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ABSTRACT 
 

For answering top-k queries in which attributes are aggregated to a scalar value for defining a ranking, usually 

the well-known branch-and-bound principle can be used for efficient query answering. Standard algorithms 

(e.g., Branch-and-Bound Ranked Search, BRS for short) require scoring functions to be monotone, such that a 

top-k ranking can be computed in sublinear time in the average case. If monotonicity cannot be guaranteed, 

efficient query answering algorithms are not known. To make branch-and-bound effective with descending or 

ascending rankings (maximum top-k or minimum top-k queries, respectively), BRS must be able to identify 

bounds for exploring search partitions, and only for monotonic ranking functions this is trivial. In this paper, we 

investigate the class of quasi-convex functions used for scoring objects, and we examine how bounds for 

exploring data partitions can correctly and efficiently be computed for quasi-convex functions in BRS for 

maximum top-k queries. Given that quasi-convex scoring functions can usefully be employed for ranking objects 

in a variety of applications, the mathematical findings presented in this paper are indeed significant for practical 

top-k query answering. 
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1 INTRODUCTION 
 

A naive way for answering top-k queries is to consider 

a complete dataset of 𝑁 tuples of a given relation, and 

compute the value of a scoring function for each tuple 

(whiich is seen as a data point), while maintaining  

and finally returning the k highest-ranked (or lowest-

ranked) tuples. This algorithm has the computational 

complexity of 𝒪(𝑁 log 𝑘), and since k is small and 

fixed, the procedure is called sequential search. For 

reducing search efforts one can hierarchically partition 

the set of data points (or the data space itself) in a 

preprocessing step. The resulting partitions can be 

assigned to different levels of an index tree (e.g., an r-

tree or a k-d-tree), with which a top-k solution can then 

be determined for various queries with different 

scoring functions. 

A well-known method for efficiently processing 

maximal (minimal) top-k queries based on tree indexes 

is the branch-and-bound principle. For this purpose, it 

must be possible to identify maximal (minimal) bounds 

in the search space to enable goal-oriented branching 

and bounded search. An associated procedure in the 

context of top-k queries is called Branch-and-Bound 
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Ranked Search (BRS) (see [14]). In order to be able to 

effectively apply BRS, it must be ensured that firstly 

for each partition there exist appropriate score values 

and secondly can be computed efficiently. In general, 

for arbitrary multivariate scoring functions used in 

applications the determination of search bounds based 

on scores for search space partitions requires 

considerable effort. 

Only for monotone functions, maximal (minimal) 

bounds can easily be determined by considering the 

score of the top-right (lower-left) partition corner. For 

computing arbitrary (non-monotonic) BRS partition 

scoring functions, currently, there is no efficient 

algorithm known, and therefore, efficient top-k query 

answering cannot be provided up to now in the case of 

non-monotonic scoring functions. In this paper, we 

investigate the class of quasi-convex point scoring 

functions and provide an appropriate BRS partition 

scoring function, such that the BRS framework 

becomes applicable to large datasets for the first time 

in the context of quasi-convex scoring functions used 

in maximizing top-k queries. Given that quasi-convex 

scoring functions are used to allow for ranking domain 

objects in a variety of applications, the mathematical 

findings presented in this paper are significant for 

practical maximum top-k query answering. 

The remainder of this paper is organized as follows. 

Section 2 discusses related work. Section 3 introduces 

related background of Branch-and-Bound Ranked 

Search (BRS). Section 4 presents the class of quasi-

convex functions and investigates the maximum 

principle to be used in bounded search for top-k 

solutions in BRS. Section 5 summarizes the key 

aspects developed in this paper. 

 

2 RELATED WORK 
 

Efficient top-k processing in domains such as the Web, 

multimedia search and database systems has shown a 

great impact on performance. A common way to 

identify the top-k objects is scoring all objects based on 

some ranking function. The class of the ranking 

function determines its use and the design of the 

respective top-k processing techniques. Regardless of 

its class, a ranking function is by definition a real 

multivariate function for which different fundamental 

theorems may apply. Many techniques have been 

proposed in literature for answering top-k queries.  

A still valid classification is presented in [7]. This 

paper classifies top-k processing techniques based on 

the restrictions they impose on the underlying ranking 

function into:  

 

 Monotone ranking functions  

 Non-monotone ranking functions  

The majority of top-k techniques assumes 

monotone ranking functions (see Definition 2 in 

Section 3.2.). Using monotone ranking functions is 

common in many practical applications. For example, 

many top-k processing scenarios involve linear 

combinations of multiple scoring predicates or 

maximum/minimum functions, which are all 

monotone. Monotone ranking functions have special 

properties that can be exploited for efficient processing 

of top-k queries. Several top-k techniques exploit the 

geometrical properties of linear functions to efficiently 

retrieve the top-k answers. All these methods are not 

applicable to non-monotone functions, because they 

have to assume monotonicity and its special features. 

For more details we refer readers to Section 3.2, 4.1.2 

and 6.1 in [7].  

Using non-monotone ranking functions is common 

in many practical applications as well. Example 1 and 2 

given in Section 4 are representative for a variety of 

top-k processing scenarios using (quasi-) convex 

ranking functions. Many distance measures (see 

Section 4) are also convex functions. The problem of 

an efficient answering of top-k queries in the context of 

quasi-convex ranking functions has not been addressed 

properly yet. The following five papers deal with non-

monotone ranking function: [16], [15], [10], [8] and 

[9]. However, none of these methods is suitable for the 

BRS algorithm. 

In [7] the essentials of [16] and [15] are 

summarized as follows: The technique proposed in [16] 

supports arbitrary ranking functions by modelling top-k 

query as an optimization problem. The optimization 

goal function consists of a Boolean expression that 

filters tuples based on query predicates, and a ranking 

function that determines the score of each tuple. The 

goal function is equal to zero whenever a tuple does not 

satisfy the Boolean expression, and it is equal to the 

tuple’s score otherwise. The answer to the top-k query 

is the set of k tuples with the highest values of the goal 

function.  

The methodology developed in [15] presents an 

index-merge framework that performs a progressive 

search over a space of states composed by joining 

index nodes. The main idea is to exploit existing B-

Tree and R-Tree indexes of ranking predicates to create 

a search space of possible query answers.  

In the paper [10] a so called SD-Query is presented, 

which aggregates similarity and distance into a single 

function. The proposed function class measures the 

distance between a given (query-) point. The paper [8] 

presents a top-k procedure for a family of ranking 

functions allowing the use of distance functions among 

others. The idea of [9] is to decompose the ranking 

function as a supremum of a certain set of functions 

where an efficient top-k retrieval procedure can be 
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easily applied. The ranking functions used in [10], [8] 

and [9] are not quasi-convex. The work presented in 

this paper demonstrates in two ways why the class of 

quasi-convex functions in the context of branch-and-

bound is so important: 

 By introducing quasi-convex function as an upper 

set of convex function we can find top-k items by 

only controlling the vertices of each minimal 

bounding rectangle: Quasi-convexity fits with grid 

partition strategies using convex and compact 

partition sets. 

 Quasi-convex functions generalize the maximum 

principle of monotone functions in the context of 

the BRS algorithm, which makes this method 

available to a wide range of practically relevant 

(non-monotonic) applications.  

 

3 PRELIMINARIES 
 

Branch-and-bound processing of ranking queries was 

introduced by Tao and colleagues as Branch-and-

Bound Ranked Search, BRS [14]. The proposed 

method is essentially based on an r-tree with minimal 

bounding rectangles (MBRs) for partitioning, and it 

requires an MBR scoring function for deciding which 

node is to be examined next. An r-tree [6] is a common 

access method for multi-dimensional objects. Its key 

idea is to group nearby objects and represent them as a 

minimum bounding rectangle in the next higher level. 

MBRs at the same level are recursively clustered into 

nodes of the higher level. R-trees for top-k queries on 

tuples of a given relation have the special property that 

leaf nodes consist of multiple data points defined by 

the tuples of the relation (cardinalities depend on 

partition sizes). 

In geometry, an MBR (also called hyper rectangle) 

is a 𝑑-dimensional analog of a line (𝑑 = 1), of a 

rectangle (𝑑 = 2), or of a cuboid (𝑑 = 3). The one-

dimensional hyper rectangle is a line segment between 

two different points. The two-dimensional hyper 

rectangle has four 1-dimensional sides, each of which 

is a copy of a 1-dimensional hyper rectangle. The 

rectangle is formed by the joining two copies of 

dimension 1 by connecting corresponding points with a 

line segment (see Figure 1). The 3-dimensional hyper 

rectangle is the usual cuboid. Its six sides are 2- 

dimensional rectangles. The cuboid is formed by 

joining two copies (surfaces) of the dimension 2. This 

method can be generalized. The d-dimensional unit 

hyper rectangle is formed by joining two copies of the 

dimension 𝑑 − 1. In other words: The boundary of a 𝑑-

dimensional hyper rectangle consists of a number of 

hyper rectangles of dimension 𝑖 = 0, … , 𝑑 − 1, for each 

i we have (𝑑
𝑖
)2𝑑−1 hyper rectangles.  

 

Figure 1: Hyper rectangles of dimension 0 to 4 ([4]) 

 

Definition 1. Hyper Rectangle  

An axis-parallel hyper rectangle 𝑀 ⊂ ℝ𝑑 is defined as 

the finite Cartesian product 𝑀 = 𝐼1 × 𝐼2 × … × 𝐼𝑑  of 

closed intervals 𝐼𝑗 = [𝑙𝑗 , ℎ𝑗] with 𝑙𝑗 ≤ ℎ𝑗  for any 𝑗 =

1, … , 𝑑. The point ℎ = (ℎ1, … , ℎ𝑑) is the upper right 

corner of 𝑀, 𝑙 = (𝑙1, … , 𝑙𝑑) the lower left corner. Thus, 

one can represent a 𝑑-dimensional hypercube by the 

vector 𝑣𝑀 =  (ℎ1, … , ℎ𝑑 , 𝑙1, … , 𝑙𝑑) ∈ ℝ2𝑑.  All vertices 

of 𝑀, vertices(M), can be derived from 𝑣𝑀 by 

combining the corresponding coordinates of the 

different dimensions. An MBR is the smallest enclosing 

axis-parallel hyper rectangle for a set of data points. A 

general hyper rectangle is a hyper rectangle that does 

not have to be axis-parallel.                        

To ensure that quasi-convex functions 𝑓: 𝑀 → ℝ 

are bounded on their domains it is sufficient to assume 

that a hyper rectangle 𝑀 is compact. From real analysis 

it is known that a subset of the Euclidian space ℝ𝑑  is 

compact if and only if it is closed and bounded, which 

is the statement of the Heine-Borel Theorem (see [5]). 

Since each interval [𝑎, 𝑏] ⊂ ℝ is closed and bounded 

and every finite Cartesien product of closed intervals is 

closed and bounded as well, each hyper rectangle is 

also compact. 

We use the iterative construction method for the 

proof of the main claim of this paper in Section 4. 

 

3.1 Branch-and-Bound Ranked Search 
 

The strategy to answer a maximum (or minimum) top-k 

query with BRS is described as a bounded search 

through an r-tree (see Listing 2).  The algorithm uses 

the r-tree to partition and index the dataset of a given 

relation, and for bounding the search for top-k result 

points BRS maintains a priority queue pq of r-tree 

entries or points.  

Initially the algorithm loads the root of the r-tree, 

i.e., a set of MBRs, into the priority queue pq (Line 1). 

Actually, pairs of objects and scores are inserted into 

pq for determining the ranking of objects. The score of 

an MBR M is determined by applying 𝑠𝑐𝑜𝑟𝑒_𝑟 to two 

parameters, namely M and the point scoring function 

𝑠𝑐𝑜𝑟𝑒_𝑝. Both functions need to be provided to BRS. 

Afterwards objects from pq are considered in a 

loop. In each iteration the node with the highest 

ranking (highest or lowest scored object, depending on 

type) is retrieved from pq (Line 5 and 6). If a point is 
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 Algorithm: BRS (rt, k, type,  score_p, score_r) 

 // rt is an r-tree on the dataset 

// k denotes the number of data points to return  

 // type can be either ‘min’ or ‘max’,  

 // score_p is a point scoring function  

// score_r computes a score for an MBR 

 

1   let pq = build_priority_queue( 

             type,  

             map(lambda(obj).(obj, score_r(mbr(obj), score_p )),  

             root(rt)))  

             // pq with (obj, score) entries 

      result = {} 

3  n = 0 

4  object 

5     while n < k and not empty?(pq) do 

6       object := delete_next(pq) 

7          if point?(object) then 

8            result := result ∪ {object} 

9            n := n + 1 

10          else 

11              if leaf?(object) then 

12            for p ∈ points(mbr(object)) do 

13                      insert((p, score_p(p)) , pq) 

14              else 

15                 for e ∈ children(object) do 

16                      insert((e, score_r(𝑒, score_p)), pq) 

17      result 

Listing 1: BRS-Algorithm (based on [14]) 

 

 

found (Line 7), it is added to the result. If a leaf node is 

retrieved from the queue (Line 11), its points are 

extracted, the score of data points 𝑝 are determined 

with the function 𝑠𝑐𝑜𝑟𝑒_𝑝, and point scores are used to 

insert each point into pq (Line 12 and 13). Otherwise, a 

non-leaf r-tree node is found (Line 14), and the 

respective children are inserted into pq (Line 15 and 

16). Each child MBR is scored with 𝑠𝑐𝑜𝑟𝑒_𝑟 in the 

same way as in the initialization of pq with root nodes. 

The algorithm terminates when k data points are 

found (collected in result) or the queue is empty. The 

result points are returned and represent the k top-scored 

objects. We can safely assume that 𝑠𝑐𝑜𝑟𝑒_𝑝 is an 

operation in 𝒪(1), whereas 𝑠𝑐𝑜𝑟𝑒_𝑟 is only ‘simple’ 

for monotonic 𝑠𝑐𝑜𝑟𝑒_𝑝 functions. For non-monotonic 

functions, 𝑠𝑐𝑜𝑟𝑒_𝑟 can impose considerable overhead, 

and indeed can be implemented effectively only for 

specific classes of functions, as we will see below.  

Once 𝑠𝑐𝑜𝑟𝑒_𝑟 works effectively, bounding the search 

via pq and rt is effective, and the BRS algorithm can be 

applied to large datasets. 

The actual call to BRS is given as follows: 

BRS(data_rtree, k, max, scorePoint, scoreMBR), 

where k is the expected number of results, the function 

max indicates maximum top-k, 𝑠𝑐𝑜𝑟𝑒𝑃𝑜𝑖𝑛𝑡 is a query-

specific function that maps a data object (point) to a 

score being used for ranking the object, and 

𝑠𝑐𝑜𝑟𝑒𝑀𝐵𝑅 determines the largest value that the 

function 𝑠𝑐𝑜𝑟𝑒𝑃𝑜𝑖𝑛𝑡 can return when applied to the 

points associated with an MBR specified as a 

parameter. We will give an efficient implementation of 

𝑠𝑐𝑜𝑟𝑒𝑀𝐵𝑅 for quasi-convex 𝑠𝑐𝑜𝑟𝑒𝑃𝑜𝑖𝑛𝑡 functions 

below. 

 

3.2 Maximum Principle of Monotonic Ranking 

Functions 
 

Definition 2.  Monotonic Multivariate Function 

A function 𝑓: 𝐷 → ℝ; (𝑥1, … , 𝑥𝑑) ⟼ 𝑦, 𝐷 ⊂ ℝ𝑑 of 𝑑 

real variables is monotonic increasing if and only if 

𝑓(𝑥1, … , 𝑥𝑑) ≤ 𝑓(𝑥1
′ , … , 𝑥𝑑

′ ) if 𝑥𝑖 ≤ 𝑥𝑖
′ ∀ 𝑖 = 1, … , 𝑑. It 

is strictly monotonic increasing if strict inequality 

holds. Similarly, we can define (strictly) monotonic 

decreasing (≥) functions. An increasing or decreasing 

function is called a monotonic function. Otherwise 𝑓 is 

called non-monotonic. For example each affine linear 

function f(x1, x2) = ax1 + bx2 + c  for each a, b, c ∈
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ℝ+is monotonic, whereas g(x1, x2) =
x1

x2
 is obviously 

non-monotone.            

Let 𝑥0 = (𝑥1
0, … , 𝑥𝑛

0) ∈ 𝐷 be an arbitrary but firmly 

selected point of the domain of a multivariate 

function 𝑓: 𝐷 → ℝ, 𝑥 ↦ 𝑓(𝑥1, … , 𝑥𝑛). If you just 

change the 𝑖-th component and leave all others then the 

mapping 𝑥𝑖 ↦ 𝑓𝑖(𝑥1
0, 𝑥2

0, … , 𝑥𝑖−1
0 , 𝑥𝑖 , 𝑥𝑖+1

0 , … 𝑥𝑛
0) defines 

a one-dimensional function, which is called the i-th 

component function of 𝑓. 𝑓 is increasing (decreasing) 

in the 𝑖-th component if 𝑓𝑖 is (independent from 𝑥0) an 

increasing (decreasing) function of 𝑥𝑖. If a function is 

increasing (decreasing) we denote it as a monotone 

function in the i-th component. 

Monotonicity implies that any real-valued 

monotonically increasing function of several variables 

𝑓: 𝑀 → ℝ takes its maximum at the upper right vertex 

of the MBR, i.e., the vertex with the largest 

coordinates. Simplified, we will speak of a maximum 

principle of a function, assuming its maximum values 

on the edges of its domain (see [12]). A monotonic 

function takes its maximum at a vertex of an MBR, 

which is the upper right (lower left) one if 𝑓 is 

increasingly (decreasingly) monotone. If a function 𝑓 is 

strictly monotonic in all dimensions, but not 

necessarily increasing or decreasing in all dimensions 

the function also assumes it’s maximum in a vertex, 

which does not necessarily have to be the upper right or 

lower left one. It is called the dominating vertex (see 

[14]). If an MBR 𝑀 is spanned by the two opposite 

vertices 𝑙 = (𝑙1, … , 𝑙𝑑) and ℎ = (ℎ1, … , ℎ𝑑) where 𝑙 is 

the upper left, ℎ the upper right one, then the 

dominating vertex 𝑒 = (𝑒1, … , 𝑒𝑑) can be specified by 

𝑒𝑖 = 𝑙𝑖 ,, if 𝑓 is strictly decreasing on the 𝑖-th dimension 

and 𝑒𝑖 = ℎ𝑖 ,, if 𝑓 is strictly increasing on the 𝑖-th 

dimension for each 𝑖 ∈ {1, … , 𝑑}. Figure 2 shows the 

maximum points of the monotonically increasing 

function 𝑓2, the monotonically decreasing function 𝑓3 

and the maxima of two component-wise monotonic 

functions 𝑓1, 𝑓4. 
However, for non-monotonic functions, this kind of 

simple maximum principle does not hold, and the 

above method to compute the dominating point is not 

easily adaptable to non-monotonic functions. In 

general, for a function 𝑓 in several variables one has to 

use complex methods of mathematical analysis to 

compute the bound (MBR score) 𝑓𝑚𝑎𝑥(𝑀). Next, we 

will show that quasi-convex functions take their 

maxima on some of the (finitely many) vertices of a (𝑑-

dimensional) MBR. Thus, in this respect, quasi-convex 

functions represent a generalization of the class of 

monotonic functions, the latter of which has the 

property that the maximum is found on one known 

vertex (top-right vertex). 

 

 
Figure 2: Maximum principle of (component-wise) 

monotonic functions for 2-dimension 
 

4 QUASI-CONVEX FUNCTIONS 
 

In this section, we characterize quasi-convex functions 

in terms of hyper rectangles, which are always convex 

and compact subsets of the Euclidian space. The formal 

definition of convex and quasi-convex functions is 

presented as follows: (see Section 3.4.1 of [3]). 

 

Definition 3. Convex and Quasi-Convex Function 

Let 𝑓: 𝐶 → ℝ be a function defined on a convex subset 

𝐶 in ℝ𝑑. Recall that a set C is said to be convex, if for 

all x, y ∈ C and all 𝑡 ∈ [0,1], the line segment 𝑡𝑥 +
(1 − 𝑡)𝑦 between 𝑥 and 𝑦 also belongs to 𝐶.  

A function 𝑓 is called convex, if 

𝑓(𝑡𝑥 + (1 − 𝑡)𝑦) ≤ 𝑡𝑓(𝑥) + (1 − 𝑡)𝑓(𝑦) (1) 

for all 𝑥, 𝑦 ∈ 𝐶 and all 𝑡 ∈ [0,1]. Geometrically, this 

inequality means that the line segment between 

(𝑥, 𝑓(𝑥)) and (𝑦, 𝑓(𝑦)), which is the chord from 𝑓(𝑥) 

to 𝑓(𝑦), lies above the graph of 𝑓. 
A function 𝑓 is called quasi-convex, if 

𝑓(𝑡𝑥 + (1 − 𝑡)𝑦) ≤ 𝑚𝑎𝑥{𝑓(𝑥), 𝑓(𝑦)} (2) 

for all 𝑥, 𝑦 ∈ 𝐶 and all 𝑡 ∈ [0,1]. This means that on a 

line segment the maximum of a quasi-convex function 

is always attained in one of its end-points.     

Note that quasi-convexity is a generalization of 

convexity. Any norm is convex (see [1]), for example 

 

 the max-norm 𝑓(𝑎1, … , 𝑎𝑑) = max
𝑖

{|𝑎𝑖|}, 

 the Euclidian norm 𝑓(𝑎1, … , 𝑎𝑑) = √∑ 𝑎𝑖
2𝑑

𝑖=1 , 

 the p-Norm: 𝑓𝑝(𝑥) = (∑ |𝑎𝑖|
𝑝𝑑

𝑖=1 )
1
𝑝, 𝑝 ≥ 1. 
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a) Convex b) Quasi-convex 

 

 
c) Non-convex 

Figure 3: Convex, quasi-convex and non-convex functions in 1-dimension 

 

Thus, any top-k query whose ranking function is a 

norm and which is to be maximized can be applied to 

the BRS algorithm. The following function 𝑓: ℝ𝑑 → ℝ  

given by 𝑓(𝑎1, … , 𝑎𝑑) = √max
𝑖

{|𝑎𝑖|} is quasi-convex 

but not convex (see [2]). The main difference between 

convex, quasi-convex, and non-convex functions for 

dimension 𝑑 = 2 is illustrated in Figure 3. 

Alternatively, quasi-convexity can be defined by 

sublevel sets. Thus, a function 𝑓 is quasi-convex if and 

only if all its sublevel sets 𝑁𝑓(𝛼) = {𝑥 ∈ 𝐷 | 𝑓(𝑥) =

𝛼, 𝛼 ∈ ℝ } are convex (see [3], 3.4.1 and Figure 4). 

Many requirements from practice can be modeled by 

quasi-convex ranking functions [3].  

Example 1. Real Estate Database 

As an example, we consider an online real-estate 

information system for buildings with the following 

attributes: latitude (la), longitude (lo) as well as post 

code (zip) information. Consider the case of data stored 

in a relational database table RealEstate. We are 

interested in the top ten objects which are located in the 

northern outskirts of Munich (north/eastern or 

north/west), as close as possible to the airport (north) of 

Munich. Without loss of generality, we consider a 

projection of both attributes to the unit interval which 

maps the center (48.13, 11.58) of Munich to (0.5, 0) 

(see [3]). The corresponding maximal top-k query over 

this database is given by the following SQL query Q1: 

 SELECT TOP 10 * 
 FROM 𝑅𝑒𝑎𝑙𝐸𝑠𝑡𝑎𝑡𝑒 
 WHERE 𝑧𝑖𝑝 BETWEEN 80331 AND 81929 
 ORDER BY (𝑙𝑎 − 0.5)2 + 𝑙𝑜 DESC 

Figure 4 shows the plot of the function 𝑓(𝑥1, 𝑥2) =
(𝑥1 − 0.5)2 + 𝑥2 over its two attributes and its sublevel 

sets, which are obviously convex. Hence, as stated 

above 𝑓 is (quasi-)convex but obviously not monotone. 

As a second example, we consider a patient database 

with a Patient table that provides the age and blood 

pressure values sys and dia of each patient. 

Example 2. Hypertension or Hypotension 

In statistics, an outlier is a data point that differs 

significantly from other observations. An outlier may 

be due to variability in the measurement or it may 

indicate experimental error; the latter are sometimes 

excluded from the data set. It can cause serious 
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a) 3-dimensional Graph b) 2-dimensional Sublevel sets 

Figure 4: Graph and sublevel sets of the function of Example 1 

 

 
 

Figure 5: Patient sample with blood pressure readings 
 

problems in statistical and business analyses. 

Sometimes, as in the following example, outliers are 

just the result set of a problem (See the red points in 

Figure 5).  The definition for outliers is not unique and 

varies with the application. For our example an outlier 

is a data point that is very different in one or more 

coordinates from the coordinates of a given query 

point. 

We would like to generate a sample of 10 patient 

aged 40 to 50 with high (Hypertension) or low blood 

pressure (Hypotension). The goal is to find the k 

highest scoring points by maximizing the following 

SQL query Q2: 

 SELECT TOP 10 * 
 FROM 𝑃𝑎𝑡𝑖𝑒𝑛𝑡 
 WHERE 𝑎𝑔𝑒 BETWEEN 40 AND 50 
 ORDER BY ω1(sys − 120)2 +                    

                         ω2(dia −  80)2 DESC 
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a) Straight line intersects the boundary b) Boundary with maximum point 

Figure 6: 2-dimensional Hypercube 
 

 

The positive real numbers ω1, ω2 are weighting 

parameters. In both examples, the ranking functions are 

not monotonic, and thus the known monotonic 

frameworks (See [7]) are not applicable.  

 

Both examples, like many other practical 

applications, use a convex ranking function, which is 

generally not monotonic (See [13]). In order to be able 

to derive a criterion for the determination of a score for 

each MBR of an r-tree, however, we only need the 

more general property of quasi-convexity, which holds 

for convex functions as well. For Q1 in our Example 1 

we use 𝑝𝑜𝑖𝑛𝑡𝑆𝑐𝑜𝑟𝑒 =  𝑙𝑎𝑚𝑏𝑑𝑎(𝑝). (𝑠𝑞𝑟(𝑙𝑎(𝑝) –  0.5) +

 𝑙𝑜(𝑝)) as a parameter in the call to BRS (see Listing 2). 

The second parameter of our top-k query example, lo 

(longitude), is used in a linear fashion here just for 

demonstration purposes, it could be handled in the 

same way as la (latitude). In the following section, we 

will show that a quasi-convex function is characterized 

by being maximal on the vertices of each MBR. 

 

 

4.1 Maximum Principle for Quasi-Convex 

Ranking Functions 
 

Quasi-convex functions, unlike convex ones, need not 

be automatically continuous. The floor function ℝ →
ℝ; 𝑥 ↦ ⌊𝑥⌋ is an example of a quasi-convex function 

that is neither convex nor continuous. To ensure the 

existence of a maximum, it is sufficient to assume 

compactness of the domain, the continuity of the 

function is not necessary. If compactness is given, i.e., 

if the domain is a hyper rectangle, we will show that 

the maximum of quasi-convex functions is to be found 

on the boundary of that domain. This principle is called 

maximum principle of a function [12]. We are now 

ready to formulate our main result as a theorem. Note 

that the assumptions of the theorem as well as its claim 

correspond to properties of the hyper rectangle. 

 

Theorem 1. Maximum principle of quasi-convex 

functions  

Let 𝑓: 𝐷 → ℝ, 𝐷 ⊆ ℝ𝑑 be a quasi-convex (ranking) 

function. For each hyper rectangle 𝑀 ⊆ 𝐷 generated by 

its 2𝑑 vertices 𝑒1, … , 𝑒2𝑑 ∈ ℝ𝑑 the following holds: 

 

𝑓𝑚𝑎𝑥(𝑀) = 𝑚𝑎𝑥{𝑓(𝑒1), … , 𝑓(𝑒2𝑑)}. (3) 

 

In other words: If one limits the domain of a quasi-

convex function 𝑓 to a (general) hyper rectangle, then 

𝑓 takes its (not necessarily unique) maximum in some 

vertex of the hyper rectangle.  

Proof by Induction: Basis: We show that the 

statement holds for 𝑑 = 2. In this case 𝑀 is a two-

dimensional rectangle of the Euclidian plane which is 

mapped by 𝑓 to a three-dimensional surface illustrated 

in Figure 7. If the maximum point 𝑃 is on the edge of 

the rectangle our claim is proven, because a quasi-

convex function of a one-dimensional hyper rectangle 

(line-segment), assumes its maximum on its vertices. 

That is precisely the definition of a quasi-convex 

function. We assume the maximum point 𝑃 is in the 

interior of the rectangle. A straight line through an 

arbitrarily chosen vertex 𝐴 and 𝑃 intersects the 

boundary of the rectangle in a further point 𝐵 (see 

Figure 6 a). Since 𝑓 is quasi-convex 𝑓(𝑃) ≤
𝑚𝑎𝑥{𝑓(𝐴), 𝑓(𝐵)} holds. If 𝑓(𝐴) ≥ 𝑓(𝐵) our claim is 

proven. If this does not hold, we consider the straight 

line through 𝐵 and a second vertex 𝐶. The second 

straight line is a sub-set of the edge of the rectangle. 

Therefore, it intersects the box in a third vertex 𝐷 (see 

Figure 6 b). 

Inductive step: We have to show, that if the claim 

holds for dimension 𝑑 − 1, then it also holds for 

dimension 𝑑. The statement follows immediately from 

the (geometric) construction of a 𝑑-dimensional hyper 

rectangle 𝑀 (see Section 3) that is composed of 2𝑑 
(𝑑 − 1)-dimensional hyper rectangles, so that each 
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 Algorithm: scoreMBR (𝑴, 𝒔𝒄𝒐𝒓𝒆_𝒑) 

 // 𝑀 is an MBR 

// 𝑠𝑐𝑜𝑟𝑒_𝑝 is a point scoring function  

1  {𝑒1, … , 𝑒2𝑑} ≔ 𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠(𝑀) 
  // the vertices function generates the set  

  // of vertices of a d-dimensional 𝑀𝐵𝑅 𝑀 

2  𝑚𝑎𝑥({𝑠𝑐𝑜𝑟𝑒_𝑝(𝑒1), … , 𝑠𝑐𝑜𝑟𝑒_𝑝(𝑒2𝑑)}) 

Listing 2: Algorithm for determining the MBR max score for quasi-convex score-p functions 

 

 

straight line through a vertex 𝐴 and a point 𝑃 of the 

interior of 𝑀 intersects an 𝑖-dimensional hyper 

rectangle in the boundary for at least one 𝑖 ∈
{0, … , 𝑑 − 1}.                                                                 

This theorem is particularly important because the 

class of quasi-convex functions fits well to the BRS 

algorithm, since one can calculate the bounds of the 

MBRs only by considering their bounding vertices, 

similarly to the monotone case in which the bounding 

vertex is directly determined. Monotonicity implies 

that any real valued monotonic increasing function of 

several variables 𝑓: 𝑀 → ℝ takes its maximum at the 

upper right vertex of the hyper rectangle, i.e., the 

vertex with the largest coordinates.  

This principle is not adaptable in general, but for 

quasi-convex functions one can determine a score by 

computing scoring function values for all vertices and 

then finding the largest one. The algorithm for 

computing the max score for a quasi-convex function 

to be used as an argument to BRS is given in Listing 2. 

For the actual call see line 16 in Listing 1. 

 

4.2 Characterization of Quasi-Convex 

Functions on Hyper Rectangles 
 

The following theorem characterizes quasi-convex 

functions on hyper rectangles. It shows that also the 

backward direction of Theorem 1 holds. This means 

that a quasi-convex function is already uniquely 

determined by the maximum principle on general hyper 

rectangles. Theorem 1 has shown that and how the 

BRS can be applied to non-monotone functions. 

Theorem 2 makes clear why quasi-convexity is a 

generalization of monotonicity in the context of top-k 

queries answered with the BRS algorithm. 

Theorem 2. Characterization of quasi-convex 

functions 

Let 𝑓: 𝐷 → ℝ a function, 𝐷 ⊆ ℝ𝑑 a convex domain, 

then the following holds: If 𝑓 is maximal on at least 

one vertex of each hyper rectangle 𝑀 ⊆ 𝐷 the function 

is quasi-convex. 

 

 

 

 

Figure 7: Maximum values of a one-dimensional 

hyper rectangle 

 

 

Note: The term “each” means, that 𝑀 is a general 

hyper rectangle. 

 

Proof: Let s be a line segment between any two 

selected points 𝑃 = (𝑋, 𝑓(𝑋)) and 𝑄 = (𝑌, 𝑓(𝑌)).  By 

assumption, 𝑓 takes its maximum value on the vertices 

on each 𝑀. Thus, this function is also maximal on the 

corners of all one-dimensional hyper rectangles, the 

line segments. So, in particular, 𝑓 takes its maximum 

on the one-dimensional hyper rectangle which is 

spanned by the two vertices 𝑋 and 𝑌 (Figure 7 

illustrates the situation for dimension 2).                       
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5 CONCLUSIONS 
 

In contrast to monotonic functions used for ranking 

functions, for general functions no direction can be 

specified for value increase. The algorithm of 

monotonic functions for determining the dominant 

vertex given in [14] is useless in case of quasi-convex 

functions. Therefore, in order to determine the 

maximum vertex or corners and, thus, the upper bound, 

unless specific additional properties can be exploited 

for the function, one must generally calculate all 2𝑑 

function values and select the largest one.   

The procedure call 𝑚𝑎𝑥{𝑓(𝑒1), … , 𝑓(𝑒2𝑑)} to 

identify the max score 𝑓𝑚𝑎𝑥(𝑀) of a given MBR 𝑀 is 

exponential in the number of dimensions. However, for 

a fixed dimension 𝑑, which will usually be rather small 

in practical applications, the overall BRS (Branch-and-

Bound Ranked Search) procedure is indeed average-

case-logarithmic in the number of points (depending on 

the r-tree structure), and therefore efficient in practice. 

The procedure scoreMBR as defined in this paper is 

preferable to uninformed elaborate and inefficient 

analytical methods of mathematical analysis (partial 

derivatives, Hesse matrix, etc.) for determining 

maximal MBR score. BRS computation for quasi-

convex ranking functions is considered to be a fixed-

parameter tractable problem on 𝑑 (FPT for short). The 

class of quasi-convex functions is the class of functions 

that take their maxima on some of the finitely vertices 

of each (general) hyper rectangle.  

The main results of this paper are that we can find 

the key values for each r-tree node (MBR) only by 

calculating the function values of the vertices of the 

MBRs. The findings show that in this case more 

general but costly methods of mathematical analysis 

for maximum finding are not required, and thus we 

make the BRS algorithm effective not only for 

monotone ranking functions, but also for quasi-convex 

ranking functions in maximum top-k queries. 

Therefore, the results of the experimental evaluation in 

[14] can be transferred to quasi-convex functions, since 

only the getMaxScore function that calculates the upper 

bounds for the BRS has changed.  
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