

P. Poensgen, R. Möller: Quasi-Convex Scoring Functions in Branch-and-Bound Ranked Search

1

Quasi-Convex Scoring Functions

in Branch-and-Bound Ranked Search

Peter Poensgen, Ralf Möller

Institute for Information Systems, University of Lübeck, Ratzeburger Allee 160, 23562 Lübeck, Germany,

{poensgen, moeller}@ifis.uni-luebeck.de

ABSTRACT

For answering top-k queries in which attributes are aggregated to a scalar value for defining a ranking, usually

the well-known branch-and-bound principle can be used for efficient query answering. Standard algorithms

(e.g., Branch-and-Bound Ranked Search, BRS for short) require scoring functions to be monotone, such that a

top-k ranking can be computed in sublinear time in the average case. If monotonicity cannot be guaranteed,

efficient query answering algorithms are not known. To make branch-and-bound effective with descending or

ascending rankings (maximum top-k or minimum top-k queries, respectively), BRS must be able to identify

bounds for exploring search partitions, and only for monotonic ranking functions this is trivial. In this paper, we

investigate the class of quasi-convex functions used for scoring objects, and we examine how bounds for

exploring data partitions can correctly and efficiently be computed for quasi-convex functions in BRS for

maximum top-k queries. Given that quasi-convex scoring functions can usefully be employed for ranking objects

in a variety of applications, the mathematical findings presented in this paper are indeed significant for practical

top-k query answering.

TYPE OF PAPER AND KEYWORDS

Short Communication: top-k queries, query answering, top-k ranking, ranking, quasi-convex functions, scoring

functions, branch-and-bound, Branch-and-Bound Ranked Search, BRS

1 INTRODUCTION

A naive way for answering top-k queries is to consider

a complete dataset of 𝑁 tuples of a given relation, and

compute the value of a scoring function for each tuple

(whiich is seen as a data point), while maintaining

and finally returning the k highest-ranked (or lowest-

ranked) tuples. This algorithm has the computational

complexity of 𝒪(𝑁 log 𝑘), and since k is small and

fixed, the procedure is called sequential search. For

reducing search efforts one can hierarchically partition

the set of data points (or the data space itself) in a

preprocessing step. The resulting partitions can be

assigned to different levels of an index tree (e.g., an r-

tree or a k-d-tree), with which a top-k solution can then

be determined for various queries with different

scoring functions.

A well-known method for efficiently processing

maximal (minimal) top-k queries based on tree indexes

is the branch-and-bound principle. For this purpose, it

must be possible to identify maximal (minimal) bounds

in the search space to enable goal-oriented branching

and bounded search. An associated procedure in the

context of top-k queries is called Branch-and-Bound

 Open Access

Open Journal of Databases (OJDB)

Volume 7, Issue 1, 2020

www.ronpub.com/ojdb

ISSN 2199-3459

© 2020 by the authors; licensee RonPub, Lübeck, Germany. This article is an open access article distributed under the terms and conditions

of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).

Open Journal of Databases (OJDB), Volume 7, Issue 1, 2020

2

Ranked Search (BRS) (see [14]). In order to be able to

effectively apply BRS, it must be ensured that firstly

for each partition there exist appropriate score values

and secondly can be computed efficiently. In general,

for arbitrary multivariate scoring functions used in

applications the determination of search bounds based

on scores for search space partitions requires

considerable effort.

Only for monotone functions, maximal (minimal)

bounds can easily be determined by considering the

score of the top-right (lower-left) partition corner. For

computing arbitrary (non-monotonic) BRS partition

scoring functions, currently, there is no efficient

algorithm known, and therefore, efficient top-k query

answering cannot be provided up to now in the case of

non-monotonic scoring functions. In this paper, we

investigate the class of quasi-convex point scoring

functions and provide an appropriate BRS partition

scoring function, such that the BRS framework

becomes applicable to large datasets for the first time

in the context of quasi-convex scoring functions used

in maximizing top-k queries. Given that quasi-convex

scoring functions are used to allow for ranking domain

objects in a variety of applications, the mathematical

findings presented in this paper are significant for

practical maximum top-k query answering.

The remainder of this paper is organized as follows.

Section 2 discusses related work. Section 3 introduces

related background of Branch-and-Bound Ranked

Search (BRS). Section 4 presents the class of quasi-

convex functions and investigates the maximum

principle to be used in bounded search for top-k

solutions in BRS. Section 5 summarizes the key

aspects developed in this paper.

2 RELATED WORK

Efficient top-k processing in domains such as the Web,

multimedia search and database systems has shown a

great impact on performance. A common way to

identify the top-k objects is scoring all objects based on

some ranking function. The class of the ranking

function determines its use and the design of the

respective top-k processing techniques. Regardless of

its class, a ranking function is by definition a real

multivariate function for which different fundamental

theorems may apply. Many techniques have been

proposed in literature for answering top-k queries.

A still valid classification is presented in [7]. This

paper classifies top-k processing techniques based on

the restrictions they impose on the underlying ranking

function into:

 Monotone ranking functions

 Non-monotone ranking functions

The majority of top-k techniques assumes

monotone ranking functions (see Definition 2 in

Section 3.2.). Using monotone ranking functions is

common in many practical applications. For example,

many top-k processing scenarios involve linear

combinations of multiple scoring predicates or

maximum/minimum functions, which are all

monotone. Monotone ranking functions have special

properties that can be exploited for efficient processing

of top-k queries. Several top-k techniques exploit the

geometrical properties of linear functions to efficiently

retrieve the top-k answers. All these methods are not

applicable to non-monotone functions, because they

have to assume monotonicity and its special features.

For more details we refer readers to Section 3.2, 4.1.2

and 6.1 in [7].

Using non-monotone ranking functions is common

in many practical applications as well. Example 1 and 2

given in Section 4 are representative for a variety of

top-k processing scenarios using (quasi-) convex

ranking functions. Many distance measures (see

Section 4) are also convex functions. The problem of

an efficient answering of top-k queries in the context of

quasi-convex ranking functions has not been addressed

properly yet. The following five papers deal with non-

monotone ranking function: [16], [15], [10], [8] and

[9]. However, none of these methods is suitable for the

BRS algorithm.

In [7] the essentials of [16] and [15] are

summarized as follows: The technique proposed in [16]

supports arbitrary ranking functions by modelling top-k

query as an optimization problem. The optimization

goal function consists of a Boolean expression that

filters tuples based on query predicates, and a ranking

function that determines the score of each tuple. The

goal function is equal to zero whenever a tuple does not

satisfy the Boolean expression, and it is equal to the

tuple’s score otherwise. The answer to the top-k query

is the set of k tuples with the highest values of the goal

function.

The methodology developed in [15] presents an

index-merge framework that performs a progressive

search over a space of states composed by joining

index nodes. The main idea is to exploit existing B-

Tree and R-Tree indexes of ranking predicates to create

a search space of possible query answers.

In the paper [10] a so called SD-Query is presented,

which aggregates similarity and distance into a single

function. The proposed function class measures the

distance between a given (query-) point. The paper [8]

presents a top-k procedure for a family of ranking

functions allowing the use of distance functions among

others. The idea of [9] is to decompose the ranking

function as a supremum of a certain set of functions

where an efficient top-k retrieval procedure can be

P. Poensgen, R. Möller: Quasi-Convex Scoring Functions in Branch-and-Bound Ranked Search

3

easily applied. The ranking functions used in [10], [8]

and [9] are not quasi-convex. The work presented in

this paper demonstrates in two ways why the class of

quasi-convex functions in the context of branch-and-

bound is so important:

 By introducing quasi-convex function as an upper

set of convex function we can find top-k items by

only controlling the vertices of each minimal

bounding rectangle: Quasi-convexity fits with grid

partition strategies using convex and compact

partition sets.

 Quasi-convex functions generalize the maximum

principle of monotone functions in the context of

the BRS algorithm, which makes this method

available to a wide range of practically relevant

(non-monotonic) applications.

3 PRELIMINARIES

Branch-and-bound processing of ranking queries was

introduced by Tao and colleagues as Branch-and-

Bound Ranked Search, BRS [14]. The proposed

method is essentially based on an r-tree with minimal

bounding rectangles (MBRs) for partitioning, and it

requires an MBR scoring function for deciding which

node is to be examined next. An r-tree [6] is a common

access method for multi-dimensional objects. Its key

idea is to group nearby objects and represent them as a

minimum bounding rectangle in the next higher level.

MBRs at the same level are recursively clustered into

nodes of the higher level. R-trees for top-k queries on

tuples of a given relation have the special property that

leaf nodes consist of multiple data points defined by

the tuples of the relation (cardinalities depend on

partition sizes).

In geometry, an MBR (also called hyper rectangle)

is a 𝑑-dimensional analog of a line (𝑑 = 1), of a

rectangle (𝑑 = 2), or of a cuboid (𝑑 = 3). The one-

dimensional hyper rectangle is a line segment between

two different points. The two-dimensional hyper

rectangle has four 1-dimensional sides, each of which

is a copy of a 1-dimensional hyper rectangle. The

rectangle is formed by the joining two copies of

dimension 1 by connecting corresponding points with a

line segment (see Figure 1). The 3-dimensional hyper

rectangle is the usual cuboid. Its six sides are 2-

dimensional rectangles. The cuboid is formed by

joining two copies (surfaces) of the dimension 2. This

method can be generalized. The d-dimensional unit

hyper rectangle is formed by joining two copies of the

dimension 𝑑 − 1. In other words: The boundary of a 𝑑-

dimensional hyper rectangle consists of a number of

hyper rectangles of dimension 𝑖 = 0, … , 𝑑 − 1, for each

i we have (𝑑
𝑖
)2𝑑−1 hyper rectangles.

Figure 1: Hyper rectangles of dimension 0 to 4 ([4])

Definition 1. Hyper Rectangle

An axis-parallel hyper rectangle 𝑀 ⊂ ℝ𝑑 is defined as

the finite Cartesian product 𝑀 = 𝐼1 × 𝐼2 × … × 𝐼𝑑 of

closed intervals 𝐼𝑗 = [𝑙𝑗 , ℎ𝑗] with 𝑙𝑗 ≤ ℎ𝑗 for any 𝑗 =

1, … , 𝑑. The point ℎ = (ℎ1, … , ℎ𝑑) is the upper right

corner of 𝑀, 𝑙 = (𝑙1, … , 𝑙𝑑) the lower left corner. Thus,

one can represent a 𝑑-dimensional hypercube by the

vector 𝑣𝑀 = (ℎ1, … , ℎ𝑑 , 𝑙1, … , 𝑙𝑑) ∈ ℝ2𝑑. All vertices

of 𝑀, vertices(M), can be derived from 𝑣𝑀 by

combining the corresponding coordinates of the

different dimensions. An MBR is the smallest enclosing

axis-parallel hyper rectangle for a set of data points. A

general hyper rectangle is a hyper rectangle that does

not have to be axis-parallel. 

To ensure that quasi-convex functions 𝑓: 𝑀 → ℝ

are bounded on their domains it is sufficient to assume

that a hyper rectangle 𝑀 is compact. From real analysis

it is known that a subset of the Euclidian space ℝ𝑑 is

compact if and only if it is closed and bounded, which

is the statement of the Heine-Borel Theorem (see [5]).

Since each interval [𝑎, 𝑏] ⊂ ℝ is closed and bounded

and every finite Cartesien product of closed intervals is

closed and bounded as well, each hyper rectangle is

also compact.

We use the iterative construction method for the

proof of the main claim of this paper in Section 4.

3.1 Branch-and-Bound Ranked Search

The strategy to answer a maximum (or minimum) top-k

query with BRS is described as a bounded search

through an r-tree (see Listing 2). The algorithm uses

the r-tree to partition and index the dataset of a given

relation, and for bounding the search for top-k result

points BRS maintains a priority queue pq of r-tree

entries or points.

Initially the algorithm loads the root of the r-tree,

i.e., a set of MBRs, into the priority queue pq (Line 1).

Actually, pairs of objects and scores are inserted into

pq for determining the ranking of objects. The score of

an MBR M is determined by applying 𝑠𝑐𝑜𝑟𝑒_𝑟 to two

parameters, namely M and the point scoring function

𝑠𝑐𝑜𝑟𝑒_𝑝. Both functions need to be provided to BRS.

Afterwards objects from pq are considered in a

loop. In each iteration the node with the highest

ranking (highest or lowest scored object, depending on

type) is retrieved from pq (Line 5 and 6). If a point is

Open Journal of Databases (OJDB), Volume 7, Issue 1, 2020

4

 Algorithm: BRS (rt, k, type, score_p, score_r)

 // rt is an r-tree on the dataset

// k denotes the number of data points to return

 // type can be either ‘min’ or ‘max’,

 // score_p is a point scoring function

// score_r computes a score for an MBR

1 let pq = build_priority_queue(

 type,

 map(lambda(obj).(obj, score_r(mbr(obj), score_p)),

 root(rt)))

 // pq with (obj, score) entries

 result = {}

3 n = 0

4 object

5 while n < k and not empty?(pq) do

6 object := delete_next(pq)

7 if point?(object) then

8 result := result ∪ {object}

9 n := n + 1

10 else

11 if leaf?(object) then

12 for p ∈ points(mbr(object)) do

13 insert((p, score_p(p)) , pq)

14 else

15 for e ∈ children(object) do

16 insert((e, score_r(𝑒, score_p)), pq)

17 result

Listing 1: BRS-Algorithm (based on [14])

found (Line 7), it is added to the result. If a leaf node is

retrieved from the queue (Line 11), its points are

extracted, the score of data points 𝑝 are determined

with the function 𝑠𝑐𝑜𝑟𝑒_𝑝, and point scores are used to

insert each point into pq (Line 12 and 13). Otherwise, a

non-leaf r-tree node is found (Line 14), and the

respective children are inserted into pq (Line 15 and

16). Each child MBR is scored with 𝑠𝑐𝑜𝑟𝑒_𝑟 in the

same way as in the initialization of pq with root nodes.

The algorithm terminates when k data points are

found (collected in result) or the queue is empty. The

result points are returned and represent the k top-scored

objects. We can safely assume that 𝑠𝑐𝑜𝑟𝑒_𝑝 is an

operation in 𝒪(1), whereas 𝑠𝑐𝑜𝑟𝑒_𝑟 is only ‘simple’

for monotonic 𝑠𝑐𝑜𝑟𝑒_𝑝 functions. For non-monotonic

functions, 𝑠𝑐𝑜𝑟𝑒_𝑟 can impose considerable overhead,

and indeed can be implemented effectively only for

specific classes of functions, as we will see below.

Once 𝑠𝑐𝑜𝑟𝑒_𝑟 works effectively, bounding the search

via pq and rt is effective, and the BRS algorithm can be

applied to large datasets.

The actual call to BRS is given as follows:

BRS(data_rtree, k, max, scorePoint, scoreMBR),

where k is the expected number of results, the function

max indicates maximum top-k, 𝑠𝑐𝑜𝑟𝑒𝑃𝑜𝑖𝑛𝑡 is a query-

specific function that maps a data object (point) to a

score being used for ranking the object, and

𝑠𝑐𝑜𝑟𝑒𝑀𝐵𝑅 determines the largest value that the

function 𝑠𝑐𝑜𝑟𝑒𝑃𝑜𝑖𝑛𝑡 can return when applied to the

points associated with an MBR specified as a

parameter. We will give an efficient implementation of

𝑠𝑐𝑜𝑟𝑒𝑀𝐵𝑅 for quasi-convex 𝑠𝑐𝑜𝑟𝑒𝑃𝑜𝑖𝑛𝑡 functions

below.

3.2 Maximum Principle of Monotonic Ranking

Functions

Definition 2. Monotonic Multivariate Function

A function 𝑓: 𝐷 → ℝ; (𝑥1, … , 𝑥𝑑) ⟼ 𝑦, 𝐷 ⊂ ℝ𝑑 of 𝑑

real variables is monotonic increasing if and only if

𝑓(𝑥1, … , 𝑥𝑑) ≤ 𝑓(𝑥1
′ , … , 𝑥𝑑

′) if 𝑥𝑖 ≤ 𝑥𝑖
′ ∀ 𝑖 = 1, … , 𝑑. It

is strictly monotonic increasing if strict inequality

holds. Similarly, we can define (strictly) monotonic

decreasing (≥) functions. An increasing or decreasing

function is called a monotonic function. Otherwise 𝑓 is

called non-monotonic. For example each affine linear

function f(x1, x2) = ax1 + bx2 + c for each a, b, c ∈

P. Poensgen, R. Möller: Quasi-Convex Scoring Functions in Branch-and-Bound Ranked Search

5

ℝ+is monotonic, whereas g(x1, x2) =
x1

x2
 is obviously

non-monotone. 

Let 𝑥0 = (𝑥1
0, … , 𝑥𝑛

0) ∈ 𝐷 be an arbitrary but firmly

selected point of the domain of a multivariate

function 𝑓: 𝐷 → ℝ, 𝑥 ↦ 𝑓(𝑥1, … , 𝑥𝑛). If you just

change the 𝑖-th component and leave all others then the

mapping 𝑥𝑖 ↦ 𝑓𝑖(𝑥1
0, 𝑥2

0, … , 𝑥𝑖−1
0 , 𝑥𝑖 , 𝑥𝑖+1

0 , … 𝑥𝑛
0) defines

a one-dimensional function, which is called the i-th

component function of 𝑓. 𝑓 is increasing (decreasing)

in the 𝑖-th component if 𝑓𝑖 is (independent from 𝑥0) an

increasing (decreasing) function of 𝑥𝑖. If a function is

increasing (decreasing) we denote it as a monotone

function in the i-th component.

Monotonicity implies that any real-valued

monotonically increasing function of several variables

𝑓: 𝑀 → ℝ takes its maximum at the upper right vertex

of the MBR, i.e., the vertex with the largest

coordinates. Simplified, we will speak of a maximum

principle of a function, assuming its maximum values

on the edges of its domain (see [12]). A monotonic

function takes its maximum at a vertex of an MBR,

which is the upper right (lower left) one if 𝑓 is

increasingly (decreasingly) monotone. If a function 𝑓 is

strictly monotonic in all dimensions, but not

necessarily increasing or decreasing in all dimensions

the function also assumes it’s maximum in a vertex,

which does not necessarily have to be the upper right or

lower left one. It is called the dominating vertex (see

[14]). If an MBR 𝑀 is spanned by the two opposite

vertices 𝑙 = (𝑙1, … , 𝑙𝑑) and ℎ = (ℎ1, … , ℎ𝑑) where 𝑙 is

the upper left, ℎ the upper right one, then the

dominating vertex 𝑒 = (𝑒1, … , 𝑒𝑑) can be specified by

𝑒𝑖 = 𝑙𝑖 ,, if 𝑓 is strictly decreasing on the 𝑖-th dimension

and 𝑒𝑖 = ℎ𝑖 ,, if 𝑓 is strictly increasing on the 𝑖-th

dimension for each 𝑖 ∈ {1, … , 𝑑}. Figure 2 shows the

maximum points of the monotonically increasing

function 𝑓2, the monotonically decreasing function 𝑓3

and the maxima of two component-wise monotonic

functions 𝑓1, 𝑓4.
However, for non-monotonic functions, this kind of

simple maximum principle does not hold, and the

above method to compute the dominating point is not

easily adaptable to non-monotonic functions. In

general, for a function 𝑓 in several variables one has to

use complex methods of mathematical analysis to

compute the bound (MBR score) 𝑓𝑚𝑎𝑥(𝑀). Next, we

will show that quasi-convex functions take their

maxima on some of the (finitely many) vertices of a (𝑑-

dimensional) MBR. Thus, in this respect, quasi-convex

functions represent a generalization of the class of

monotonic functions, the latter of which has the

property that the maximum is found on one known

vertex (top-right vertex).

Figure 2: Maximum principle of (component-wise)

monotonic functions for 2-dimension

4 QUASI-CONVEX FUNCTIONS

In this section, we characterize quasi-convex functions

in terms of hyper rectangles, which are always convex

and compact subsets of the Euclidian space. The formal

definition of convex and quasi-convex functions is

presented as follows: (see Section 3.4.1 of [3]).

Definition 3. Convex and Quasi-Convex Function

Let 𝑓: 𝐶 → ℝ be a function defined on a convex subset

𝐶 in ℝ𝑑. Recall that a set C is said to be convex, if for

all x, y ∈ C and all 𝑡 ∈ [0,1], the line segment 𝑡𝑥 +
(1 − 𝑡)𝑦 between 𝑥 and 𝑦 also belongs to 𝐶.

A function 𝑓 is called convex, if

𝑓(𝑡𝑥 + (1 − 𝑡)𝑦) ≤ 𝑡𝑓(𝑥) + (1 − 𝑡)𝑓(𝑦) (1)

for all 𝑥, 𝑦 ∈ 𝐶 and all 𝑡 ∈ [0,1]. Geometrically, this

inequality means that the line segment between

(𝑥, 𝑓(𝑥)) and (𝑦, 𝑓(𝑦)), which is the chord from 𝑓(𝑥)

to 𝑓(𝑦), lies above the graph of 𝑓.
A function 𝑓 is called quasi-convex, if

𝑓(𝑡𝑥 + (1 − 𝑡)𝑦) ≤ 𝑚𝑎𝑥{𝑓(𝑥), 𝑓(𝑦)} (2)

for all 𝑥, 𝑦 ∈ 𝐶 and all 𝑡 ∈ [0,1]. This means that on a

line segment the maximum of a quasi-convex function

is always attained in one of its end-points. 

Note that quasi-convexity is a generalization of

convexity. Any norm is convex (see [1]), for example

 the max-norm 𝑓(𝑎1, … , 𝑎𝑑) = max
𝑖

{|𝑎𝑖|},

 the Euclidian norm 𝑓(𝑎1, … , 𝑎𝑑) = √∑ 𝑎𝑖
2𝑑

𝑖=1 ,

 the p-Norm: 𝑓𝑝(𝑥) = (∑ |𝑎𝑖|
𝑝𝑑

𝑖=1)
1
𝑝, 𝑝 ≥ 1.

Open Journal of Databases (OJDB), Volume 7, Issue 1, 2020

6

a) Convex b) Quasi-convex

c) Non-convex

Figure 3: Convex, quasi-convex and non-convex functions in 1-dimension

Thus, any top-k query whose ranking function is a

norm and which is to be maximized can be applied to

the BRS algorithm. The following function 𝑓: ℝ𝑑 → ℝ

given by 𝑓(𝑎1, … , 𝑎𝑑) = √max
𝑖

{|𝑎𝑖|} is quasi-convex

but not convex (see [2]). The main difference between

convex, quasi-convex, and non-convex functions for

dimension 𝑑 = 2 is illustrated in Figure 3.

Alternatively, quasi-convexity can be defined by

sublevel sets. Thus, a function 𝑓 is quasi-convex if and

only if all its sublevel sets 𝑁𝑓(𝛼) = {𝑥 ∈ 𝐷 | 𝑓(𝑥) =

𝛼, 𝛼 ∈ ℝ } are convex (see [3], 3.4.1 and Figure 4).

Many requirements from practice can be modeled by

quasi-convex ranking functions [3].

Example 1. Real Estate Database

As an example, we consider an online real-estate

information system for buildings with the following

attributes: latitude (la), longitude (lo) as well as post

code (zip) information. Consider the case of data stored

in a relational database table RealEstate. We are

interested in the top ten objects which are located in the

northern outskirts of Munich (north/eastern or

north/west), as close as possible to the airport (north) of

Munich. Without loss of generality, we consider a

projection of both attributes to the unit interval which

maps the center (48.13, 11.58) of Munich to (0.5, 0)

(see [3]). The corresponding maximal top-k query over

this database is given by the following SQL query Q1:

 SELECT TOP 10 *
 FROM 𝑅𝑒𝑎𝑙𝐸𝑠𝑡𝑎𝑡𝑒
 WHERE 𝑧𝑖𝑝 BETWEEN 80331 AND 81929
 ORDER BY (𝑙𝑎 − 0.5)2 + 𝑙𝑜 DESC

Figure 4 shows the plot of the function 𝑓(𝑥1, 𝑥2) =
(𝑥1 − 0.5)2 + 𝑥2 over its two attributes and its sublevel

sets, which are obviously convex. Hence, as stated

above 𝑓 is (quasi-)convex but obviously not monotone.

As a second example, we consider a patient database

with a Patient table that provides the age and blood

pressure values sys and dia of each patient.

Example 2. Hypertension or Hypotension

In statistics, an outlier is a data point that differs

significantly from other observations. An outlier may

be due to variability in the measurement or it may

indicate experimental error; the latter are sometimes

excluded from the data set. It can cause serious

P. Poensgen, R. Möller: Quasi-Convex Scoring Functions in Branch-and-Bound Ranked Search

7

a) 3-dimensional Graph b) 2-dimensional Sublevel sets

Figure 4: Graph and sublevel sets of the function of Example 1

Figure 5: Patient sample with blood pressure readings

problems in statistical and business analyses.

Sometimes, as in the following example, outliers are

just the result set of a problem (See the red points in

Figure 5). The definition for outliers is not unique and

varies with the application. For our example an outlier

is a data point that is very different in one or more

coordinates from the coordinates of a given query

point.

We would like to generate a sample of 10 patient

aged 40 to 50 with high (Hypertension) or low blood

pressure (Hypotension). The goal is to find the k

highest scoring points by maximizing the following

SQL query Q2:

 SELECT TOP 10 *
 FROM 𝑃𝑎𝑡𝑖𝑒𝑛𝑡
 WHERE 𝑎𝑔𝑒 BETWEEN 40 AND 50
 ORDER BY ω1(sys − 120)2 +

 ω2(dia − 80)2 DESC

Open Journal of Databases (OJDB), Volume 7, Issue 1, 2020

8

a) Straight line intersects the boundary b) Boundary with maximum point

Figure 6: 2-dimensional Hypercube

The positive real numbers ω1, ω2 are weighting

parameters. In both examples, the ranking functions are

not monotonic, and thus the known monotonic

frameworks (See [7]) are not applicable.

Both examples, like many other practical

applications, use a convex ranking function, which is

generally not monotonic (See [13]). In order to be able

to derive a criterion for the determination of a score for

each MBR of an r-tree, however, we only need the

more general property of quasi-convexity, which holds

for convex functions as well. For Q1 in our Example 1

we use 𝑝𝑜𝑖𝑛𝑡𝑆𝑐𝑜𝑟𝑒 = 𝑙𝑎𝑚𝑏𝑑𝑎(𝑝). (𝑠𝑞𝑟(𝑙𝑎(𝑝) – 0.5) +

 𝑙𝑜(𝑝)) as a parameter in the call to BRS (see Listing 2).

The second parameter of our top-k query example, lo

(longitude), is used in a linear fashion here just for

demonstration purposes, it could be handled in the

same way as la (latitude). In the following section, we

will show that a quasi-convex function is characterized

by being maximal on the vertices of each MBR.

4.1 Maximum Principle for Quasi-Convex

Ranking Functions

Quasi-convex functions, unlike convex ones, need not

be automatically continuous. The floor function ℝ →
ℝ; 𝑥 ↦ ⌊𝑥⌋ is an example of a quasi-convex function

that is neither convex nor continuous. To ensure the

existence of a maximum, it is sufficient to assume

compactness of the domain, the continuity of the

function is not necessary. If compactness is given, i.e.,

if the domain is a hyper rectangle, we will show that

the maximum of quasi-convex functions is to be found

on the boundary of that domain. This principle is called

maximum principle of a function [12]. We are now

ready to formulate our main result as a theorem. Note

that the assumptions of the theorem as well as its claim

correspond to properties of the hyper rectangle.

Theorem 1. Maximum principle of quasi-convex

functions

Let 𝑓: 𝐷 → ℝ, 𝐷 ⊆ ℝ𝑑 be a quasi-convex (ranking)

function. For each hyper rectangle 𝑀 ⊆ 𝐷 generated by

its 2𝑑 vertices 𝑒1, … , 𝑒2𝑑 ∈ ℝ𝑑 the following holds:

𝑓𝑚𝑎𝑥(𝑀) = 𝑚𝑎𝑥{𝑓(𝑒1), … , 𝑓(𝑒2𝑑)}. (3)

In other words: If one limits the domain of a quasi-

convex function 𝑓 to a (general) hyper rectangle, then

𝑓 takes its (not necessarily unique) maximum in some

vertex of the hyper rectangle.

Proof by Induction: Basis: We show that the

statement holds for 𝑑 = 2. In this case 𝑀 is a two-

dimensional rectangle of the Euclidian plane which is

mapped by 𝑓 to a three-dimensional surface illustrated

in Figure 7. If the maximum point 𝑃 is on the edge of

the rectangle our claim is proven, because a quasi-

convex function of a one-dimensional hyper rectangle

(line-segment), assumes its maximum on its vertices.

That is precisely the definition of a quasi-convex

function. We assume the maximum point 𝑃 is in the

interior of the rectangle. A straight line through an

arbitrarily chosen vertex 𝐴 and 𝑃 intersects the

boundary of the rectangle in a further point 𝐵 (see

Figure 6 a). Since 𝑓 is quasi-convex 𝑓(𝑃) ≤
𝑚𝑎𝑥{𝑓(𝐴), 𝑓(𝐵)} holds. If 𝑓(𝐴) ≥ 𝑓(𝐵) our claim is

proven. If this does not hold, we consider the straight

line through 𝐵 and a second vertex 𝐶. The second

straight line is a sub-set of the edge of the rectangle.

Therefore, it intersects the box in a third vertex 𝐷 (see

Figure 6 b).

Inductive step: We have to show, that if the claim

holds for dimension 𝑑 − 1, then it also holds for

dimension 𝑑. The statement follows immediately from

the (geometric) construction of a 𝑑-dimensional hyper

rectangle 𝑀 (see Section 3) that is composed of 2𝑑
(𝑑 − 1)-dimensional hyper rectangles, so that each

P. Poensgen, R. Möller: Quasi-Convex Scoring Functions in Branch-and-Bound Ranked Search

9

 Algorithm: scoreMBR (𝑴, 𝒔𝒄𝒐𝒓𝒆_𝒑)

 // 𝑀 is an MBR

// 𝑠𝑐𝑜𝑟𝑒_𝑝 is a point scoring function

1 {𝑒1, … , 𝑒2𝑑} ≔ 𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠(𝑀)
 // the vertices function generates the set

 // of vertices of a d-dimensional 𝑀𝐵𝑅 𝑀

2 𝑚𝑎𝑥({𝑠𝑐𝑜𝑟𝑒_𝑝(𝑒1), … , 𝑠𝑐𝑜𝑟𝑒_𝑝(𝑒2𝑑)})

Listing 2: Algorithm for determining the MBR max score for quasi-convex score-p functions

straight line through a vertex 𝐴 and a point 𝑃 of the

interior of 𝑀 intersects an 𝑖-dimensional hyper

rectangle in the boundary for at least one 𝑖 ∈
{0, … , 𝑑 − 1}. 

This theorem is particularly important because the

class of quasi-convex functions fits well to the BRS

algorithm, since one can calculate the bounds of the

MBRs only by considering their bounding vertices,

similarly to the monotone case in which the bounding

vertex is directly determined. Monotonicity implies

that any real valued monotonic increasing function of

several variables 𝑓: 𝑀 → ℝ takes its maximum at the

upper right vertex of the hyper rectangle, i.e., the

vertex with the largest coordinates.

This principle is not adaptable in general, but for

quasi-convex functions one can determine a score by

computing scoring function values for all vertices and

then finding the largest one. The algorithm for

computing the max score for a quasi-convex function

to be used as an argument to BRS is given in Listing 2.

For the actual call see line 16 in Listing 1.

4.2 Characterization of Quasi-Convex

Functions on Hyper Rectangles

The following theorem characterizes quasi-convex

functions on hyper rectangles. It shows that also the

backward direction of Theorem 1 holds. This means

that a quasi-convex function is already uniquely

determined by the maximum principle on general hyper

rectangles. Theorem 1 has shown that and how the

BRS can be applied to non-monotone functions.

Theorem 2 makes clear why quasi-convexity is a

generalization of monotonicity in the context of top-k

queries answered with the BRS algorithm.

Theorem 2. Characterization of quasi-convex

functions

Let 𝑓: 𝐷 → ℝ a function, 𝐷 ⊆ ℝ𝑑 a convex domain,

then the following holds: If 𝑓 is maximal on at least

one vertex of each hyper rectangle 𝑀 ⊆ 𝐷 the function

is quasi-convex.

Figure 7: Maximum values of a one-dimensional

hyper rectangle

Note: The term “each” means, that 𝑀 is a general

hyper rectangle.

Proof: Let s be a line segment between any two

selected points 𝑃 = (𝑋, 𝑓(𝑋)) and 𝑄 = (𝑌, 𝑓(𝑌)). By

assumption, 𝑓 takes its maximum value on the vertices

on each 𝑀. Thus, this function is also maximal on the

corners of all one-dimensional hyper rectangles, the

line segments. So, in particular, 𝑓 takes its maximum

on the one-dimensional hyper rectangle which is

spanned by the two vertices 𝑋 and 𝑌 (Figure 7

illustrates the situation for dimension 2). 

Open Journal of Databases (OJDB), Volume 7, Issue 1, 2020

10

5 CONCLUSIONS

In contrast to monotonic functions used for ranking

functions, for general functions no direction can be

specified for value increase. The algorithm of

monotonic functions for determining the dominant

vertex given in [14] is useless in case of quasi-convex

functions. Therefore, in order to determine the

maximum vertex or corners and, thus, the upper bound,

unless specific additional properties can be exploited

for the function, one must generally calculate all 2𝑑

function values and select the largest one.

The procedure call 𝑚𝑎𝑥{𝑓(𝑒1), … , 𝑓(𝑒2𝑑)} to

identify the max score 𝑓𝑚𝑎𝑥(𝑀) of a given MBR 𝑀 is

exponential in the number of dimensions. However, for

a fixed dimension 𝑑, which will usually be rather small

in practical applications, the overall BRS (Branch-and-

Bound Ranked Search) procedure is indeed average-

case-logarithmic in the number of points (depending on

the r-tree structure), and therefore efficient in practice.

The procedure scoreMBR as defined in this paper is

preferable to uninformed elaborate and inefficient

analytical methods of mathematical analysis (partial

derivatives, Hesse matrix, etc.) for determining

maximal MBR score. BRS computation for quasi-

convex ranking functions is considered to be a fixed-

parameter tractable problem on 𝑑 (FPT for short). The

class of quasi-convex functions is the class of functions

that take their maxima on some of the finitely vertices

of each (general) hyper rectangle.

The main results of this paper are that we can find

the key values for each r-tree node (MBR) only by

calculating the function values of the vertices of the

MBRs. The findings show that in this case more

general but costly methods of mathematical analysis

for maximum finding are not required, and thus we

make the BRS algorithm effective not only for

monotone ranking functions, but also for quasi-convex

ranking functions in maximum top-k queries.

Therefore, the results of the experimental evaluation in

[14] can be transferred to quasi-convex functions, since

only the getMaxScore function that calculates the upper

bounds for the BRS has changed.

REFERENCES

[1] A. A. Ahmadi, E. de Klerk and G. Hall,

“Polynomial Norms,” SIAM Journal on

Optimization, vol. 29(1), p. 399–422., 2019.

[2] H. H. Bauschke and P. L. Combettes, Convex

Analysis and Monotone Operator Theory in

Hilbert Spaces, Second ed., Canada: Springer,

2017, pp. 177-187.

[3] S. Boyd and L. Vandenberghe, “Convex

Optimization,” Cambridge University Press,

2004.

[4] H. S. M. Coxeter, Regular Polytopes, New York:

Dover Publications, Inc., 1973.

[5] J. Dieudonné, Grundzüge der modernen Analysis,

Bd. 1, Braunschweig: Vieweg, 1985.

[6] A. Guttman, “R-Trees: A Dynamic Index

Structure for Spatial Searching,” Proc. ACM

SIGMOD Conference Boston, pp. 47-57, 1984.

[7] I. F. Ilyas, G. Beskales and M. A. Soliman, “A

Survey of Top-k Query Processing Techniques in

Relational Database Systems,” ACM Computing

Surveys 40(4), Article 11, 2008.

[8] N. Madrid and U. Straccia, “On Top-k Retrieval

for a Family of Non-monotonic Ranking

Funktions,” Flexible Query Answering Systems,

pp. 507-518, 2013.

[9] N. Madrid and P. Rusnokb, “A Top-K Retrieval

Algorithm Based on a Decomposition of Ranking

Functions,” Information Sciences, vol. 474, pp.

136-153, 2019.

[10] S. Ranu and A. Singh, “Answering Top-k

Queries Over a Mixture of Attractive and

Repulsive Dimensions,” Proc. of the VLDB

Endowment 5(3), pp. 169-180, 2011.

[11] Y. Saad and M. Schultz, “Topological Properties

of Hyper-Cubes,” IEEE Transactions on

computers, no. 37, pp. 867-872, 1988.

[12] R. Sperb, Maximum Principles and their

Appications, Academic Press, Inc., 1981.

[13] V. Sverák, “New Examples of Quasiconvex

Functions,” Archive for Rational Mechanics and

Analysis 119.4, pp. 293-300, 1992.

[14] Y. Tao, V. Hristidis, D. Papadias and Y.

Papakonstantinou, “Branch-and-Bound

Processing of Ranked Queries,” Information

Systems, 32(3), pp. 424-445, 2007.

[15] D. Xin, J. Han and K. Chang, “Progressive and

Selective Merge: Computing Top-k with Ad-hoc

Ranking Functions,” Proc. ACM SIGMOD, pp.

103-114, June 2007.

[16] Z. Zhang, S. Hwang, K. Chang, M. Wang, C. A.

Lang and Y. Chang, “Boolean + Ranking:

Querying a Database by K-Constrained

Optimization,” Proc. ACM SIGMOD, pp. 359-

370, 2006.

P. Poensgen, R. Möller: Quasi-Convex Scoring Functions in Branch-and-Bound Ranked Search

11

AUTHOR BIOGRAPHIES

Peter Poensgen is an IT-

coordinator at Talanx AG, a

European insurance group

based in Hannover and

Cologne. He received a

diploma in Mathematics and

started his professional career

as IT-consultant (database and

software development), an area

in which he was working for

5,5 years. Peter also worked in the finance industry in

various business areas (business intelligence and

analytics, data management and software

development). His research interests mainly focus on

data mining, query processing and optimization as well

as algorithms for solving convex optimization

problems. Peter provides courses in these areas at FOM

University of Applied Sciences in Cologne.

Ralf Möller is Full Professor

of Computer Science at

University of Lübeck and

heads the Institute of

Information Systems. He was

Associate Professor of

Computer Science at Hamburg

University of Technology from 2003 to 2014. From

2001 to 2003 he was Professor at the University of

Applied Sciences in Wedel/Germany. In 1996 he

received the degree Dr. rer. nat. from University of

Hamburg. Prof. Möller was a co-organizer of

international workshops and is the author of numerous

workshop and conference papers as well as several

books and journal contributions (h-index=35 according

to Google Scholar). He served as a reviewer for all

major journals and conferences in knowledge

representation and reasoning research areas, and he has

been PI in several EU and DFG projects. Professor

Möller is spokesperson of the Research Unit “Data

Linking” in the DFG-funded Cluster of Excellence

“Understanding Written Artefacts”.

