
c© 2017 by the authors; licensee RonPub, Lübeck, Germany. This article is an open access article distributed under the terms and conditions of
the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).

Open Access

Open Journal of Internet of Things (OJIOT)
Volume 3, Issue 1, 2017

http://www.ronpub.com/ojiot
ISSN 2364-7108

Differentially Private Linear Models for
Gossip Learning through Data Perturbation

István Hegedűs, Márk Jelasity

University of Szeged and MTA-SZTE Research Group on AI, Dugonics square 13, H-6720 Szeged, Hungary,
{ihegedus,jelasity}@inf.u-szeged.hu

ABSTRACT

Privacy is a key concern in many distributed systems that are rich in personal data such as networks of smart
meters or smartphones. Decentralizing the processing of personal data in such systems is a promising first step
towards achieving privacy through avoiding the collection of data altogether. However, decentralization in itself is
not enough: Additional guarantees such as differential privacy are highly desirable. Here, we focus on stochastic
gradient descent (SGD), a popular approach to implement distributed learning. Our goal is to design differentially
private variants of SGD to be applied in gossip learning, a decentralized learning framework. Known approaches
that are suitable for our scenario focus on protecting the gradient that is being computed in each iteration of SGD.
This has the drawback that each data point can be accessed only a small number of times. We propose a solution in
which we effectively publish the entire database in a differentially private way so that linear learners could be run
that are allowed to access any (perturbed) data point any number of times. This flexibility is very useful when using
the method in combination with distributed learning environments. We show empirically that the performance of
the obtained model is comparable to that of previous gradient-based approaches and it is even superior in certain
scenarios.

TYPE OF PAPER AND KEYWORDS

Regular research paper: distributed differential privacy, stochastic gradient descent, linear models, machine
learning, distributed learning, gossip learning

1 INTRODUCTION

We are witnessing the proliferation of distributed
computer systems that are composed of devices
rich in sensitive personal data. These include the
Internet of Things, and networks of smart meters and
smartphones. While mining personal data has very
important applications, data mining algorithms must

This paper is accepted at the International Workshop on Very
Large Internet of Things (VLIoT 2017) in conjunction with the
VLDB 2017 Conference in Munich, Germany. The proceedings of
VLIoT@VLDB 2017 are published in the Open Journal of Internet
of Things (OJIOT) as special issue.

protect the privacy of the users involved. An emerging
approach to process data in such systems is relying
on decentralization, as exemplified by Cisco’s Fog
Computing initiative [4] where the goal is to process
data as close to the source as possible. This is motivated
both by efficiency and by data privacy. We also believe
that an important first step to achieve privacy is to avoid
the collection of data in a central location, however,
additional measures are required to avoid information
leakage due to the publication of query results.

Here, we are concerned with the scenario in which
each networked device stores only a small amount
of data (typically collected locally), while there are

62

http://creativecommons.org/licenses/by/4.0/
http://www.ronpub.com/ojiot

I. Hegedűs, M. Jelasity: Differentially Private Linear Models for Gossip Learning through Data Perturbation

many participating devices in the network. This model
covers a wide range of applications including smart
metering [21], collaborative mobile platforms [20] and
Internet of Things platforms [25].

We focus on stochastic gradient descent (SGD) as our
learning algorithm of choice. This algorithm forms the
basis of the decentralized gossip learning framework that
supports various model fitting problems including linear
models for classification and matrix factorization for
recommender systems [13, 19]. In this framework, SGD
visits data records with the help of a random walk over
the network and updates a model approximation based
on each record using the local gradient at that record. In
general, SGD is a preferable method in large scale data
mining [6] due to its scalability and simplicity. In our
edge computing scenario the simplicity of SGD is a very
important advantage: All the sensitive computations can
be made strictly local to network nodes, as we will show
later. In addition, no aggregation, synchronization, or
central collection of data is necessary.

We work within the framework of differential
privacy [10], where information leakage can be
explicitly bounded by, for example, adding appropriately
engineered noise to the query output. The standard
assumption in this framework is that the database
is stored at a central trusted location where secure
computations can be carried out and only the end result
of the computation is made public. Without differentially
private mechanisms, even if all the computations are
performed securely, the privacy of the data is still not
guaranteed as the output of any secure computation
might leak information about individual data records
indirectly.

In our decentralized setup we must face much stricter
privacy requirements than in the centralized case. Here,
nodes form a network, in which adversarial nodes can
also participate. For this reason any computations
that are performed by the individual nodes must also
be protected. In other words, we assume that every
single node acts as a tiny private database on which
queries are run and the final output is computed based
on a large set of such public queries. This is because
honest but curious adversaries can participate in the
computation itself. They can, for example, surround any
given node learning about its input and output thereby
learning the end result of the local computation that is
performed by the surrounded node. While it is possible
to design protective measures against honest but curious
adversaries, here we simply treat the end result of every
local computation public. Our goal here is to design and
evaluate decentralized differentially private variants of
SGD learning in the context of linear models.

The differential privacy of model fitting via
optimization and in particular SGD was investigated

earlier in a number of publications. Generic frameworks,
such as PINQ [12] and GUPT [17], have been proposed
that do not readily lend themselves to secure distributed
implementations. Chaudhuri et al. propose a method
based on adding noise to the end result only, or
perturbing the objective function itself [8, 9]. These
approaches do not allow for an obvious secure
distributed implementation either in our framework. In
the case of output perturbation the local computations
are not protected. In the case of objective function
perturbation, in a decentralized system the nodes first
have to agree on the secret noise term to be added to the
objective function, which is not feasible if we assume
that adversaries can participate in the computation.

Song et al. propose a method [23] that does allow
a distributed implementation [14]. There, instead
of perturbing the objective function, each update
during the iterative gradient descent procedure is made
differentially private. This allows for fully local
gradient updates where the resulting gradient and the
updated model can be made public. This prevents
any uncontrolled data leakage as long as the personal
computing device is not compromised. However, due
to the theoretical properties of differential privacy, each
data point can be accessed only a limited number of
times, after which the data points have to be thrown
away, that is, they cannot be accessed for any purpose
without an increased risk of data leakage. This reduces
the flexibility of the method.

Our novel contribution is proposing and evaluating
novel differentially private linear algorithms that are
based on every participating device publishing a
perturbed version of the personal data it stores locally.
Our SGD algorithm accesses only these public noisy data
records and fits a linear model. Note that the resulting
noisy model will also be protected by differential
privacy since it is based on public noisy data only.
We also evaluate differentially private mini-batch SGD
implemented using gradient perturbation.

The data perturbation approach that we are proposing
has not been investigated in the literature, most likely
because it results in extremely noisy data and also
because, as we will show, it is not ideal in the case
when there are many records at every participating
node, since in this case a mini-batch approach with
gradient perturbation is superior. However, an important
advantage of data perturbation in our setting is that—
since these points can be accessed an arbitrary number of
times—the fitted model can make use of all the available
information in the noisy data, as opposed to the noisy
gradient approaches proposed earlier. This is important
because in a decentralized environment it is rather hard
to guarantee that nodes are used only a limited small
number of times while processing all the nodes in a

63

Open Journal of Internet of Things (OJIOT), Volume 3, Issue 1, 2017

robust and efficient manner. With data perturbation
we can apply known robust and efficient decentralized
methods without any change, so we can achieve much
faster convergence, as we will demonstrate.

In addition, the data perturbation approach will be
demonstrated to offer similar or better performance than
the gradient perturbation approach when every node has
only one data record. However, the gradient perturbation
method will be shown to produce better quality models
if every node has more than one record, as expected.
In this case, we can implement a mini-batch SGD
algorithm that, with the same privacy budget, achieves
a performance close to that of the noiseless learning
algorithm depending on the mini-batch size.

2 BACKGROUND

2.1 Machine Learning

In this paper we focus on the sub-area of the
machine learning called supervised learning or
classification. Here, we are given a data set
D = {(x1, y1), . . . , (xn, yn)} of n observations.
The instances of the data set are composed of a feature
vector x ∈ Rd and the corresponding class label y ∈ C
where d is the dimension of the problem and C is the
domain of the classes. For example, when C = {−1, 1}
we talk about binary classification. The goal of machine
learning is to find a function fw : Rd → C that can
classify the given data instances correctly, and also those
instances that are not presented in the data set. This
latter property is called generalization.

Moreover, in some cases the number of classes is
more than two (e.g. K), we talk about multi-class
classification. But these problems can be imagined and
handled as K binary classification problems [3].

2.2 Stochastic Gradient Descent

For a model fw() that depends on parameters w and
for a loss function `() that defines the error between the
prediction and the actual class, the learning problem we
described above can be expressed as the optimization
problem

w = arg min
w
J(w) =

1

n

n∑
i=1

`(fw(xi), yi) +
λ

2
‖w‖2,

(1)
where (λ/2)‖w‖2 is the regularization term with
parameter λ. The regularization term helps the model to
avoid overfitting the data set, thus helping generalization.

Gradient descent (GD) is an optimization method
that can solve the optimization problem above. The
parameter vector is updated iteratively by the gradient

of the objective function:

wt+1 = wt − ηt(
∂J

∂w
)

= wt − ηt(λw +
1

n

n∑
i=1

∇`(fw(xi), yi)),
(2)

where ηt is the learning rate at time t that scales the size
of the gradient step.

Stochastic gradient descent (SGD), on the other hand,
computes the gradient on one instance only in every step.
The update rule becomes

wt+1 = wt − ηt(λw +∇`(fw(xi), yi)). (3)

Here two restrictions have to be applied on the learning
rate to guarantee the convergence of the algorithm,
namely

∑
t η

2
t <∞ and

∑
t ηt =∞ [5].

2.3 Differential Privacy

Differential privacy [10] is concerned with the leakage
of personal information due to publishing the results
of a given query over a database. Even if performed
securely, the result of a query can leak information about
individual records, for example, the maximum of a set
of values is an individual record in itself. Differential
privacy is achieved if noise is added to the query result
in such a way that the following definition is satisfied.

Definition 1 (Differential Privacy): A randomized
query F : D 7→ R

d is ε-differentially private iff

∀x : e−ε ≤ P (F (D) = x)

P (F (D′) = x)
≤ eε (4)

for all pairs of databases D and D′ that differ in at most
one record, where D is the set of possible databases.

That is, if we change one element in the database,
the same output should be expected with a probability
close to that over the original database. This way, one
record never “matters too much” thereby limiting the
information leakage as a result of the query.

A randomized query typically means adding noise to
an otherwise deterministic query. This added noise is
designed specifically for a given query and parameter
ε such that the definition of ε−differential privacy is
satisfied. In more detail, to generate the additive noise
we need to pick a noise distribution and the right
distribution parameters. A common approach to take
is to first determine the so-called sensitivity of the
query [10, 11]:

Definition 2 (Global Sensitivity): The global L1-
sensitivity ZF of F is given by

ZF = max
D,D′ differ in one record

‖F (D)− F (D′)‖1, (5)

64

I. Hegedűs, M. Jelasity: Differentially Private Linear Models for Gossip Learning through Data Perturbation

where ‖ · ‖1 is the L1 norm.

The definition can be generalized by replacing the L1

norm with a different norm. The usual norms to apply are
the L1 norm and the L2 norm. In the case of applying
the L1 norm, the following noise distribution can be
used: we need to add to all the dimensions of the output
independent noise drawn from Laplace(0, Z/ε) (where
Z is the global sensitivity of the query), which will result
in ε−differential privacy. Based on the theoretical results
described in [11], noise can be generated for any other
norms.

2.4 Support Vector Machines and Logistic
Regression

Support Vector Machines: The linear support vector
machine (SVM) is an approach to classification in
machine learning that looks for the hyperplane that
separates the classes from each other and has the
maximal margin (the distance between the hyperplane
and the training instances). Several approaches are
known for solving the SVM problem using a stochastic
gradient approach. The most appealing algorithm we
are aware of is Pegasos [22], a sub-gradient approach
(since the SVM loss function is non-differentiable, sub-
gradients are used instead of gradients).

`(fw(x), y)) = max(0, 1− wT (yx)) (6)

The sub-gradient that is used in Pegasos at the instance
(x, y) with y ∈ {−1, 1} can be formulated as

∇t = λwt + 1[wT (yx) < 1]yx, (7)

where 1 is a function that returns the value one if the
condition is true, otherwise it returns zero. Parameter
λ is the regularization parameter. The update rule is
wt+1 = wt − ηt∇t where the learning rate ηt = 1/(λt).
This gives

wt+1 = (1− 1

t
)wt + ηt1[wT (yx) < 1]yx. (8)

Logistic Regression: In the case of logistic
regression [16] the optimization problem is expressed as
a maximization problem, since it is more natural to think
of it as maximizing the logarithm of the likelihood.

`(fw(x), y)) = ln(1 + exp(−wT (yx))) (9)

The gradient that can be used to update the parameters
of the model is

∇t = λwt + (1− 1

1 + exp(−wT yx)
)yx (10)

Algorithm 1 Gossip Learning Framework
1: (x, y)← local training example
2: currentModel← initModel()
3: loop
4: wait(∆)
5: p← selectPeer()
6: send currentModel to p
7: end loop

8: procedure ONRECEIVEMODEL(w)
9: w ←updateModel(w, x, y)

10: currentModel← (w+ currentModel)/2
11: end procedure

And the update rule is given as

wt+1 = (1− 1

t
)wt+ηt(1−

1

1 + exp(−wT yx)
)yx (11)

These update rules will form the basis of our
differentially private algorithm.

2.5 Distributed Machine Learning

In our system model we are given a network of a large
number of computational units (e.g. PCs, smart phones,
tablets, wearable units, or smart meters). The members
of this network can communicate with each other by
message passing. A node in this network can send a
message to another node whose address is known locally.
We assume that every node in this network has only one
training example (x, y), but we can benefit from having
more local data. The set of these isolated examples form
our machine learning database. We would like to learn a
model over these instances in a fully distributed manner
while also preserving privacy.

The Gossip Learning Framework [19] is a possible
way to learn models in this fully distributed environment.
The basic idea is that in the network many models
perform random walks and are updated at every node
using the local example. The number of walking models
is in the range of the number of nodes in the network.
These walks are continuously averaged so that in effect
a parallel SGD is approximated. In more detail, every
node executes Algorithm 1. A node in the network first
initializes a local model, then iteratively sends its local
model to a randomly selected node in the network. The
address of the randomly selected node is provided by a
peer sampling service (e.g. the NewsCast [24] protocol).
When a node receives a model, it updates the model by
its locally stored training example using the SGD update
rule, and then stores the updated model as its local model
after averaging it with the previously received model.
Using this protocol the models stored by the nodes will
converge to the same global optimum.

65

Open Journal of Internet of Things (OJIOT), Volume 3, Issue 1, 2017

Our study is inspired by gossip learning in the sense
that we focus on SGD algorithms that are implemented
through a random walk of the evolving model over the
network. We will assume that this random walk itself is
secure. Ideas for achieving secure random walks were
outlined, for example, in [2]. Here, we focus on privacy.
In order to achieve privacy, we will apply a differentially
private variant of the local update step.

3 ALGORITHM

Our approach is based on publishing a noisy version of
the local data at each node. After this, any algorithm can
perform any amount of processing as long as the original
noise free data is no longer accessed.

First, let us make the observation that the update rules
in equations (8) and (11) depend only on y · x and the
values of x and y are never used separately. Based on
this, it suffices to publish noisy versions of xy.

We publish these values so that the entire set of values
is ε−differentially private for some given ε. Since all
the published query results belong to non-overlapping
subsets of the database (each containing only one data
instance) it is enough to make sure that every node
publishes its yx value with ε−differential privacy. We
will calculate the required amount of noise based on the
sensitivity of xy as defined in Section 2.3.

It is easy to see that for a given norm ‖ · ‖ the global
sensitivity of xy is 2 maxx ‖x‖. Given that for any
different instances (x, y) and (x′, y′), using that |y| = 1,
we have

‖yx−y′x′‖ ≤ ‖yx‖+‖−y′x′‖ = ‖x‖+‖x′‖ ≤ 2 max
x
‖x‖,

(12)
the global sensitivity of xy is given by

Zyx = max
(x,y)6=(x′,y′)

‖yx− y′x′‖ ≤ 2 max
x
‖x‖. (13)

The value of maxx ‖x‖ is a global query itself.
However, we can apply local normalization at all the
nodes, that is, we can normalize each instance x so that
‖x‖ = 1. This directly gives Zyx = 2. Especially
in higher dimensional spaces where the norms of the
vectors tend to be similar, this does not introduce too
much damage to the structure of the data. We repeat
that, as explained in Section 2.3, any suitable norm can
be chosen. The chosen norm in turn defines the formula
for the noise term, and the corresponding normalization
can be applied.

To sum up, all the nodes i publish the value of yixi +
Ni, where Ni is the noise term calculated as explained
above. The database {y1x1 + N1, . . . , ynxn + Nn}
can freely be post-processed by any algorithms. For the

Pegasos algorithm, the update rule will be

wt+1 = (1− 1

t
)wt + ηt1[wT (yx+N) < 1](yx+N),

(14)
while for logistic regression the update rule is

wt+1 = (1− 1

t
)wt+

ηt(1−
1

1 + exp(−wT (yx+N))
)(yx+N).

(15)

The output of these algorithms will inherit the
property of ε−differential privacy. In our approach, the
yixi +Ni values stay at node i locally, and processed by
gossip learning, but they could just as well be collected
centrally without posing privacy problems.

4 EXPERIMENTS

A key intuition regarding this approach is that, although
the amount of noise is rather substantial (in the order
of the raw data itself), if the database is large enough
then the structure of the data will still be preserved, also
considering that the linear algorithms we apply are based
on a structurally simple model (a hyperplane).

4.1 Datasets

In our experiments we used datasets from the UCI [1]
machine learning repository and an artificial dataset as
well. The real databases include the Mnist dataset,
where the task is to recognize digits from 0 to 9
based on images of 28×28 gray intensity pixels; the
Segmentation dataset, where connected image parts
have to be identified; the Spambase dataset, where
emails have to be categorized based on higher level
feature representations. The artificial dataset is a set
of two dimensional points belonging to two classes,
as illustrated in Figure 2. The classes are generated
from Gaussian distributions that have different expected
values but have the same deviation, i.e. N(µ1,σ)
and N(µ2,σ) for the negative and the positive classes,
respectively, where µ1 = (0, 10), µ2 = (10, 0) and
σ = 1 along both dimensions. The main properties of
the above mentioned datasets can be seen in Table 1. The
datasets represent various machine learning problems
and have a variety of feature and sample sizes and
number of classes.

In our evaluations we built a model on the training set
of the dataset in question and evaluated this model on a
non-overlapping test set. The evaluation metric we used
is the accuracy of the prediction performance, that is, the
fraction of correctly classified data instances on the test
sets.

66

I. Hegedűs, M. Jelasity: Differentially Private Linear Models for Gossip Learning through Data Perturbation

Table 1: The main properties of the datasets

random Segmentation Spambase MNIST

Training set size 20 000 2 310 4 140 60 000

Test set size 2 000 210 461 10 000

Number of features 2 19 57 784

Number of classes 2 7 2 10

Class-label distribution uniform uniform 6:4 uniform

We normalized the datasets by transforming each
feature independently into the [0,1] interval. This
process is done for a feature i by applying

f̂i =
fi −mini

maxi −mini
,

where the maxi and mini are the maximal and minimal
value of the feature on the training set. After this
normalization we scaled the length of the instances to
1 according to the L1 vector norm. The length scaling is
performed locally.

Note that some of the datasets contain more than two
classes. In these cases we teach a binary classifier for
each class, where the positive cases belong to the given
class and the negative cases are formed by the rest of
the classes. This also means that we have more than
one binary classification problems that have to share the
available privacy budget. If we are given a budget of ε
and we have c binary classifiers then we assign a budget
of ε/c to each classifier.

4.2 The Drawbacks of Gradient Perturbation

In our first set of experiments we reproduce our own
previous results [15] using the L1 norm. Here, instead
of the data instances, the calculated update gradient is
perturbed in each update step. For this reason, only
a limited number of updates are allowed for each data
instance. Each training sample has a privacy budget
ε = 50 that can be managed in a number of ways. One
can, for instance, set a finite number of k allowed updates
and use ε/k for each one. This means multiplying the
magnitude of the noise term by k for each update. In the
experimental evaluation we study this parameter looking
at the cases of k = 1 and k = 5. We can also follow a
different approach and divide ε into an infinite number of
parts by using ε/2t for update t. This way noise increases
exponentially, but we can execute as many updates as we
wish using the same example.

The reproduced results are shown in Figure 1. As
the figure shows the drawback of this method is that

due to the limited budget the algorithm might never
reach convergence. There are two possible ways of
obtaining an unlimited number of update steps that are
required for the convergence of SGD. One way is when
we have an unlimited number of training examples, e.g.
the instances of the dataset can be sampled from a
parametric distribution. And the other is adding noise
to the input data directly, the method we described here
previously.

4.3 Results

We first experimented with our artificial dataset to
demonstrate the main intuition behind adding noise to
the data as opposed to the gradient. As we mentioned
above, the additional noise preserves the direction of
the hyperplane that separates the instances of different
classes. To demonstrate this property we applied L1

noise with different privacy levels on our artificial dataset
and plotted the results in Figure 2. Note that the figure
represents the points xi+Ni for all records i (whereNi is
the noise term) instead of yixi + Ni. This visualization
is correct because yixi + Ni = yi(xi + Ni/yi) where
Ni/yi has the same distribution asNi since yi ∈ {−1, 1}
and the distribution of Ni is symmetric with a center of
zero. This also implies that we can think of the privacy
mechanism as adding noise to xi.

We then used the LibSVM [7] and the
PegasosSVM [22] software packages to classify
the instances and based on the result we reconstructed
the separating hyperplane as shown in Figure 2. In this
illustrating example, the model produced by the SVM
solver remains exactly the same in expectation. This is
because the arrangement of the original classes and the
distribution of the noise are such that the distribution of
the original classes are mirror images of each other over
the separating hyperplane and this property is preserved
in the case of the noisy classes as well.

This assumption will not hold in general but this
example illustrates the intuition behind the approach
nevertheless: Even a very large amount of noise can

67

Open Journal of Internet of Things (OJIOT), Volume 3, Issue 1, 2017

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0 2000 4000 6000 8000 10000

A
cc

ur
ac

y

SGD Updates

SVM on Segmentation data set

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0 2000 4000 6000 8000 10000

A
cc

ur
ac

y

SGD Updates

LogReg on Segmentation data set

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 5000 10000 15000 20000

A
cc

ur
ac

y

SGD Updates

SVM on Spambase data set

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 5000 10000 15000 20000

A
cc

ur
ac

y

SGD Updates

LogReg on Spambase data set

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0 50000 100000 150000 200000 250000 300000

A
cc

ur
ac

y

SGD Updates

SVM on Mnist data set

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0 50000 100000 150000 200000 250000 300000

A
cc

ur
ac

y

SGD Updates

LogReg on Mnist data set

SGD
Budget 1
Budget ∞
Budget 5

Figure 1: The effect of using different strategies for privacy budget management for gradient perturbation

68

I. Hegedűs, M. Jelasity: Differentially Private Linear Models for Gossip Learning through Data Perturbation

-5

 0

 5

 10

 15

-5 0 5 10 15 20

di
m

en
si

on
 2

dimension 1

Results on random points

-5

 0

 5

 10

 15

-5 0 5 10 15 20

di
m

en
si

on
 2

dimension 1

Results on random points with L1 noise ε = 1

-5

 0

 5

 10

 15

-5 0 5 10 15 20

di
m

en
si

on
 2

dimension 1

Results on random points with L1 noise ε = 2

-5

 0

 5

 10

 15

-5 0 5 10 15 20

di
m

en
si

on
 2

dimension 1

Results on random points with L1 noise ε = 5

SVM hyperplane
red: negative
blue: positive

Figure 2: The optimal hyperplane of the linear SVM on the artificial dataset with various privacy levels.

leave the optimal plane completely unchanged thus, in
the best case, we could get completely accurate results
even with very large amounts of noise.

We now present our empirical results illustrating
the performance of data perturbation and gradient
perturbation. Every result we present is the average
of 10 independent runs. We vary the privacy levels,
and we also apply the mini batch technique. In the
distributed setting, the mini batch technique assumes
that a single node has k > 1 examples. This also
means that the number of nodes will be the number of
training examples divided by k. In this case, the node
can compute a combined gradient, namely the average
of the gradients of the data samples it has. In the case of
gradient perturbation, the noise has to be added only to
this combined gradient.

In the mini-batch gradient perturbation algorithm we
have many choices to manage the privacy budget ε,
similarly to the cases explained in Section 4.2. The first
variant we look at is using all the budget of ε at once on a
node with k samples, thus we have one update per node.
This will result in less noise as a function of k, given that
the sensitivity of the average query (see Section 2.3) in

the case of batch size k can be easily shown to be 1/k
times the sensitivity of a single data record. The results
are shown if Figure 3.

The second variant we look at is aimed at keeping the
number of update steps (that is, the number of gradients
used) constant and equal to the number of data records.
This means that we visit each mini-batch of size k
exactly k times. Each time, we use a budget of ε/k. The
results are shown if Figure 4.

In the case of data perturbation, we perturb all the
individual data points, so the mini batch technique will
not affect the final theoretical quality of the model. The
mini batch technique still offers a practical improvement
though: It improves convergence speed since the
gradients used to update the model will be smoother.
However, now we are interested only in the quality of the
final model, and optimize the model until convergence
no matter how many gradient updates it takes, so batch
size is irrelevant for this experiment.

In our experiments we varied the privacy level ε and
batch size and ran experiments with all combinations.
The batch size and the privacy level ε both took values
from the set {1, 5, 10, 50, 100} and we apply heat-maps

69

Open Journal of Internet of Things (OJIOT), Volume 3, Issue 1, 2017

1

5

10

50

100

∞

input 1 5 10 50 100

Pr
iv

ac
y

ε

Batch size

Heatmap on Segmentation data set using SVM

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

1

5

10

50

100

∞

input 1 5 10 50 100
Pr

iv
ac

y
ε

Batch size

Heatmap on Segmentation data set using LogReg

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

1

5

10

50

100

∞

input 1 5 10 50 100

Pr
iv

ac
y

ε

Batch size

Heatmap on Spambase data set using SVM

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

1

5

10

50

100

∞

input 1 5 10 50 100

Pr
iv

ac
y

ε

Batch size

Heatmap on Mnist data set using LogReg

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

1

5

10

50

100

∞

input 1 5 10 50 100

Pr
iv

ac
y

ε

Batch size

Heatmap on Mnist data set using SVM

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

1

5

10

50

100

∞

input 1 5 10 50 100

Pr
iv

ac
y

ε

Batch size

Heatmap on Spambase data set using LogReg

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

Figure 3: Experiments with various batch sizes and privacy levels. The top row and left column of each
heat-map represent the results without privacy preservation and the results applying data perturbation,
respectively. Lighter color means better performance.

70

I. Hegedűs, M. Jelasity: Differentially Private Linear Models for Gossip Learning through Data Perturbation

1

5

10

50

100

∞

input 1 5 10 50 100

Pr
iv

ac
y

ε

Batch size

Heatmap on Segmentation data set using SVM

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

1

5

10

50

100

∞

input 1 5 10 50 100
Pr

iv
ac

y
ε

Batch size

Heatmap on Segmentation data set using LogReg

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

1

5

10

50

100

∞

input 1 5 10 50 100

Pr
iv

ac
y

ε

Batch size

Heatmap on Spambase data set using SVM

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

1

5

10

50

100

∞

input 1 5 10 50 100

Pr
iv

ac
y

ε

Batch size

Heatmap on Spambase data set using LogReg

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

1

5

10

50

100

∞

input 1 5 10 50 100

Pr
iv

ac
y

ε

Batch size

Heatmap on Mnist data set using SVM

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

1

5

10

50

100

∞

input 1 5 10 50 100

Pr
iv

ac
y

ε

Batch size

Heatmap on Mnist data set using LogReg

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

Figure 4: Experiments with various batch sizes and privacy levels, allowing an equal number of gradient
updates in each experiment. The top row and left column of each heat-map represent the results without
privacy preservation and the results applying data perturbation, respectively. Lighter color means better
performance.

71

Open Journal of Internet of Things (OJIOT), Volume 3, Issue 1, 2017

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1 10 100 1000 10000 100000

A
cc

ur
ac

y

SGD Updates

SVM on Segmentation data set

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1 10 100 1000 10000 100000

A
cc

ur
ac

y

SGD Updates

LogReg on Segmentation data set

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1 10 100 1000 10000 100000

A
cc

ur
ac

y

SGD Updates

SVM on Spambase data set

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1 10 100 1000 10000 100000

A
cc

ur
ac

y

SGD Updates

LogReg on Spambase data set

Optimal
Golf
SGD

Figure 5: Simulation results with Golf in a fully distributed environment

to illustrate all the combinations in Figures 3 and 4.
In addition, the top row of the heat-maps represents
the results of the data perturbation method, and the left
column shows the results of the algorithms without any
privacy preservation (that is, with ε =∞).

For the optimization the algorithms described in
Section 2.4 were used. The learning rate parameter was
λ = 10−4 for both logistic regression and Pegasos SVM.
No parameter optimization was performed.

As expected, lower privacy levels (i.e., higher ε
values) result in better performance. That is, for a
fixed batch-size the values in the rows getting better and
better towards the upper parts of the figures. The heat-
maps also suggest that the logistic regression learning
algorithm tolerates the noisy data less than the SVM
algorithm. We note here though that no parameter search
was performed, the algorithms were run with the same
default learning rate.

The optimal batch-size depends on the number of
nodes in the variants where the number of updates
depends on the number of nodes (Figure 3). With a larger
database, larger and larger batch sizes are optimal. When
the number of gradient updates is fixed, the performance

does not seem to depend on the batch size (Figure 4).
The likely explanation is that although the mini batch
method does offer a smoother gradient, this smoothing is
not significant compared to the amount of noise we add
to the gradient to preserve privacy. In any case, when
enough data is available locally, it appears to be more
advisable to run gradient perturbation with a suitable
batch size.

However, with k = 1 it is preferable to apply
data perturbation, as illustrated by the results. We
should not forget that data perturbation has the additional
benefit of being reusable in any learning problem
or algorithm, whereas after applying the gradient
perturbation algorithm, the data cannot be used again.

The last set of experiments we present were performed
to test the algorithms in a fully distributed environment
with additional optimizations that are applicable in
such environments. Through these experiments we can
illustrate another advantage of data perturbation, apart
from the re-usability of the datasets. Namely, the data
perturbation approach allows us to apply the Gossip
Learning Framework (Golf), introduced in Section 2.5.
Note that Golf is impossible to implement with gradient

72

I. Hegedűs, M. Jelasity: Differentially Private Linear Models for Gossip Learning through Data Perturbation

perturbation, because in Golf every node performs an
update in every cycle, whereas with gradient perturbation
we can implement only a single random walk in the
entire system after which we must throw away the data.

We used the PegasosSVM and Logistic Regression
learning algorithms to implement SGD and we used the
PeerSim simulation environment [18] to simulate Golf.
We set ε = 50. The number of nodes in the network was
the same as the number of training instances. Each node
has only one training sample and at the beginning of the
simulation each node initialized a learning model. We
evaluated the performance of the models over a sample
of 100 nodes in the network, chosen uniformly at random
in every gossip cycle.

The results are shown in Figure 5. As expected,
all variants converge to the theoretical maximum
performance. The convergence speed is different,
though. Golf is clearly the fastest. Please note the
logarithmic scale on the time axis. In fact, Golf
offers a radically faster convergence rate due to the
implemented asynchronous parallel SGD compared to
the sequential SGD. Again, this is possible only because
data perturbation (unlike gradient perturbation) allows us
to apply Golf directly.

5 CONCLUSIONS

We proposed and evaluated the data perturbation method
for supporting stochastic gradient descent for linear
models. The method provides explicitly controlled
differential privacy for the end result of stochastic
gradient descent search and it allows the entire dataset
to be published as well. This way, the learning data can
be shared and used in an unlimited number of times. This
property allows us to learn more models, fine tune their
parameters, run the SGD algorithm until convergence,
and run off-the-shelf distributed learning algorithms like
Golf without change.

We demonstrated that the achieved performance of the
models are better than the results of gradient perturbation
if every node has only a single record. If every node
has a large number of data records, mini-batch gradient
perturbation results in a better performance with the
same privacy budget along with the appropriate mini-
batch size. However, with gradient perturbation, the data
can no longer be used for any other queries.

ACKNOWLEDGEMENTS

This research was supported by the Hungarian
Government and the European Regional Development
Fund under the grant number GINOP-2.3.2-15-2016-
00037 (Internet of Living Things).

REFERENCES

[1] K. Bache and M. Lichman, “UCI machine
learning repository,” 2013. [Online]. Available:
http://archive.ics.uci.edu/ml

[2] K. Birman, M. Jelasity, R. Kleinberg, and
E. Tremel, “Building a secure and privacy-
preserving smart grid,” ACM SIGOPS Operating
Systems Review, vol. 49, no. 1, pp. 131–136,
January 2015.

[3] C. M. Bishop, Pattern Recognition and Machine
Learning. Springer, 2006.

[4] F. Bonomi, R. Milito, J. Zhu, and S. Addepalli,
“Fog computing and its role in the internet of
things,” in Proceedings of the First Edition of the
MCC Workshop on Mobile Cloud Computing, New
York, NY, USA, 2012, pp. 13–16.

[5] L. Bottou, “Stochastic gradient descent tricks,” in
Neural Networks: Tricks of the Trade, ser. Lecture
Notes in Computer Science, G. Montavon, G. B.
Orr, and K.-R. Müller, Eds. Springer Berlin
Heidelberg, 2012, vol. 7700, pp. 421–436.

[6] L. Bottou and Y. LeCun, “Large scale online
learning,” in Advances in Neural Information
Processing Systems 16, S. Thrun, L. Saul, and
B. Schölkopf, Eds. Cambridge, MA: MIT Press,
2004.

[7] C.-C. Chang and C.-J. Lin, “LIBSVM: A library
for support vector machines,” ACM Transactions
on Intelligent Systems and Technology, vol. 2, pp.
27:1–27:27, 2011.

[8] K. Chaudhuri and C. Monteleoni, “Privacy-
preserving logistic regression,” in Advances
in Neural Information Processing Systems 21,
D. Koller, D. Schuurmans, Y. Bengio, and
L. Bottou, Eds. Curran Associates, Inc., 2008,
pp. 289–296.

[9] K. Chaudhuri, C. Monteleoni, and A. D.
Sarwate, “Differentially private empirical risk
minimization,” J. Mach. Learn. Res., vol. 12, pp.
1069–1109, July 2011.

[10] C. Dwork, “A firm foundation for private data
analysis,” Commun. ACM, vol. 54, no. 1, pp. 86–
95, January 2011.

[11] C. Dwork, F. McSherry, K. Nissim, and A. Smith,
“Calibrating noise to sensitivity in private data
analysis,” in Theory of Cryptography, ser. Lecture
Notes in Computer Science, S. Halevi and T. Rabin,
Eds. Springer Berlin Heidelberg, 2006, vol. 3876,
pp. 265–284.

73

http://archive.ics.uci.edu/ml

Open Journal of Internet of Things (OJIOT), Volume 3, Issue 1, 2017

[12] A. Friedman and A. Schuster, “Data mining
with differential privacy,” in Proceedings of the
16th ACM SIGKDD international conference on
Knowledge discovery and data mining (KDD’10),
New York, NY, USA, 2010, pp. 493–502.

[13] I. Hegedűs, Á. Berta, L. Kocsis, A. A. Benczúr, and
M. Jelasity, “Robust decentralized low-rank matrix
decomposition,” ACM Transactions on Intelligent
Systems and Technology, vol. 7, no. 4, pp. 62:1–
62:24, May 2016.

[14] I. Hegedus, Á. Berta, and M. Jelasity, “Robust
decentralized differentially private stochastic
gradient descent,” Journal of Wireless Mobile
Networks, Ubiquitous Computing, and Dependable
Applications, vol. 7, no. 2, pp. 20–40, 2016.

[15] I. Hegedűs and M. Jelasity, “Distributed
differentially private stochastic gradient descent:
An empirical study,” in Proceedings of the 24th
Euromicro Conference on Parallel, Distributed and
Network-Based Processing (PDP’16). Heraklion,
Greece: IEEE Computer Society, 2016, pp.
566–573.

[16] T. M. Mitchell, Machine Learning, 2nd ed., E. M.
Munson, Ed. New York: McGraw-Hill, 1997.

[17] P. Mohan, A. Thakurta, E. Shi, D. Song,
and D. Culler, “Gupt: privacy preserving data
analysis made easy,” in Proceedings of the
2012 ACM SIGMOD International Conference on
Management of Data. New York, NY, USA: ACM,
2012, pp. 349–360.

[18] A. Montresor and M. Jelasity, “Peersim: A
scalable P2P simulator,” in Proceedings of the
9th IEEE International Conference on Peer-to-Peer
Computing, Seattle, Washington, USA, Sep. 2009,
pp. 99–100.

[19] R. Ormándi, I. Hegedűs, and M. Jelasity, “Gossip
learning with linear models on fully distributed
data,” Concurrency and Computation: Practice
and Experience, vol. 25, no. 4, pp. 556–571, 2013.

[20] A. S. Pentland, “Society’s nervous system:
Building effective government, energy, and public
health systems,” Computer, vol. 45, no. 1, pp. 31–
38, January 2012.

[21] A. Rial and G. Danezis, “Privacy-preserving smart
metering,” in Proceedings of the 10th annual ACM

workshop on Privacy in the electronic society
(WPES’11). New York, NY, USA: ACM, 2011,
pp. 49–60.

[22] S. Shalev-Shwartz, Y. Singer, N. Srebro, and
A. Cotter, “Pegasos: primal estimated sub-gradient
solver for SVM,” Mathematical Programming B,
2010.

[23] S. Song, K. Chaudhuri, and A. D. Sarwate,
“Stochastic gradient descent with differentially
private updates,” in IEEE Global Conference on
Signal and Information Processing (GlobalSIP),
December 2013, pp. 245–248.

[24] N. Tölgyesi and M. Jelasity, “Adaptive peer
sampling with newscast,” in Euro-Par 2009, ser.
Lecture Notes in Computer Science, H. Sips,
D. Epema, and H.-X. Lin, Eds., vol. 5704.
Springer-Verlag, 2009, pp. 523–534.

[25] C.-W. Tsai, C.-F. Lai, M.-C. Chiang, and L. Yang,
“Data mining for internet of things: A survey,”
Communications Surveys Tutorials, IEEE, vol. 16,
no. 1, pp. 77–97, 2014.

AUTHOR BIOGRAPHY

István Hegedűs is a research
assistant at the University of
Szeged. He obtained his PhD
degree from the University
of Szeged in 2017, under the
supervision of M. Jelasity. His
main research interests are
fully distributed algorithms and
machine learning.

Márk Jelasity is a full professor
at the University of Szeged. He
obtained his PhD degree from
the University of Leiden in 2001,
and his DSc degree from the
Hungarian Academy of Sciences
in 2015. His research interests
include decentralized algorithms
for data aggregation and mining
in large scale unreliable systems,

data privacy, and self-organizing systems.

74

	Introduction
	Background
	Machine Learning
	Stochastic Gradient Descent
	Differential Privacy
	Support Vector Machines and Logistic Regression
	Distributed Machine Learning

	Algorithm
	Experiments
	Datasets
	The Drawbacks of Gradient Perturbation
	Results

	Conclusions

