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ABSTRACT 
 

This paper suggests a method to measure the physical distance between an IoT device (a Thing) and a mobile 

device (also a Thing) using BLE (Bluetooth Low-Energy profile) interfaces with smaller distance errors. BLE is 

a well-known technology for the low-power connectivity and suitable for IoT devices as well as for the proximity 

with the range of several meters. Apple has already adopted the technique and enhanced it to provide subdivided 

proximity range levels. However, as it is also a variation of RSS-based distance estimation, Apple’s iBeacon 

could only provide immediate, near or far status but not a real and accurate distance. To provide more accurate 

distance using BLE, this paper introduces additional self-correcting beacon to calibrate the reference distance 

and mitigate errors from environmental factors. By adopting self-correcting beacon for measuring the distance, 

the average distance error shows less than 10% within the range of 1.5 meters. Some considerations are 

presented to extend the range to be able to get more accurate distances. 
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1 INTRODUCTION 
 

We are already surrounded by lots of things connected 

to the Internet at our home, offices, and streets. Internet 

of Things (IoT) is no longer a future technology but a 

present one being enhanced and evolving every day. 

Some of them are mobile (smart phones, wearable 

devices, sensors in a car etc.), while others are fixed 

(environmental sensors, appliances, smart TV, etc.). 

Things might have one or more network interfaces to 

make connections among themselves and to the world. 

Bluetooth Low-Energy (BLE) might be one of the most 

popular technologies due to its simplicity, robust radio 

property, and, above all, low-power operation.  The 

low-power consumption of the BLE makes it as a very 

attractive connectivity technology for the IoT devices.  

Compare to the Bluetooth, BLE uses much smaller 

transmission power, and thus could be an ideal 

technology for continuous proximity measurements 

between the transmitter and receiver [3]. Apple's 

iBeacon [6] is the commercialized specification based 

on BLE, and it enhanced the BLE protocol to include 

the txPower field when a BLE client broadcasts signals 

for the BLE server to scan for discovery and 

connection. The server can compare the received signal 

strength and txPower value from the client to estimate 
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a rough distance between the client and itself as the 

txPower value is an expected received signal strength 

at one meter distance.  

Currently, the iBeacon specification provides three 

levels of proximity from the estimated distance, which 

are immediate, near and far status. Normally, the 

txPower is determined and set by the vendors, but the 

received signal strength fluctuates over time and also 

under changing circumstances such as position of walls 

and people around the devices. Therefore, it is 

challenging to provide accurate physical distance. In 

this paper, we present a new and improved method, 

which is robust for dynamically changing 

environmental settings, for estimating distance between 

two devices emitting and receiving signals.  

This work is an extension of the paper entitled 

“Measuring a distance between things with improved 

accuracy” and it was already presented at the 5th 

International Symposium on Internet of Ubiquitous and 

Pervasive Things (IUPT) [7]. In the extensions, several 

indoor positioning mechanisms are presented. By 

comparing them in terms of pros and cons we conclude 

that a received signal strength based approach is 

feasible to the environment of IoT. This is because the 

distances between the Things are mostly short and thus 

they should be operated in low-power consumptions 

without any local infrastructures. And several 

considerable application scenarios are presented and 

discussed. It is feasible to apply the solution suggested 

in this paper to these scenarios as they need accurate 

distances in short ranges.  

In Section 2, we describe the related works. For 

completeness, we state general RSS (Returned Signal 

Strength) based distance measuring methodologies in 

Section 3. A newly proposed system for accurate 

distance measurement by adopting the self-correcting 

beacons will be explained in Section 4. In Section 5, 

we show the evaluation results of the proposed system. 

Some possible application scenarios using accurate 

distance are described in Section 6. Finally, in Section 

7, we conclude the paper with further work that can 

potentially extend the range of accurate distance 

measurement. 

 

2   RELATED WORK 
 

Many indoor positioning systems (IPSs) have been 

introduced until now and they also want to know exact 

global or relative positions of devices or users in the 

indoor environments. The indoor positioning systems 

can be classified by the different positioning principles 

and by the different connectivity and beaconing 

technologies. The positioning principles contain 

identity (ID), geometric and fingerprint positioning. 

The connectivity and beaconing technologies include 

Wi-Fi, Zigbee, Radio Frequency Identification (RFID), 

Bluetooth, Ultra-Wideband (UWB), pseudolite, cellular 

network and laser. 

Identity positioning technology detects a user's 

position through the location of a node which is 

severing to the user. The node can be a base station 

(BS), RFID reader, or Access Point (AP) by the 

underlying connectivity technologies. The accuracy of 

ID positioning depends on the density of serving nodes 

with already known location. ID positioning technique 

is often used in a base station positioning system and 

RFID positioning system with low cost and low 

accuracy. 

Geometric positioning technology calculates a 

user’s position through measuring the geometric 

relations between the user and positioning nodes. The 

classic examples of this technique are Time of Arrive 

(TOA), Time Difference of Arrival (TDOA), Arrival of 

Angle (AOA) and the integrations of these. Geometric 

positioning technique is widely applied in positioning 

systems with Base Stations, UWB, pseudolite, lasers 

and ultrasound. This technology is easy to popularize, 

but the error will increase under non-line-of-sight 

(NLOS) conditions. For example, in Base Station 

positioning systems adopting geometric approach, the 

positioning error could be up to hundreds of meters. 

Researchers have done a lot of work to mitigate the 

NLOS error [13], and the error can be reduced by 60-

90% in specific environments. But these contributions 

still cannot fulfill the demand of meter level accuracy 

for the indoor location based services.  

Fingerprint positioning technology is based on 

fingerprint databases. The positioning area is divided 

into grids, and the fingerprints in different grids are 

acquired before positioning. The fingerprints can be 

acquired through various methods like TOA, TDOA, 

RSS and AOA. Fingerprint matching would be 

performed on measured signals at a specific location 

with fingerprint databases. The typical fingerprint 

matching algorithms are k-Nearest Neighbor (KNN) 

algorithm [14], neural network [5], Support Vector 

Regression (SVR) [20], Support Vector Machine 

(SVM) [4]. Fingerprint positioning technology can 

mitigate NLOS error effectively. However, this 

technology is limited by the heavy workload of 

fingerprint acquisition and the large amount of 

fingerprint database. Those limitations make the 

fingerprint positioning to be applied only to popular 

regions and to be hard to be popularized. 

The following gives detailed descriptions about 

several well-known technologies of measuring 

distances.  

 Time of arrival (TOA): TOA [2] finds the distance 

between a transmitter and a receiver using one way 

propagation delay by exploiting the relationship 
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between the light speed and the carrier frequency of 

the signal. However, TOA positioning requires an 

accurately synchronized clock as 1.0 μs error in 

time equals to 300 meters in terms of distance [12]. 

TOA will not be used for low cost devices because 

the high accuracy clock costs quite a lot. It is 

difficult to say that TOA will be widely applied to 

solve the accurate positioning problem.  

 Angle of arrival (AOA): AOA [11] is usually 

employed as prior-knowledge for the triangulation 

method.  In 3-dimensional spaces, AOA requires 3 

to 4 signal emitters to obtain position of a Bluetooth 

Low-Energy device, which are also not practical 

cases.  

 Ultrasound: A mobile node with an ultrasonic 

sensor measures the distance by exploiting the 

signal propagation time. However, the transmission 

range of an ultrasound signal is small as it cannot 

propagate further than radio frequency wave [16]. 

Normally, the size, cost, and energy consumption 

are not attractive. Although the ultrasound based 

localization approach demonstrates better accuracy, 

it is also not suitable for IoT environments. 

 WIFI: Wi-Fi is a short-range radio transmission 

technology based on IEEE 802.11, and it can 

support internet access in a range of tens of meters 

in indoor environments. Currently, Wi-Fi AP has 

been massively deployed in most buildings and 

expanding gradually. But due to the unknown effect 

of environments, like we cannot know if we have 

enough APs in IoT environments, it is hard to 

measure the distances between user and AP by 

Received Signal Strength Indication (RSSI). The 

positioning error of this type is about 10 to 20 

meters [18].  

 

3 BACKGROUND AND MOTIVATION 
 

Proliferation of smart devices and connected things 

make the user’s context to be understood with a greater 

accuracy. Examples of a user’s context include 

mobility of the user, different circumstances (e.g. at 

work, at shopping, at lunch etc.) in which the user is 

situated, and different things (e.g. conversation, reading 

a book, watching a TV, exercising etc.) to which they 

pay attention. We can state that accurate understanding 

of users’ context largely depend on their geographical 

and semantic locations.  

For example, if a person with a smartphone is 

moving along the trail at walking speed, it is highly 

likely that user may be exercising. If a user, with a 

similar device, is found at the corner of the block 

where a sandwich shop is located, the user may be 

eating a meal or picking up a bag of sandwich. If smart 

device is not moving but detecting different people 

speaking at different times, the owner who holds the 

device might be in a meeting. If the location of the 

device happens to be identified as the coordinate where 

the user’s office is located, then he/she might be in a 

work meeting. 

As we discussed in the previous paragraph location 

information is an important part of the contextual 

information. If a user is in a building with a lot of IoT 

devices communicating among themselves and with 

their smartphone, the data and information sensed from 

his/her environment is rich enough to know what the 

user might be up to. In the condition of indoor 

situation, the accuracy of physical location becomes 

more important since rooms are located right next to 

each other. The system may determine different 

contexts if the location information is not accurate. For 

instance, if a user is erroneously located within 1 meter 

from a coffee machine, the system may state that 

he/she is having a coffee break, but in reality he/she is 

2 meters away from the coffee machine in a conference 

room. If a home automation system was programed to 

turn on the light when a user gets near the corner of the 

corridor, it is also desirable to find his/her location with 

high accuracy. In other words, if the smart devices are 

able to obtain a user’s exact position, the intelligence 

level of the system would improve greatly. 

Received Signal Strength (RSS) based distance 

estimation is a popular method in wireless sensor 

networks [15], [10]. RSS value can easily be measured 

by the devices like cellular phones. It means that we do 

not need extra devices or apparatus to implement the 

system in real life situation. Usually the wireless sensor 

network nodes follow IEEE 802.11  or  IEEE  802.15.4  

Table 1: Comparison of IEEE 802.11 and 802.15 

wireless standard protocol specifications [17] 

IEEE 

Wireless 

Standard 

Radio 

Frequency 
Data Rate 

Modulation & 

Coding 

802.11a 5 GHz 54 Mbps 
PSK, QAM, 

OFDM 

802.11b 2.4 GHz 11 Mbps 
PSK, CCK, 

DSSS 

802.11g 2.4 GHz 54 Mbps 
PSK, QAM, 

OFDM 

802.15.1 2.4 GHz 3 Mbps PSK, FSK, AFH 

802.15.4 

868/915 

MHz, 

2.4 GHz 

40 Kbps, 

250 Kbps 

PSK, ASK, 

DSSS, PSSS 
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standards, and thus research results from those studies 

could be applied to BLE [13]. Table 1 shows the 

comparison of IEEE 802.11/802.15 series of wireless 

standards. 

A radio signal transmitted from an antenna would 

be propagated through a space experiencing path 

losses. In this paper, we assume that the signal would 

follow the log-distance path loss model [19]. The log-

distance path loss model is a radio propagation model 

and it predicts the path loss that a signal encounters 

inside a building or densely populated areas over 

distance. Log-distance path loss model is formally 

expressed as: 

𝑃𝐿 = 𝑃𝑇𝑥 − 𝑃𝑅𝑥 = 𝑃𝐿0 + 10 × 𝛾 × log⁡(
𝑑

𝑑0
) + 𝑋𝑒    (1) 

Where, PL is the signal strength after total path loss at 

the distance d measured in Decibel. PTx and PRx are the 

transmitted power and the received power respectively. 

PL0 is the signal strength after path loss at the reference 

distance d0 measured in Decibel, d is the length of the 

path, γ is the path loss constant or exponent. Xg is a 

normal random variable with a zero mean reflecting the 

attenuation caused by flat fading. 

In the iBeacon specification [6], the manufacturer 

should add txPower value to existing BLE protocols. 

The txPower value is the received power at the distance 

of 1 meter. Then, we can replace some variables with 

the value of txPower. When a receiver received a signal 

with txPower field, the receiver can set 

 𝑑0 to 1 meter,  

PL0 to PTx – txPower. 

Then, the expression could be 

 

𝑃𝐿 = 𝑃𝑇𝑥 − 𝑃𝑅𝑥 ⁡ 

= 𝑃𝑇𝑥 − 𝑡𝑥𝑃𝑜𝑤𝑒𝑟 + 10 × 𝛾 × log(𝑑) + 𝑋𝑒   (2) 

𝑃𝑅𝑥 = 𝑡𝑥𝑃𝑜𝑤𝑒𝑟 − 10 × 𝛾 × log(𝑑) − 𝑋𝑒       (3) 

The value γ and Xg could be found by empirical 

measurements. Android beacon library uses following 

coefficients to calculate distances in indoor 

environments [1] and we also adopted the same 

equation: 

𝑑 = (0.89976) × (
𝑃𝑅𝑥

𝑡𝑥𝑃𝑜𝑤𝑒𝑟
)
7.7095

+ 0.111       (4) 

Now, the number of variables is reduced to just 

two: PRx and txPower. Because the value of txPower is 

fixed by the manufacturer, the fluctuation in received 

signal strength directly affects the calculated distance. 

Even if we adopt some filtering algorithms, it is also 

difficult to determine the exact distances. 

4  SYSTEM DESIGN 
 

To calibrate the system and mitigate the errors, we 

proposed a self-correcting mechanism by adding an 

extra Thing and place it at a pre-determined distance 

from the Target Beacon. The extra thing would be a 

common BLE beacon but tightly coupled with the 

target beacon. So we call it self-correcting beacon. The 

system is then equipped with a target beacon, a 

measuring device, and a self-correcting beacon. We 

want to calculate the accurate distance between the 

target beacon and the measuring device by installing 

the target beacon and self-correcting beacon at 

positions apart from each other with a fixed distance. 

Figure 1 shows the installation of the self-correcting 

system. 

 

 

 
 

 

Figure 1: The installation of the self-correcting 

system. The measuring device can get the RSS from 

the target beacon and the scPower from the self-

correcting beacon with slight time differences. 

 

 

Figure 2: The system test environment. The test was 

performed in the office with soft partitions. The 

target beacon and the self-correcting beacon were 

fixed with one meter distance. 
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In this self-correcting system, the self-correcting 

beacon is an extra device to calculate more accurate 

distance through RSS from the measuring device. The 

self-correcting beacon receives the signal from the 

target beacon, and advertises the received signal 

strength of the target beacon (scPower). In the system, 

the measuring device utilizes the signal strength from 

the target beacon, txPower from the target beacon, and 

scPower from the self-correcting beacon. In the 

conclusion of Section 3, the main problem is the fixed 

txPower, which could not reflect the user's 

environment. By replacing the txPower with the 

scPower, the distance can be calculated with more 

stability and accuracy. 

Figure 2 shows a picture of the test environments. 

We used an iBeacon-compatible BLE tag as target 

beacon, a smart phone as measuring device and another 

smartphone as emulated self-correcting beacon. We set 

the advertising time interval of the target beacon to 

10ms so as to catch up the fluctuation of the received 

signal strength as close as possible. Then, we could 

calculate the accurate distance in very short time by 

setting the self-correcting beacon manually to know the 

MAC address of the target beacon. 

 
5 EVALUATIONS 
 

Based on the previous description to calculate the 

accurate distance between the measuring device and 

target beacon, we should get the accurate scPower (the 

real RSS of the target beacon at distance of 1 meter, 

received by the self-correcting beacon) and RSS of the 

target beacon, which is received by the measuring 

device. We all know that the RSS of beacon is always 

fluctuating because of Gaussian white noise and impact 

of the environment. So the issue is that the scPower 

and RSS of target beacons are both fluctuating, and this 

will make the error of distance increases.  

However, if they have the similar trend 

simultaneously, we can get more accurate result based 

on Equation (3). To prove this concept we did the 

following experiment: placing the measuring device 

1.5m away from the target beacon and the correcting 

beacon 1m away from the target beacon. Then we 

collected the RSS of the target beacon from the 

measuring device and the correcting beacon separately 

for one minute. Figure 3 shows the variation trend of 

(RSS of target beacon in 1.5m, time) and (scPower, 

time), in which the horizontal axis is time, the vertical 

axis is RSS, the blue line is RSS of target beacon and 

the red line is scPower. From the figure we can see that:  

 

 

 

 

 

 

Figure 3: Comparison of RSS from the target 

beacon, which is located in 1.5 meters away, and 

scPower value from the self-correcting beacon, 

which is located in 1 meter away from the target 

beacon. The two values show the similar trend 

simultaneously according the time goes. 

 

(1) The RSS of target beacon is fluctuating;  

(2) The scPower is also fluctuating;  

(3) They do have the similar trend simultaneously, 

which means when the scPower becomes bigger 

the RSS of target beacon becomes bigger too. 

But there are slight time lags between the RSS and 

the scPower as the self-correcting beacon will receive 

the RSS firstly from the target beacon and then send 

the value as scPower. As synchronizing the time 

between the two beacons is uneasy without any precise 

time module, we used the average value of RSS and 

scPower in 5 seconds instead of using the real time 

synchronization. As described previously, we set the 

broadcasting interval of the beacons to 10 meters, and 

this means that the measuring device can collect 500 

RSS values and 500 scPower values in 5 seconds. The 

averaged values of RSS and scPower also show the 

similar trend. 

Then we evaluated the accuracy of measuring the 

distances from the proposed self-correcting system. 

Table 2 and Figure 4 show the resultant comparison of 

with and without the self-correcting beacon while 

measuring distance at each reference distance (0.4m, 

0.6m, 0.8m, 1.0m, 1.2m and 1.4m). Without the self-

correcting beacon, the distance error shows up to 

60.3%, and in average 46.3%. With the self-correcting 

beacon, the distance error shows up to 8.1%, and in 

average 4.7%. All the distance errors are the average of 

the gap between the real distances and the estimated 

distances. 
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Table 2: Distance errors comparison of with and 

without the self-correcting beacon on several 

reference distances. 

Actual 
distance 
(meter) 

Distance errors 
with the self-

correcting 
beacon (%) 

Distance errors 
without the self-

correcting 
beacon (%) 

0.4 8.1 41.7 

0.6 2.7 45.6 

0.8 5.0 46.7 

1.0 5.3 60.3 

1.2 3.1 42.0 

1.4 3.7 47.4 

Average 4.7 46.3 

 

 

 

Figure 4: Distance errors comparison of with and 

without the self-correcting beacon on several 

reference distances. It is possible to achieve accurate 

distances with under 10% distance error when we 

adopt the self-correcting beacon within 1.5 meters 

range. 

6 APPLICATIONS 

 
Using the self-correcting beacon, the proposed system 

could estimate the distance between the target beacon 

and the device at much improved accuracy than the 

existing techniques. Accurate distance measurement 

technology enables more interesting usage scenarios. 

Childcare mode on Smart TV: Watching TV screen 

by sitting closely to the TV may cause eyestrain or 

more seriously weakened eyesight. Parents constantly 

nag their  children  about  sitting  too  close  to  the  TV.  

 

These days, TVs with 40 to 50 inches screen size is a 

norm, thus enough to install the self-correcting beacons 

on the one edge of the TV screen. In this case, the 

measuring device would be a TV, the target device 

could be a small attachable beacon on the clothes of the 

children, and the self-correcting beacon can be located 

a fixed distance from the measuring device. Then, as 

the measuring device calculates the distance between 

the TV and the child, the TV may control the 

brightness of the screen or volume of the speaker 

according to the estimated distances.  

Find my remote controller: “Where is my remote?” 

might be a general question with long history. In the 

proposed system, we separated the function of the 

target beacon and the self-correcting beacon for better 

understanding. However, a target beacon could also be 

used as a self-correcting beacon. If we install a pair of 

target/self-correcting beacons with fixed distance apart, 

the measuring device could estimate the distances from 

the two beacons. As we already know the distance 

between the beacons, and the measuring device could 

perform trilateration to determine its relative location 

from the two beacons. If we install the two beacons on 

the left and right edges of the TV screen and implement 

the measuring capability for the remote controller, the 

remote controller would be able to measure its location 

and direction from the TV screen. Then, the area where 

the remote controller could be found would be limited 

to a certain range. Figure 5 is an illustration of the 

concept. 

 

Figure 5: A TV equipped two target and self-

correcting beacons each side. A remote controller as 

measuring device could calculate relative direction 

and distance from the center of the TV screen. 
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Driver or Passenger: In many countries, operating 

smartphones while driving is legally restricted. 

However, in a moving car, it is not easy to determine 

whether the ringing smartphone belongs to the driver or 

the passenger. In this scenario, a target beacon and the 

self-correcting beacon could be installed on the 

dashboard. Then, a mobile phone as a measuring 

device could identify the seat position including 

driver’s seat, passenger seat, and back seats with high 

accuracy. An accurate contextual identifying of 

whether a particular person in the car is driving or 

sitting in the passenger seat is important. Some 

smartphones in the market already support the car 

function that enables the driving-safety mode, but it 

should be activated manually by the driver [9]. If the 

location of the device is determined with high accuracy 

in the car, it can be started automatically. 

 
7 CONCLUSION 
 

In this paper, we propose an accurate distance 

measurement system between the Things having BLE 

interfaces by adopting a self-correcting beacon. As the 

system adjusts the white noises and the environmental 

factors in real time, it can estimate the distances with 

the relative error of under 10% of the actual distance 

where the devices are within 1.5 meters range of the 

coverage. We also conducted an experimental 

evaluation for the targets located farther than 1.5 

meters, but as the distance increases, the errors also 

increased super linearly. In indoor environments, there 

exists additional signal attenuation error caused by the 

multipath signals. Such errors would appear more for 

longer distances than shorter distances. To extend the 

coverage of the proposed measurement technique, we 

can apply multiple model filtering algorithms [8] to 

track a single target in wireless sensor networks. We 

expect multi-model filtering method could help to 

mitigate the additional errors for longer distance cases 

to obtain the similar accuracy. Addition to the sample 

scenarios stated in Section 6, there might other possible 

applications and scenarios that can benefit from the 

presented measurement method. 
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