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ABSTRACT

Provenance describes how results are produced starting from data sources, curation, recovery, intermediate
processing, to the final results. Provenance has been applied to solve many problems and in particular to understand
how errors are propagated in large-scale environments such as Internet of Things, Smart Cities. In fact, in
such environments operations on data are often performed by multiple uncoordinated parties, each potentially
introducing or propagating errors. These errors cause uncertainty of the overall data analytics process that is further
amplified when many data sources are combined and errors get propagated across multiple parties. The ability to
properly identify how such errors influence the results is crucial to assess the quality of the results. This problem
becomes even more challenging in the case of Linked Data Streams, where data is dynamic and often incomplete. In
this paper, we introduce methods to compute provenance over Linked Data Streams. More specifically, we propose
provenance management techniques to compute provenance of continuous queries executed over complete Linked
Data streams. Unlike traditional provenance management techniques, which are applied on static data, we focus
strictly on the dynamicity and heterogeneity of Linked Data streams. Specifically, in this paper we describe: i)
means to deliver a dynamic provenance trace of the results to the user, ii) a system capable to execute queries over
dynamic Linked Data and compute provenance of these queries, and iii) an empirical evaluation of our approach
using real-world datasets.
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1 INTRODUCTION

“Provenance is information about entities, activities,
and people involved in producing a piece of data or

This paper is accepted at the Workshop on High-Level Declarative
Stream Processing (HiDeSt 2018) held in conjunction with the
41st German Conference on Artificial Intelligence (KI) in Berlin,
Germany. The proceedings of HiDeSt@KI 2018 are published in
the Open Journal of Databases (OJDB) as special issue.

thing, which can be used to form assessments about
its quality, reliability or trustworthiness.” [28]. It is
a central part of Linked Data management. Systems
should be able to both maintain provenance but also
interchange it using common vocabularies and data
formats. Understanding where and how a piece of data
is produced (its provenance) has long been recognized as
an important factor in determining the quality of a data
item particularly in data integration systems [34]. Thus,
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it is no surprise that provenance has been of concern
within the Linked Data community where a major use
case is the integration of data sets published by multiple
different actors [5].

Heterogeneous environments involve multiple
participants and data sources producing erroneous data
that are propagated and aggregated. Propagated errors
are amplified due to various operations in the data
flow, e.g., joins, analytics, recovery, etc. To understand
and quantify these errors, we develop techniques to
describe how particular pieces of data were produced
and combined to deliver query results. These techniques
enable to understand the impacts of error propagation
on the resulting query answers. Our techniques provide
detailed fine-grained provenance trace for queries
executed over dynamic Linked Data Streams. It is
pivotal for such techniques to work efficiently, with
low costs in terms of memory consumption and query
execution time. With the added provenance trace, we
foresee some performance penalty. State-of-the-art
research [13, 4, 37] show that, for static data, we can
reduce the overhead to 20%-30% which is considered to
be an acceptable cost. Our techniques achieve similarly
low overhead for dynamic Linked Data Streams.

Unlike existing approaches, which are applied on
static data, we address dynamic data, which are gaining
momentum these days in the context of the Internet
of Things Sensor Network and Smart Cities. For
example, a livestock monitoring system1, periodically
collects data from multiple devices, which are either
attached on the bodies of the livestock or deployed
all over the grass field. Data from such sources is
continuous and unbounded. It is not realistic to store
all of the data and then processing them altogether. On
one hand,the volume of the data can be too large, on
the other hand, even all the data are stored, the time
consumptions of processing them can be unimaginable.
Therefore, algorithms that handling such dynamicity are
more reasonable.

In this paper, we address the following research
question: How can we efficiently compute dynamic
provenance trace in the context of Linked Data
Streams? The continuous provenance polynomial, i.e.,
a dynamic provenance trace of the continuous query
(i.e., query executed over a long period of time over
dynamic data) represents how particular pieces of data
were produced and combined to deliver the results. The
continuous provenance polynomial has to satisfy two
requirements i) it has to be computed efficiently in a
continuous fashion along with the execution of the query,
ii) it has to show how the query execution process
evolves over time.

1 http://www.cattle-watch.com/

Concretely, the contributions of this paper are:

• definition and description of the provenance
polynomial (Section 3);

• system architecture for processing continuous
queries and tracing their provenance (Section 4);

• query execution strategies for executing continuous
queries and tracing their provenance (Section 5);

• empirical evaluation of our techniques (Section 6).

2 RELATED WORK

Provenance pertains to tracing particular pieces of
data throughout the processing pipeline, and has been
studied in several fields [9, 8, 33]. Data processing
in distributed environments often takes place across
heterogeneous systems, yielding the need to exchange
provenance information, i.e., how data was combined,
recombined, and processed. Various types of provenance
information have been semantically formalized in the
Open Provenance Model [27]. In the same context,
the W3C PROV model [32] has been introduced to
standardize a recommendation for the exchange of
provenance over the Web. Such provenance models
provide a way to describe how data is processed and
propagated.

Provenance in Linked Data is often attached to a
dataset descriptor [2] that is typically embedded in
a Vocabulary of Interlinked Dataset (VoID) [3] file.
VoID is an important aspect of Linked Data provenance
as it allows to define what constitutes a dataset as
well as its associated metadata. Within Linked Data,
provenance is attached using either reification [16] or
named graphs [7]. In fact, the support for provenance
is one reason for the inclusion of named graphs in
the latest version of RDF (the Resource Description
Framework2) [38]. Provenance can also be attached
to a triple as an annotation [36, 11]. Formally, these
annotated data are represented by algebraic structures
such as communicative semirings, which can take the
form of polynomials with integer coefficients [14].
These polynomials represent how source tuples are
combined through different relational algebra operators
(e.g., union, joins). Theoharis et al. provide
a comprehensive theoretical foundation for tracing
provenance in RDF queries [35]. Provenance approaches
in Linked Data have also been used to determine and
propagate trust values [15].

Zimmermann et al. [40] proposed to annotate triples
with temporal data and a provenance value that refers to

2 https://www.w3.org/TR/rdf-primer/
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the source of the triple. A quadruple takes the form of a
statement (Subject, Predicate, Object, Annotation), i.e.,
a N-Quad. A similar approach is described by Udrean
et al. [36] where the authors extend RDF for temporal,
uncertain, and provenance annotations. The main focus
of this work is to develop a theoretical model to manage
such metadata information. In the same context, Nguyen
et al. [31] propose to use a singleton property instead of
RDF reification or named graphs to describe provenance.

The available implementations of annotated RDF
approaches often do not address “how-provenance”,
i.e., “how” a query result was constructed [40, 36].
Moreover, these implementations have only been applied
to small (around 10 million triples), static, and complete
datasets focusing on inferred triples and are not aimed
at reporting provenance polynomials [14] (i.e., algebraic
structures representing how data is combined) for
SPARQL query results.

None of the approaches described above specifically
targets dynamic Linked Data Streams. As they
were designed for static data they do not take into
account dynamicity of input streams and they do not
allow to execute continuous queries over such streams.
Moreover, due to the employed storage models (multiple
indices and provenance annotations) their performance
deteriorates in case of dynamic data. In this project,
we specifically investigate the challenge in provenance
management: dynamicity.

3 CONTINUOUS PROVENANCE POLYNOMIAL

Our goal is to provide a dynamic provenance trace
of queries, i.e., a continuous provenance polynomial.
We start with a definition of a continuous provenance
polynomial for continuous queries executed over Linked
Data Streams. However, in contrast to the previous
work we focus on practical realization of this provenance
polynomial over dynamic Linked Data.

In our system we use two operators to express the
provenance polynomial:

• ⊕ to represent unions of elements;

• ⊗ to represent joins between elements.

We use ⊕ when a triple pattern of a query can
be satisfied by multiple triples possible from multiple
sources of data streams. ⊗ is used to express join
between few triple patterns. The join operation can
be performed either within one data stream or between
many sources of data. To capture the dynamic nature of
data we add a corresponding timestamp to each element
within the provenance polynomial.
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Figure 1: A provenance polynomial is computed
dynamically along with the query execution. At each
stage of the data propagation we have information on
how the system derived the current state.

To better understand the process of computing the
continuous provenance polynomial, we introduce an
example describing an expected result of this task.

Let Sys be a system that consists of a knowledge
base with data on drivers and companies they work for
(KB=(driver1, worksFor, company1),(driver2, worksFor,
company1),(driver3, worksFor, company2), (driver14
worksFor, company1)). Each driver is equipped
with a device streaming his position (triples vn =
(drivern, position, locationi)). S|in|n denotes the
input stream for the driver n. The provenance
information of a triple in the stream is including: device
id, physical state of the device, configuration parameters,
etc. The provenance of the triple is grouped under a
provenance annotation expressed with a named graph
gj . We want to notify two truck drivers working for the
same company when they are within a given distance,
e.g., 1km. We also want to be able to trace back how
the notification was generated, i.e., which pieces of data
were involved to produce the notification.

Figure 1 shows a query execution flow. The
figure shows how our techniques trace provenance of
continuous queries in parallel to a query execution.
To detect spatial locations we use a query Tn =
(?drivern; detectedAt; ?locationi). Let Γn be the
result of such a query for the nth driver. We consider
two data streams for two drivers hence, we obtain two

7
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positions Γ1 and Γ2. Along with the intermediate
results, we trace the provenance of the involved data,
gB and gC, which is the first step in our provenance
computation. Next, we join the two intermediate results
(Γ3 = Γ1 ./ Γ2), where ./ stands for a natural
join, to obtain information on the proximity of the
two drivers. Here, we incorporate the provenance
computation to keep traces this join operation, which for
Γ3 is described with the polynomial gB⊗gC (⊗ denotes
a provenance join operation). Subsequently, over the
knowledge base KB, we evaluate a triple pattern (query)
T3 = (?drivern, worksFor, ?companyj) to retrieve
information about drivers and companies they work for.
In addition to the obtained result Γ4 the KB also output
a provenance trace denoted by gX . Finally, we join Γ3

and Γ4 in order to produce a notification. At this point
we compute provenance of the notification (final result).
In our example provenance of the final result is described
with the following polynomial: (gB ⊗ gC)⊗ gX .

In the following sections, we describe our novel
system architecture and query execution strategies
that allow us to compute this continuous provenance
polynomial in parallel to query execution. Our strategies
enable tracing provenance at multiple levels starting
from the source of data to the final result. They
provide knowledge of provenance at every stage of
query execution hence, each processing node has full
information on how particulate piece of data was
derived.

4 ARCHITECTURE

This section provides an overview of our system and it
describes how different modules cooperate. Our system
adopts a fault-tolerant decentralized peer-to-peer based
cluster membership service, Akka Cluster [24], which is
based on gossip protocols [10, 12]. This decentralized
architecture reduces the risks of single point failures and
bottlenecks. The peer-to-peer gossip based nature of the
cluster endows high flexibility in adding and removing
nodes, i.e., the size of the cluster can be dynamically
increased or decreased.

Cluster nodes play three roles: User Interface (UI),
Query Execution Router, and Executor. They correspond
to three modules of our system as depicted in Figure 2.
The UI module is responsible for the interactions with
end users, i.e., receiving SPARQL queries from a client
and collecting the results for the client. After receiving a
query, the UI forwards it to the Query Execution Router
which dispatches the query to the Executor to run.

Each instance of the Executor module is created
dynamically every time the Query Execution Router
receives a SPARQL query. This instance is dispached

to execute on cluster Executor node with the lowest
loads based on the Adaptive Load Balancing metrics
information [22] which is collected by the Query
Execution Router. The load balancing metrics data is
computed on each of the Executor nodes according to
1) JVM heap memory usage, 2) average system load for
1 minute, and 3) CPU usage. The run-time in-use load
balancing metrics can be any combinations of 1) to 3),
which is configurable.

When instances of Executor module are created and
dispached onto cluster Executor nodes, they begin to
execute queries with a stream based pipeline processing
mechanism, Akka Stream [23]. Queries are executed
over a continuous Linked Data stream from an external
distributed message queue, Kafka [21].

One partition inside the queue corresponds to one
source of stream data. We feed queue partitions with
messages containing several RDF triples, and the size of
each message can be configured. That is, we process
micro batches from heterogeneous data streams.

The typical constitution of our system is one UI
node with one instance of the UI module deployed, one
Query Execution Router node with one instance of the
Query Execution Router module deployed, and multiple
Executor nodes with a number of instances of the
Executor module deployed for each, i.e., the Executor
nodes can be n-ary relationship with instances of the
Executor module. Each Executor node can be deployed
with multiple instances of the Executor module.

We implement all three modules following the actor
paradigm [17]. Our rationale behind adopting the Actor
Model [17] are:

1. The asynchronous nature of actor communications
provides better throughput. Messages are sent to
message queues of actors, therefore, the system
does not have to wait for actors to accomplish their
job. For example, UI does not have to wait for
Query Execution Router dispatching queries to the
Executors. Query Execution Router can accept new
queries from the UI while Executors execute the
queries.

2. The Location Transparency [39, 25] provides
flexibility to change the physical setup of a
cluster. There are two levels of identifications for
each actor, the Logical ID and the Physical ID,
where Logical ID only conveys relative locations
between different actors, whereas, Physical ID
adds information about machines, protocols, etc.
To identify different actors, we only need to use
their Logical ID. Hence, the identifications of
actors are independent from their concrete physical
deployments. In practice, it means that all modules
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Figure 2: The generic architecture of our continuous provenance polynomial system

can be transparently re-deployed within the cluster,
which enables dynamic growing and shrinking of
the physical infrastructure.

5 QUERY EXECUTION

In this section we describe the implementation details
of the continuous query provenance polynomial which
is related to the Query Execution Router module and
Executor module as shown in Figure 3. The Query
Execution Router module is responsible to instantiate
and deploy the Executors and accordingly forwards
the received query strings. The Executor module
implements a query execution pipeline. The query
execution pipeline enables continuous execution of
SPARQL queries over the Linked Data Stream to return
the query results, along with a provenance polynomial,
i.e., a description what and how pieces of data were
combined to derive the results. We will elaborate this
query execution pipeline in the following section.

5.1 Query Execution Pipeline

Our techniques leverage Akka Stream [23] to implement
the query execution pipeline so that it can handle time
sliced Linked Data (Linked Data Streams).

Figure 4 depicts the different transformations over
incoming Linked Data stream that our system performs
in order to execute a query. We distinguish 3 different
transformations throughout the pipeline:

1. Combining Transformation. We feed our
system with multiple external Linked Data streams

(Figure 3) via a distributed message queue [21],
as explained in Section 4. One partition of
the queue processes messages from one stream.
In this transformation, triples (formatted with
JSONLD [26]) from different streams are combined
into one single flow of Linked Data. Besides,
the interval and duration of the time slicing are
configured in this step after the combination. For
example, before the execution of the pipeline, we
set the interval to 5 seconds and make the execution
to last 10 minutes, which means every 5 seconds
the pipeline executor fetches one message of triples
from each external stream (from the distributed
message queue) and accordingly combines these
messages of triples into one flow of Linked Data.
Afterwards, this single flow of Linked Data is
passed through to the next two steps of the pipeline.
The pipeline executor repeats this process until it
expires the pre-set 10 minutes, i.e., it consumes
120 messages through the sequence of pipeline
transformations.

Very often, the query execution and provenance
tracing in the next two steps can not complete
on time when the time interval set in the first
step is due. This happens especially when time
interval is set small whereas volume of data
to be processed inside the message is large.
However, it does not exist an universally applicable
time interval configuration in practice, since the
changing volume of the message data. Therefore, in
our system, we adopt a back pressure [1] handling
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Query Execution Router

Executors

Message Queue

Figure 3: Query execution router and executor modules

Figure 4: Query execution pipeline at executor nodes

strategy, in which slow consumer (each of the next
two steps of the pipeline) signals fast producer
(one step before current executing one) to require
more messages of data when they finish current
executions. Besides, the fast producer buffers new
messages in a bounded manner until more demand
is signaled by the slow consumer. This refers to a
pull-based back pressure handling strategy, which
applies when generation speed of the producer
overpasses processing speed of the consumer
during the pipeline execution. This signaling-based
methodology is also applied to other situations,
such as slow-producer-fast-consumer, speed of the
producer and consumer matches without a delay of
producer to emit new messages whenever they are
available.

2. Query Execution Transformation implements the
core algorithm to continuously execute queries
and to trace provenance. We adopt Apache Jena

ARQ [18] to facilitate the query execution and
query provenance computation. A SPARQL query
in ARQ undergoes several stages of processing [19]
as below:

(a) Parsing SPARQL query string to a Query
object

(b) Translating the Query object to a SPARQL
algebra S-Expression (SSE) [20]

(c) Establishing in-memory SPARQL algebra
parsing tree (the query plan) from the SSE
expression

(d) Evaluating the query plan (traversing the
in-memory SPARQL algebra parsing tree
and accordingly matching the relating query
pattern with the streamed Linked Data graphs)

Our query provenance tracing algorithm extends
the algorithm in the last processing stage (stage

10
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(d)), which is further demonstrated in Algorithm 1.
Algorithm 1 returns the results of the query and
its provenance. This provenance is later used as
input for the next transformation to assemble the
provenance polynomial.

3. Provenance Polynomial Assembling
Transformation. This transformation transforms
the queryProvenanceMap from last step to
generate a provenance polynomial. It converts the
pairs inside the map to the sequence of provenance
information connected by the two polynomial
operators, (⊗ and ⊕).

Our system repeats executing this query pipeline over
the Linked Data Stream to generate consecutive query
provenance polynomials. In the following section, we
will present our different implementation strategies for
the query execution pipeline.

5.2 Implementation Strategies

We implement the query execution pipeline with both
synchronous and asynchronous mechanisms, as shown
in figure 5. Although asynchronism, message of
previous time slice will never be processed later than
message of current time slice, i.e., our asynchronous
implementations still preserve the time sequence of
messages of Linked Data graphs during the execution
of the pipeline. In the pipeline, we choose 2 pointcuts
to integrate asynchronism. The first pointcut is at
all the three steps of the pipeline. The asynchronous
strategy enables these steps to execute in parallel with
multiple threads. The second pointcut is at step (2)
(Algorithm 1) of the pipeline, where we implement the
asynchronous strategy of query pattern matching for
all the Basic Graph Patterns (BGPs). We implement
both the synchronous and the asynchronous strategies at
the two pointcuts respectively, which means we totally
bring 4 implementation strategies into effect. And next,
we will further interpret the 4 different implementation
strategies as followed.

CoreSyncQESync This strategy is the vanilla version
for the pipeline implementation. It leverages a single
thread to undertake the execution of the synchronous
implementation strategy for both pointcuts. During
the execution of the pipeline, all the three steps of
transformations have to wait for each other, i.e., step (1)
can not start combining new arriving messages of Linked
Data graphs until step (3) accomplishes generating
polynomials for current message. Besides, Step (2)
executes all the query patterns (from the SPARQL
algebra parsing tree of Algorithm 1) in sequence. Here
“Core” stands for the pipeline implementation, “QE,
Query Execution”, is the algorithm implementation

for Basic Graph Pattern (BGP) matching in step (2)
Algorithm 1.

In this sequential implementation strategy, the
SPARQL query execution and the provenance tracing
strictly follow the time sequence of the arriving messages
of Linked Data graphs. Besides, it starts processing the
new arriving message only after it finishes processing the
old one.

CoreSyncQEAsync This implementation strategy
differs from the CoreSyncQESync strategy only with
the asynchronous implementation of the BGP matching
algorithm. In this strategy, BGP matchings are executed
in parallel with multiple threads. If BGP includes many
Triple patterns, all the Triple patterns are simultaneously
evaluated as well by many threads. For example, the
evaluations of the left and right sub-trees of a JOIN query
pattern, each sub-tree is a GRAPH-BGP, the evaluation
for each of them in this implementation strategy is
asynchronous. However, the execution of the whole
pipeline is still step-by-step.

CoreAsyncQESync This implementation strategy
implements the non-blocking executions for the whole
pipeline. However, BGP matchings in this strategy is
still executed in sequence. During the execution process
of the whole pipeline, when the new message arrives,
step (1) can directly start processing with a new thread
and not necessarily wait for finish of step (3).

CoreAsyncQEAsync It implements both the pipeline
and the BGP matchings in asynchronism, i.e., both the
executions of all the three steps of the pipeline and the
evaluations of the BGPs are executed in parallel without
waiting.

In the following section, we will further evaluate these
4 different implementation strategies with experiments.

6 EXPERIMENTAL EVALUATION

To empirically evaluate our system we have conducted 4
experiments. Firstly, we compare four implementations
of our system and differ, then we compare the best of our
implementations with two state-of-the-art triplestores:
Virtuoso3 and Blazegraph4. Finally, we evaluate
scalability of our system based on different dataset sizes
and we break down the pipeline executions to find the
areas for improvements.

The datasets, queries, scripts, all results, and the
source code are available on the project website.5.

Hardware Platform: All experiments were executed
on 6 Dell PowerEdge R810 servers with Xeon E7-
2830 processors (2 CPUs/server, 8 cores/CPU), 64GB of

3 https://virtuoso.openlinksw.com/
4 https://www.blazegraph.com/
5 http://www.ods.tu-berlin.de/PROVDS
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Algorithm 1: Query provenance tracing algorithm
Input: combinedDataset = {graph1, graph2, graph3, ...graphn}: The set of Linked Data graphs after

combination, in which graph1, graph2, graph3, ...graphn are Linked Data graphs from distinct
sources

Input: parsingTree = {queryPattern1, queryPattern2, queryPattern3, ...
queryPatternn}: The SPARQL algebra parsing tree (query plan) established from the SSE expression; set
of query patterns
Output: queryResults, queryProvenanceMap

1 begin
2 queryResults←− NULL
3 queryProvenanceMap←− ∅
4 queryPattern←− queryPattern1

/* traverse the parsing tree from bottom to top */
5 while queryPattern still inside ParsingTree do
6 gt = graph1

/* matching current query pattern with all the Linked Data graphs
inside combinedDataset */

7 while gt still inside combinedDataset do
8 if queryPattern is NOT JOIN or UNION then
9 if match(queryPattern, gt) is NOT EMPTY then

10 queryProvenanceMap.add(“time stamp of current combinedDataset+
queryPattern” : [matched triples and source of gt])

11 end
12 end
13 else
14 if match(queryPattern, gt) is NOT EMPTY then
15 leftPattern = queryPattern.left()
16 rightPattern = queryPattern.right()
17 leftResults = queryProvenanceMap.lastFind(leftPattern).value()
18 rightResults = queryProvenanceMap.lastFind(rightPattern).value()
19 queryProvenanceMap.add(“time stamp of current combinedDataset +

queryPattern” : [matched triples, leftPattern, leftResults, rightPattern,
rightResults and source of gt])

20 end
21 end
22 gt = next graph in combinedDataset

23 end
24 if queryPattern is the TOP of ParsingTree then
25 queryResults = queryProvenanceMap.find(queryPattern).value()
26 end
27 queryPattern = next query pattern in ParsingTree

28 end
29 end

12
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Figure 5: Implementation strategies for 2 pointcuts of the query execution pipeline (Core - pipeline
implementation; QE - query execution, implementation for algorithm of basic graph pattern (BGP)
matching)

DDR3 RAM, 4TB 2.5” SATA SSD per server, running
Ubuntu Server 16.04.3 LTS on each server.

Datasets: We used two different datasets for our
experiments: the Billion Triples Challenge (BTC)6 and
the Web Data Commons (WDC)7[29]. Both datasets
are collections of RDF data gathered from the Web.
They represent two very different kinds of RDF data.
The Billion Triple Challenge dataset was created based
on datasets provided by Falcon-S, Sindice, Swoogle,
SWSE, and Watson using the MultiCrawler/SWSE
framework. The Web Data Commons project extracts
all Microformat, Microdata and RDFa data from the
Common Crawl Web corpus and provides the extracted
data for download in the form of RDF-quads or
CSV-tables for common entity types (e.g., products,
organizations, locations, etc.).

We consider 100 million triples for each dataset
( 11GB). To prepare the data, we firstly transformed
the datasets to be stored from NQuads [6] to triples of
JSONLD, stored the sources information with folders.
We split the datasets into multiple files distributed among
folders. Each file corresponds to one message and
each folder corresponds to one data source streaming
messages.

Workload Queries: We take two distinct sets of
workload queries into consideration. For BTC, we use

6 https://km.aifb.kit.edu/projects/btc-2012/
7 http://webdatacommons.org/

8 existing queries originally proposed in [30]. Based
on the queries used for BTC dataset, we constructed 7
new queries for WDC dataset, encompassing different
kinds of typical query patterns for RDF, such as star-
queries of different sizes and up to 5 joins, object-object
joins, object-subject joins, and triangular joins. We also
included UNION and OPTIONAL clauses in 2 of the 7
workload queries. We set the time interval for continuous
queries to one second.

Experimental Methodology: In the following, we
report the average execution time of the 10 query runs.
We measured execution time of the query execution
pipeline, total execution time of all the 3 steps, and
execution time of each of the 3 steps of the the pipeline.

6.1 Experiment 1

We implemented four versions of our system to explore
the differences between synchronous and asynchronous
executions at different stages in our query execution
pipeline. In this experiment scenario, the query
execution time includes all 3 steps of the query execution
pipeline.

Figure 6 and 7 show query execution time of
different strategies for different workload queries.
The asynchronous execution of the SPARQL algebra
parsing tree has higher impact on the performance
than the pipeline strategy. For all the workload
queries over both BTC and WDC datasets, the
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Figure 6: Experiment 1: Query execution time for
our four strategies and BTC dataset, logarithmic
scale, Query 5 timed out

CoreAsyncQEAsync and CoreSyncQEAsync strategies
performs 1.4 to 1.6 times faster than the corresponding
CoreAsyncQESync and CoreSyncQESync strategies.
By contrast, the asynchronous pipeline execution
strategies, CoreAsyncQESync and CoreAsyncQEAsync,
are 1.2 to 1.4 times more efficient than the corresponding
CoreSyncQESync and CoreSyncQEAsync strategies.
The reason for this is that the execution of the
SPARQL algebra parsing tree accounts for a largest
proportion of the execution time of the Query Execution
Transformation which is the most expensive one out
of our three pipeline steps. In consequence, the
fully asynchronous strategy, i.e., CoreAsyncQEAsync
performs the best and the CoreSyncQESync strategy is
the slowest.

6.2 Experiment 2

In this scenario we compare our methods with Virtuoso
and Blazegraph. To exhibit the exact cost of tracing
provenance we evaluate two variants of out techniques
with and without tracing provenance. Both of them base
on CoreAsyncQEAsync implementation strategy, since
it is the fastest one. Neither Virtuoso nor Blazegraph
is a stream processing system, i.e., both are standard
triplestores. Therefore, we simulate continuous query
processing for these systems. We load all the data and
we repeatedly execute a SPARQL query with the same
time interval as for our system, i.e., 1 second. In order
to focus this experiment on the query execution process,
for Virtuoso and Blazegraph we count only time of the
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Figure 7: Experiment 1: Query execution time for
our four strategies and WDC dataset, logarithmic
scale

query execution without transferring and displaying the
results. For our system we also count only the actual
query execution, i.e., Query Execution Transformation
(see Section 5).

As shown in Figure 8 and 9, for both datasets, our
technique without provenance tracing (CPP-QueryOnly)
is as fast at the baselines. More importantly, our system
with the provenance tracing (CPP-PROV) introduces
only 15% overhead which is significantly less than the
overhead introduces by other state-of-the art provenance
enabled systems (see Section 1).

6.3 Experiment 3

The goal of this experiment scenario is to evaluate how
our system behaves with increasing data size. We begin
with 10 million triples and we finish with the full dataset
(100 million triples). In this experiment scenario we use
both BTC and WDC datasets, the query execution time
includes all 3 steps of the query execution pipeline. Due
to the space limitations below we present only selected
queries, all results are available online8.

Figure 10 and Figure 11 show the execution time
of query 1 to 8 (for BTC, in which query 5 reached
time-out) and query 1 to 7 (for WDC) respectively,
for different implementations of our system and over
changing volume of consumed datasets. The overall
conclusions in terms of comparing our four versions
of the systems are similar as for Experiment 1. As
expected, the fully asynchronous version of our system
(CoreAsyncQEAsync) outperforms the other versions.
Moreover, we can also say that all versions of our

8 http://www.ods.tu-berlin.de/PROVDS
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Figure 8: Experiment 2: Query execution time for
Virtuoso, Blazegraph, and our CoreAsyncQEAsync
with and without tracing provenance, BTC dataset,
logarithmic scale

system, hence the entire architecture, scale linearly with
the data size.

6.4 Experiment 4

This experiment scenario breaks down the query
execution process into four transformations (Section 5)
and it measures time that the system spends on each
of the transformations, for our fully asynchronous
implementation, i.e., CoreAsyncQEAsync. In this
experiment scenario we use both datasets, however, the
execution time of the query 5 for BTC took more than 10
days, so we aborted it.

Table 1 and 2 show that a large proportion of query
execution time ( 80%) is spent on the Query Execution
Transformation (Section 5), since this transformation is
the most complex from the algorithmic point-of-view.
It includes graph pattern matching algorithm, parsing
tree traversal algorithm, and provenance computation
algorithm.

7 CONCLUSIONS

This research probes into a stream based query
provenance tracing system to generate continuous
provenance polynomial for the SPARQL queries over
Linked Data Streams. It adopts an asynchronous
stream processing framework to introduce asynchronous
mechanism into our system. We implement an
asynchronous version of SPARQL algebra parsing tree
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Figure 9: Experiment 2: Query execution time for
Virtuoso, Blazegraph, and our CoreAsyncQEAsync
with and without tracing provenance, WDC dataset,
logarithmic scale

traversing algorithm, however, it still includes many
iteration based algorithms. It is valuable in future to
implement a complete stream transformations (e.g., map,
flatmap) driven SPARQL query execution and analysis
engine to take full advantages of the asynchronous
query execution. However, it unavoidably brings
more complexities to handle concurrency issues, which
possibly needs more advanced concurrent data structure
to process the dynamic Linked Data. Furthermore,
currently our system only considers complete Linked
Data Streams. In future, we are going to integrate
incompleteness into our system with the capabilities to
recover missing data.
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Table 1: Experiment 4: Execution time for each transformation in the query execution pipeline for the fully
asynchronous implementation of our system, i.e., (CoreAsyncQEAsync) for BTC dataset

Step (1) Step (2) Step (3) Total
Q1 0.798 4.722 0.443 5.963
Q2 2.342 12.063 1.215 15.62
Q3 1.175 6.517 0.624 8.316
Q4 302.405 1900.292 163.798 2366.496
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Q8 0.480 3.543 0.26 4.282
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Table 2: Experiment 4: Execution time for each transformation in the query execution pipeline for the fully
asynchronous implementation of our system, i.e., (CoreAsyncQEAsync) for WDC dataset

Step (1) Step (2) Step (3) Total
Q1 0.469 3.451 0.253 4.173
Q2 0.475 3.469 0.256 4.2
Q3 0.472 3.457 0.255 4.184
Q4 0.480 3.502 0.26 4.242
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Q6 0.464 3.446 0.25 4.16
Q7 0.473 3.456 0.256 4.185
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