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ABSTRACT 
 

The Branch-and-Bound Ranked Search algorithm (BRS) is an efficient method for answering top-k queries based 

on R-trees using multivariate scoring functions. To make BRS effective with ascending rankings, the algorithm 

must be able to identify lower bounds of the scoring functions for exploring search partitions. This paper 

presents BRS supporting parabolic polynomials. These functions are common to minimize combined scores over 

different attributes and cover a variety of applications. To the best of our knowledge the problem to develop an 

algorithm for computing lower bounds for the BRS method has not been well addressed yet. 
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1 INTRODUCTION 

 
Supporting efficient top-k processing in database 

systems is a relatively recent and active line of 

research. The answer to a top-k query in a relational 

database is a ranked set of the k tuples that fit “best” to 

the selection condition. Efficient processing is usually 

the most important requirement for applications, in 

particular if huge amounts of data are involved. A 

common way for computing the relevant top-k objects 

is the application of a scoring (ranking) function. In 

relational database systems ranking functions will be 

used in the Order-By statement of a top-k query. In 

general, they are multivariate functions that assign an 

aggregation over partial attributes (scores). The answer 

to a top-k query is a ranked set of the k tuples in the 

database that match “best” the selection condition.  

An example of such databases is a patient database 

used in clinical studies, and the databases provides the 

blood pressure values systolic (sys) and diastolic (dia) 

as well as the pulse rate (pulse) for each patient. A 

typical application scenario, which deals with parabolic 

polynomials when computing top-k queries over the 

patient database, is described in Example 1. We use the 

application scenario as the running example in the 

paper to explain our work. 

 

Example 1: Searching for suitable probands 

In order to test a drug for the treatment of slowed heart 

rate (bradycardia) and very fast heart rate (tachycardia), 

a sample of patients needs to be determined. Since side 

effects on (normal) blood pressure should be 

investigated, the systolic and diastolic values must be 

included. The patient data is stored in a patient table R 

in a relational database. To identify a sample of 

suitable candidates, the doctor looks in the patient 

database for people whose systolic value (sys) is 

around 120, the diabolic value (dia) is around 80 and 

whose pulse sequence (pulse) deviates significantly 

from the mark 50 either upwards or downwards. The 
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top-k query for patients in the 40- to 50-year-old age 

group could be written as follows: 

 
SELECT Top k * 

FROM R 

WHERE age BEETWEEN 40 AND 50 

ORDER BY 𝜔1(𝑠𝑦𝑠 − 120)2 + 𝜔2(𝑑𝑖𝑎 − 80)2 +

                        𝜔3(𝑝𝑢𝑙𝑠 − 50)2 ASC 

 

The point 𝑞 = (120, 80, 50) is the so-called query-

point and 𝜔 = (𝜔1, 𝜔2, 𝜔3) with 𝜔𝑖 ≠ 0 is a vector 

whose components weight the three attributes in order 

to show their relevance and the corresponding sign 

determine which attribute is to be particularly close 

(positive weighting) to, or as far away as possible 

(negative weighting) from the corresponding 

coordinate of the query point. For our example 

𝜔1, 𝜔2 > 0 and 𝜔3 < 0 must be chosen so that the 

problem can be solved by minimizing the scoring 

function of the ORDER-BY statement. If the values of 

one or more attributes are very small in relation to the 

others, the corresponding exponent can be increased 

instead of a scalar weighting. However, for the method 

presented in this work, the exponents may only be 

natural numbers.  

In this paper the semantic of a top-k selection query 

is given by 

 
SELECT TOP k attribute-list  

FROM R  

[WHERE…]  

ORDER BY 𝑓(𝑡) ASC 
 

where 𝑓 is a function of several variables that assigns a 

numeric score to any tuple t (see [2]). Note that a 

scoring function does not need to consider all attributes 

of the table.  

 

1.1  Motivation and Challenges 
 

A naive way for answering top-k queries is to consider 

a complete dataset of 𝑁 tuples of a given relation, 

compute the value of a scoring function for each tuple, 

while maintaining and finally returning the k lowest-

ranked tuples. This algorithm is in 𝒪(𝑁 𝑙𝑜𝑔(𝑘)) (see 

[5], and since k is small and fixed, the procedure is 

called sequential search.  

 Our problem is not monotone: The underlying 

ranking function in Example 1 described above 

measures the distance by squaring the difference of two 

expressions. Such requests can also be modeled 

differently to come to the same solution. An alternative 

way is to use the absolute value function. However, 

note the fact that this requirement cannot be modeled 

with the help of a monotone scoring function.  

 In general, minimum problems cannot be converted 

into maximum ones: The task of finding top-k tuples 

from a given relation can either be defined by a 

maximization or a minimization Order-By criterion. 

Basically, a maximum query can always be turned into 

a minimum one by switching the sign of the objective 

function; i.e., both queries will answer the same 

question. If the scoring function 𝑓 is monotone 

increasing the negative −𝑓 is obviously monotone 

decreasing. Therefore, in the context of monotonicity 

most proposed techniques assume just one case, mostly 

the maximization problem, e.g. [14] and [18]. In other 

words, in the monotonic case the calculation of top-k 

data points can always be reduced to the maximization 

of the underlying ranking function. However, this 

method is generally not applicable to non-monotonic 

functions. Parabolic polynomials of Example 1 are 

convex functions and the complement of convexity is 

concavity and thus solutions which assume convexity 

e.g. [13] are not applicable.   

 Example 1 is generally not a NNS-problem: As 

mentioned in [15] a nearest neighbor search (NNS) is a 

form of proximity search. Given a data point 𝑞 and an 

integer k, the output of a so-called k-NN query contains 

the k objects closest to 𝑞, where proximity is computed 

by means of a distance function. Nearest neighbour 

queries can be considered as a special case of top-k 

queries, where the ranking function corresponds to the 

distance among the objects. Example 1 with positive 

weightings is a k-NN query, whereas its generalization 

given by negative weightings is not. The last one is a 

top-k selection query with a special family of non-

monotonic ranking functions.   

 

1.2  Contributions 
 

Our approach developed in this paper addresses the 

problem of answering non-monotonic top-k queries by 

minimizing parabolic polynomials. We introduced the 

minimum principle for this class of functions that 

guarantees lower bounds for the BRS algorithm. Our 

contributions towards this goal are summarized here: 

 

 We introduce the class of parabolic polynomials 

and show why these polynomials are suitable 

candidates for the Branch-and-Bound ranked 

search algorithm.  

 

 We develop the MinScore algorithm for 

calculating the minimum (lower bounds) for 

parabolic polynomials on minimal bounding 

rectangles (MBRs), which makes the BRS 

available to a wide range of practically relevant 

(non-monotonic) applications. 
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 We analyze the Branch-and-Bound Ranked Search 

method (BRS) and show that the algorithm takes 

𝒪(𝑙𝑜𝑔(𝑁)𝑙𝑜𝑔(𝑘)) if the number of rectangles at 

the lowest inner level of the R-tree is chosen as a 

function of the number of data points 𝑁. 

 

 The remainder of this paper is organized as follows: 

Section 2 discusses related work and Section 3 

introduces related background of BRS. Section 4 

presents our research work: the Minimum Principle of 

Parabolic Polynomials and the Min-Score Algorithm in 

bounded search for top-k solutions in BRS. We discuss 

and analyze the research results in Section 5, and 

conclude our study in Section 6. 

 

2 RELATED WORK 
 

The Branch-and-bound principle is a fundamental and 

widely-used methodology for calculating exact 

solutions to optimization problems. This approach, first 

proposed by Lang and Doig [8], depends on efficient 

estimation of lower or upper bounds of regions on the 

search space and uses an R-tree to develop efficient 

search algorithms. Clausen [1] gives an overview about 

the search strategy, the branching strategy and some 

pruning rules of Branch-and-Bound and illustrates the 

method and design issues through three examples. In 

[10] Morrison and colleagues present recent research 

advances in the design of Branch-and-Bound 

algorithms. In addition, search strategies are described 

that affect the computing time required for the Branch-

and-Bound process. 

Branch-and-Bound is also suitable for next 

neighbor search [7] and [15], for skyline retrieval [11] 

and for processing of ranking queries introduced by 

Tao and colleagues (Branch-and-Bound Ranked 

Search, BRS [18]). This paper also shows how the BRS 

works for monotone scoring functions, which always 

assume their maximum at the upper right or lower left 

edge of hyper rectangles. Monotonic functions are the 

classical example to which a maximum principle 

applies. In convex optimization, the maximum 

principle says that the maximum of a function in its 

domain is attained on the boundary of that domain (see 

[17]). This solves the problem of finding suitable 

bounds for monotonous functions. 

 The BRS is also suitable for non-monotonous 

functions, as long as the bounds for these functions can 

be determined efficiently. Quasi-convex functions, as 

shown in [13], generalize the monotonic approach. The 

maximum of quasi-convex functions is to be found on 

any vertex of a hyper rectangle. For both functional 

classes, the algorithm for determining the upper bounds 

needed for the BRS is quite simple. The upper bound 

can be specified as function value of the edge where 

the function assumes its maximum.  

The proposed family of ranking functions in [14] is 

closest to our approach. It combines the idea of so-

called attractive and repulsive dimensions. Based on a 

given data point 𝑞 = (𝑞1, … 𝑞𝑛) (query point) the 

introduced linear SD-Score function measures the 

distance between each relevant data point 𝑝 =
(𝑝1, … 𝑝𝑛) and 𝑞 in each coordinate. The goal is to find 

the k highest scoring points of such a ranking function. 

The authors note, that they take a more direct approach 

and develop precomputation based index structures 

specifically for the proposed class of linear scoring 

functions.  Instead of maximizing (non-monotone) 

scoring functions, the method developed in our paper is 

dealing with the challenge of minimizing them.  

Ad-hoc ranking functions are addressed by [20], 

with the restriction that the function is lower-bounded. 

A ranking function 𝑓 is lower-bounded in a region of 

its variables domains, if the lower bound of 𝑓 in this 

region can be derived. The authors present an index-

merge framework that performs progressive search 

over a space of states composed by joining index 

nodes. The main idea is to exploit existing B-Tree and 

R-Tree indexes of ranking predicates to create a search 

space of possible query answers.  
To solve the problem, the function must be 

minimized. However, this and all other methods known 

to us that minimize the scoring function are not suitable 

to solve the minimum problem of BRS. Parabolic 

polynomials are minimal on the edge of a hyper 

rectangle and therefore a minimum principle holds for 

these functions. This makes them suitable candidates 

for the BRS algorithm. How to determine the local 

minima on rectangles for these functions is the focus of 

this paper. 

 

3 PRELIMINARIES 

 
In this part, the fundamentals of the Branch-and-Bound 

framework are presented briefly, which provide 

necessary information in order to better understand the 

approach developed in this paper. 

The BRS method is essentially based on an R-tree 

with minimal bounding rectangles (MBRs) for 

partitioning, and it requires an MBR scoring function 

for deciding which node is to be examined next. The 

Branch-and-Bound framework has been applied 

extensively to develop efficient search algorithms 

based on R-Trees [18]. An R-tree [6] is a common 

access method for multi-dimensional objects. Its key 

idea is to group nearby objects and represent them as a 

minimum bounding rectangle in the next higher level. 

MBRs at the same level are recursively clustered into 
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Figure 1: Partitioning of data room (left) with 

corresponding R-Tree (right) 

 
 Algorithm BRS (rt, k, type,  score_p, score_r) 

 // rt is an R-tree on the dataset 

// k denotes the number of data points to return  

 // type can be either ‘min’ or ‘max’ 

// score_p is a point  scoring function 

// score_r computes a score for an MBR 

1 let pq = build_priority_queue( 

 type,  

     map(lambda(obj). (obj, score_r(mbr(obj),score_p)),                                                  

      root(rt)))  

     // create pq with (obj, score) entries using 

  // the anonymous lambda function 

2 result = {} 

3 n = 0 

4 object // can be either a data point or an MBR 

5      while n < k and not empty?(pq) do 

6    object := delete_next(pq) 

7            if point?(object) then 

8    result := result ∪ {object} 

9   n := n + 1 

10           else 
11               if leaf?(object) then 

12   for p ∈ points(mbr(object)) do 

13                        insert((p, score_p(p)) , pq) 

14               else 
15                 for e ∈ children(object) do 

16                        insert((e, score_r(𝑒, score_p)), pq) 

17      result 

Listing 1: BRS (based on [18]) 

 

nodes of the higher level. R-trees for top-k queries on 

tuples of a given relation have the special property that 

leaf nodes consist of multiple data points defined by 

the tuples of the relation (cardinalities depend on 

partition sizes). An MBR 𝑀 ⊂ ℝ𝑑 is defined as the 

finite Cartesian product 𝑀 = 𝐼1 × 𝐼2 × … × 𝐼𝑑  of closed 

intervals 𝐼𝑗 = [𝑎𝑗 , 𝑏𝑗] with 𝑎𝑗 ≤ 𝑏𝑗 for any 𝑗 = 1, … , 𝑑 

[16]. We denote 𝑀 as vector 𝑣𝑀 = (𝑎1, 𝑏1, … , 𝑎𝑑 , 𝑏𝑑) ∈
ℝ2𝑑.  

 Figure 1 demonstrates a part of a two-dimensional 

point dataset and the corresponding R-Tree. The root 

consists of two MBRs (R1, R2) and the four MBRs R3, 

R4, R5 and R6 are internal nodes. For simplicity only 

the data points P4, P5 and P6 assigned to the MBR R4 

are shown in the figure.  

 The strategy to answer a minimum top-k query with 

BRS is described as a bounded search through an R-

tree (see Listing 1). The algorithm uses the R-tree to 

partition and index the dataset of a given relation, and 

for bounding the search for top-k result points BRS 

maintains a priority queue pq of R-tree entries or points 

(see [4]). Initially the algorithm loads the root of the R-

tree, i.e., a set of MBRs, into the priority queue pq 

(Line 1). Actually, pairs of objects and scores are 

inserted into pq for determining the ranking of objects. 

The score of an MBR 𝑀 is determined by applying 

score_r to two parameters, namely 𝑀 and the point 

scoring function 𝑓. Both functions need to be provided 

to BRS. Afterwards objects from pq are considered in a 

loop.  

In each iteration the node with the highest ranking 

(highest or lowest scored object, depending on type) is 

retrieved from pq (Line 5 and 6). If a point is found 

(Line 7), it is added to the result. If a leaf node is 

retrieved from the queue (Line 11), its points are 

extracted, the score of data points 𝑝 are determined 

with the function 𝑓, and point scores are used to insert 

each point into pq (Lines 12, 13). Otherwise a non-leaf 

R-tree node is found (Line 14), and the respective 

children are inserted into pq (Line 15, 16). Each child 

MBR is scored with score_r in the same way as in the 

initialization of pq with root nodes. The algorithm 

terminates when k data points are found (collected in 

result) or the queue is empty (see [13]). 

The actual call to BRS is given as follows: 

BRS(data_rtree, k, ‘min’, score_p, score_r), where k is the 

expected number of results, the function min indicates 

minimum top-k, 𝑠𝑐𝑜𝑟𝑒_𝑝 is a query-specific function 

that maps a data object (point) to a score being used for 

ranking the object, and 𝑠𝑐𝑜𝑟𝑒_𝑟 determines the lowest 

value that the function 𝑠𝑐𝑜𝑟𝑒_𝑝 can return when 

applied to the points associated with an MBR specified 

as a parameter. We will give an efficient 

implementation of  𝑠𝑐𝑜𝑟𝑒_𝑟 for a parabolic polynomial 

𝑠𝑐𝑜𝑟𝑒_𝑝 functions below.  

 
4 PARABOLIC POLYNOMIALS  
 

In general for 𝑑 numeric attributes of a given relation 

and for any even exponents of the component 

functions, the scoring function of Example 1 results in 

a special class of polynomials. Polynomial functions 

are common in minimizing problems (see [12] and 

[19]). 
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Definition 1: Parabolic Polynomials 

A real-valued function 𝑓: ℝ𝑑 → ℝ 

(𝑥1, … , 𝑥𝑑) ↦ ∑ 𝜔𝑖

𝑑

𝑖=1

(𝑥𝑖 − 𝑞𝑖)
2𝑛𝑖  

with 𝑛𝑖 ∈ ℕ, 𝜔𝑖 ∈ ℝ\0 for each 𝑖 ∈ {1, … , 𝑑} is a 

polynomial with even degree. The 𝑑-dimensional data 

point 𝑞 = (𝑞1, … , 𝑞𝑑) is denoted as “center” or 

“midpoint” of the graph of the function. 𝜔 =
(𝜔1, … , 𝜔𝑑) is the weighting vector. For a fixed 𝑖 the 

one-dimensional function 𝑥𝑖 ↦ 𝜔𝑖(𝑥 − 𝑞𝑖)
2𝑛𝑖  is called 

the 𝑖-th component function of 𝑓, which depending on 

the weighting (positive or negative) is an upwardly or 

downwardly opened parabola. We define such a 

function as a parabolic polynomial. 

 

4.1 Minimum Principle of Parabolic 

Polynomials 
 

The Extreme Value Theorem (see [9]) of analysis 

ensures that each continuous function on a compact set 

obtains its (finite) minimum. It forms the basis for the 

minimum principle and is also fundamental for our 

MinScore algorithm. 

Theorem 1: Minimum Principle of Parabolic 

Polynomials 

Let 𝑓: 𝑀 → ℝ be a parabolic polynomial, 𝑀 ⊂ ℝ𝑑 a 

minimal bounding rectangle and 𝑥𝑚𝑖𝑛 ∈ 𝑀 the 

minimum of 𝑓 on 𝑀. Then 𝑥𝑚𝑖𝑛 lies on the edge of 𝑀 

or 𝑓𝑚𝑖𝑛(𝑀) ≔ 𝑓(𝑥𝑚𝑖𝑛) = 0. 

Proof: From real analysis it is known that a subset of 

the Euclidian space ℝ𝑑 is compact if and only if it is 

closed and bounded, which is the statement of the well-

known Heine-Borel Theorem (see [3]). Since each 

interval [𝑎, 𝑏] ⊂ ℝ is closed and bounded and every 

finite Cartesien product of closed intervals is closed 

and bounded as well, each minimal bounding rectangle 

is also compact. Thus, the continuity of parabolic 

polynomials ensures that 𝑓 attains its minimum on 𝑀.  

Next we show that if 𝑓(𝑥) = ∑ 𝑓𝑖(𝑥)𝑑
𝑖=1  is the sum 

of 𝑑 component functions, then its minimum can be 

calculated by the sum of the minima of its component 

functions. In case of parabolic polynomials this means 

that the following mathematical equation is satisfied: 

𝑚𝑖𝑛
(𝑥1,…, 𝑥𝑑) ∈𝑀

∑ 𝜔𝑖

𝑑

𝑖=1

(𝑥𝑖 − 𝑞𝑖)
2𝑛𝑖 

= ∑ 𝑚𝑖𝑛
𝑥𝑖 ∈ 𝐼𝑖

(𝜔𝑖(𝑥𝑖 − 𝑞𝑖)
2𝑛𝑖)

𝑑

𝑖=1

 

(1) 

 

Figure 2: One-dimensional parabolic functions 

Proof: Let be 𝑥 = (𝑥1, … , 𝑥𝑑) ∈ ℝ𝑑 a data point where 

the parabolic polynomial is minimal, then 

mathematical equation is satisfied: 

𝑓(𝑥) = ∑ 𝑓𝑖(𝑥𝑖)

𝑑

𝑖=1

 (2) 

Let be 𝑥̃ = (𝑥̃1, … , 𝑥̃𝑛) ∈ ℝ𝑑 a point on which the 

component functions 𝑓𝑖(𝑥̃𝑖) is minimal for each 𝑖 ∈
{1, … , 𝑑}, then by definition and because of (2), 

𝑓(𝑥̃) = ∑ 𝑓𝑖(𝑥̃𝑖) ≤ ∑ 𝑓𝑖(𝑥𝑖) = 𝑓(𝑥)

𝑑

𝑖=1

𝑑

𝑖=1

. (3) 

Since (3) holds, 𝑓(𝑥) ≥ 𝑓(𝑥̃) and thus 𝑓(𝑥) =
𝑓(𝑥̃). Since (1) holds, the calculation of the minimum 

of 𝑓 over 𝑀 can be reduced to the one-dimensional 

case. In ℝ1 two types of component functions have to 

be distinguished. Figure 2 illustrates the procedure. If 

the weighting of the function 𝑓 is positive (Figure 2 left 

side) the minimum value of 𝑓 is zero if and only if the 

interval that defines the edge of 𝑀 contains the 

coordinate of the global minimum (𝐼2). Otherwise, if 

the coordinate of the minimum is outside of the interval 

(𝐼1 or 𝐼3) the minimum is the lowest function value of 

the left and right boundary of the interval. If the 

weighting of the function is negative (Figure 2 right 

side) the minimum is always the lowest function value 

of the left and right boundary of the interval (𝐼1 or 𝐼2).  

 After these theoretical and geometrical preparations 

we can introduce our MinScore algorithm, which is 

fundamental for the BRS algorithm. The algorithm 

min_i calculates the minima of all component 

functions, which, as mentioned above, are then 

summed up in the MinScore algorithm score_r. 

 

4.2 The Min-Score Algorithm 
 

Since Theorem 1 holds, the algorithm for determining 

the minimum of a parabolic polynomial can be reduced 

to the one-dimensional case. In ℝ1 two types of 

component functions have to be distinguished. Figure 1 

 



 

 
 

 

P. Poensgen, R. Möller: Branch-and-Bound Ranked Search by Minimizing Parabolic Polynomials   
 

 
17 

 

 Algorithm min_i (𝒂, 𝒃, 𝝎, 𝒒, 𝒅) 

 // 𝑎 lower, 𝑏 upper interval limit 

 // 𝜔 ∈ ℝ\{0}, 𝑞 ∈ ℝ, 𝑑 ∈ ℕ 

1 let 𝑝 = 𝑙𝑎𝑚𝑏𝑑𝑎(𝑥)𝜔(𝑥 − 𝑞)2𝑑 
      min_i 

2  if 𝜔 < 0 then 

3  𝑚𝑖𝑛_𝑖 ≔ 𝑚𝑖𝑛{𝑝(𝑎), 𝑝(𝑏)} 

4  else // if weighting positive 

5  if 𝑞 ∉ [𝑎, 𝑏] then 

6  𝑚𝑖𝑛_𝑖 ≔ 𝑚𝑖𝑛{𝑝(𝑎), 𝑝(𝑏)} 

7  else 

8  𝑚𝑖𝑛_𝑖 ≔ 0 

9  𝑚𝑖𝑛_𝑖 

Listing 2: Calculating the minimum of one-

dimensional parabolic polynomials on [a,b] 

 Algorithm score_r (M, score_p) 

  // 𝑀 is an MBR 

1  let (𝑎1, 𝑏1, … , 𝑎𝑑 , 𝑏𝑑) = 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙(𝑀) 

  // the interval function generates the interval  

  // vector 𝑣𝑀 = (𝑎1, 𝑏1, … , 𝑎𝑑 , 𝑏𝑑) ∈ ℝ2𝑑 

  // of a 𝑑-dimensional MBR 𝑀 

2  let ((𝑞1, … , 𝑞𝑑), (𝜔1, … , 𝜔𝑑)(𝑛1, … , 𝑛𝑑)) = 

  𝑔𝑒𝑡_𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠(𝑠𝑐𝑜𝑟𝑒_𝑝) 

  // (𝑞1, … , 𝑞𝑑) the mid-point of score_p 

  // (𝜔1, … , 𝜔𝑑) the weighting vector 

  // (𝑛1, … , 𝑛𝑑) the vector of exponents 

3  ∑ 𝑚𝑖𝑛_𝑖(𝑎𝑖 , 𝑏𝑖 , 𝜔𝑖 , 𝑞𝑖 , 𝑛𝑖)𝑑
𝑖=1 . 

  // 𝜔𝑖 , 𝑞𝑖 , 𝑛𝑖 the respective 𝑖-th component 

Listing 3: MinScore algorithm 

illustrates the procedure. Listing 2 describes the 

corresponding algorithm for calculating the minimum 

for one-dimensional polynomials. In this case, the 

function is defined in the first step by transferring the 

parameters 𝑞, 𝜔 and 𝑑 (Line 1). The distinction of 

weighting is made in the IF-Statement in Line 2 i.e. the 

parameter 𝜔 decides whether the minimum is located 

on the edge or inside the minimal bounding rectangles 

(MBR) and its function value is null. 

 The minimum 𝑓𝑚𝑖𝑛(𝑀) results from the sum of all 

the minima determined for the component functions 𝑓𝑖 

on 𝐼𝑖  for each 1 ≤ 𝑖 ≤ 𝑑 (see Listing 3). 

Example 2. We illustrate an example of the MinScore 

algorithm with a scoring function of Example 1 on a 

three-dimensional MBR. The function is given by  

 
𝑓: [50,100]3 → ℝ;  

(𝑥1, 𝑥2, 𝑥3) ↦ (𝑥1 − 120)2 + (𝑥2 − 80)2 − (𝑥2 − 50)2 

 

We get 𝜔 = (1, 1, −1), 𝑞 =  (120, 80, 50) and the 

interval vector 𝑣𝑀 = (50, 100, 50, 100, 50,100) ∈ ℝ6 

The min_i algorithm calculates the minimum at the 

associated intervals for each component function. 

 

Figure 3: Minimum positions of a parabolic 

polynomial of order 2 with positive weights 

 

The minimum of 𝑓1(𝑥) = (𝑥1 − 120)2 on 𝐼1 =
[50, 100] is the lowest function value of the left and 

right boundary of the interval, because the weighting is 

positive and the first component 𝑞1 = 120 of the query 

point 𝑞 is not included in 𝐼1. As result we get 

𝑀𝑖𝑛(𝑓1(50), 𝑓1(100)) = 400. The minimum of 

𝑓2(𝑥) = (𝑥1 − 80)2 on 𝐼2 = [50, 100] is 0, because the 

interval 𝐼2 contains 𝑞1 = 80. Since the weighting of 𝑓3 

is negative the minimum of 𝑓3 on 𝐼2 = [50, 100] is the 

lowest function value of the left and right boundary. As 

result we get 𝑀𝑖𝑛(𝑓3(50), 𝑓3(100)) = −2500. The 

total minimum value, i.e. the result of the MinScore 

algorithm is the sum of these three values, i.e. -2100. 

The minimum of 𝑓 is on an edge of the MBR 𝑀 = 𝐼1 ×
𝐼2 × 𝐼3 with the coordinates (100, 80, 50). 
 Geometrically, three different minimum types of 

parabolic polynomials can be distinguished. Those that 

are inside an MBR, those that lie on the (𝑑 − 1)-

dimensional edges, but not on a vertex, and lastly, 

those that lie on a vertex. For parabolic polynomial 

holds a minimum principle on a minimum bounding 

rectangles or the minimum 𝑓𝑚𝑖𝑛(𝑀) = 0.  

 Figure 3 shows an example of the minima and their 

geometric position using the positively weighted 

function 𝑓(𝑥1, 𝑥2) = (𝑥1 − 0,4)2 + (𝑥2 − 0,4)2 for 

dimension 2 in a grid partition of the unit rectangle. 

The local minimum of 𝑓 on the red rectangle is on the 

red data point inside the MBR. The function value is 

null at this point. On the blue rectangles the function is 

minimal on the corresponding blue data points, i.e. on 

the edges. The other black points correspond to the 

minimum points of the other rectangles and lie on one 

of the vertices of the same. 

To compute the lower bound on a 𝑑-dimensional 

MBR 𝑀 = 𝐼1 × 𝐼2 × … × 𝐼𝑑, the MinScore algorithm 

score_r requires, without case distinctions, exactly 𝑑 

computational steps by summarizing the minimum of 
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the component function 𝑓𝑖 of its interval 𝐼𝑖 = [𝑎𝑖 , 𝑏𝑖] 
for each 𝑖 ∈ [1, … , 𝑑]. This makes the algorithm linear 

and efficient. Thus, the BRS algorithm using score_r 

solves the minimization problem of top-k queries with 

parabolic polynomials as the evaluation function 

efficiently. 

 At the end of this part we specify the time 

complexity of the BRS method. If the priority queue is 

implemented as a heap, (see [5]) if 𝑁 is the number of 

data points, 𝑔 the granularity of the partitioning, and 

thus the number of MBRs at the lowest inner level of 

the R-tree from which 𝑐 must be visited, then the steps 

of the BRS algorithm can be described as follows: 

 Find the MBR in the priority queue with the lowest 

lower bound.  

 Determine the top-k elements from an MBR with 
𝑁

𝑔
 

data points. We assume an equal distribution of 

points in all MBRs. 

 Merge the set of already existing (examined) k data 

points with the k newly determined points. 

 Determine the top-k elements from a list of 2k data 

points. 
 

Therefore, the time complexity for these steps is: 

𝑇𝐵𝑅𝑆 ∈ 𝒪 (𝑐 [𝑇𝑑𝑒𝑙𝑀𝑖𝑛(𝑔) + 𝑇𝑇𝑜𝑝𝑘 (
𝑁

𝑔
) + 𝑇𝑀𝑒𝑟𝑔𝑒(2𝑘)

+ 𝑇𝑇𝑜𝑝𝑘(2𝑘)]). 

Because the pq is a heap, we get 

𝑇𝐵𝑅𝑆 ∈ 𝒪 (𝑐 [𝑙𝑜𝑔(𝑔) +
𝑙𝑜𝑔(𝑘)𝑁

𝑔
+ 1 + 𝑙𝑜𝑔(2𝑘)])

= 𝒪 (𝑐 ∙
𝑙𝑜𝑔(𝑘)𝑁

𝑔
). 

 Thus, the BRS differs from the sequential search by 

the factor 𝑐 ⁄ 𝑔 which is much smaller than 1, because 

𝑐  is generally very small in relation to  𝑔. If one 

assumes the appropriate storage capacity and chooses 

the granularity depending on the set of data points 𝑔 ≔
𝑁 ⁄ 𝑙𝑜𝑔(𝑁), we obtain 

𝒪(𝑙𝑜𝑔(𝑁)𝑙𝑜𝑔(𝑘)). 

 The storage space is well invested, as in 

comparison to the sequential search we get an 

improvement from 𝑁 to 𝑙𝑜𝑔(𝑁). 

 

5 ANALYSIS AND DISCUSSION 
 

Parabolic polynomials satisfy a minimum principle on 

minimal bounding rectangles (MBRs), or the minimum 

lies inside the MBR and is null. The position of the 

minima  and  thus  also  their  function  values (bounds)  

 

Figure 4: Minimum types of parabolic functions 

can be determined by considering the individual 

component functions of a parabolic polynomial on the 

respective intervals by case distinction. Thus, the 

problem of determining a lower bound for all possible 

function values of data points of a multi-dimensional 

hyper rectangle is reduced to the one-dimensional case. 

Figure 4 shows schematically the different cases for the 

dimension 𝑑 = 2, which can be analogously transferred 

to each higher dimension. 

 If all component functions of the parabolic 

polynomial are minimal inside the respective interval 

(Figure 4, left), then the associated parabolic 

polynomial is also minimal inside the MBR and the 

function value is null. If all component functions are 

minimal at the end point of the interval (Figure 4, 

right), the parabolic polynomial takes its minimum on 

an edge of the MBR. In all other cases (Figure 4, 

mittle), the parabolic polynomial is minimal on one of 

the (𝑑 − 1)-dimensional faces of the MBR.  

 

6 CONCLUSION 
 

In this paper we addressed the problem of answering 

non-monotonic top-k queries by minimizing parabolic 

polynomials as ranking functions. We introduced the 

minimum principle for this class of functions that 

enables an efficient method for calculating lower 

bounds for the Branch-and-Bound Ranked Search 

algorithm. Parabolic polynomials are useful as shown 

in this paper for e.g. the determination of the objects, 

which in certain attributes should be as close as 

possible and at the same time in others as far away as 

possible from the components of a query point. This 

class of functions fits well with partition strategy as 

long as the clusters are hyper cubes like minimal 

bounding rectangles in R-trees. Parabolic polynomials 

solve the minimization problem in the context of the 

Branch-and-Bound Ranked Search method.  
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