

Open Journal of Databases (OJDB), Volume 7, Issue 1, 2020

12

Branch-and-Bound Ranked Search by

Minimizing Parabolic Polynomials

Peter Poensgen, Ralf Möller

Institute for Information Systems, University of Lübeck, Ratzeburger Allee 160, 23562 Lübeck, Germany,

{poensgen, moeller}@ifis.uni-luebeck.de

ABSTRACT

The Branch-and-Bound Ranked Search algorithm (BRS) is an efficient method for answering top-k queries based

on R-trees using multivariate scoring functions. To make BRS effective with ascending rankings, the algorithm

must be able to identify lower bounds of the scoring functions for exploring search partitions. This paper

presents BRS supporting parabolic polynomials. These functions are common to minimize combined scores over

different attributes and cover a variety of applications. To the best of our knowledge the problem to develop an

algorithm for computing lower bounds for the BRS method has not been well addressed yet.

TYPE OF PAPER AND KEYWORDS

Short Communication: top-k queries, query answering, top-k ranking, parabolic polynomials, scoring functions,

Branch-and-Bound Ranked Search, minimal bounding rectangle

1 INTRODUCTION

Supporting efficient top-k processing in database

systems is a relatively recent and active line of

research. The answer to a top-k query in a relational

database is a ranked set of the k tuples that fit “best” to

the selection condition. Efficient processing is usually

the most important requirement for applications, in

particular if huge amounts of data are involved. A

common way for computing the relevant top-k objects

is the application of a scoring (ranking) function. In

relational database systems ranking functions will be

used in the Order-By statement of a top-k query. In

general, they are multivariate functions that assign an

aggregation over partial attributes (scores). The answer

to a top-k query is a ranked set of the k tuples in the

database that match “best” the selection condition.

An example of such databases is a patient database

used in clinical studies, and the databases provides the

blood pressure values systolic (sys) and diastolic (dia)

as well as the pulse rate (pulse) for each patient. A

typical application scenario, which deals with parabolic

polynomials when computing top-k queries over the

patient database, is described in Example 1. We use the

application scenario as the running example in the

paper to explain our work.

Example 1: Searching for suitable probands

In order to test a drug for the treatment of slowed heart

rate (bradycardia) and very fast heart rate (tachycardia),

a sample of patients needs to be determined. Since side

effects on (normal) blood pressure should be

investigated, the systolic and diastolic values must be

included. The patient data is stored in a patient table R

in a relational database. To identify a sample of

suitable candidates, the doctor looks in the patient

database for people whose systolic value (sys) is

around 120, the diabolic value (dia) is around 80 and

whose pulse sequence (pulse) deviates significantly

from the mark 50 either upwards or downwards. The

 Open Access

Open Journal of Databases (OJDB)

Volume 7, Issue 1, 2020

www.ronpub.com/ojdb

ISSN 2199-3459

© 2020 by the authors; licensee RonPub, Lübeck, Germany. This article is an open access article distributed under the terms and conditions

of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).

P. Poensgen, R. Möller: Branch-and-Bound Ranked Search by Minimizing Parabolic Polynomials

13

top-k query for patients in the 40- to 50-year-old age

group could be written as follows:

SELECT Top k *

FROM R

WHERE age BEETWEEN 40 AND 50

ORDER BY 𝜔1(𝑠𝑦𝑠 − 120)2 + 𝜔2(𝑑𝑖𝑎 − 80)2 +

 𝜔3(𝑝𝑢𝑙𝑠 − 50)2 ASC

The point 𝑞 = (120, 80, 50) is the so-called query-

point and 𝜔 = (𝜔1, 𝜔2, 𝜔3) with 𝜔𝑖 ≠ 0 is a vector

whose components weight the three attributes in order

to show their relevance and the corresponding sign

determine which attribute is to be particularly close

(positive weighting) to, or as far away as possible

(negative weighting) from the corresponding

coordinate of the query point. For our example

𝜔1, 𝜔2 > 0 and 𝜔3 < 0 must be chosen so that the

problem can be solved by minimizing the scoring

function of the ORDER-BY statement. If the values of

one or more attributes are very small in relation to the

others, the corresponding exponent can be increased

instead of a scalar weighting. However, for the method

presented in this work, the exponents may only be

natural numbers.

In this paper the semantic of a top-k selection query

is given by

SELECT TOP k attribute-list

FROM R

[WHERE…]

ORDER BY 𝑓(𝑡) ASC

where 𝑓 is a function of several variables that assigns a

numeric score to any tuple t (see [2]). Note that a

scoring function does not need to consider all attributes

of the table.

1.1 Motivation and Challenges

A naive way for answering top-k queries is to consider

a complete dataset of 𝑁 tuples of a given relation,

compute the value of a scoring function for each tuple,

while maintaining and finally returning the k lowest-

ranked tuples. This algorithm is in 𝒪(𝑁 𝑙𝑜𝑔(𝑘)) (see

[5], and since k is small and fixed, the procedure is

called sequential search.

 Our problem is not monotone: The underlying

ranking function in Example 1 described above

measures the distance by squaring the difference of two

expressions. Such requests can also be modeled

differently to come to the same solution. An alternative

way is to use the absolute value function. However,

note the fact that this requirement cannot be modeled

with the help of a monotone scoring function.

 In general, minimum problems cannot be converted

into maximum ones: The task of finding top-k tuples

from a given relation can either be defined by a

maximization or a minimization Order-By criterion.

Basically, a maximum query can always be turned into

a minimum one by switching the sign of the objective

function; i.e., both queries will answer the same

question. If the scoring function 𝑓 is monotone

increasing the negative −𝑓 is obviously monotone

decreasing. Therefore, in the context of monotonicity

most proposed techniques assume just one case, mostly

the maximization problem, e.g. [14] and [18]. In other

words, in the monotonic case the calculation of top-k

data points can always be reduced to the maximization

of the underlying ranking function. However, this

method is generally not applicable to non-monotonic

functions. Parabolic polynomials of Example 1 are

convex functions and the complement of convexity is

concavity and thus solutions which assume convexity

e.g. [13] are not applicable.

 Example 1 is generally not a NNS-problem: As

mentioned in [15] a nearest neighbor search (NNS) is a

form of proximity search. Given a data point 𝑞 and an

integer k, the output of a so-called k-NN query contains

the k objects closest to 𝑞, where proximity is computed

by means of a distance function. Nearest neighbour

queries can be considered as a special case of top-k

queries, where the ranking function corresponds to the

distance among the objects. Example 1 with positive

weightings is a k-NN query, whereas its generalization

given by negative weightings is not. The last one is a

top-k selection query with a special family of non-

monotonic ranking functions.

1.2 Contributions

Our approach developed in this paper addresses the

problem of answering non-monotonic top-k queries by

minimizing parabolic polynomials. We introduced the

minimum principle for this class of functions that

guarantees lower bounds for the BRS algorithm. Our

contributions towards this goal are summarized here:

 We introduce the class of parabolic polynomials

and show why these polynomials are suitable

candidates for the Branch-and-Bound ranked

search algorithm.

 We develop the MinScore algorithm for

calculating the minimum (lower bounds) for

parabolic polynomials on minimal bounding

rectangles (MBRs), which makes the BRS

available to a wide range of practically relevant

(non-monotonic) applications.

Open Journal of Databases (OJDB), Volume 7, Issue 1, 2020

14

 We analyze the Branch-and-Bound Ranked Search

method (BRS) and show that the algorithm takes

𝒪(𝑙𝑜𝑔(𝑁)𝑙𝑜𝑔(𝑘)) if the number of rectangles at

the lowest inner level of the R-tree is chosen as a

function of the number of data points 𝑁.

 The remainder of this paper is organized as follows:

Section 2 discusses related work and Section 3

introduces related background of BRS. Section 4

presents our research work: the Minimum Principle of

Parabolic Polynomials and the Min-Score Algorithm in

bounded search for top-k solutions in BRS. We discuss

and analyze the research results in Section 5, and

conclude our study in Section 6.

2 RELATED WORK

The Branch-and-bound principle is a fundamental and

widely-used methodology for calculating exact

solutions to optimization problems. This approach, first

proposed by Lang and Doig [8], depends on efficient

estimation of lower or upper bounds of regions on the

search space and uses an R-tree to develop efficient

search algorithms. Clausen [1] gives an overview about

the search strategy, the branching strategy and some

pruning rules of Branch-and-Bound and illustrates the

method and design issues through three examples. In

[10] Morrison and colleagues present recent research

advances in the design of Branch-and-Bound

algorithms. In addition, search strategies are described

that affect the computing time required for the Branch-

and-Bound process.

Branch-and-Bound is also suitable for next

neighbor search [7] and [15], for skyline retrieval [11]

and for processing of ranking queries introduced by

Tao and colleagues (Branch-and-Bound Ranked

Search, BRS [18]). This paper also shows how the BRS

works for monotone scoring functions, which always

assume their maximum at the upper right or lower left

edge of hyper rectangles. Monotonic functions are the

classical example to which a maximum principle

applies. In convex optimization, the maximum

principle says that the maximum of a function in its

domain is attained on the boundary of that domain (see

[17]). This solves the problem of finding suitable

bounds for monotonous functions.

 The BRS is also suitable for non-monotonous

functions, as long as the bounds for these functions can

be determined efficiently. Quasi-convex functions, as

shown in [13], generalize the monotonic approach. The

maximum of quasi-convex functions is to be found on

any vertex of a hyper rectangle. For both functional

classes, the algorithm for determining the upper bounds

needed for the BRS is quite simple. The upper bound

can be specified as function value of the edge where

the function assumes its maximum.

The proposed family of ranking functions in [14] is

closest to our approach. It combines the idea of so-

called attractive and repulsive dimensions. Based on a

given data point 𝑞 = (𝑞1, … 𝑞𝑛) (query point) the

introduced linear SD-Score function measures the

distance between each relevant data point 𝑝 =
(𝑝1, … 𝑝𝑛) and 𝑞 in each coordinate. The goal is to find

the k highest scoring points of such a ranking function.

The authors note, that they take a more direct approach

and develop precomputation based index structures

specifically for the proposed class of linear scoring

functions. Instead of maximizing (non-monotone)

scoring functions, the method developed in our paper is

dealing with the challenge of minimizing them.

Ad-hoc ranking functions are addressed by [20],

with the restriction that the function is lower-bounded.

A ranking function 𝑓 is lower-bounded in a region of

its variables domains, if the lower bound of 𝑓 in this

region can be derived. The authors present an index-

merge framework that performs progressive search

over a space of states composed by joining index

nodes. The main idea is to exploit existing B-Tree and

R-Tree indexes of ranking predicates to create a search

space of possible query answers.
To solve the problem, the function must be

minimized. However, this and all other methods known

to us that minimize the scoring function are not suitable

to solve the minimum problem of BRS. Parabolic

polynomials are minimal on the edge of a hyper

rectangle and therefore a minimum principle holds for

these functions. This makes them suitable candidates

for the BRS algorithm. How to determine the local

minima on rectangles for these functions is the focus of

this paper.

3 PRELIMINARIES

In this part, the fundamentals of the Branch-and-Bound

framework are presented briefly, which provide

necessary information in order to better understand the

approach developed in this paper.

The BRS method is essentially based on an R-tree

with minimal bounding rectangles (MBRs) for

partitioning, and it requires an MBR scoring function

for deciding which node is to be examined next. The

Branch-and-Bound framework has been applied

extensively to develop efficient search algorithms

based on R-Trees [18]. An R-tree [6] is a common

access method for multi-dimensional objects. Its key

idea is to group nearby objects and represent them as a

minimum bounding rectangle in the next higher level.

MBRs at the same level are recursively clustered into

P. Poensgen, R. Möller: Branch-and-Bound Ranked Search by Minimizing Parabolic Polynomials

15

Figure 1: Partitioning of data room (left) with

corresponding R-Tree (right)

 Algorithm BRS (rt, k, type, score_p, score_r)

 // rt is an R-tree on the dataset

// k denotes the number of data points to return

 // type can be either ‘min’ or ‘max’

// score_p is a point scoring function

// score_r computes a score for an MBR

1 let pq = build_priority_queue(

 type,

 map(lambda(obj). (obj, score_r(mbr(obj),score_p)),

 root(rt)))

 // create pq with (obj, score) entries using

 // the anonymous lambda function

2 result = {}

3 n = 0

4 object // can be either a data point or an MBR

5 while n < k and not empty?(pq) do

6 object := delete_next(pq)

7 if point?(object) then

8 result := result ∪ {object}

9 n := n + 1

10 else
11 if leaf?(object) then

12 for p ∈ points(mbr(object)) do

13 insert((p, score_p(p)) , pq)

14 else
15 for e ∈ children(object) do

16 insert((e, score_r(𝑒, score_p)), pq)

17 result

Listing 1: BRS (based on [18])

nodes of the higher level. R-trees for top-k queries on

tuples of a given relation have the special property that

leaf nodes consist of multiple data points defined by

the tuples of the relation (cardinalities depend on

partition sizes). An MBR 𝑀 ⊂ ℝ𝑑 is defined as the

finite Cartesian product 𝑀 = 𝐼1 × 𝐼2 × … × 𝐼𝑑 of closed

intervals 𝐼𝑗 = [𝑎𝑗 , 𝑏𝑗] with 𝑎𝑗 ≤ 𝑏𝑗 for any 𝑗 = 1, … , 𝑑

[16]. We denote 𝑀 as vector 𝑣𝑀 = (𝑎1, 𝑏1, … , 𝑎𝑑 , 𝑏𝑑) ∈
ℝ2𝑑.

 Figure 1 demonstrates a part of a two-dimensional

point dataset and the corresponding R-Tree. The root

consists of two MBRs (R1, R2) and the four MBRs R3,

R4, R5 and R6 are internal nodes. For simplicity only

the data points P4, P5 and P6 assigned to the MBR R4

are shown in the figure.

 The strategy to answer a minimum top-k query with

BRS is described as a bounded search through an R-

tree (see Listing 1). The algorithm uses the R-tree to

partition and index the dataset of a given relation, and

for bounding the search for top-k result points BRS

maintains a priority queue pq of R-tree entries or points

(see [4]). Initially the algorithm loads the root of the R-

tree, i.e., a set of MBRs, into the priority queue pq

(Line 1). Actually, pairs of objects and scores are

inserted into pq for determining the ranking of objects.

The score of an MBR 𝑀 is determined by applying

score_r to two parameters, namely 𝑀 and the point

scoring function 𝑓. Both functions need to be provided

to BRS. Afterwards objects from pq are considered in a

loop.

In each iteration the node with the highest ranking

(highest or lowest scored object, depending on type) is

retrieved from pq (Line 5 and 6). If a point is found

(Line 7), it is added to the result. If a leaf node is

retrieved from the queue (Line 11), its points are

extracted, the score of data points 𝑝 are determined

with the function 𝑓, and point scores are used to insert

each point into pq (Lines 12, 13). Otherwise a non-leaf

R-tree node is found (Line 14), and the respective

children are inserted into pq (Line 15, 16). Each child

MBR is scored with score_r in the same way as in the

initialization of pq with root nodes. The algorithm

terminates when k data points are found (collected in

result) or the queue is empty (see [13]).

The actual call to BRS is given as follows:

BRS(data_rtree, k, ‘min’, score_p, score_r), where k is the

expected number of results, the function min indicates

minimum top-k, 𝑠𝑐𝑜𝑟𝑒_𝑝 is a query-specific function

that maps a data object (point) to a score being used for

ranking the object, and 𝑠𝑐𝑜𝑟𝑒_𝑟 determines the lowest

value that the function 𝑠𝑐𝑜𝑟𝑒_𝑝 can return when

applied to the points associated with an MBR specified

as a parameter. We will give an efficient

implementation of 𝑠𝑐𝑜𝑟𝑒_𝑟 for a parabolic polynomial

𝑠𝑐𝑜𝑟𝑒_𝑝 functions below.

4 PARABOLIC POLYNOMIALS

In general for 𝑑 numeric attributes of a given relation

and for any even exponents of the component

functions, the scoring function of Example 1 results in

a special class of polynomials. Polynomial functions

are common in minimizing problems (see [12] and

[19]).

Open Journal of Databases (OJDB), Volume 7, Issue 1, 2020

16

Definition 1: Parabolic Polynomials

A real-valued function 𝑓: ℝ𝑑 → ℝ

(𝑥1, … , 𝑥𝑑) ↦ ∑ 𝜔𝑖

𝑑

𝑖=1

(𝑥𝑖 − 𝑞𝑖)
2𝑛𝑖

with 𝑛𝑖 ∈ ℕ, 𝜔𝑖 ∈ ℝ\0 for each 𝑖 ∈ {1, … , 𝑑} is a

polynomial with even degree. The 𝑑-dimensional data

point 𝑞 = (𝑞1, … , 𝑞𝑑) is denoted as “center” or

“midpoint” of the graph of the function. 𝜔 =
(𝜔1, … , 𝜔𝑑) is the weighting vector. For a fixed 𝑖 the

one-dimensional function 𝑥𝑖 ↦ 𝜔𝑖(𝑥 − 𝑞𝑖)
2𝑛𝑖 is called

the 𝑖-th component function of 𝑓, which depending on

the weighting (positive or negative) is an upwardly or

downwardly opened parabola. We define such a

function as a parabolic polynomial.

4.1 Minimum Principle of Parabolic

Polynomials

The Extreme Value Theorem (see [9]) of analysis

ensures that each continuous function on a compact set

obtains its (finite) minimum. It forms the basis for the

minimum principle and is also fundamental for our

MinScore algorithm.

Theorem 1: Minimum Principle of Parabolic

Polynomials

Let 𝑓: 𝑀 → ℝ be a parabolic polynomial, 𝑀 ⊂ ℝ𝑑 a

minimal bounding rectangle and 𝑥𝑚𝑖𝑛 ∈ 𝑀 the

minimum of 𝑓 on 𝑀. Then 𝑥𝑚𝑖𝑛 lies on the edge of 𝑀

or 𝑓𝑚𝑖𝑛(𝑀) ≔ 𝑓(𝑥𝑚𝑖𝑛) = 0.

Proof: From real analysis it is known that a subset of

the Euclidian space ℝ𝑑 is compact if and only if it is

closed and bounded, which is the statement of the well-

known Heine-Borel Theorem (see [3]). Since each

interval [𝑎, 𝑏] ⊂ ℝ is closed and bounded and every

finite Cartesien product of closed intervals is closed

and bounded as well, each minimal bounding rectangle

is also compact. Thus, the continuity of parabolic

polynomials ensures that 𝑓 attains its minimum on 𝑀.

Next we show that if 𝑓(𝑥) = ∑ 𝑓𝑖(𝑥)𝑑
𝑖=1 is the sum

of 𝑑 component functions, then its minimum can be

calculated by the sum of the minima of its component

functions. In case of parabolic polynomials this means

that the following mathematical equation is satisfied:

𝑚𝑖𝑛
(𝑥1,…, 𝑥𝑑) ∈𝑀

∑ 𝜔𝑖

𝑑

𝑖=1

(𝑥𝑖 − 𝑞𝑖)
2𝑛𝑖

= ∑ 𝑚𝑖𝑛
𝑥𝑖 ∈ 𝐼𝑖

(𝜔𝑖(𝑥𝑖 − 𝑞𝑖)
2𝑛𝑖)

𝑑

𝑖=1

(1)

Figure 2: One-dimensional parabolic functions

Proof: Let be 𝑥 = (𝑥1, … , 𝑥𝑑) ∈ ℝ𝑑 a data point where

the parabolic polynomial is minimal, then

mathematical equation is satisfied:

𝑓(𝑥) = ∑ 𝑓𝑖(𝑥𝑖)

𝑑

𝑖=1

 (2)

Let be 𝑥̃ = (𝑥̃1, … , 𝑥̃𝑛) ∈ ℝ𝑑 a point on which the

component functions 𝑓𝑖(𝑥̃𝑖) is minimal for each 𝑖 ∈
{1, … , 𝑑}, then by definition and because of (2),

𝑓(𝑥̃) = ∑ 𝑓𝑖(𝑥̃𝑖) ≤ ∑ 𝑓𝑖(𝑥𝑖) = 𝑓(𝑥)

𝑑

𝑖=1

𝑑

𝑖=1

. (3)

Since (3) holds, 𝑓(𝑥) ≥ 𝑓(𝑥̃) and thus 𝑓(𝑥) =
𝑓(𝑥̃). Since (1) holds, the calculation of the minimum

of 𝑓 over 𝑀 can be reduced to the one-dimensional

case. In ℝ1 two types of component functions have to

be distinguished. Figure 2 illustrates the procedure. If

the weighting of the function 𝑓 is positive (Figure 2 left

side) the minimum value of 𝑓 is zero if and only if the

interval that defines the edge of 𝑀 contains the

coordinate of the global minimum (𝐼2). Otherwise, if

the coordinate of the minimum is outside of the interval

(𝐼1 or 𝐼3) the minimum is the lowest function value of

the left and right boundary of the interval. If the

weighting of the function is negative (Figure 2 right

side) the minimum is always the lowest function value

of the left and right boundary of the interval (𝐼1 or 𝐼2).

 After these theoretical and geometrical preparations

we can introduce our MinScore algorithm, which is

fundamental for the BRS algorithm. The algorithm

min_i calculates the minima of all component

functions, which, as mentioned above, are then

summed up in the MinScore algorithm score_r.

4.2 The Min-Score Algorithm

Since Theorem 1 holds, the algorithm for determining

the minimum of a parabolic polynomial can be reduced

to the one-dimensional case. In ℝ1 two types of

component functions have to be distinguished. Figure 1

P. Poensgen, R. Möller: Branch-and-Bound Ranked Search by Minimizing Parabolic Polynomials

17

 Algorithm min_i (𝒂, 𝒃, 𝝎, 𝒒, 𝒅)

 // 𝑎 lower, 𝑏 upper interval limit

 // 𝜔 ∈ ℝ\{0}, 𝑞 ∈ ℝ, 𝑑 ∈ ℕ

1 let 𝑝 = 𝑙𝑎𝑚𝑏𝑑𝑎(𝑥)𝜔(𝑥 − 𝑞)2𝑑
 min_i

2 if 𝜔 < 0 then

3 𝑚𝑖𝑛_𝑖 ≔ 𝑚𝑖𝑛{𝑝(𝑎), 𝑝(𝑏)}

4 else // if weighting positive

5 if 𝑞 ∉ [𝑎, 𝑏] then

6 𝑚𝑖𝑛_𝑖 ≔ 𝑚𝑖𝑛{𝑝(𝑎), 𝑝(𝑏)}

7 else

8 𝑚𝑖𝑛_𝑖 ≔ 0

9 𝑚𝑖𝑛_𝑖

Listing 2: Calculating the minimum of one-

dimensional parabolic polynomials on [a,b]

 Algorithm score_r (M, score_p)

 // 𝑀 is an MBR

1 let (𝑎1, 𝑏1, … , 𝑎𝑑 , 𝑏𝑑) = 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙(𝑀)

 // the interval function generates the interval

 // vector 𝑣𝑀 = (𝑎1, 𝑏1, … , 𝑎𝑑 , 𝑏𝑑) ∈ ℝ2𝑑

 // of a 𝑑-dimensional MBR 𝑀

2 let ((𝑞1, … , 𝑞𝑑), (𝜔1, … , 𝜔𝑑)(𝑛1, … , 𝑛𝑑)) =

 𝑔𝑒𝑡_𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠(𝑠𝑐𝑜𝑟𝑒_𝑝)

 // (𝑞1, … , 𝑞𝑑) the mid-point of score_p

 // (𝜔1, … , 𝜔𝑑) the weighting vector

 // (𝑛1, … , 𝑛𝑑) the vector of exponents

3 ∑ 𝑚𝑖𝑛_𝑖(𝑎𝑖 , 𝑏𝑖 , 𝜔𝑖 , 𝑞𝑖 , 𝑛𝑖)𝑑
𝑖=1 .

 // 𝜔𝑖 , 𝑞𝑖 , 𝑛𝑖 the respective 𝑖-th component

Listing 3: MinScore algorithm

illustrates the procedure. Listing 2 describes the

corresponding algorithm for calculating the minimum

for one-dimensional polynomials. In this case, the

function is defined in the first step by transferring the

parameters 𝑞, 𝜔 and 𝑑 (Line 1). The distinction of

weighting is made in the IF-Statement in Line 2 i.e. the

parameter 𝜔 decides whether the minimum is located

on the edge or inside the minimal bounding rectangles

(MBR) and its function value is null.

 The minimum 𝑓𝑚𝑖𝑛(𝑀) results from the sum of all

the minima determined for the component functions 𝑓𝑖

on 𝐼𝑖 for each 1 ≤ 𝑖 ≤ 𝑑 (see Listing 3).

Example 2. We illustrate an example of the MinScore

algorithm with a scoring function of Example 1 on a

three-dimensional MBR. The function is given by

𝑓: [50,100]3 → ℝ;

(𝑥1, 𝑥2, 𝑥3) ↦ (𝑥1 − 120)2 + (𝑥2 − 80)2 − (𝑥2 − 50)2

We get 𝜔 = (1, 1, −1), 𝑞 = (120, 80, 50) and the

interval vector 𝑣𝑀 = (50, 100, 50, 100, 50,100) ∈ ℝ6

The min_i algorithm calculates the minimum at the

associated intervals for each component function.

Figure 3: Minimum positions of a parabolic

polynomial of order 2 with positive weights

The minimum of 𝑓1(𝑥) = (𝑥1 − 120)2 on 𝐼1 =
[50, 100] is the lowest function value of the left and

right boundary of the interval, because the weighting is

positive and the first component 𝑞1 = 120 of the query

point 𝑞 is not included in 𝐼1. As result we get

𝑀𝑖𝑛(𝑓1(50), 𝑓1(100)) = 400. The minimum of

𝑓2(𝑥) = (𝑥1 − 80)2 on 𝐼2 = [50, 100] is 0, because the

interval 𝐼2 contains 𝑞1 = 80. Since the weighting of 𝑓3

is negative the minimum of 𝑓3 on 𝐼2 = [50, 100] is the

lowest function value of the left and right boundary. As

result we get 𝑀𝑖𝑛(𝑓3(50), 𝑓3(100)) = −2500. The

total minimum value, i.e. the result of the MinScore

algorithm is the sum of these three values, i.e. -2100.

The minimum of 𝑓 is on an edge of the MBR 𝑀 = 𝐼1 ×
𝐼2 × 𝐼3 with the coordinates (100, 80, 50).
 Geometrically, three different minimum types of

parabolic polynomials can be distinguished. Those that

are inside an MBR, those that lie on the (𝑑 − 1)-

dimensional edges, but not on a vertex, and lastly,

those that lie on a vertex. For parabolic polynomial

holds a minimum principle on a minimum bounding

rectangles or the minimum 𝑓𝑚𝑖𝑛(𝑀) = 0.

 Figure 3 shows an example of the minima and their

geometric position using the positively weighted

function 𝑓(𝑥1, 𝑥2) = (𝑥1 − 0,4)2 + (𝑥2 − 0,4)2 for

dimension 2 in a grid partition of the unit rectangle.

The local minimum of 𝑓 on the red rectangle is on the

red data point inside the MBR. The function value is

null at this point. On the blue rectangles the function is

minimal on the corresponding blue data points, i.e. on

the edges. The other black points correspond to the

minimum points of the other rectangles and lie on one

of the vertices of the same.

To compute the lower bound on a 𝑑-dimensional

MBR 𝑀 = 𝐼1 × 𝐼2 × … × 𝐼𝑑, the MinScore algorithm

score_r requires, without case distinctions, exactly 𝑑

computational steps by summarizing the minimum of

Open Journal of Databases (OJDB), Volume 7, Issue 1, 2020

18

the component function 𝑓𝑖 of its interval 𝐼𝑖 = [𝑎𝑖 , 𝑏𝑖]
for each 𝑖 ∈ [1, … , 𝑑]. This makes the algorithm linear

and efficient. Thus, the BRS algorithm using score_r

solves the minimization problem of top-k queries with

parabolic polynomials as the evaluation function

efficiently.

 At the end of this part we specify the time

complexity of the BRS method. If the priority queue is

implemented as a heap, (see [5]) if 𝑁 is the number of

data points, 𝑔 the granularity of the partitioning, and

thus the number of MBRs at the lowest inner level of

the R-tree from which 𝑐 must be visited, then the steps

of the BRS algorithm can be described as follows:

 Find the MBR in the priority queue with the lowest

lower bound.

 Determine the top-k elements from an MBR with
𝑁

𝑔

data points. We assume an equal distribution of

points in all MBRs.

 Merge the set of already existing (examined) k data

points with the k newly determined points.

 Determine the top-k elements from a list of 2k data

points.

Therefore, the time complexity for these steps is:

𝑇𝐵𝑅𝑆 ∈ 𝒪 (𝑐 [𝑇𝑑𝑒𝑙𝑀𝑖𝑛(𝑔) + 𝑇𝑇𝑜𝑝𝑘 (
𝑁

𝑔
) + 𝑇𝑀𝑒𝑟𝑔𝑒(2𝑘)

+ 𝑇𝑇𝑜𝑝𝑘(2𝑘)]).

Because the pq is a heap, we get

𝑇𝐵𝑅𝑆 ∈ 𝒪 (𝑐 [𝑙𝑜𝑔(𝑔) +
𝑙𝑜𝑔(𝑘)𝑁

𝑔
+ 1 + 𝑙𝑜𝑔(2𝑘)])

= 𝒪 (𝑐 ∙
𝑙𝑜𝑔(𝑘)𝑁

𝑔
).

 Thus, the BRS differs from the sequential search by

the factor 𝑐 ⁄ 𝑔 which is much smaller than 1, because

𝑐 is generally very small in relation to 𝑔. If one

assumes the appropriate storage capacity and chooses

the granularity depending on the set of data points 𝑔 ≔
𝑁 ⁄ 𝑙𝑜𝑔(𝑁), we obtain

𝒪(𝑙𝑜𝑔(𝑁)𝑙𝑜𝑔(𝑘)).

 The storage space is well invested, as in

comparison to the sequential search we get an

improvement from 𝑁 to 𝑙𝑜𝑔(𝑁).

5 ANALYSIS AND DISCUSSION

Parabolic polynomials satisfy a minimum principle on

minimal bounding rectangles (MBRs), or the minimum

lies inside the MBR and is null. The position of the

minima and thus also their function values (bounds)

Figure 4: Minimum types of parabolic functions

can be determined by considering the individual

component functions of a parabolic polynomial on the

respective intervals by case distinction. Thus, the

problem of determining a lower bound for all possible

function values of data points of a multi-dimensional

hyper rectangle is reduced to the one-dimensional case.

Figure 4 shows schematically the different cases for the

dimension 𝑑 = 2, which can be analogously transferred

to each higher dimension.

 If all component functions of the parabolic

polynomial are minimal inside the respective interval

(Figure 4, left), then the associated parabolic

polynomial is also minimal inside the MBR and the

function value is null. If all component functions are

minimal at the end point of the interval (Figure 4,

right), the parabolic polynomial takes its minimum on

an edge of the MBR. In all other cases (Figure 4,

mittle), the parabolic polynomial is minimal on one of

the (𝑑 − 1)-dimensional faces of the MBR.

6 CONCLUSION

In this paper we addressed the problem of answering

non-monotonic top-k queries by minimizing parabolic

polynomials as ranking functions. We introduced the

minimum principle for this class of functions that

enables an efficient method for calculating lower

bounds for the Branch-and-Bound Ranked Search

algorithm. Parabolic polynomials are useful as shown

in this paper for e.g. the determination of the objects,

which in certain attributes should be as close as

possible and at the same time in others as far away as

possible from the components of a query point. This

class of functions fits well with partition strategy as

long as the clusters are hyper cubes like minimal

bounding rectangles in R-trees. Parabolic polynomials

solve the minimization problem in the context of the

Branch-and-Bound Ranked Search method.

REFERENCES

[1] J. Clausen, “Branch and Bound Algorithms-

Principles and Examples”, Technical Report,

Department of Computer Science, University

of Copenhagen, 1999.

P. Poensgen, R. Möller: Branch-and-Bound Ranked Search by Minimizing Parabolic Polynomials

19

[2] G. Das, D. Gunopulos and N. Koudas,

“Answering Top-k Queries Using Views,”

Proc. of the 32nd international conference on

Very Large Data Bases, pp. 451-462,

September 2006.

[3] S. Drapeau, A. Jamneshan, M. Karliczek and

M. Kupper, "The Algebra of Conditional Sets,

and Concepts of Conditional Topology and

Compactness," J.Math. Anal. Appl., vol. 1, no.

437, pp. 561-589, 2016.

[4] M. L. Fredman, "A Priority Queue

Transform," WAE: International Workshop on

Algorithm Engineering LNCS, vol. 1668 , pp.

243-257, 1999.

[5] M. L. Fredman and R. E. Tarjan, "Fibonacci

Heaps and Their Uses in Improved

Optimization Algorithms," Journal of the

ACM, vol. 34, pp. 596-615, 1987.

[6] A. Guttman, “R-Trees: A Dynamic Index

Structure for Spatial Searching,” Proc. ACM

SIGMOD Conference Boston, pp. 47-57, 1984.

[7] G. Hjaltason and H. Samet, “Distance

Browsing in Spatial Databases,” ACM TODS,

24(2), pp. 265-318, Juni 1999

[8] A. Land und A. Doig, “An Automatic Method

for Solving Discrete Programming Problems,”

Econometrica, pp. 497-520, 1960.

[9] J. E. Martinez-Legaz, "On Weierstrass

Extreme Value Theorem," Optimization

letters, pp. 391-393, 2014.

[10] D. R. Morrison, S. H. Jacobson, J. J. Sauppe

und E. C. Sewell, “Branch-and-bound

algorithms: A Survey of Recent Advances in

Searching, Branching, and Pruning,“ Discrete

Optimization, Bd. 19, pp. 79-102, February

2016.

[11] D. Papadias, Y. Tao, G. Fu and B. Seeger, “An

Optimal and Progressive Algorithm for

Skyline Queries,” ACM SIGMOD, pp. 467-

478, 2003

[12] P. Parrilo and B. Sturmfels, "Minimizing

Polynomial Functions," DIMACS Series in

Discrete Mathematics and Theoretical

Computer Science, AMS 60, pp. 83-99, 2003.

[13] P. Poensgen and R. Möller, “Quasi-Convex

Scoring Functions in Branch-and-Bound

Ranked Search,” Open Journal of Databases

(OJDB), 7(1), Pages 1-11, 2020, [Online]

http://nbn-resolving.de/urn:nbn:de:101:1-

2019092919333113374958

[14] S. Ranu and A. Singh, “Answering Top-k

Queries Over a Mixture of Attractive and

Repulsive Dimensions,” Proc. of the VLDB

Endowment 5(3), pp. 169-180, 2011

[15] N. Roussopoulos, S. Kelly and F. Vincent,

“Nearest Neigbor Queries,” Proc. ACM

SIGMOD Conference New York, pp. 71-79,

1995

[16] Y. Saad and M. Schultz, "Topological

properties of hyper-cubes," IEEE,

Transactions on computers, no. 37, pp. 867-

872, 1988.

[17] R. Sperb, “Maximum Principles and their

Appications,” New York: Academic Press,

Inc., 1981.

[18] Y. Tao, H. Vagelis, D. Papadias and Y.

Papakonstantinou, "Branch-and-Bound

Processing of Ranked Queries," Information

Systems, pp. 424-445, 2007.

[19] H. Vui and P. Son, "Minimizing Polynomial

Functions," ACTA Mathematica Vietnamica,

vol. 32, no. 1, pp. 71-82, 2007.

[20] D. Xin, J. Han and K. Chang, “Progressive and

Selective Merge: Computing Top-k with Ad-

hoc Ranking Functions,” Proc. ACM SIGMOD

International Conference on Management of

Data, pp. 103-114, June 2007.

AUTHOR BIOGRAPHIES

Peter Poensgen is an IT-

coordinator at Talanx AG, a

European insurance group

based in Hannover and

Cologne. He received a

diploma in Mathematics and

received the degree Dr. rer. nat.

from the University of Lübeck.

He started his professional

career as IT-consultant (database and software

development), an area in which he was working for

more than five years. Peter also worked in the finance

industry in various business areas (business intelligence

and analytics, data management and software

development). His research interests mainly focus on

data mining, query processing and optimization as well

as algorithms for solving convex optimization

problems. Peter provides courses in these areas at FOM

University of Applied Sciences in Cologne.

Open Journal of Databases (OJDB), Volume 7, Issue 1, 2020

20

Ralf Möller is Full Professor

of Computer Science at

University of Lübeck and

heads the Institute of

Information Systems. He was

Associate Professor of

Computer Science at Hamburg

University of Technology from 2003 to 2014. From

2001 to 2003 he was Professor at the University of

Applied Sciences in Wedel/Germany. In 1996 he

received the degree Dr. rer. nat. from University of

Hamburg. Prof. Möller was a co-organizer of

international workshops and is the author of numerous

workshop and conference papers as well as several

books and journal contributions (h-index=35 according

to Google Scholar). He served as reviewer for all major

journals and conferences in knowledge representation

and reasoning research areas, and he has been PI in

several EU and DFG projects. Professor Möller is

spokesperson of the Research Unit “Data Linking” in

the DFG-funded Cluster of Excellence “Understanding

Written Artefacts”.

