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ABSTRACT 
 

Wireless sensor networks have increasingly become contributors of very large amounts of data. The recent 

deployment of wireless sensor networks in Smart City infrastructures have led to very large amounts of data being 

generated each day across a variety of domains, with applications including environmental monitoring, healthcare 

monitoring and transport monitoring. The information generated through the wireless sensor nodes has made 

possible the visualization of a Smart City environment for better living. The Smart City offers intelligent 

infrastructure and cogitative environment for the elderly and other people living in the Smart society. Different 

types of sensors are present that help in monitoring inhabitants’ behaviour and their interaction with real world 

objects. To take advantage of the increasing amounts of data, there is a need for new methods and techniques for 

effective data management and analysis, to generate information that can assist in managing the resources 

intelligently and dynamically. Through this research a Smart City ontology model is proposed, which addresses 

the fusion process related to uncertain sensor data using semantic web technologies and Dempster-Shafer 

uncertainty theory. Based on the information handling methods, such as Dempster-Shafer theory (DST), an equally 

weighted sum operator and maximization operation, a higher level of contextual information is inferred from the 

low-level sensor data fusion process. In addition, the proposed ontology model helps in learning new rules that 

can be used in defining new knowledge in the Smart City system. 
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1 INTRODUCTION 

 
In recent years there has been an increasing trend of 

large numbers of people moving towards urban living. 

As forecasted in [21] by 2030 more than 60 % of the 

population will live in an urban environment. Some of 

the systems that can address the challenges related to 

increased population will contribute to the development 

of the Smart City. The Smart City concept operates in a 

complex urban environment, incorporating several 

complex systems of infrastructure, human behaviour, 

technology, social and political structures and the 

economy. A Smart City provides an intelligent way to 

manage components such as transport, health, energy, 

homes and buildings and the environment. The data 

generated by these components is primarily by wireless 

sensor networks. Wireless sensor networks have been 

deployed in many industrial and consumer applications 
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such as health monitoring, smart home applications, 

water and environmental monitoring. 

Sensor nodes associated with different Smart City 

applications generate large amounts of data that are 

currently significantly under-used. Using existing ICT 

infrastructure, generated heterogeneous information can 

be brought together. Some of the existing wireless 

communication technologies that can be exploited to 

achieve information aggregation are 3G, LTE and Wi-

Fi. In the context of usage of embedded devices and 

existing internet infrastructure, the Internet of Things 

(IoT) encompasses personal computers and other 

surrounding electronic devices. The Smart City vision is 

dependent on operating billions of IoT devices from a 

common place.  

The recent emergence of low power wireless 

network standards for sensors and actuators has enabled 

administrators to manage and control a wide range of 

sensor networks and actuators remotely. In order to 

facilitate the interaction between wireless sensor 

networks and Information and Communication 

Technologies (ICT), initially a Smart City architecture 

is proposed [11]. The plan is to deploy the architecture 

on a service platform. Through this platform, sensor 

applications can be connected and utilized by different 

web applications for an intelligent operating condition.  

In addition, we propose a generalized Smart City 

ontology model, which is presented in Section 5. This 

model will help in semantic exploitation of collected 

information for the different Smart City domains. The 

proposed ontology model helps in efficiently dealing 

with the information uncertainty and data heterogeneity 

aspects in the Smart City environment. Semantic web 

technologies [1] play an important role in the ontology 

design process as they enable the timely exploitation of 

domain specific information in the form of concepts and 

relationships. Semantic web technologies such as 

Resource Description Framework (RDF) [3], Web 

ontology language (OWL) [1] and Simple Protocol and 

RDF Query Language (SPARQL) [8] allow linking of 

concepts obtained from large volumes of heterogeneous 

sources in a meaningful manner.  

In addition, the uncertainty aspect of the Smart City 

semantic model will be addressed through the 

Dempster-Shafer (DS) [26] reasoning approach. 

Dempster-Shafer theory (DST) [5] allows us to extract 

new knowledge in the form of rules for activity 

recognition. Existing data fusion approaches tend to be 

in a single domain, such as health [4], and vehicles and 

traffic [16]. Moreover, only some of the approaches are 

automated, and they are also limited to their respective 

domains. We use the DS reasoning approach not only 

for dealing with data uncertainty and partial data fusion 

but also for learning new rules that will be utilized in 

defining new knowledge in the Smart City semantic 

model. For example, the use of DS combination rules to 

combine sensor information from the home and 

environment domain can enable us to recognize 

activities such as eating breakfast in the Smart Home 

domain, or to recognize the emergence of scenarios that 

might require management or intervention. 

To summarize, through the proposed Smart City 

ontology model, we will provide essential functionality 

towards multi-domain sensor data fusion. In our 

approach, initially the heterogeneous data (sensor data 

or data from a database) is collected from different 

Smart City domains and exploited with semantic web 

technologies. Once the information is semantically 

enriched based on domain experts’ knowledge, it can be 

further aggregated with other domain data using 

mathematical combination operators such as the 

Dempster Shafer combination rule [5], an equally 

weighted sum operator [17] and maximization operation 

[28].  

The process of information fusion helps in 

recognizing an activity in a particular domain of interest. 

Information fusion from one or more domains (e.g. 

environment, vehicle) with other domain specific 

information (e.g. home, health) will be on the basis of 

domain expert knowledge. Once the information fusion 

process is complete, rules governing a particular activity 

(e.g. sleeping, eating, driving, running) in a particular 

Smart City domain are learned and stored. Rules from 

the above fusion process will help in defining 

knowledge in the Smart City model. The proposed 

system will help citizens to manage their lives better and 

provide government with a useful tool for planning and 

resourcing. For example, Alzheimer’s patients and 

elderly people with cognitive impairment and memory 

difficult can be assisted in recognizing their activity in 

the form of alerts and warnings. 

The rest of the paper is organized as follows. Section 

2 briefly describes related work and presents some of the 

proposed novel features of our approach. In Section 3 

different evidential fusion approaches (such as 

Dempster-Shafer combination rule, equally weighted 

sum operator, and maximization operator) are discussed 

in detail. Section 4 describes the multi-level Smart City 

architecture. A detailed generalized Smart City ontology 

model is presented in Section 5. Section 6 gives a brief 

description of the graphical notation used in the Smart 

City ontology model. A case study using our Smart City 

ontology model is presented in Section 7 with discussion 

of results in Section 8. Finally, Section 9 concludes and 

describes future work. 

 

2 RELATED WORK 

 
In a Smart City, wireless sensor networks are the major 

sources of heterogeneous information generation. The 
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information generated by different sensors often 

overlaps and is partial in nature. Addressing the 

challenges related to the fusion of partial data is a 

research challenge. The DST of evidence, originally 

proposed by Dempster [5] and then extended by Shafer 

[22] is an extension of traditional probability and can be 

used for uncertain reasoning under these circumstances. 

Tazid et al [23] considers the merits and demerits of 

different combination rules (such as the Dempster rule, 

Yager rule, Sun rule) that are used in sensor data fusion. 

Yoon and Suh [27] and Javadi et al [14] use the DS 

approach, or uncertain reasoning, for sensor data fusion 

in the environment domain. The proposed data fusion 

approaches were limited to the devices and their 

functionality for a single Smart City domain only. 

Similarly, semantic web technologies play an 

important role in addressing the syntactic (i.e. providing 

a common format that is capable of addressing different 

types of sensor readings) aspect of the wireless sensor 

data. Much research work has already been done in the 

direction of semantically linking the sensor datasets and 

inferring knowledge, for example, use of a semantic-

based approach in the environment domain [15] and in 

vehicle localization [19] for inferring high level context 

information. Berges [2] proposed a canonical ontology-

based approach to achieve semantic interoperability for 

electronic health records (EHR). The proposed ontology 

is semantically defined on EHR-related terms. Their 

semantic description is independent of the technology 

and terms used. It exploits the existing semantic 

technologies and propriety models in the healthcare 

domain and links their definition with the canonical 

ontology. Fensel and Rogger [10] presented a semantic 

approach to enhance security at a port. Using an 

ontology-based approach an architecture is presented 

that aims to reduce noise in sensor data, cope with data 

heterogeneity, pattern detection and data fusion to 

provide real-time decision support in the future.  

Similarly Jung [15] presented semantic-based data 

mining in the smart building environment to detect 

useful patterns and knowledge of the system. Through 

the proposed ontology-based approach, temporal 

statistics of the sensor data were defined which further 

helped in correct session identification as well as in error 

detection. Through the experiments, it was shown that 

with correct pattern detection, the contextual sequence 

of the people in a particular environment can be 

detected. Ramar [7] presented a service-oriented 

architecture (SOA) model that helps in defining sensor 

data semantics and interoperability for disaster 

management operations. To achieve sensor 

interoperability, the approach used the Open Geospatial 

Consortium (OGC) Sensor Web Enablement (SWE) 

framework. The proposed architecture envisaged 

integration of low-level information originating from 

tide gauges, Bottom Pressure Recorder (BPR) and 

seismic stations using a web based service. 

Lecue [16] presented semantic traffic analytics and a 

reasoner for a city called STAR-CITY. The paper used 

heterogeneous sensor data obtained from machines and 

humans to provide real-time traffic conditions in an 

urban environment. The proposed system was analyzed, 

explored and diagnosed with different traffic conditions 

using semantic web technology. Similarly, Florian et al 

[6] came up with a local danger warning system that 

utilizes onboard car sensors. They also came up with a 

classification schema which was based on the situation 

of the smart vehicle, but their application was limited to 

the vehicle domain only.  

Michael and Christian [9] presented an automotive 

ontology model in the car domain by utilizing the in-car 

domain knowledge and user perspective information. 

Although the ontology design covers detailed aspects 

related to the car domain, they have not provided any 

practical scenario in which it can be implemented. 

Moreover, the proposed ontology covers only the 

vehicle domain. Towards the Smart home domain, Xin 

et al [12] proposed an evidential sensor data fusion 

approach in the Smart Home domain. The proposed 

approach utilized different information modeling 

methods such as DST, and maximization operations in 

inferring high-level contextual information. This 

approach was limited to Smart home activities. 

Moreover, it is not discussed how this approach will 

handle information uncertainty in other domains.  

The semantic approaches discussed above tend to 

limit themselves to their respective domains only. Some 

of the projects in the direction of multi-domain 

information fusion include the IBM project SCRIBE 

[24], defining the Smart City in terms of a semantic 

model based on data gathered from around the world. 

The SCRIBE ontology was defined using open 

standards such as Common Alerting Protocol and the 

National Information Exchange Model (NIEM). 

Similarly, the Smart Santander project [29] aims to 

evaluate the key building blocks of the IoT, which are 

mainly the interaction and management protocol 

mechanisms.  

In the Smart Santander project, large numbers of 

sensors will be deployed in different cities and exploited 

for different applications. The developed test-bed will 

help in exploiting various Smart City domains such as 

environmental monitoring, traffic intensity pattern 

monitoring and guidance for drivers on available 

parking spaces. The City Sense project [18] aimed to 

improve existing human infrastructure and thus helps in 

providing better services to citizens by exploiting 

available resources (such as electricity, water, and 

transport) in a more efficient manner. However, these 

Smart City projects do not provide detailed information 
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about their implementation. In addition, their semantic 

models do not specify how they will incorporate the 

uncertainty aspect in their semantic model.  

Considering these aspects, our approach will use a 

multi-level system design, in which low-level raw 

information is semantically enriched and inferred by 

intelligent customized applications in a Smart City 

domain. Furthermore, our sensor fusion approach is 

based on domain expert knowledge and a reasoning 

process that uses the DS theory of evidence. One reason 

of for using DS theory of evidence rather than more 

traditional probabilistic fusion approaches such as the 

Bayesian model is because it provides a straightforward 

way to deal with situations related to missing values, 

which are common in sensor data. Another problem with 

the Bayesian fusion method is that priori probabilities 

need to be calculated in advance. DS is basically a 

generalization of traditional probability which allow us 

to better quantify under uncertainty, as it provides 

bounds on uncertainty through the belief and plausibility 

functions. In addition, as a Smart City domain deals with 

data from different domains, under such circumstances 

DS is very useful in dealing with situations related to 

fusion of data from multiple independent sources, 

typically a large range of different sensors.  

Finally, rules governing high-level contextual 

activity will be learned and utilized for defining 

knowledge in the Smart City ontology model. The 

proposed model is a generalized ontology model which 

can be used in the Smart City domain to represent 

uncertainty, address the information fusion process and 

learn rules. The Smart City ontology helps us to 

aggregate different activities and sub-activities based on 

the behaviour. Thus our proposed ontology provides a 

powerful solution to the Smart City problem where 

information is combined from large numbers of Smart 

City domains such as health, vehicles, the environment, 

and the home.  

 

3 EVIDENTIAL FUSION OPERATORS 

 
This section defines DST of evidence along with some 

of the mathematical operators that will be used for 

different types of heterogeneous information fusion. 

 

3.1 Dempster-Shafer Theory of Evidence 

 
The Dempster-Shafer theory (DST) of evidence is a 

mathematical theory that allows evidence to be 

represented in a way which facilitates inference. It was 

originally proposed by Dempster [5] and extended by 

Shafer [22]. DST has found its application in various 

domains such as sensor fusion, biometrics, decision 

support, medical diagnosis and activity recognition. It is 

a generalization of traditional probability, which allows 

better evaluation of the data under uncertainty. It is also 

known as the theory of belief functions. Belief is a 

hypothesis and calculated as the sum of the masses of all 

sets it encloses. Briefly, it facilitates combining 

evidence from different sources and arriving at a degree 

of belief (represented by a belief function) that takes into 

account all the available evidence. We will use the DS 

approach for heterogeneous information fusion in 

different Smart City domains.  

DST is particularly useful as it allows us to combine 

data from different sources which may be at different 

level of detail. The DS combination rule is utilized in 

inferring a high level context activity (such as Breakfast, 

Lunch or Snack activities) in the Smart home domain 

(Figure 6) by utilizing low-level sensor information 

fusion. The proposed Breakfast ontology model 

highlights the importance of information fusion in the 

case of uncertainty (for example, sensor data from a 

Cooktop object can be aggregated using the DS 

combination rule in the case of the Breakfast activity). 

The theory is based on the following mathematical 

definitions. 

 

The Frame of Discernment (FOD): FOD is a set of 

mutually exclusive and exhaustive hypotheses. It can 

also be stated as the collection of finite non-empty sets 

that are generated as an outcome of an observable event.  

For example, a sensor might have only 2 active states; in 

the case of the cooktop sensor the two states are: active 

(Scooktop) and non-active (¬Scooktop). These two values 

define the set of mutually exclusive values that a sensor 

can hold: 

 
X = { Scooktop , ¬Scooktop } (1) 

Therefore, the power set, which is the set of all possible 

outcomes, including the empty set (∅), is given by 2X: 

 

FOD = 2X = {∅ , { Scooktop } , 

{¬Scooktop }, X} 
(2) 

There are many factors that are important in 

assigning the mass function values to a sensor event. 

Due to the uncertain nature of the sensor observation, 

DS theory assigns values in the range [0, 1] to denote the 

degree of belief in an active sensor state. This 

distribution of degree of belief over the FOD is called 

the evidence, which should satisfy the following 

conditions: 

 
𝑚 (∅)  =  0 (3) 

 
𝑚 (𝐻)  =  1 (4) 

where m is the mass function, ∅ is the empty set, and H 

is a subset of Ω. 
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The mass value can be assigned to either X or to a 

subset of the FOD. Thus this property helps the DS 

theory to better quantify under the circumstances when 

there is no strong evidence towards a single active 

sensor. By assigning the total belief to the whole FOD 

(i.e. m(FOD) = 1) and distributing belief values to 

subsets of FOD, this theory gives a powerful way to deal 

with the situation of uncertainty in sensor data.  

Belief and plausibility: DS theory gives a useful way to 

deal with situations under uncertainty. Rather than 

assigning total probabilistic mass to a single sensor 

event, it assigns a range of probability values to the 

sensor event. The lower bound of probability is called 

the belief, which is given by  

 
Bel (A) = ∑ 𝑚(𝐵)𝐵 ⊆ 𝐴  (5) 

Where Bel (A) is the total belief for which the evidence 

supports the event A. Similarly, the upper bound of 

probability is called the plausibility and is given by  

 
Pls (A) = ∑B|B∩A≠Φ m (B) (6) 

As discussed above, the probability value 

assignment in the Dempster Shafer combination rule 

gives a belief distribution over the FOD. When we have 

several belief distribution values from multiple sources 

over the same FOD, a new belief distribution value can 

be calculated using this Dempster-Shafer combination 

rule. According to this DST of combination, the mass 

function is thus obtained as a result of a combination of 

two independent sources in accordance with the 

following relation:  

 

 mDS (H) = 
𝑚12 (𝐻)

1 − 𝑚12 (𝛷)
 

 
(7) 

and 

 m12 (H) =  

∑ 𝑚1 (𝐻1) 𝑚2 (𝐻2)

𝐻1,𝐻2 ∈ 2𝜃 

𝐻1 ∩ 𝐻2 = 𝐻

 (8) 

 

where 𝑚12(H) represents the conjunctive consensus 

operator and 𝑚12(∅), represents the conflicting mass of 

the combining sources. Two sources are completely 

conflicting if their conflicting mass is equal to 1, which 

means that their masses cannot be combined using this 

theory. 

Here the proposed sensor fusion approach is 

extension of [12] which was limited to smart home 

domain only. In our approach we have used the DS 

combination rule for combining data at different level of 

detail in a Smart City environment. Usage of the DS rule 

depends on the nature of the data while combining with 

other domain data. For example, in the case of a 

Breakfast activity, if the Cooktop object is used at some 

instance, then the corresponding sensor data can be 

fused using the DS combination operator. To 

summarize, when the low-level sensor data is 

independent of the high-level context activity, then the 

DS combination rule can be applied for information 

fusion.   

 

3.2 Equally weighted sum operator: 

 
This is used when the belief data inputs do not satisfy 

the condition of being independent, so the sub-activities 

cannot be aggregated by using Dempster's combination 

rule. It is given by the following relation: 

 

 m(A) = m1 ⊕ … ⊕ mN (A) = 
1

𝑁
 ∑ 𝑚𝑖  (𝐴)𝑁

𝑖=0  

 
(9) 

 

It was first proposed by McClean and Scotney [17] for 

calculating sum belief for such as a composite node. 

This type of operation is normally used when the high-

level context activity is dependent on the low-level data, 

under which circumstance the DS fusion process is not 

valid.  

 

3.3 Maximization Operator 

 
Inspired by the union operation of membership 

functions in fuzzy set theory [28], this operator is based 

on the following belief relations: 

 

 Bel(C) = max (Bel(A), Bel(B)) (10) 

and  

 Pls(C) = max (Pls(A), Pls(B)) (11) 

 

We use the maximization operator to calculate the 

aggregated belief values for an activity formed from its 

alternative sub-activities. The information fusion 

approaches described above play an important part in 

dealing with situations related to information 

uncertainty. The selection of a particular operation is 

based on the nature of the object/sub-activity/activity. 

These formulae help in aggregating sensor data from 

different Smart City components. The next section 

presents some of the components in the Smart City 

environment. 

 

4 SMART CITY ARCHITECTURE 
 

With the aid of modern wireless technologies and 

wireless sensor networks, we envisage the future of 

Smart City systems providing powerful, intelligent and 

flexible support for people living in urban societies. As 

shown in Figure 1, we propose a Smart City architecture  
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that is an extension of [25], which was restricted to the 

vehicle domain only. By integrating wireless sensor 

networks and available wireless communication 

services, the following research aims are targeted: 1) 

real-time high-level context-aware customized services; 

2) better living environments; 3) improved utilization of 

the available resources. As shown in Figure 1, we 

envisage the main elements of the Smart City 

architecture to be smart health, smart environment, 

smart energy, smart security, smart office and residential 

buildings, smart administration, smart transport and 

smart industries.  

The sensor nodes deployed in each Smart City 

domain provide the primary data source for 

heterogeneous information generation. The information 

generated through the sensor nodes is collected using the 

existing communication services (see Section 4.2). For 

example, the use of satellite network for GPS devices, 

cellular services such as GSM/3G/4G for smartphones 

and the use of the internet for personal computers and 

other navigation devices for raw data collection. The 

data collected are then processed and analyzed using 

semantic web technologies and DS (or other) 

combination rules. The focus is on deploying the 

architecture on a cloud platform for use as a software as 

a service (SaaS). 

The proposed architecture can help Alzheimer's 

patients and elderly people with their daily living 

activities, for example, by sending alerts and warnings 

to end users if they forget, or are unable to complete, 

daily living activities. The system will also serve as an 

intelligent platform for people living in a Smart society. 

By combining data from different Smart City domains,  

 

the Smart City architecture will help in assisting people 

in an intelligent manner, for example, guiding a driver 

to take another route in case of road congestion, alerting 

heart patients in situations where their heart rate is 

exceeding a threshold limit while performing an 

activity, or assisting people with alerts and warnings for 

their household items such as sending alerts for buying 

food items. 

The implementation of the architecture will follow 

the steps outlined below. Firstly, the raw data are 

collected and processed to make them web consumable. 

Once the data are converted into a common format they 

are then semantically enriched with OWL concepts 

based on the knowledge of domain experts. At the same 

level, the data collected are processed using the DS 

combination rules to deal with the uncertainty aspects of 

the semantic model. The purpose is to recognize the 

activity and learn new rules that govern an activity. The 

new rules learned at this level will be used in defining 

the knowledge of the semantic model. The same 

approach will be used in defining customized services 

that will provide feedback to the end users (citizens) in 

the form of alerts and warnings as mentioned in Level 4 

(section 4.1.4) of the Smart City architecture.  

 

4.1 Multi-level Smart City Architecture 

 
As shown in Figure 2, sensors form the primary source 

of information generation. The raw data sensed by a 

sensor node are transferred to Level 1 of the Smart City 

architecture using communication services to perform 

further information processing. A detailed description of 

each Level is provided below. 

 

 

Figure 2: Multi-Level Smart City Architecture 
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4.1.1 Level 1: Data Collection 

 
In this level, raw information collected from sensors is 

stored for further processing. Some of the formats in 

which heterogeneous data are collected are csv, tweets, 

database schemas and text messages. The formats 

collected   are   then   processed   using   semantic   web 

technologies in order to convert them into a common 

format. The next level describes the steps used in the 

conversion of data into a common format. 

 

4.1.2 Level 2: Data Processing 
 
Information gathered from the data collection level is 

summarized prior to transmission, analysis and fusion in 

the further levels using semantic web technologies. The 

main objective of this level is to convert the collected 

heterogeneous information into a common format, e.g. 

Resource Description Framework (RDF). RDF [3] is the 

most common way to exchange information over the 

web and it facilitates heterogeneous data sharing and 

integration for different Smart City domains. RDF also 

helps in defining metadata about the resources on the 

web. Different software applications can then utilize 

RDF data for intelligent reasoning operations. Pre-

processed RDF data generated at this level will be 

exploited using semantic knowledge and uncertain 

reasoning rules in the next level for high-level context-

aware information retrieval. 

 

4.1.3 Level 3: Data Integration and Reasoning 
 
Semantic web technologies enable exploitation of 

domain-specific data based on the concepts and 

relationships between those concepts. The techniques 

used are summarized below. 

 

Web ontology language (OWL) [30] is used for 

publishing the ontologies. It allows the classification of 

individual concepts based on the classes. It also provides 

two different types of properties, which can be used to 

form relationships between different classes, namely the 

Data   property    and    Object    property.    Once   data 

classification is done, knowledge can be further 

enriched by domain experts and uncertain reasoning. 

 

Dempster-Shafer Theory will be used here for activity 

recognition and learning new rules in a particular 

domain of discourse. In this paper, the DS approach is 

used for combining sensor data from different Smart 

City domains such as Smart home [14] and Smart 

vehicle domains [19].  The proposed approach will help 

in learning new knowledge through uncertain reasoning 

and thus assist in achieving an intelligent system.  

 

SPARQL is an RDF query language [8] that is used to 

query, retrieve and manipulate data/records stored in the 

RDF format. Once the whole database is expressed in 

the form of RDF triples, SPARQL enables the query and 

retrieval of data in the same format. Therefore, this level 

facilitates low-level information fusion. The new rules 

learned during the process of extraction of high-level 

context information from raw sensor data can then be 

stored and used for building up knowledge in the Smart 

City architecture. 

 
4.1.4 Level 4: Device Control and Alerts 

 
Data obtained from Level 3 can be utilized by different 

web applications for intelligent operating conditions. 

The inferred data can be utilized in many ways such as 

input/output, messaging, alerts and warnings [7].  
 

 

Figure 3: Communication Services 
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4.2 Communication Services 

 
The communication medium plays an important role in 

achieving the Smart City concept. Figure 3 shows the 

existing communication services that are utilized in a 

Smart City infrastructure: 3G (3rd generation), LTE 

(Long-term evolution), Wi-Fi (Wireless fidelity), 

WiMAX (worldwide interoperability for microwave 

access), ZigBee, CATV (cable television) and satellite 

communication. The main aim is to connect all sorts of 

things (sensors and IoT’s) that can help in making the 

life of citizens more comfortable and safer. An example 

is provided by communication services in the home 

domain for connecting telephone devices and personal 

computers through the Internet. In the case of the 

Government sector, cloud and communication services 

are combined to obtain a better governance system. In 

the case of the health sector, communication 

technologies can be used to connect health statistics, 

medication and location of the patient from a remote 

location and thus help to achieve a Smart Health system. 

Hence, with Smart City and communication 

technologies we can provide a more secure and 

convenient infrastructure for better living. 

 

4.3 Customized Services 

 
Figure 4 shows some of the customized services in the 

Smart City environment. For example, in the case of the 

vehicle and health domains, by combining sensor data 

we can measure the impact of driver health parameters 

on driving conditions. Combining health parameters like 

blood pressure and heart rate with vehicle status can help 

the driver to measure their real-time health condition, 

which can help in creating a safe environment for 

drivers.   

Similarly using vehicle location, vehicle speed and 

volume of traffic approaching a junction, we can help in 

better monitoring of vehicle status. In the case of the 

healthcare domain, information collected through 

wireless sensor networks about patient health and 

activity can assist a disabled person. Similarly, by 

combining the home and environment domain data, the 

effect of temperature on home activities like eating, 

bathing, sleeping and cooking can be learned. This can 

help in recognizing correct activity status, which in turn 

can be a useful care tool for the elderly and people 

suffering from dementia. 

In the case of the environment and administration 

domains, the low-level information collected from the 

environment domain, such as temperature and water 

level, will help in deriving high-level customized 

information. When high-level customized information 

(such as flood, earthquake, forest fire, landslide and 

other natural calamities) is combined with city 

administration services, it could help in saving lives. 

Similarly, in the case of the industrial sector, context-

aware services obtained through heterogeneous data 

fusion will help in creating a safe working environment 

for factory workers. By continuous monitoring, 

recording and analyzing of the ambient sensor 

information from different domains (such as harmful gas 

detection, machine conditions and workers’ health) in an 

industrial environment, a more productive and safer 

environment for workers can be created.  

As described in Level 3 of the multi-level Smart City 

architecture, this particular layer forms the inference 

engine of the Smart City system. All the information 

processing and reasoning will be done at this level of the 

Smart City architecture. Semantic web technology, 

together with information modeling methods such as 

DST, equally weighted sum operator and maximization 

operation, is exploited to achieve a smarter system. The 

following section gives a detailed description of the 

generalized ontology model in the Smart City 

environment. The proposed Smart City ontology model 

helps in the timely exploitation of domain-specific 

concepts and inference of new knowledge for a smarter 

system. 

 

5  SMART CITY ONTOLOGY: DESIGNS AND 

CONCEPTS 

 
Ontologies are used to design and formalize high-level 

concepts using simple detailed descriptions. Ontologies 

allow us to better quantify the relationships in the Smart 

City environment with the help of concepts and 

relationships between them. Ontologies also allow 

sharing of the information with different objects in the 

Smart City environment. They enable the creation of a 

logical model in the Smart City domain that helps in 

including the objects and associated activities using 

defined relationships between them.  

An ontology with a sparser description will be very 

easy to understand, whereas detailed ontologies are 

highly complex and difficult to reason. The design goal 

of the Smart City ontology model is to avoid the 

unnecessary details of high-level information and 

facilitate ease of data fusion with other domain data. 

Simple ontology design not only helps in achieving easy 

information exchange, but also allows seamless 

information fusion from other domains. The Smart City 

ontology design as shown in Figure 5 is constructed 

using the following concepts and relationships. 
 

Concepts: Concepts help in defining the entities in the 

Smart City model. They are used here in the same 

manner as used in a typical ontology design. They are 

also called classes in the ontology. They are mainly 

defined by individuals. Some of the concepts modeled 
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in the Smart City ontology as shown in Figure 5 are 

described below. 
 

Activity class: The Activity class forms the parent class 

for all the activities/sub-activities/objects. All the final 

activities in the Smart City environment will reside in 

this class. For example, in the case of the Home domain 

the home activities include: Leaving, Toileting, 

Showering, Sleeping, Breakfast, Lunch, Dinner, Snack, 

Spare_Time/TV, Grooming, Intrusion Detection. Some 

of the activities in the case of the Health (personal) 

domain are walking, climbing, running, jumping, 

hopping, skipping, marching, and galloping. Similarly 

in the case of the Vehicle domain activities include 

smart parking, smart lighting, automatic route detection, 

and congestion avoidance. In the case of the 

Environment domain, some of the activities are air 

pollution detection, earthquake detection, temperature 

monitoring, harmful radiation detection and forest fire 

detection. In the case of the Industrial domain, some of 

the activities include vehicle auto diagnosis, ozone 

presence detection, indoor air quality measurement, and 

temperature monitoring. Similarly in the case of the 

Security and Emergency services domain some of the 

activities include perimeter control, intrusion detection, 

radiation level detection, and explosive gas detection. 
 

SubActivity class: The Sub-Activity class contains the 

collection of the entities such as sub-activities, derived 

objects, and compulsory objects. This class can be 

considered as a collection of the intermediate classes 

that may result in the final Activity class. For example, 

Sub-activities in the case of the Health domain can be 

formed from the aggregation of different home objects 

such as fridge, cupboard, cooktop, and microwave for 

the breakfast activity. Although here the sub-activity 

itself doesn’t give any useful information about an 

event/activity, it forms an intermediate step for the final 

activity. Similarly, in the case of the Health (personal) 

domain sub-activity can  be  body  posture  and  motion  
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Figure 5: Smart City ontology 
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detection that helps in inferring higher level activities 

such as running, walking, and sleeping. In the case of the 

Vehicle domain, sub-activity could be road blockage 

detection and vehicle tracking system, which form a 

high-level activity such as congestion detection and 

guiding the vehicle to achieve a congestion-free journey. 
 

Object class: The object class contains the collection of 

Smart objects in the Smart City environment. For 

example, objects in the case of the Home domain include 

shower, fridge, microwave, toaster, cooktop, basin, 

toilet, maindoor, cabinet, cupboard, seat, and bed. 

Similarly, objects from the Health (personal) domain 

can be blood pressure monitor, heart rate monitor, 

weight detector, and motion tracking devices. In the case 

of the Vehicle domain smart objects could be petrol 

level indicator, headlight detector, motion detector, 

position detector for nearby vehicle detection and road 

monitoring, and position tracker using GPS to track the 

position of the vehicle. In the case of the Environment 

domain, some of the smart objects are gas detector, 

temperature measurement, soil moisture detector and 

vibration detector devices. In the case of the Industrial 

domain, some of the objects are  Zigbee  and  RFID  tags.  

 

In the case of the Security and Emergency services, 

smart objects include smart fences and liquid detection 

devices. 

  

Derived object class: The Derived Object class 

contains the collection of all the objects that are derived 

from the object class. Examples include selecting tea or 

coffee for a drink activity from the tea/coffee object in 

the home domain. Similarly, detecting a single motion 

like running or walking from the accelerometer sensor 

object in the case of the personal Health domain.  

Compulsory/Composite object class: The Composite 

object class contains the collection of all the objects that 

are compulsory for a sub-activity or activity class. 

Examples are objects such as fridge, microwave, toaster 

and cooktop, which form the composite/compulsory 

objects for the breakfast activity in the home domain. 

Location and vibration detection for early earthquake 

detection in the case of the Environment domain and 

GPS device and nearby traffic statistics for a problem-

free ride in the Smart Transportation domain are also 

composite class examples. 
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Temporal/Spatial class: In the Smart City ontology the 

temporal aspect of the event is addressed using the Time 

class and the spatial aspect using the Location class. 
 

SensorTypes/InputData class: This class contains the 

list of the sensor types or input data used by the end user 

in the Smart City environment. It is related to other 

classes such as Object class, Time class and Location 

class using the dependency relationship. The 

dependency relationship indicates that object 

class/Location class / Time class is dependent on the 

input values which are initiated either by triggering the 

sensor type or by an input value from the database/end 

user. 
 

Relationships: Relationships help in defining the 

relations between the defined concepts or classes. 
 

“Is-a” relation: The Is-a type of relationship helps in 

defining the relationship in the form of sub-class and 

super-class. The classes that are defined using the Is-a 

relationship mainly inherit the concepts and properties 

of the super-class. Examples include a magnetic sensor: 

all the concepts and associated properties of the Sensor 

class are automatically inherited by the Magnetic sensor 

class. In the Smart City ontology inheritance does not 

play a major role, but it will be used in categorizing and 

storing the information in a hierarchical order. 

Properties: Properties are used in the ontology design 

to provide ease of understanding of the relationships 

between the concepts/classes. They are merely a naming 

convention that helps in defining a knowledgeable term 

that links the different classes/concepts in the Smart 

City. Some of the properties that are used in defining the 

Smart City ontology are described below. 

“hasSome” property: The “hasSome” property is used 

to define a weak form of association with the other 

classes. The semantics are such that one class is the child 

of another. It can be annotated with a number of 

restrictions in order to express the exact relationship of 

the child class with the parent class. Example: A car 

hasSome wheels. 

“partOf” property: The “partOf” property helps in 

defining the compulsory events associated with other 

classes. It helps in defining a strong form of relationship 

with the other concepts/classes. Subclasses that share 

this property with the super-class are compulsory 

entities to the super-class activity for example 

CompositeObj class and DerivedObj class in the Smart 

city ontology diagram.  
 

“hasSomePartOf” property: The “hasSomePartOf” 

property is used in the Smart City ontology to define an 

optional/weak form of relationship with other 

classes/objects. The objects/subclasses that follow this 

property are optional events to the super-class. Their 

occurrence is uncertain with respect to the occurrence of 

a final activity in the Smart City environment.  
  

“connectedTo” property:  The “connectedTo” property 

in the Smart City ontology indicates the dependency 

relationship of an object/sub-activity class with a 

SensorTypes/InputData class. This property does not 

have much importance because the attributes under this 

class are hidden from the external world. The reason for 

including this form of relationship in the Smart City 

ontology is to show the dependency of the input state 

(SensorTypes/InputData) with the object and sub-

activity class. 

In order to visualize how reasoning in the Smart City 

model will be accomplished, a use case diagram of the 

Breakfast ontology is created as shown in Figure 6. The 

Breakfast ontology is based on information gathered 

from the Home and the Environment domains. The 

purpose is to show how we can model the knowledge in 

the Smart City domain using the semantic model that 

will be able to address uncertainty using the DST, fuzzy 

theory and weighted sum operation. The following 

section provides a description of the graphical notation 

used in Figure 5 and Figure 6.  

 

6 ONTOLOGY CLASSIFICATION 

 
Sensor data helps in classifying the activity object based 

on its nature of occurrence. Once a sensor is activated, it 

helps in inferring a higher event based on the 

information that is active at that time-stamp. Table 1 

gives a summary on the graphical notation used in the 

Smart City ontology diagram, which is an extension of 

[12], which was restricted to the Smart home domain 

only. Based on sensor data fusion from different Smart 

City domains, these relationship properties will be 

exploited to achieve a smarter system. Using Table 1 of 

graphical notations, a generalized Smart City ontology 

model (Figure 5), as well as an example, is presented in 

Section 7 (Figure 6).  

Based on the description above of the concepts and 

associated relationships between concepts, the 

evidential operators used are based on the following 

properties: 

Case 1: If Class A à (hasSome) à Class B. 

If two classes/concepts are linked using property 

linkage = “hasSome”, then we use the Maximization 

operation, which is given by the membership function of 

fuzzy set theory [28]. For example, Temperature 

classification such as normal, cold and hot in the Smart 

environment domain follows the maximization 

operation as shown in Figure 6. 
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Case 2: If Class A à (partOf) à Class B. 

If two classes/concepts are linked using the property 

linkage “partOf”, then we use the Equally weighted sum 

operation [17]. For example, Fridge, Cupboard, 

Microwave and Toaster objects follow the “partOf” 

property in the Breakfast ontology (Figure 6), and are 

thus aggregated using the equally weighted sum 

operator. 

Case 3: If Class A à (hasSomePartOf) à  Class B. 

In this case when two classes/concepts are linked 

using the property linkage “hasSomePartOf”, then the 

DST [22] operation is used. For example, learning role 

impact Cooktop object to infer high-level Breakfast 

activity in the Smart home domain (Figure 6). 

  
7 SENSOR DEPLOYMENT 

 
Sensor deployment in the Smart City involves 

complexities such as privacy, cost and practicability. 

Due to these constraints, the proposed research focuses 

on utilizing existing infrastructure. Often a variety of 

sensors have been involved in collecting the domain 

specific data. Binary sensors have been deployed 

practically and accepted among a wide range of Smart 

City applications. These sensors do not directly detect 

the occupants, but they give a binary state for them. 

Apart from binary sensors, other sensor types include 

temperature sensors, velocity sensors, and vibrations 

sensors. Sensor data fusion helps in addressing data 

heterogeneity aspects of the raw sensor data.  

In the Smart City ontology model, the domain 

expert’s knowledge will assist in categorizing the 

objects/activities. For example, consider the Home and 

Environment domain information from the Smart City 

system and learning the impact of temperature on the 

activity of eating. The domain expert’s knowledge helps 

us in understanding the surrounding domain data that 

can be combined to infer high-level context information. 

Based on the low -level data classification as explained 

in Section 5, low-level information fusion and high-

level context information inference can be achieved in 

the Smart City system. The main intention is to learn 

new rules through ontology-based information fusion of 

data from the different Smart City domains.  

 

7.1 Evidential Operations 

 
Based on the dataset that we have obtained for the Home 

[20] and Environment [31] domains, we have carried out 

an experiment that will highlight the usage of evidential 

fusion operations. 

Dataset description: Home domain [20] comprises 

information regarding the ADLs (Activities of Daily 

Living) performed by a single user on a daily basis in his 

own home. This dataset comprises of different labelled 
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ADL’s (Activity of daily living) collected by 12 

different sensor which are installed in home 

environment. Some of recorded activities are such as 

Showering, Sleeping, Breakfast, Lunch, Dinner, Snack 

etc. Each instance of the dataset is described by sensor 

events (features) and corresponding activities of daily 

living (labels). Whereas Environment domain [31]  

dataset is collected using an online query tool by 

Microsoft, which allow us to enter the start and end time 

stamp with the location information and outputs the 

environment related parameters such as temperature, 

humidity etc. 

Case study: Smart home and Smart environment are 

two important domains of the Smart City system. When 

the raw data collected are combined with the 

information fusion approaches, it will help in deriving 

high-level contextual information. The derived high-

level contextual information will help in learning new 

rules that can be used for defining knowledge in the 

Smart Home semantic model in the Smart City domain.  

Based on the state of the sensor (for example, electric, 

magnetic) and the input we have obtained from the 

database, classification of the Breakfast activity is 

shown in Figure 6. Figure 6 shows that the magnetic 

sensor is attached directly to the fridge and cupboard, 

while the electric sensor is attached to the toaster and 

microwave objects in the Smart Kitchen environment. 

Similarly, in the case of the Environment domain, data 

is collected from existing databases. For the sake of 

simplicity, we have divided the temperature into three 

different categories, namely Normal, Cold and Hot. 

Similarly, for the time of day at which events take place, 

we have categorized events as Morning, Afternoon, 

Evening or Night. 

Based on this object/sub-activity categorization, the 

Breakfast ontology model is proposed as shown in 

Figure 6. Once the categorization process is finished, the 

object/sub-activity is fused based on the mathematical 

operators discussed below. 

 

7.1.1 Dempster-Shafer Rule of Combination  

 
A belief distribution presents a probability opinion over 

the frame of discernment. When several belief 

distributions are obtained through distinct sources over 

the same frame of discernment, a new belief distribution 

representing the consensus can be produced by 

Dempster's rule of combination [23] (as described in 

Section 3.1.1). In the proposed Breakfast ontology 

model, the DS combination rule is applied where an 

Object/Sub-activity is attached to another activity using 

the “hasSomePartOf” property. For example, in the case 

of the Breakfast activity, we observe the uncertainty of 

the cooktop sensor with the composite (Temperature, 

Home, Day) activity. 

 

7.1.2 Equally Weighted Sum Operator 

 
In the Breakfast activity, the intermediate sub-activity 

FCMT (fridge, cupboard, microwave and toaster) is the 

composite of the sub-activities fridge, cupboard, 

microwave and toaster. All four sub-activities contribute 

beliefs to FCMT [13] [17] (as explained in Section 

3.1.2). This particular operation is applied in the 

semantic model where an object/sub-activity is attached 

to another activity using the “partOf” property.  

 

7.1.3 Maximization Operator 

 
``Making Breakfast'', ``Making Lunch'' and ``Making 

Snacks'' are three alternative sub-activities of the 

“Eating'' activity. Inspired by the union operation of 

membership functions in fuzzy set theory [28] (as 

explained in Section 3.1.3), this is used when an 

object/sub-activity is attached with the “hasSome” 

property in the Smart City semantic model. 

 

8 RESULTS  
 

Based on the Breakfast ontology model discussed 

above, we have combined the two different ontologies 

(Home and Environment Dataset) using evidential 

fusion approaches. The purpose of the study is to show 

how this minimal set of sensors can provide an accurate 

classification for an activity. In addition, accurate 

activity recognition will help in learning new rules that 

will help in defining knowledge for our Smart City 

system. The results clearly indicate that with the 

inclusion of other domains (Environment domain 

parameters such as temperature) sensor/activity 

information helps to provide better activity recognition 

in the domain of interest (Home domain eating activity). 

For demonstration purposes, we have listed only the 

fusion process for single and three active sensor events 

only. Other belief values can be calculated for two, four 

and five active sensor events. Below are the belief values 

obtained before and after sensor data fusion. The belief 

values are obtained by aggregating the data (as shown in 

the Breakfast ontology model) with respect to the 

assigned property description. This data classification 

and property selection is based on the nature of the data 

being aggregated, as discussed in Section 3. These belief 

values are based on the data fusion experiment carried 

out over three different activities, namely: Breakfast, 

Lunch and Snacks. 
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Table 2: Belief values for Breakfast, Lunch and Snacks Activity based on Single Active sensor 

Name Bel (Breakfast) Bel (Lunch) Bel (Snacks) 

CASE A: Without Fusion 

1. Cooktop 0.0439 0.2514 0 

2. Cupboard 0.1265 0.1109 0.0722 

3. Fridge 0.0741 0.0688 0.3433 

4. Microwave 0.1415 0.14 0 

5. Toaster 0.2288 0 0 

CASE B: With Time and Temperature data fusion 

1. Cooktop-Morning-cold 0.5172 0.0781 0.1603 

2. Cupboard-Afternoon-hot 0.1665 0.1751 0.5579 

3. Fridge-Evening-normal 0.1488 0.0306 0.6059 

4. Microwave-Morning-cold 0.493 0.2152 0.1603 

5. Toaster-Morning-cold 0.5244 0.0085 0.1603 

 

Table 3: Belief values for Breakfast, Lunch and Snacks Activity based on three Active sensor  

Name Bel (Breakfast) Bel (Lunch) Bel (Snacks) 

CASE A: Without Fusion 

1. cooktop-cupboard-fridge 0.2757 0.6266 0.4393 

2. cooktop-cupboard-microwave 0.3499 0.7454 0.0722 

3. cooktop-cupboard-toaster 0.4425 0.4931 0.0722 

4. cooktop-fridge-microwave 0.2921 0.6641 0.3433 

5. cooktop-fridge-toaster 0.3859 0.3809 0.3433 

6. cooktop-microwave-toaster 0.4583 0.5355 0 

7. cupboard-fridge-microwave 0.3517 0.5199 0.4393 

8. cupboard-fridge-toaster 0.4436 0.2374 0.4393 

9. cupboard-microwave-toaster 0.5172 0.3599 0.0722 

10. fridge-microwave-toaster 0.4597 0.2757 0.3433 

    

CASE B: With Time and Temperature data fusion 

1. cooktop-cupboard-fridge-Afternoon-hot 0.2595 0.3346 0.6737 

2. cooktop-cupboard-microwave-Afternoon-

normal 
0.3562 0.7908 0.2 

3. cooktop-cupboard-toaster-Morning-cold 0.6409 0.294 0.2285 

4. cooktop-fridge-microwave-Afternoon-hot 0.265 0.3811 0.6059 

5. cooktop-fridge-toaster-Morning-cold 0.6228 0.1047 0.2761 

6. cooktop-microwave-toaster-Morning-cold 0.6459 0.3396 0.1603 

7. cupboard-fridge-microwave-Afternoon-hot 0.241 0.5233 0.6737 

8. cupboard-fridge-toaster-Evening-normal 0.2706 0.2149 0.6737 

9. cupboard-microwave-toaster-Morning-cold 0.6252 0.4791 0.2285 

10. fridge-microwave-toaster-Morning-cold 0.6054 0.2573 0.2761 
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Table 2 shows the belief distribution values for the 

Breakfast, Lunch and Snacks activities when only a 

single sensor is active. The proposed belief distribution 

is divided among the two cases: Case A, which gives the 

belief values without the fusion process, and Case B, 

which gives the belief values when the fusion process is 

implemented in the eating activity model. From the 

resultant belief distribution table, we observe that all the 

belief values without fusion are less than 0.5, thus gives 

no strong confidence in the selection of a single activity. 

However, when the fusion process is implemented into 

the same scenario, we observe that  each  row  gives  a 

belief distribution of value greater than 0.5, giving 

stronger confidence in a single activity. Thus, the 

resultant belief values with the evidential fusion 

operation (Case B) support stronger detection of an 

activity than the process without fusion (Case A). 

Similarly, Table 3 shows different belief values for 

the Breakfast, Lunch and Snacks activities when three 

sensors are active with and without the fusion process. 

From Case A, we see that only some belief values are 

greater than 0.5, giving strong support in detecting a 

single activity. For example, Cooktop-Cupboard-

Microwave active sensors give a strong belief for the 

Lunch activity. However, if we observe the overall 

pattern we find that these results are confined to a single 

activity 5 times out of 10, which is quite uncertain. 

However, in Case B, using the information fusion 

process, the resultant belief distribution provides strong 

confidence in detection of a single activity event. Thus, 

evidential information fusion helps in evaluating a more 

compelling belief distribution for a single activity from 

a group of sensor events. Based on the belief distribution 

for three different activities (Breakfast, Lunch and 

Snacks), some new rules have been learned which will 

be used in defining knowledge in the Smart City 

semantic model. These new rules will help in providing 

a strong belief in the Smart City system based on the 

activities/objects behavior.  

1. cooktop + cupboard + fridge + Afternoon 

+ hot à Snacks Activity 

2. cooktop + cupboard + microwave + 

Afternoon + normal à Lunch Activity 

3. cooktop + cupboard + toaster + Morning 

+ cold à Breakfast Activity 

4. cooktop + fridge + microwave + 

Afternoon + hot  à Snacks Activity 

5. cooktop + fridge + toaster + Morning + 

cold  à Breakfast Activity 

6. cooktop + microwave + toaster + Morning 

+ cold à Breakfast Activity 

7. cupboard + fridge + microwave + 

Afternoon + hot à Snacks Activity 

8. cupboard + fridge + toaster + Evening 

+ normal à Snacks Activity 

9. cupboard + microwave + toaster + 

Morning + cold à Breakfast Activity 

10. fridge + microwave + toaster + Morning 
+ cold à Breakfast Activity 

Although currently the rules learned from the above 

Home and Environment fusion process are limited to 

two domains only, the same approach can be utilized 

across a larger number of different Smart City domains. 

To summarize, the learned rules from the novel fusion 

approach will help in defining knowledge in the 

semantic model for the Smart City system. An example 

of the use of this system is for Alzheimer patients to 

remind them of their current activity in the Smart home 

environment. Currently the approach is illustrated with 

a limited training dataset. Future work will include 

validation of the results using both a test and training 

dataset. 

 

9 DISCUSSION AND CONCLUSIONS 

 
The Smart City concept has been revolutionized and 

evolved into a new era with recent developments in ICT 

that combine wireless sensor networks and computer 

networks. We aim to address some of the customized 

services in a Smart City environment by using semantic 

modeling and extended DST. In addition, through the 

DS approach in our Smart City architecture we aim to 

address the uncertainty aspect in the Smart City 

environment. Although it is very difficult to cover every 

aspect of the Smart City domain, through our proposed 

architecture we aim to focus on the most important areas 

of the Smart City environment. Semantic web 

technologies can be used in addressing the heterogeneity 

aspect in the Smart City environment. In order to make 

the available information machine-readable, the 

information collected is exploited using the Resource 

Description Framework (RDF). In addition, the 

SPARQL end point can be utilized by city 

administrators for data retrieval and high-level 

information inference in the Smart City system.  

In addition, through this research we have introduced 

a Smart City ontology model that helps in information 

management within the Smart City environment. We 

have highlighted the importance of information 

processing methods such as DST. Equally weighted sum 

operators and Maximization operators help to deal with 

the situation of data uncertainty. Using these 

mathematical operators, the information fusion process 

at different levels in the Smart City environment can be 
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rolled out. The proposed fusion approaches help in 

learning new rules that can be utilized in defining new 

knowledge for the Smart City ontology model. 

Through our Breakfast ontology experiment we have 

proposed an evidential fusion approach through which 

heterogeneous information fusion is carried out based on 

the input state of the different active objects/events. 

Based on the low-level information fusion, higher level 

activities are inferred based on the belief distribution 

values. From the resultant belief distribution values, we 

conclude that the information fusion process helps to 

achieve stronger detection of a single activity from the 

group of sensors and facilitates the process of learning 

new rules 

Future work is planned to perform experiments, 

including discovering real-time heterogeneous 

information from different Smart City domains, 

inclusion of semantic web technologies (such as RDF 

and SPARQL) in the Smart City system, and the use of 

extended DS combination theory for information fusion 

and reasoning at different levels of the Smart City 

environment. 
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