up without
any extra effort.

For the sake of simplicity we will avoid using the
outer-join scenario from this point on and will continue
now by giving a small example of discrete algebraic
operations. As a relevant real-life example for discrete
operations we would like to present the numerical
calculation of integral values with respect to time (or
basically any variable) following the trapezoidal rule
(see Figure 3)∫ b

a

f(t)dt ≈ (b− a)f(a) + f(b)

2

with individual time step size b − a. The corresponding
SQL query could be written as

select Vf.i,sum((Vf.v + Vl.v)/2)
from V Vf join V Vl

on Vf.i-1 = Vl.i

where the time step size is assumed to be 1 in any step
for convenience. Note that the sum function is used
to accumulate the partial integrals to form the overall
integral. With very little adjustment it is also possible
to calculate derivations or even the jacobi matrix from a
series of observations.

5.2 Aggregation and Matrix Multiplication

Similarly to the basic algebraic operations, aggregations
can naturally be found in a very high amount of statistical
methods. Since especially the sum function is used
frequently in scientific analysis, for example in scalar
products or vector and matrix norms, we will now

28

D. Marten, A. Heuer: Machine Learning on Large Databases: Transforming Hidden Markov Models to SQL Statements

translate the frobenius norm of a matrix A = (aij)ij ∈
Rn×m which is defined as

‖A‖F =

√√√√ n∑
i=1

m∑
j=1

a2ij .

In this case the matrix scheme

A(i int, j int, v double)

is very useful especially in column stores because every
element has to be used with itself and can therefore
be accessed sequentially. In SQL the norm can be
calculated as

select sqrt(sum(v ∗ v)) as fnorm
from A

Other very important operations are the matrix-matrix
and matrix-vector multiplications which can be declared
as basic methods since they appear in nearly every
advanced algorithm in statistics or numerical analysis.
Consider two matrices A ∈ Rk×m and B ∈ Rm×n with
k,m, n ∈ N≥1 with schemes as given above. A matrix-
matrix multiplication C = A · B can then be calculated
as

select A.i, B.j,
sum(A.v ∗ B.v)

from A join B on A.j = B.i
group by A.i, B.j

A matrix-vector multiplication can be done
analogously. As mentioned before, this approach
of calculating matrix-matrix products especially excels
if one is using sparse matrices. Furthermore, one can
see parallels to the MapReduce framework (see for
instance [29]) in the way of how elements are combined
and processed. Aside from the matrix multiplication one
frequently used method is the transposition of a matrix
A which is written as AT and its elements αij can be
calculated by swapping the column and row indices of
A

αij = aji. (1)

This operation can be done as

select A.j as i,
A.i as j, A.v

from A

Since transposing is basically swapping two attributes, it
is obvious that this operation should not be materialized
if it is possible to combine it with other blocks of
operations.

6 HIDDEN MARKOV MODEL

As one of the most popular techniques in the Machine
Learning area, the Hidden Markov Model (HMM) has
certainly become a very important part of many real
life applications. Therefore, we will briefly describe the
basic theory of the Hidden Markov Model in this section.
We introduce a major example of an HMM-experiment
done at the University of Rostock. This experiment
will be used to not only clarify theoretical aspects, but
also show the translation process into SQL presenting
practical algorithms. The knowledge gathered in this
section will be the basis of experimental evaluations we
have done, comparing R as a representative for statistical
software and MonetDB as a representative for (main
memory, column-store, SQL-based) database systems.
In order to give a coherent definition of the Hidden
Markov Model it is reasonable to have some insights into
the concept of Markov processes.

Since this paper is not meant to stress theoretical
aspects, this section will be rather short. We would
like to refer the interested readers to Rabiner [34] for
a more elaborated discussion on theory and application.
Furthermore we would like to introduce a meeting
scenario, which has been realized by the chair of
mobile multimedia information systems [13,26,27] at the
University of Rostock.

6.1 Experiment

We now introduce an experiment of a meeting scenario
as an example for the development process of the Hidden
Markov Model. The original procedure used sensor data
which has been stored in CSV files and was implemented
entirely in R. Therefore, this experiment has turned out
to be an ideal entry point for an analysis of possibly SQL
affine algorithms in the area of Machine Learning.

In this meeting scenario (see Figure 4) the horizontal
positions of three probands are tracked by personal
sensor devices. These data are stored at irregular
timestamps with an annotation of the current state for
later evaluation. The possible states of the system derive
from linking the individual states of each proband with
possible values

SProband = { (2)
enter,moveDoorStage,moveDoorSeat,
moveSeatDoor,moveStageSeat,
moveSeatStage, present, sit, discuss,
exit
}.

29

Open Journal of Databases (OJDB), Volume 4, Issue 1, 2017

seat area

stage area

door area

C

A B

●PresentPresent
●MoveStageSeatMoveStageSeat

●SitSit
●DiscussDiscuss
●MoveSeatStageMoveSeatStage
●MoveSeatDoorMoveSeatDoor
●PreparePrepare

●EnterEnter
●ExitExit
●MoveDoorStageMoveDoorStage
●MoveDoorSeatMoveDoorSeat

Figure 4: A possible system state: Proband C is presenting, while A and B are sitting/listening.

listen present

0.2

0.9

0.8 0.1

Figure 5: Graph representation of the Markov Chain
example

At this point we would like to give some theoretical
insights into Markov chains, which built the basis of the
Hidden Markov Model.

6.2 Discrete finite Markov Processes

A discrete Markov process (or Markov chain) is a
stochastic process for which the probability distribution
of the next state depends only on a limited amount
of preceding states. In its most common form, the
probabilities even depend only on the current state.
This characteristic is usually called memorylessness or
Markov property.

For a formal view let N be the number of possible
states in the state space S = {S1, S2, . . . , SN}.
Furthermore let Q = {q1, q2, . . . , qT } (with T ∈ N≥1)
be a family of random variables over S, where T denotes
the highest time value in the corresponding discrete time
space {0, 1, . . . , T}. The family Q is called a discrete
finite Markov chain of order 1 if

P (qt+1 = Sjt+1
|qt = Sjt , qt−1 = Sjt−1

, . . . , q0 = Sj0)

= P (qt+1 = Sjt+1
|qt = Sjt)

for all t = 1, 2, . . . , T − 1 and j = {jt+1, jt, ..., j0}
∈ {1, 2, . . . , N}t+1.

Let us come back to the meeting scenario: consider
a simple model that determines whether a proband is
listening or presenting S = {S1 = listen, S2 = present
} in the next time step. Therefore, a couple of meetings
have been recorded in 10 minute time steps and it has
been found that a proband has a 80% chance to remain
in his seat, and a 20% chance to present in the next time
step. Furthermore there is a 10% chance to continue
presenting and a 90% chance to stop presenting and
to return to the listener role (see Figure 5). This can
formally be written as

P (qt+1 = S1|qt = S1) = 0.8

P (qt+1 = S2|qt = S1) = 0.2

P (qt+1 = S1|qt = S2) = 0.9

P (qt+1 = S2|qt = S2) = 0.1

with the matrix notation

A =

(
0.8 0.2
0.9 0.1

)
.

It is now easily possible to make statements on the
likelihood of the possible behaviour of a proband. For
example, we would like to know whether a proband is
presenting in two time steps, i.e. q2 = S1, if he is also
presenting at the current time. The result can be obtained
by simply adding the two possible scenarios

P (q2 = S1|q0 = S1) =

P (q2 = S1|q1 = S1) · P (q1 = S1|q0 = S1)

+P (q2 = S1|q1 = S2) · P (q1 = S2|q0 = S1)

=0.8 · 0.8 + 0.9 · 0.2 = 0.82,

30

D. Marten, A. Heuer: Machine Learning on Large Databases: Transforming Hidden Markov Models to SQL Statements

q
t-1

q
t+1

q
t

o
t-1

o
t

o
t+1

... ...

Figure 6: Dependencies of observations and system
states in a Hidden Markov Model (of order 1)

stating that the probability for presenting is 82 %.
For later calculations it is important to see that this
calculation could also be done as

A2

(
1
0

)
=

(
0.82
0.81

)
=

(
P (q2 = S1|q0 = S1)
P (q2 = S2|q0 = S1)

)
. (3)

6.3 Definition of the Hidden Markov Model

For many situations a Markov model is not applicable
because its states are not observable, i.e. they are hidden.
Often there are different observable states that imply
whether or not these hidden states are probable. These
circumstances can be modeled via a Hidden Markov
Model which introduces a second stochastic process for
the observable states to the system.

For a formal definition let N be the number
of different states in the hidden state space S =
{S1, S2, . . . , SN}, M the number of different states
in the observation state space V = {V1, V2, . . . , VM}
and {q0, q1, . . . , qT } and {o0, o1, . . . , oT } families of
random variables with values in S and V respectively,
where T ∈ N≥1 refers to the corresponding discrete time
space {0, 1, . . . , T}.

A Hidden Markov Model (HMM) is a tuple λ =
(S, V,A,B, π), where A = (aij)i,j=1,...,N ∈ [0, 1]N×N

denotes the transition matrix with aij = P (qt+1 =
Si|qt = Sj), B = (bij)i=1..N,j=1..M is the observation
matrix, which holds the probabilities to observe Vi while
in state Sj , i.e. bij = P (ot = Vi|qt = Sj) ∈ [0, 1]M×N

and π = {πi}i=1..N is the initial state distribution. Note
that the observations only depend on the current system
states (see Figure 6). Furthermore, the model is called
homogeneous if the probability matrices A and B are
independent of time.

6.4 Experiment HMM-Parameters

After defining the Hidden Markov Model, we can add
some properties to our meeting scenario. It is obvious
that the main task is to generate the matrices A,B from
the gathered sensor data in context of a set of possible

states (as introduced in Equation 2 in Subsection 6.1)
and possible observations. In the given experiment, the
sensor data has been used to check whether the probands
are staying in key areas (observable symbols), namely

VProband = {in seat, at stage,
at door, else where}.

With the information about the current position it is
possible to make assumptions about the actions of the
probands. Using the example described above, a proband
is most likely listening in his seat when he is in the area
around his seat. On the other hand, a proband might be
presenting when he recently arrived at the presentation
stage.

Closing the theory part, one can summarize the overall
experimental process in the following steps:

1. Input

2. Train HMM

3. Run model

4. Evaluate model

5. Output

The corresponding equations for training, using the
model, and evaluating the model will be presented in the
next section together with their translation into SQL.

7 HMM INTO SQL

We will now give some insights into possible translations
of the Hidden Markov Model into SQL statements. It
will be shown that this can be done quite naturally in
most cases.

Input

The whole R-Code starts with loading the observations
and annotations (hidden states) with respect to time. The
observation consists of (horizontal) positional data (x, y
coordinates, double precision) for each proband at every
timestamp. All the experimental data has been stored in
CSV files. Therefore, each rerun of the code will also
lead to reread these files into main memory. This might
not be a problem for small files, but does heavily hurt the
performance when file sizes start to get bigger. While
using database systems, data has to be written once into
respective tables. Usually, this loading process does take
longer than simply loading a flat file into main memory.
Anyhow, on experimental setups where input data has to
be used (and reread) in multiple runs the initial overhead
does pay for itself rather fast. For this model we used the
relation schemes

31

Open Journal of Databases (OJDB), Volume 4, Issue 1, 2017

Observations j (i int, time double,
double xA, double yA,
double xB, double yB,
double xC, double yC)

Annotations j (i int, time double,
AnnoA varchar,
AnnoB varchar,
AnnoC varchar)

where j ∈ {1, . . . , k} denotes the number of
experiments and i is used as an automatic increment
for join operations, since the time parameter t is not
necessarily unique. We will neglect j in later analysis.

7.1 Calculate Model

The first big part of the program is the training of the
model (see Subsection 6.3) , i.e. computing the transition
matrix A, the observation matrix B and the initial state
distribution π.

Transition matrix A

Calculating the transition matrix can be done by simply
counting the transitions that have been annotated. If
we denote (for simplicity) states with a number i, j ∈
{1, . . . , |S|}, we can compute each matrix entry aij =
P (qt+1 = j|qt = i) using

#Transitions from i to j

#Transitions starting from i
.

In R this can be done in the following way:

t r a i n M o d e l <− f u n c t i o n (anno){
t a b <− t a b l e (anno [−1] ,

anno[− l e n g t h (anno)]) ;
r e s u l t <− t a b%∗%diag (1 / colSums (t a b)) ;
dimnames (r e s u l t) <− dimnames (t a b) ;
r e s u l t
} .

For a better understanding, the whole progress is
depicted in Figure 7. The input anno is a vector, whose
entries hold the three individual hidden states of the
probands in one string at each timestamp. The indices
-1 and -length(anno) in the first statement delete the
first and the last entry of the respective vector, creating
the predecessor/successor relationship.

The table function results in a table
representing the count of the state transitions. For
example, the entry (1,1) represents, how often
the state (enter,enter,enter) changes to
(enter,enter,enter) after one timestep - in this
case no change after the state transition. As a second

example, the entry (1,3) represents, how often the state
(enter,enter,enter) changes to (enter,
move door stage, enter) after one timestep.

The following statement divides every column of the
table by their respective sum. Therefore, each number of
state transitions is divided by the sum of state transitions
starting with the same predecessor, which is exactly what
the transition matrix A is. The final statement keeps the
names of the dimension for later calculations.

For simplicity, we consider a scheme

anno(i int, v varchar)

holding the states for all probands in only one entry. The
training can then be done in SQL via

create view tmp as
select a1.v as pre, a2.v as suc,

count(a1.v) as v
from anno a1 join anno a2

on a1.i = a2.i-1
group by a1.v, a2.v

create view denom as
select pre, sum(v) as v
from tmp
group by pre

select t1.pre, t1.suc,
cast(t1.v as double) / t2.v as v

from tmp t1 join denom t2
on t1.pre = t2.pre

Adding the row and column indices can be achieved
by joining the result table with a relation containing the
hidden states with an auto incremented index, ultimately
leading to the desired representation of the transition
matrix A. Note that one needs to cast the numerator
into double precision in the last query, since integer
division results in an integer as well. Furthermore,
the group by statement in the first query only returns
pairs (pre,suc) for which the corresponding count
is greater than 0. The whole process can benefit from
its sparse-matrix-like scheme by neglecting divisions
with a 0 numerator. While this is not really pushing
the performance in this model, it shows that the matrix
representation can be really advantageous in certain
situations and especially for big data.

Initital probability distribution π

While not necessary, it is usually meaningful to
introduce extra states for ending and beginning a run. In
this model, the initial state distribution is given using an
extra “START” state and the corresponding probability

32

D. Marten, A. Heuer: Machine Learning on Large Databases: Transforming Hidden Markov Models to SQL Statements

Figure 7: Example for a progress of the calculation of the transition matrix A

P (q0 = “START′′) = 1, leaving the probabilty for any
other state at 0.

Observation matrix B

The final parameter to be calculated is the observation
matrix B. Therefore, at each time stamp the measured
positions for each proband are evaluated separately
by using the euclidean distance to predefined areas,
namely door, stage, seat and else where. Now that the
observation symbols have been obtained, it is possible to
give an estimated probability (using a-priori knowledge)
for this observation for any hidden state. This can be
done analogously to the method for transition matrices
by counting the pairs of states and symbols in the
following manner

bij =
#Pairs of Si and Vj

#Si
.

In SQL this can be done using a nested query and
groupings

select tt.state, tt.obs,
cast(nom as double) / denom

from
(select v, count(v) as denom
from anno
group by v) t

join
(select anno.v as state,

obs.v as obs,

count(anno.v) as nom
from anno join obs

on anno.i = obs.i
group by anno.v, obs.v) tt

on t.v = tt.state

assuming that

anno(i int, v varchar)

and

obs(i int, v varchar)

are relations holding the system states and observed
symbols for any time stamp index i.

However, a different approach has been taken in this
experiment. Here a parameter θ = 0.08 is used to
describe a relation between observation and hidden state
and their corresponding probability in the following way:
If the hidden state is in the same area as the proband is,
due to the observation, the probability is P = 1 − θ,
otherwise the routine returns P = θ. For example,
the sensor data implies that proband A is at the door
area at timestamp t. Being at the door area implies that
the proband might be exiting or entering the room and
therefore the probabilities can be given as

PA(ot = is at door|qt = exit) = 1− θ
PA(ot = is at door|qt = enter) = 1− θ.

On the other hand it is unlikely that the proband is

33

Open Journal of Databases (OJDB), Volume 4, Issue 1, 2017

currently sitting in his seat which leads to

PA(ot = is at door|qt = sit) = θ.

If these results are multiplied by the corresponding
results from the other probands P = PA PB PC one
obtains the overall observation matrix B. Since the
positions of each proband are variable, the distances have
to be evaluated for every proband at any step, while the
probability P(o = is in area|q = state) is independent
with respect to time. This approach offers the benefit of
a degree of freedom (θ), which can be used to adjust the
relation between symbols and states.

For the SQL computation we introduce variables Xd,
Yd and Rd representing the x,y coordinates and the
radius of the door area. It might be beneficial to compute
the logical terms for every proband for every location
door, seat, stage and else where in one table, rather than
in one table for each location like we will do here, due to
convenience. Using the cast function to convert logical
values into integers, one can compute the observation
matrix in SQL as

create table B as
select i, THETA+(1-2∗THETA)∗doorA
from (select i,

cast((o.AX − Xd)2+
(o.AY − Yd)2 < Rd) as int)

as doorA
from observation o) tmp

Here the relation

observation (i int, t int,
AX double, AY double,
BX double, BY double,
CX double, CY double)

holds the positional data from every proband at every
timestamp t.

7.2 Run Model

We will now use the model to calculate different
properties, as for example explained in [10], for instance
the probability of given state sequences as introduced in
Equation 3 in Subsection 6.2 or the most likely state
sequence given a observation sequence and an initial
distribution. We would like to focus on the forward
algorithm as an example for commonly used methods
on the Hidden Markov Model. This algorithm calculates
the probability of witnessing an observation sequence in
a given model. Furthermore, this algorithm is a good
representative for a Machine Learning algorithm, since
it is composed of basic operations, i.e. vector-matrix-
and discrete multiplications and a simple aggregation.

The algorithm consists of three main steps and can be
described as follows:

Algorithm 1 Forward Algorithm

Input: o = {o0, . . . , oθ} . Observation Sequence
p := π ·B:,o0 . Initialization
for i = 1, . . . , θ do . Recursion

p := pTA ·B:,oi

P (o|A,B, π) = sum(p), . Termination

where · describes the discrete vector multiplication v ·
w = (viwi)i=1,...,n and B:,oi describes the column of
B that holds the probabilities for the observation state
oi. A possible solution for implementing the forward
algorithm in R can be found in the appendix. This
code has been used as a reference for the experimental
evaluation in Section 8.

There are multiple ways to approach this algorithm
in SQL, depending on the SQL-dialect one is using.
We tested two different approaches on MonetDB (see
Section 8), where one is relying on updates and the other
one has been nested into one big query. Using updates is
straight forward and easy to implement:

insert into alpha
select pi.i, pi.v ∗ B.v
from pi join B

on pi.i = B.i
where B.j = o 0;

for k=1, ..., theta

update alpha set v =
(select alpT A.v ∗ B.v
from

(select A.j as i, sum(aa.v ∗ A.v)
as v from alpha aa join A

on aa.i = A.i
group by A.j) alpT A

join B
on alpT A.i = B.i

where B.j = o k and
B.i = alpha.i)

where exists
(select * from

(select distinct j as i
from A) ttt

where ttt.i = alpha.i);

end for;

select sum(v) from alpha;

As we will show in the upcoming section, this

34

D. Marten, A. Heuer: Machine Learning on Large Databases: Transforming Hidden Markov Models to SQL Statements

approach is inferior to the following nested query
method, due to the extensive use of update operations,
which will not only force the DBMS to write on
secondary storage, but also write log files to guarantee
transaction safety. A better approach is to use a big
nested query. Since this query is big and hard to fit in
a readable form, we would like to split the query into
the three main parts. The inner query Q 0 calculates the
initialization as follows

select pi.i as i, pi.v ∗ B.v as v
from pi join B on pi.i = B.i
where B.j = o 0

With Q 0 we can defince a recursive sequence of
queries Q 1, . . ., Q theta, where Q k is defined as

select alpT A.i as i, alpT A.v ∗ B.v as v
from

(select A.j as i, sum(aa.v ∗ A.v) as v
from Q (k-1) aa join A

on aa.i = A.i
group by A.j) alpT A

join B on alptT A.i = B.i
where B.j = o k

Finally, the summation of the intermediate values can
be done simply using the sum aggregation

select sum(v) from Q theta.

It is noteworthy that various SQL-driven databases
have the capacity to perform recursive queries, which
will most likely result in a better speedup in comparison
to the update version. Anyhow, we decided to use the
sequence above since we evaluated our queries against
the main memory DBMS MonetDB, which does not
support recursive queries.

In the next section, we will present and discuss
the performance results we obtain from calculating the
transition matrix and the forward algorithm.

8 EVALUATION

We have implemented two experiments which calculate
the transition matrix of an HMM and the forward
algorithm as described in Subsection 7.1. In both
experiments all approaches have lead to the same results,
and therefore we will not discuss the quality of these any
further. Moreover, we processed every experimental run
five times and used the average time needed as the overall
respective result.

Table 1: Time taken (in ms) for calculating
transition matrices in R and MonetDB as described
in Subsection 8.1 and depicted in Figure 8

Dimension R MonetDB R / MonetDB
1e5 36 32 1.125
1e6 210 184 1.141
5e6 907 776 1.169
1e7 1118 1437 0.778
3e7 16817 4398 3.824
5e7 28657 9587 2.99
7e7 40830 16008 2.551

8.1 Transition Matrix

For this first test we created randomized test data,
using the normal distribution and the state space S =
{′a′,′ b′, . . . ,′ z′}, meaning that the probability of having
a certain system state is 1/26 for any time step. We haven
chosen the dimensions (number of timesteps) 105 =
1e5, 106, 5 · 106 = 5e6, 107, 3 · 107, 5 · 107 and 7 · 107,
while working on a server with 2× 2.1 GHz Processors,
12 GB DDR-3 RAM, 60 GB secondary memory and
Fedora 21 (64 bit) as the operating system.

In the experiment we compared the performance of the
SQL queries on MonetDB 11.19.9 to the corresponding
R-algorithm with R 3.3.1. As one can see in Table
1 and Figure 8, the database system outperforms R
with increasing problem size, although using datasets
that fit into main memory, demonstrating the power of
grouping algorithms on databases. Note that the y-axis
of the plot is logarithmic which might visually soften
the impression of the performance difference. It is also
noteworthy that the computation time has been taken
after the data has already been read by R. Reading the
data from csv-files took from 2× up to 16 × of the
calculation time in our experiment.

8.2 Forward Algorithm

The second experiment we conducted on the same setup
as above measured the time needed to calculate the
forward algorithm using a random observation sequence
of length 10 on varying model sizes. For simplicity we
used a materialized copy of the (dense) transition matrix
as the observation matrix, since the results would not
have an impact on the process speed, unless we would
use sparse matrices.

The results can be seen in Figures 9 and 10. Various
conclusions can be drawn from these measurements.
First, it is clear that R outperforms the database solutions
by quite a margin until R runs out of memory. This is
what we expected, since our solutions rely on numerous
joins, our matrices are dense, and R is perfectly suited

35

Open Journal of Databases (OJDB), Volume 4, Issue 1, 2017

Figure 8: Time (in ms) used for pure calculation (log y-axis) with a database system (grey) and R (blue) on
calculating a transition matrix

for such algorithms using the LAPACK/BLAS libraries.
The most interesting aspect for our research is depicted
in Table 2 and Figure 10. Here it is easy to observe that
the factor between R and the database solutions remain
stable (≈ 7.7) and that the database solution would not
change its trend while moving out of the area of main
memory calculations. The latter property is unlikely to
be observed in R, when cutting the algorithm down into
chunks, which fit into memory.

The result of these experiments confirms our
hypothesis that using database systems on large Machine
Learning problems can be very beneficial. This
motivates further investigation on this topic, especially
using intra-operator parallelization for the derived SQL-
queries.

8.3 Limitations

Since relational database systems have not been
developed for pure scientific calculations, SQL
inevitably does have limitations regarding its
expressiveness on certain operations.

As seen in the previous section, database solutions
can surpass in-memory software in certain methods on
small data sets, like the presented grouping scenario.
However, environments like R or MatLab are built on
the well-known LAPACK and BLAS libraries, which
are highly tuned for linear algebra operations on SIMD
computers. Therefore, it is not likely that database
systems can outperform these systems while data fits
into main memory. It is important to understand that

database solutions thrive on their ability of optimized
access strategies, logical optimization, and transaction
safety.

Regarding scientific calculations, the main limitations
we found have been so-called fine grained algorithms
that mostly consist of iterations and repeated
manipulation of single elements. Frequently used
examples are certain matrix decompositions, for instance
the Cholesky decomposition. Consider a symmetric
positive-definite matrix A ∈ Rn×n = (aij)ij . A
decomposition

A = LLT (4)

with a lower triangular matrix L = (lij)ij ∈ Rn×n is
called Cholesky decomposition. As described in [42],
it is possible to directly compute the latter with the
following equations

lij =

√√√√aij −
j−1∑
k=1

L2
jk

lij =
1

ljj

(
aij −

j−1∑
k=1

likljk

)
for i > j.

While the appearance of this algorithm is somewhat
similar to usual matrix operations at first glance, the
main difference is that the calculation of an element lij
with j > 1 uses updated elements lik with k > 1,
which would lead to many selective low cost queries on

36

D. Marten, A. Heuer: Machine Learning on Large Databases: Transforming Hidden Markov Models to SQL Statements

Figure 9: Time (in ms) measured for pure calculation of the forward algorithm

Figure 10: Time (in ms) measured for pure calculation of the forward algorithm using logarithmic y-axis

37

Open Journal of Databases (OJDB), Volume 4, Issue 1, 2017

Table 2: Time taken (in ms) for calculating the forward algorithm in R and MonetDB as described in
Subsection 8.2 and depicted in Figures 9 and 10

Dimension R DB Update DB nested DB Update / DB nested DB nested / R
1e3 22 386 182 2.121 8.273
4e3 394 6163 2598 2.372 6.594
7e3 1159 18334 8922 2.055 7.698
1e4 2407 40352 18539 2.176 7.702

1.3e4 4217 66966 31026 2.158 7.357
1.6e4 NA 147295 50863 2.896 NA
1.9e4 NA 399473 84267 4.741 NA

a database. This is on the one hand not very elegant to do
in SQL and on the other limits the possibilites of query
optimization.

9 CONCLUSION

This paper has discussed how feasable Machine
Learning algorithms can be processed on database
systems. Preferable relational schemas for matrices and
vectors have been discussed and possible strategies for
calculating basic methods, like matrix multiplications
and discrete algebraic operations, have been presented.
Furthermore, a brief introduction to the theory of the
Hidden Markov Model has been given, concluding in
an analysis of a real Hidden Markov experiment which
has been coded in the language R. In two experiments,
we have shown that database solutions on the one hand
show good scaling properties when data size surpasses
the main memory wall, and on the other hand can
outperform statistical in-memory-software on certain
methods in the area of Machine Learning.

10 FUTURE WORK

So far we have analyzed and are analyzing several
other algorithms in the area of Machine Learning and
Scientific Computation. Among them, there are for
instance Eigenvalue solver, QR-matrix-decomposition,
QR-based linear regression, outlier detection, and
principal component decompositions. The results mainly
agree with our assumption that database solutions scale
well with growing data sizes and are especially suited for
implementing sparse matrix algorithms.

Furthermore, we have settled on a small group of basic
linear algebra operators that we are analyzing for intra
operator parallelism. When finished, we would like to
test our strategies on our analyzed Machine Learning
algorithms, like the Hidden Markov Model, and compare
the results to commonly used frameworks for Big Data
computations like Hadoop, Apache Flink, and Apache
Spark. We already did some experiments in comparing

our ML2PSQL approach on PostgreSQL and its parallel
version Postgres-XL with solutions on Flink and Spark.
These results will be published in the near future.

After experimental evaluation, efforts will be put
to enhance this framework with a special kind of
provenance management. Hereby we will adress
projection problems: Consider the calculation of any
statistical model. This model might be created using
all or at least a really high number n of sensors. Since
the model should be used for real time applications,
the amount of data needs to be drastically reduced.
Therefore we would like to choose those k � n
sensors with the most impact on the model. For this,
several mathematical approaches like singular value
decomposition, principal component analysis, and also
methods of data provenance (why- and how-provenance)
will be investigated.

As a last step, we have to improve the translation
of ML code to SQL statements. When using R as
an implementation language for the ML algorithms,
we struggle with the power and complexity of R
(and the undecidability of the equivalence of turing
machines, for the turing-complete language R). In fact,
our first step in this project was an attempt to build
an automatic R-to-SQL compiler. This task turned out
to be unsolvable due to the totally different approaches
and styles data scientists use for, e.g., formulating and
implementing a Hidden Markov Model in R. It would
be more appropriate for data scientists, ML developers
and our ML2SQL transformation process to use a
matrix-equation formalism with recursion or iterations
to describe an ML problem instead of a complete
programming language like R.

ACKNOWLEDGEMENTS

We would like to thank Prof. Dr.-Ing. Thomas Kirste,
Dr.-Ing. Frank Krüger and Martin Nyolt for their support
on the basic theory of Machine Learning techniques and
the provision of a lot of experiments and experimental
data for our use case of data-driven development of

38

D. Marten, A. Heuer: Machine Learning on Large Databases: Transforming Hidden Markov Models to SQL Statements

assistive systems. We would also like to thank the
anonymous reviewers of the first version of this paper
for their many detailed and constructive comments that
helped to improve this paper.

REFERENCES

[1] S. Abiteboul, M. Arenas, P. Barceló, M. Bienvenu,
D. Calvanese, C. David, R. Hull, E. Hüllermeier,
B. Kimelfeld, L. Libkin, W. Martens, T. Milo,
F. Murlak, F. Neven, M. Ortiz, T. Schwentick,
J. Stoyanovich, J. Su, D. Suciu, V. Vianu, and
K. Yi, “Research directions for principles of
data management (abridged),” SIGMOD Record,
vol. 45, no. 4, pp. 5–17, 2016.

[2] E. Anderson, Z. Bai, C. Bischof, S. Blackford,
J. Demmel, J. Dongarra, J. Du Croz,
A. Greenbaum, S. Hammarling, A. McKenney,
and D. Sorensen, LAPACK Users’ Guide, 3rd ed.
Philadelphia, PA: Society for Industrial and
Applied Mathematics, 1999.

[3] C. M. Bishop, Pattern recognition and machine
learning, 5th Edition, ser. Information science and
statistics. Springer, 2007.

[4] M. Boehm, D. Burdick, A. V. Evfimievski,
B. Reinwald, P. Sen, S. Tatikonda, and Y. Tian,
“Compiling machine learning algorithms with
SystemML,” in ACM Symposium on Cloud
Computing, SOCC ’13, Santa Clara, CA, USA,
October 1-3, 2013, G. M. Lohman, Ed. ACM,
2013, p. 57:1.

[5] S. Brin and L. Page, “Reprint of: The anatomy
of a large-scale hypertextual web search engine,”
Computer Networks, vol. 56, no. 18, pp. 3825–
3833, 2012.

[6] P. Carbone, A. Katsifodimos, S. Ewen, V. Markl,
S. Haridi, and K. Tzoumas, “Apache FlinkTM:
Stream and Batch Processing in a Single Engine,”
IEEE Data Eng. Bull., vol. 38, no. 4, pp. 28–38,
2015.

[7] R. Chirkova, “Query containment,” in
Encyclopedia of Database Systems. Springer US,
2009, pp. 2249–2253.

[8] T. Dalenius, “Finding a Needle In a Haystack or
Identifying Anonymous Census Records,” Journal
of Official Statistics, vol. 2, no. 3, pp. 329–336,
1986.

[9] A. Deutsch and R. Hull, “Provenance-Directed
Chase&Backchase,” in In Search of Elegance in
the Theory and Practice of Computation - Essays
Dedicated to Peter Buneman, ser. Lecture Notes in

Computer Science, V. Tannen, L. Wong, L. Libkin,
W. Fan, W. Tan, and M. P. Fourman, Eds., vol.
8000. Springer, 2013, pp. 227–236.

[10] R. Durbin, Biological Sequence Analysis:
Probabilistic Models of Proteins and Nucleic
Acids, ser. Biological Sequence Analysis:
Probabalistic Models of Proteins and Nucleic
Acids. Cambridge University Press, 1998.

[11] A. Elgohary, M. Boehm, P. J. Haas, F. R. Reiss,
and B. Reinwald, “Scaling machine learning via
compressed linear algebra,” SIGMOD Record,
vol. 46, no. 1, pp. 42–49, 2017.

[12] A. Ghoting, R. Krishnamurthy, E. P. D. Pednault,
B. Reinwald, V. Sindhwani, S. Tatikonda, Y. Tian,
and S. Vaithyanathan, “SystemML: Declarative
machine learning on MapReduce,” in Proceedings
of the 27th International Conference on Data
Engineering, ICDE 2011, April 11-16, 2011,
Hannover, Germany, S. Abiteboul, K. Böhm,
C. Koch, and K. Tan, Eds. IEEE Computer
Society, 2011, pp. 231–242.

[13] M. Giersich, T. Heider, and T. Kirste, “AI Methods
for Smart Environments - A Case Study on
Team Assistance in Smart Meeting Rooms,” in
Constructing Ambient Intelligence - AmI 2007
Workshops Darmstadt, Germany, November 7-
10, 2007 Revised Papers, ser. Communications in
Computer and Information Science, A. Ferscha and
E. Aitenbichler, Eds., vol. 11. Springer, 2007, pp.
4–13.

[14] G. Giorgidze, T. Grust, T. Schreiber, and J. Weijers,
“Haskell Boards the Ferry - Database-Supported
Program Execution for Haskell,” in Implementation
and Application of Functional Languages - 22nd
International Symposium, IFL 2010, Alphen aan
den Rijn, The Netherlands, September 1-3, 2010,
Revised Selected Papers, ser. Lecture Notes in
Computer Science, J. Hage and M. T. Morazán,
Eds., vol. 6647. Springer, 2010, pp. 1–18.

[15] H. Grunert and A. Heuer, “Generating privacy
constraints for assistive environments,” in
Proceedings of the 8th ACM International
Conference on PErvasive Technologies Related
to Assistive Environments, PETRA 2015, Corfu,
Greece, July 1-3, 2015, F. Makedon, Ed. ACM,
2015, pp. 27:1–27:4.

[16] H. Grunert and A. Heuer, “Datenschutz im
PArADISE,” Datenbank-Spektrum, vol. 16, no. 2,
pp. 107–117, 2016.

[17] H. Grunert and A. Heuer, “Privacy protection
through query rewriting in smart environments,”

39

Open Journal of Databases (OJDB), Volume 4, Issue 1, 2017

in Proceedings of the 19th International
Conference on Extending Database Technology,
EDBT 2016, Bordeaux, France, March 15-16,
2016, Bordeaux, France, March 15-16, 2016.,
E. Pitoura, S. Maabout, G. Koutrika, A. Marian,
L. Tanca, I. Manolescu, and K. Stefanidis, Eds.
OpenProceedings.org, 2016, pp. 708–709.

[18] H. Grunert, M. Kasparick, B. Butzin, A. Heuer,
and D. Timmermann, “From cloud to fog and
sunny sensors,” in Proceedings of the Conference
”Lernen, Wissen, Daten, Analysen”, Potsdam,
Germany, September 12-14, 2016., ser. CEUR
Workshop Proceedings, R. Krestel, D. Mottin, and
E. Müller, Eds., vol. 1670. CEUR-WS.org, 2016,
pp. 83–88.

[19] S. Günnemann, “Machine learning meets
databases,” Datenbank-Spektrum, vol. 17, no. 1,
pp. 77–83, 2017.

[20] A. Heuer and H. Lubinski, “Data Reduction - an
Adaptation Technique for Mobile Environments,”
in In Interactive Applications of Mobile Computing
(IMC’98), 1998, pp. 1–2.

[21] A. Heuer, “METIS in PArADISE: Provenance
Management bei der Auswertung von
Sensordatenmengen für die Entwicklung
von Assistenzsystemen,” in BTW 2015 -
Workshopband, ser. LNI, vol. 242. GI, 2015, pp.
131–136.

[22] Y. Huai, A. Chauhan, A. Gates, G. Hagleitner, E. N.
Hanson, O. O’Malley, J. Pandey, Y. Yuan, R. Lee,
and X. Zhang, “Major technical advancements
in Apache Hive,” in International Conference on
Management of Data, SIGMOD 2014, Snowbird,
UT, USA, June 22-27, 2014, C. E. Dyreson, F. Li,
and M. T. Özsu, Eds. ACM, 2014, pp. 1235–1246.

[23] S. Idreos, F. Groffen, N. Nes, S. Manegold, K. S.
Mullender, and M. L. Kersten, “Monetdb: Two
decades of research in column-oriented database
architectures,” IEEE Data Eng. Bull., vol. 35, no. 1,
pp. 40–45, 2012.

[24] J. Lajus, H. Mühleisen, “Efficient data management
and statistics with zero-copy integration,” in
International Conference on Scientific and
Statistical Database Management, vol. 24, 2014.

[25] F. Krüger, M. Nyolt, K. Yordanova, A. Hein, and
T. Kirste, “Computational State Space Models for
Activity and Intention Recognition. A Feasibility
Study.” PLOS ONE, Nov. 2014, 9(11): e109381.

[26] F. Krüger, K. Yordanova, C. Burghardt, and
T. Kirste, “Towards creating assistive software
by employing human behavior models,” Journal

of Ambient Intelligence and Smart Environments,
vol. 4, no. 3, pp. 209–226, 2012.

[27] F. Krüger, K. Yordanova, A. Hein, and T. Kirste,
“Plan synthesis for probabilistic activity
recognition.” in ICAART (2), 2013, pp. 283–
288.

[28] A. Kumar, M. Boehm, and J. Yang, “Data
management in machine learning: Challenges,
techniques, and systems,” in Proceedings of
the 2017 ACM International Conference on
Management of Data, SIGMOD Conference 2017,
Chicago, IL, USA, May 14-19, 2017, S. Salihoglu,
W. Zhou, R. Chirkova, J. Yang, and D. Suciu, Eds.
ACM, 2017, pp. 1717–1722.

[29] J. Leskovec, A. Rajaraman, and J. D. Ullman,
Mining of Massive Datasets, 2nd Ed. Cambridge
University Press, 2014.

[30] A. Y. Levy, A. Rajaraman, and J. D. Ullman,
“Answering queries using limited external query
processors,” J. Comput. Syst. Sci., vol. 58, no. 1,
pp. 69–82, 1999.

[31] F. Marguerie, S. Eichert, and J. Wooley, Linq
in Action. Greenwich, CT, USA: Manning
Publications Co., 2008.

[32] D. Marten and A. Heuer, “A framework for self-
managing database support and parallel computing
for assistive systems,” in Proceedings of the
8th ACM International Conference on PErvasive
Technologies Related to Assistive Environments,
PETRA 2015, Corfu, Greece, July 1-3, 2015,
F. Makedon, Ed. ACM, 2015, pp. 25:1–25:4.

[33] R. Obe and L. Hsu, PostgreSQL - Up and Running:
a Practical Guide to the Advanced Open Source
Database. O’Reilly, 2012.

[34] L. R. Rabiner, “A tutorial on hidden markov models
and selected applications in speech recognition,” in
Readings in Speech Recognition, A. Waibel and K.-
F. Lee, Eds. San Francisco, CA, USA: Morgan
Kaufmann Publishers Inc., 1990.

[35] J. Rafferty, C. D. Nugent, J. Liu, and L. Chen,
“From activity recognition to intention recognition
for assisted living within smart homes,” IEEE
Trans. Human-Machine Systems, vol. 47, no. 3, pp.
368–379, 2017.

[36] J. Reddy, An Introduction to the Finite Element
Method. McGraw-Hill Education, 2005.

[37] T. Rohrmann, S. Schelter, T. Rabl, and V. Markl,
“Gilbert: Declarative Sparse Linear Algebra
on Massively Parallel Dataflow Systems,” in
Datenbanksysteme für Business, Technologie

40

D. Marten, A. Heuer: Machine Learning on Large Databases: Transforming Hidden Markov Models to SQL Statements

und Web (BTW 2017), 17. Fachtagung
des GI-Fachbereichs ,,Datenbanken und
Informationssysteme” (DBIS), 6.-10. März
2017, Stuttgart, Germany, Proceedings, ser.
LNI, B. Mitschang, D. Nicklas, F. Leymann,
H. Schöning, M. Herschel, J. Teubner, T. Härder,
O. Kopp, and M. Wieland, Eds., vol. P-265. GI,
2017, pp. 269–288.

[38] B. Schwartz, P. Zaitsev, and V. Tkachenko, High
Performance MySQL - Optimization, Backups, and
Replication: Covers Version 5.5, Third Edition.
O’Reilly, 2012.

[39] S. A. Shahrestani, Internet of Things and
Smart Environments - Assistive Technologies for
Disability, Dementia, and Aging. Springer, 2017.

[40] W. Shi and S. Dustdar, “The Promise of Edge
Computing,” Computer, vol. 49, no. 5, pp. 78–81,
May 2016.

[41] K. Skala, D. Davidovic, E. Afgan, I. Sovic,
and Z. Sojat, “Scalable distributed computing
hierarchy: Cloud, fog and dew computing,”
Open Journal of Cloud Computing (OJCC),
vol. 2, no. 1, pp. 16–24, 2015. [Online].
Available: http://nbn-resolving.de/urn:nbn:de:101:
1-201705194519

[42] J. Stoer, R. Bartels, W. Gautschi, R. Bulirsch, and
C. Witzgall, Introduction to Numerical Analysis,
ser. Texts in Applied Mathematics. Springer New
York, 2002.

[43] M. Stonebraker, P. Brown, A. Poliakov, and
S. Raman, “The Architecture of SciDB,” in
Scientific and Statistical Database Management
- 23rd International Conference, SSDBM 2011,
Portland, OR, USA, July 20-22, 2011. Proceedings,
ser. Lecture Notes in Computer Science, J. B.
Cushing, J. C. French, and S. Bowers, Eds., vol.
6809. Springer, 2011, pp. 1–16.

[44] T. White, Hadoop: The Definitive Guide, 1st ed.
O’Reilly Media, Inc., 2009.

[45] K. Yordanova and T. Kirste, “A process for
systematic development of symbolic models for
activity recognition,” TiiS, vol. 5, no. 4, pp. 20:1–
20:35, 2016.

[46] M. Zaharia, R. S. Xin, P. Wendell, T. Das,
M. Armbrust, A. Dave, X. Meng, J. Rosen,
S. Venkataraman, M. J. Franklin, A. Ghodsi,
J. Gonzalez, S. Shenker, and I. Stoica, “Apache
Spark: a unified engine for big data processing,”
Commun. ACM, vol. 59, no. 11, pp. 56–65, 2016.

[47] Y. Zhang, H. Herodotou, and J. Yang, “RIOT:
i/o-efficient numerical computing without SQL,”
CoRR, vol. abs/0909.1766, 2009.

APPENDICES

Forward Algorithm in R

This code has been used for the experimental evaluation
in Section 8.

f o r w a r d <− f u n c t i o n (A, B , p i vec , obs){
i n i t
a l p h a <− p i v ∗ om [, obs [1]] ;

r e c u r s i o n
f o r (i i n 2 : l e n g t h (obs)) {

a l p h a <− (a l p h a %∗% tm) ∗
om [, obs [i]] ;

}

t e r m i n a t i o n
sum (a l p h a)

}

d i m e n s i o n s ”n” pas se d v i a t e r m i n a l
args = commandArgs (

t r a i l i n g O n l y =TRUE) ;
i f (l e n g t h (args)==0) {

s top (” ” , c a l l . =FALSE)
}
n <− as . numeric (args [1]) ;

tm = t r a n s i t i o n m a t r i x
tm <− matrix (as . matrix (

f r e a d (” tm . csv ” , h e a d e r =FALSE ,
sep = ’ , ’)) [, 3] , nrow=n) ;

om <− tm ;

random o b s e r v a t i o n s e q u e n c e o has
been computed b e f o r e
o <− c (1 2 4 , 8 4 , 1 9 5 , 4 0 , 1 2 2 , 1 4 2 ,

1 3 , 6 1 , 7 , 1 2 5) ;
p i v <− as . matrix (f r e a d (” p i . c sv ” ,

sep = ’ , ’)) [, 2] ;

ptm <− proc . t ime () ;
e r g <− f o r w a r d (tm , om , piv , o) ;
t ime t a k e n <− proc . t ime ()−ptm ;

41

http://nbn-resolving.de/urn:nbn:de:101:1-201705194519
http://nbn-resolving.de/urn:nbn:de:101:1-201705194519

Open Journal of Databases (OJDB), Volume 4, Issue 1, 2017

AUTHOR BIOGRAPHIES

Dennis Marten received his
M.Sc. in mathematics with
emphasis in numerical analysis
in 2012 at Rostock University.
After two years of work in the
wind energy industry he started
as a doctoral student in 2014
at Rostock University. Dennis
Marten is funded by the German

Research Foundation (DFG), Graduate School 1424
(Multimodal Smart Appliance Ensembles for Mobile
Applications - MuSAMA).

Andreas Heuer, born 1958
in Uelzen (Germany), studied
Mathematics and Computer
Science at the Technical
University of Clausthal from
1978 to 1984. He got his PhD
and Habilitation at the TU
Clausthal in 1988 and 1993,
respectively. Since 1994, he
is full professor for Database
and Information Systems at the
University of Rostock. Andreas

Heuer is interested in fundamentals of database models
and languages, object-oriented databases and digital
libraries, database support for assistive systems, and big
data analytics, especially in the four P: performance,
privacy, preservation and provenance.

42

	Introduction
	State of the Art
	The PArADISE Project
	System Environment
	ML-into-SQL Translation Process
	Basic Operations
	Aggregation and Matrix Multiplication

	Hidden Markov Model
	Experiment
	Discrete finite Markov Processes
	Definition of the Hidden Markov Model
	Experiment HMM-Parameters

	HMM into SQL
	Calculate Model
	Run Model

	Evaluation
	Transition Matrix
	Forward Algorithm
	Limitations

	Conclusion
	Future Work

