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ABSTRACT 
 

As the Internet of Things permeates every aspect of human life, assessing the credence or integrity of the data 

generated by “things” becomes a central exercise for making decisions or in auditing events. In this paper, we 

present a vision of this exercise that includes the notion of data credence, assessing data credence in an efficient 

manner, and the use of technologies that are on the horizon for the very large scale Internet of Things. 
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1 INTRODUCTION 

In the next several years, we expect most environments 

to be “smart”, in that there are data from sensors or 

actuators networked with wired and wireless 

technologies that are part of the Internet of Things – 

IoT. IoT has created a world in which tremendous 

amounts of data, pertinent to a specific application 

scenario, are being collected from disparate sources. 

The data generated by “things” will likely be 

augmented by crowdsourced data sources and context 

information that can be utilized for (a) rapid intelligent 

decisions on a variety of mundane and specialized 

problems, and/or (b) auditing and forensics to explain 

or understand a complex system that may have led to a 

spectacular event. An example of the former is the use 

of sensors by a bank for continually monitoring crop 

levels and soil moisture in land that belongs to a farmer 

who is using the land and crops as collateral for a loan 

[20]. An example of the latter is the unfortunate crash 

of a suburban train in New Jersey's Hoboken station 

[29].  

In either case, we would expect the need to analyze 

data from a variety of sources -- data that may have 

intrinsic defects due to gaps in time and space (sensors 

located only in convenient areas or collecting data 

intermittently), fabricated or malicious data (due to 

adversaries), benign, yet erroneous data (measurement 

errors, cheaper sensors), data that have influence on the 

decision or forensics but may have been measured 

differently, with a coarser granularity (rainfall in the 

area around the farmer's land), or crowdsourced data (a 

tweet about the train's speed may provide an 

assessment of timing related to the accident). While the 

various data sources are related, their fidelity and 

reliability are highly varying. The ground truth of the 

data is not available, except that there is some level of 

trust in the devices that are gathering the data through 

the appropriate sensors or triggers. 
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Figure 1: The data credence stratum 

We expect that a central exercise in future 

environments will be assessing what we call data 

credence, which will provide a probabilistic range of 

confidence of the assessment of the data over time, 

allowing decisions to be dependable or audits to be 

trustworthy. Among the challenges that this assessment 

creates is the question of how we can assess and 

manage the credence in data in a general setting based 

on a priori  and evolving confidence of data from the 

numerous smart “things” and the relationships between 

the reported quantities in different dimensions such as 

space, time, security, semantics, granularity, and 

context. Next, assuming this is possible, specific 

problems that then result in are how to perform such an 

assessment in an efficient way (in terms of data 

storage, latency, and energy) and how the data sources 

that can be controlled can be tuned to achieve the 

desired level of credence, if and where/when possible. 

 In this paper, we discuss this vision in general in 

Section 2. We consider a layered approach (see Figure 

1), starting from what we call as the “credence stratum” 

in this section and show how this may work its way 

down to lower layers in later sections. In Section 3, we 

suggest the use of subjective logic and graph models as 

tools for assessing data credence. This section assumes 

honest data sources with benign or accidental errors. In 

Section 4 we discuss the challenges of fine tuning data 

credence that includes the use of cryptographic 

assurance of data. Section 5 looks at emerging 

technologies such as using multiple link layers and 

energy harvesting and how they may impact data 

credence. Section 6 concludes the paper. 

2 DATA CREDENCE 

The vision we present here is one where there is a 

determination of the credence of  data in  the  emerging 

 

Figure 2: Example graph of types of and “links” 

between data sources 

world of very large scale deployments of things that 

can monitor parameters and also actuate behaviors that 

influence the environment. We assume that data 

credence is a probabilistic metric (between 0 and 1) 

with a certain confidence. This maps neatly into the 

ideas of subjective logic as described in the next 

section. But first, we consider a specific (limited) 

example to explain the big picture. 

2.1 Working Example of Bank and Farmer 

Figure 2 shows a mix of three types of data sources: 

The size of the circle indicates an a priori credence 

(larger = better), the line stroke of the circle indicates 

the granularity (thicker = more granular, dashed = 

coarse), links indicate whether or not a source is 

“close” enough to another, perhaps along the 

dimension of space, and the color indicates the security 

level (green = authenticated, blue = external but 

credible, red = wild). Only for the purposes of 

illustration, let us assume that the data credence in this 

scenario is important to a bank “Bob” that is providing 

a loan to a farmer “Fiona” using her crops as collateral. 

Bob would like to verify whether Fiona is capable of 

repaying her loan and also to monitor the changes in 

this capability over time to make decisions regarding 

future loans or foreclosure. 

Bob outsources this to a company “Owen” that 

deploys sensors in Fiona’s land to monitor soil 

moisture, chemicals, and crop height. These would be 

the “green” sensors that have been authenticated by 

Owen. To save costs, Owen has deals with Oscar and 

Ogden who have deployed “red” sensors in 

neighboring land (small circles because their credence 

is lower). These deployments may gain or lose 

credence through verifiable reporting over time and 

what we call as meta-sources (see Figure 1), which 

may include communication patterns, locations, quality 

of devices, and so on.  Further,  the  bank  has  external  
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Figure 3: Example of data sources (event area 

reports) with overlap in time 

knowledge from short and long-term weather reports 

and forecasts of crop viability from government reports 

(blue dashed circle - large because it is credible, dashed 

because it is coarse).  

Data from these disparate sources have to be 

combined to provide a metric (perhaps a single value) 

that can inform Bob of Fiona’s capability to repay 

loans (which is the decision to be made based on the 

credence of the data in question). This metric may be 

augmented over time with new data and by whether or 

not Fiona pays installments on the loan on time. 

2.2 Sources of Credence and Disrepute 

We can imagine that many sources add positively to 

the credence of data such as proximity and location, 

authentication, quality of measurements, previous 

reputation, and so on or on the contrary cause discredit 

to data. Consider an example of monitoring large 

outdoor events. This task requires large-scale 

information consolidation from heterogeneous data 

sources including infrastructure-based mobile systems, 

ad-hoc wireless networks and distributed Internet 

repositories.   
Figure 3 shows an example of two population 

reports for event area A1. In this example, the data 

credence stratum obtains the reports from alternative 

information sources. Report_1 is based on information 

estimated from surveillance cameras, while Report_2 

has been generated from a number of tweets posted by 

event participants and from communications within an 

ad hoc network of mobile devices of the event 

participants. Note that the reports estimate event 

population for overlapping time intervals with the total 

coverage from 10:00 to 11:30, and with overlap 

duration of 30mins. The task of the data credence 

stratum would be estimating the population dynamics 

within smaller time units (e.g., what was the most 

likely number of people in event area A1 from 10:30 to 

11:30?). 

In some cases, analysis of relationships between 

overlapping data sources may reveal data inconsistency 

 

Figure 4: Example of inconsistent data sources 

(event area reports) 

that helps to assess the data credence. For example, 

several reports may reflect different numbers of people 

for the same location and time interval. Figure 4 

illustrates a more complex case of inconsistency within 

four reports. The total number of R1 and R3 (550) 

should not be greater than the number reported in R2 

(500). The number reported in R3 (250) should also be 

smaller than the number or R4 (200). 

Consider a second example where a “thing” reports 

data to a sink about a phenomenon that it is monitoring. 

The data are sent at different times, some with 

cryptographic integrity checks and others without to 

save on computation and energy. The sink may attach 

more credence to data that has a verifiable integrity 

check and perhaps others that are close to it in time and 

content. In the latter case, the sink is looking at 

consistency of data, albeit in a different manner than 

that discussed in Figure 3. Credence here depends on 

verifiable integrity checks and proximity (defined with 

respect to the phenomenon) for those sources without 

integrity checks. 

2.3 Data Credence vs Data Integrity 

We argue that the notion of data credence is a superset 

of data integrity which is binary in nature. If there is 

(cryptographic) assurance that data came from the 

source from which they are supposed to have 

originated and that they have not been modified in any 

manner since then, we say that there is integrity of such 

data. If the cryptographic assurance fails, then the data 

cannot be trusted. However, in practice, it is virtually 

impossible (at this time) to ensure cryptographic 

integrity of all data, due to many factors. Such factors 

include technical ceilings on performance as well as 

issues such as cryptographic key management on the 

one side and policy, law, culture and human behavior 

on the other end. 

 Consider the issue of cryptographic key 

management. In a naïve setting, let us suppose that 

every message containing data from a “thing” has an 

integrity check using a (secret) key k. The challenges 

that arise are how we share the key and with whom. If 

the key is known to multiple entities, any one of them 

may modify the data without detection. From a 

network communications standpoint, the source “thing” 

and the destination (be it a gateway or the cloud) will 
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perhaps share one or more keys. However, once the 

data reaches the cloud, the “ground truth” can no 

longer be verified. One may argue that digital 

signatures can be employed for this purpose, but this 

becomes computationally expensive if each message 

has to have a signature – both from the standpoint of 

signing and for verification of signatures for billions of 

messages. 

In the meantime, it becomes necessary to use 

alternative techniques that evaluate the consistency of 

data as a means for credence as described next. To the 

best of our knowledge, using both data and 

cryptographic credence at the same time has not been 

previously investigated. 

2.4 Related Work 

The concept of data inconsistency and related concepts 

of data reliability have been explored mostly in the 

context of database management and data integration. 

The problems of data redundancy and inconsistency are 

of general applicability to large-scale Data Integration 

Systems. Data Integration Systems must address two 

major challenges: (1) heterogeneous data and (2) 

conflicting data. Resolving data heterogeneities has 

been the focus of active research and development for 

more than two decades [7] [19].  There are numerous 

tools for efficient mapping of data sources in a 

homogenous schema with proper data cleaning 

(eliminating typos, misspellings, and formatting 

errors), standardization of names, conversion of data 

types, duplicate elimination, etc. 

The amount of research in the area of data conflict 

resolution and querying inconsistent data is also 

considerable. The work in [12] [5] [3] [4] provided a 

comprehensive review of the current state of the art.  

Early research on handling inconsistencies was mostly 

theoretical and did not relate this problem directly to 

the data reliability [23]. Data inconsistency as a key 

integrity constraint violation was considered in [1]. 

Consistent query answering that ignores inconsistent 

data, thereby violating integrity constraints, was 

introduced in [8]. This approach is related to more 

recent research on query transformation for consistent 

query answering [40]. An alternative approach is based 

on inconsistent database repair, producing a minimally 

different – yet consistent -- database that satisfies 

integrity constraints [38], [6]. Our work on information 

integration based on crowdsourcing and historical data 

fusion represent a new research direction in this area 

[28] [43] [45] [44]. 

Since the pioneering work of Grant [16] that first 

investigated the measurement of inconsistencies, in the 

past 20 years researchers have been trying to find the 

best way to measure inconsistencies.  A good review of 

the research up to 2005 appears in [21]. Since then both 

additional inconsistency measures as well as properties 

that such an inconsistency measure should satisfy have 

been studied. The following are some of the important 

papers in this field: [22], [30], [31], [17], [18]. It turns 

out, as shown in [17] that the various proposed 

measurements are incompatible with one another, 

leading to the conclusion that the concept of 

inconsistency measure is too illusive to be captured by 

a single definition. So the best we can do is to find 

inconsistency measures that are the most appropriate in 

certain situations. Another issue here is that research on 

inconsistencies has been done primarily in an abstract 

setting using logic formulas. On the other hand, for the 

practical development of integrated systems 

researchers have used ad-hoc methods. 

In case of multiple data sources a straightforward 

way to assess data reliability is to use a majority voting 

as a criteria for the most reliable data item. Meanwhile, 

reliability of data providers should also be taken into 

account, and some research has been conducted in this 

area. The first group of methods relies on probabilistic 

data accuracy assessment [11], [13], [27], [41]. Dong, 

et al. [11] proposed an accuracy technique, which 

calculates probability of each value being correct and 

averages the confidence of facets provided by the 

source estimating the provider trustworthiness. A more 

advanced AccuracySimilarity approach also considers 

the similarities of alternative values.  Furthermore, [13] 

introduces a POPAccuaracy method assuming that 

false data value probability is uniformly distributed. A 

TruthFinder method, proposed by Yin, et al. in [41] 

differs from Accuracy by not normalizing the 

confidence score of each entity.  

The second group of methods is based on web link 

analysis [32], [42], [14]. In [32], Pasternack, et al., 

proposed three techniques: (1) AverageLog is a 

transformation of Hub-Authority algorithm assessing 

source trustworthiness as an averaged confidence score 

of provided values multiplied by the log of provided 

value count; (2) Investment, where the confidence 

score of the value grows exponentially with the 

accumulated providers’ trustworthiness; (3) 

PooledInvestment differs from the investment in that 

confidence score of data values grows linearly.  

The work in [42] proposed a semi-supervised 

reliability assessment method called SSTF. This 

method assumes that there is a set of entities having 

true value affecting the result of the PageRank iteration 

procedure. The work in [14] proposed a 2-Estimates 

transformation of Hub-Authority algorithm where 

provider trustworthiness is estimated as an average the 

vote count. They further proposed 3-Estimates, which 

additionally considers the trustworthiness of data 

values. Other methods include IR-based techniques 
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[14], [34]. For example, Galland et al., [14] suggest 

maintaining a vector for a data value with each 

dimension corresponding to a provider. The reliability 

of the provider is assessed as a cosine similarity 

between provided values and selected reference values. 

In [34], Pochampally et al., proposed a method 

measuring the source precision and recall, and the 

correlation information between sources, based on 

which the confidence score of data value is computed. 

None of the approaches discussed in this section 

take both inconsistency and assurance/integrity into 

account. In this paper we suggest an integrated data 

credence analysis exploring data redundancy and data 

inconsistencies so as to provide automatic data 

credence assessment that also takes into account issues 

of information assurance (through cryptographic 

methods). We consider an approach to discover data 

inconsistency through the analysis of relationships 

between data items and data sources with additional 

metrics that may include cryptographic assurance.  Our 

work is the first attempt to utilize efficient 

inconsistency analysis and information assurance for 

implementing a scalable data credence stratum. 

3 MODELING AND ASSESSING DATA 

CREDENCE 

In this section, we start with the first of the many 

challenges that we discuss in subsequent sections – that 

of modelling and assessing data credence. Subjective 

logic, first introduced by Jøsang [24], combined with a 

graph model (as in Figure 2) that captures relations that 

may support or discredit the credence, appear to be best 

suited for this purpose. Recently, subjective logic has 

been applied for reliability assessment in both social 

and regular sensor networks [33] [36]. Combining 

subjective logic with flow-based reputation has also 

been explored in [37], which allows combining 

subjective logic with graph models. We suggest this as 

one of the approaches for modeling and assessing data 

credence, and illustrate this through an example below, 

although our examples use them separately.  

Other approaches such as Bayesian inference, the 

Dempster-Shafer Theory of Evidence and Maximum 

Likelihood Estimation may be possible. The 

randomness in specific data sources may be 

characterized in some situations (e.g., location errors in 

GPS have known models) whereas it may be an 

assumption in other cases. Further, while ideally a joint 

probability distribution and the time variation in the 

case of stochastic processes would be the best for 

quantifying data credence (for example using 

confidence levels or outage probabilities – what is the 

probability that this data is correct within a specific 

range), most such analytical models are intractable 

unless sources are independent and processes are 

stationary. 

Primary Challenge: How do we assess data 

credence?  

We argue that traditional approaches for assessing data 

credence based on data consistency are insufficient in a 

world where we have disparate sources as described in 

Sections 1 and 2.1 with varying levels of a priori 

credence, much of which may be subjective. In this 

section, we assume that the sources are non-malicious 

and we relax this assumption later. 

Assuming the data credence stratum continuously 

receives new data from multiple sources, it becomes 

necessary to determine credence values for (i) data 

items/reports and (ii) sources of these data, both of 

which evolve with the availability of new evidence. It 

becomes necessary to evaluate internal credence and 

external credence of data. It may be possible to use 

measures of “inconsistency” caused by a data source to 

assess its internal credence. While the assessment of 

internal credence can be a completely automated 

process based on objective metrics, it may be necessary 

in a human world to allow end-users to submit their 

subjective feedback on reliability of data and data 

providers to assess external credence (For example, 

how much trust would Owen put on Ogden Vs Oscar in 

Section 2.1?). With regards to the level of assessment, 

a local as well as a global credence may be necessary. 

The local credence value would be related to a single 

data item (e.g., report from a proximate thing), while 

the global one is related to a data provider/data source 

(Is the sensor from Ogden?). We explain these ideas 

next. 

Internal credence: Handling internal credence requires 

solving the following two tasks: (1) finding efficient 

strategies to check for inconsistencies among data 

sources, and (2) finding the least intrusive 

inconsistency resolution strategy (this assumes sources 

are not malicious, but may be riddled with benign 

errors). For the first task, a considerable challenge is to 

optimize the inconsistency inference so it scales for 

large amounts of data. For the second task, we need to 

explore various minimal database reduction strategies 

to recover consistency. For example, in Figure 4 we 

can remove any of reports R1, R2, or R4 and this will 

reduce the degree of inconsistency. Meanwhile, 

removing report R3 eliminates inconsistency entirely, 

and thus represents the least intrusive inconsistency 

resolution. This also indicates a high probability for R3 

to be the least reliable report reducing its credence. 

With respect to the local (l) and global (g) 

consistency, there exist interdependencies: It is likely 

that there will be a large number of the former that may 

be utilized to compute the latter. Local internal 
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credence of a single data item/report may be assessed 

based on the inconsistencies with which it is 

associated, and then we may use a group of reports and 

their estimated credence to approximate the global 

internal credence of the data source. Each report may 

then be annotated with an internal credence tuple <l, 

g>, which includes the reliability for both the specific 

report and its source/provider. Maintaining the tuple 

may address the following problem: If we keep track of 

only the local credence, we may end up with a low 

credence value for a report that is actually accurate.  

For instance, consider the two conflicting reports on 

number of people in an area A1 between 10:00 and 

11:00. Report R1 (from source s1) mentions 0 

population, while report R2 (from source s2) mentions 

100 people. No other reports for this period are 

available. If we estimate local credence of the reports 

based on the inconsistencies caused by each of them, 

we obtain a local credence of 0.5 for both R1 and R2. 

Meanwhile, the global credence of a source will reflect 

its accuracy and permit more adequate data assessment. 

Based on previous reports from s1 and s2, we might 

reach global credence assessments of 0.3 and 0.8, 

respectively. Since their local credence is the same, we 

can use the global credence to increase or decrease our 

confidence in the data provided by each report. 

External credence: We envision that users will be able 

to contribute their subjective data credence assessments 

on reports submitted either by themselves or by their 

peers. For instance, in the case where a contributor 

annotates her own reports with a reliability opinion, she 

might be aware of possible inaccuracies due to the 

method in which the data were obtained. Furthermore, 

she might be confident that the reliability of a 

conflicting report is low, due to her strong confidence 

in her own data.  There is a need to explore the 

challenges in external credence assessment and 

investigate a combined credence assessment.   

We next elaborate on the credence computation 

using Subjective Logic, as an example. 

Subjective logic: Let t, d and u be non-negative values 

such that 𝑡 + 𝑑 + 𝑢 = 1 and {𝑡, 𝑑, 𝑢} ∈ [0,1]. Then, a 

triple 𝜔 = {𝑡, 𝑑, 𝑢} is called an opinion, where 

components t, d, and u represent levels of trust, distrust 

and uncertainty. For example, high distrust with some 

uncertainty (10%) could be expressed as an 

opinion 𝜔1 = {0.0,0.9,0.1}, while high trust with lesser 

uncertainty of (4%) could be expressed as opinion 

𝜔2 = {0.96,0.0,0.04}. By varying these parameters, we 

can express different levels of reliability in terms of 

which we can assess data credence. Subjective logic 

also provides a set of logical operators for combining 

opinions including conjunction, recommendation, and 

consensus. More details can be found in [24]. In our 

previous work [33], [36], we have successfully used 

subjective logic to express trust propagation in wireless 

sensor networks and in social networks. In this paper, 

we suggest its use towards scalable assessment of data 

credence.  

Local internal credence: Every single source/report r 

can be deemed reliable or not with respect to its degree 

of inconsistency. It is possible to measure this degree 

through the percentage of inconsistent conflicts in 

which r is participating. For instance, let us assume that 

r reports on a time interval [a, b] for data item X. Let us 

further assume that there are k reports that are related to 

data item X and their time interval partially or 

completely overlaps with [a, b]. Then if r is 

inconsistent with m of those reports, we can calculate 

its local credence (simple approach) as 𝐿𝑇(𝑟) = 1 −
𝑚

𝑘
. 

This calculation, however, provides a single point 

estimate for the local reliability, without considering 

the uncertainty of the assessment.  

To assess the local credence of an opinion triplet, 

we can utilize the concept of inconsistency level (IL). 

We define an inconsistency group as a set of reports 

that have mutual inconsistencies. Then 𝐼𝐿(𝑟, 𝐺) = 0, if 

r is not a part of G; otherwise 𝐼𝐿(𝑟, 𝐺) =
1

|𝐺|
. Hence, we 

can calculate IL(r, G), for each inconsistency group G. 

Next we can estimate a mean inconsistency level ILmean 
of r and the corresponding standard deviation ILstdev. 

We then define the local distrust on report r in the 

interval:  

[max {0, 𝐼𝐿𝑚𝑒𝑎𝑛 − (
𝐼𝐿𝑠𝑡𝑑𝑒𝑣

2
)} , min {0, 𝐼𝐿𝑚𝑒𝑎𝑛 + (

𝐼𝐿𝑠𝑡𝑑𝑒𝑣

2
)}].  

Using a simple transformation, we can obtain the 

reliability of an opinion triplet. Assuming that the local 

distrust interval for r is [y, z], we have  

𝑤1
𝑛(𝑟) = {1 −

𝑦 + 𝑧

2
−

𝑧 − 𝑦

2
,
𝑦 + 𝑧

2
,
𝑧 − 𝑦

2
} 

as the local credence of the report r produced from 

source n.  

To demonstrate assessing local credence of each 

report, consider the example in Figure 4. First, we need 

to find the inconsistency groups: G1 = {R1, R2, R3} 

and G2 = {R3, R4}. Then IL(R1, G1) = 1/3, IL(R1, G2) 

= 0, ILmean(R1) = 0.167, and ILstdev(R1) = 0.236. The 

distrust interval of R1 is [max{0, 0.049}, min{1, 

0.386}]=[0.049, 0.386] and its local reliability opinion 

is ω1(r1)={0.614,0.218,0.169}. Similarly, local 

reliability opinions for the rest of the reports are ω1(r2)  

= {0.614,0.218,0.169}, ω1(r3) = {0.465, 0.417, 0.118}, 

and ω1(r4) = {0.573,  0.25, 0.177}. 
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Figure 5. (top) Global credence in terms of 

reliability assessment: using the whole submission 

history; (bottom) Using the last 10 reports 

Global internal credence: After obtaining local 

reliabilities of each report, we assess the global 

credence of their provider P. Each report i submitted by 

P is accompanied by a local reliability opinion 𝜔𝑖
𝑛 

obtained through the process described above. To 

assess the global credence, we propose to aggregate 

them using the consensus operator of subjective logic 

[24]. We assume that every report is an agent, reporting 

on the reliability of its provider through the local 

reliability opinions. In brief, if  𝜔1
𝑛(𝑖) = {𝑡𝑖, 𝑑𝑖 , 𝑢𝑖} and 

 𝜔1
𝑛(𝑗) = {𝑡𝑗 , 𝑑𝑗 , 𝑢𝑗}, then their consensus is the 

opinion:  

 𝑤𝑖,𝑗
𝑛 = {

𝑡𝑖𝑢𝑗 + 𝑡𝑗𝑢𝑖

𝑘
,

𝑑𝑖𝑢𝑗 + 𝑑𝑗𝑢𝑖

𝑘
,

𝑢𝑖𝑢𝑗

𝑘
} 

where k=ui+uj-uiuj. Let us assume that provider Jack 

submitted all of the reports considered in the previous 

paragraph. Above, we calculated the local reliability 

opinions for all of the reports. The consensus of the 

opinions gives as the global credence opinion for Jack, 

which in our case is: ωr1,r2,r3,r4
Jack ={0.629, 0.328, 

0.044}. An interesting observation is that the consensus 

operator considerably reduces uncertainty: The more 

opinions we combine, the more certain the global 

opinion. Notice that the consensus of only the first two 

reports results in uncertainty of 0.092. Adding the third 

report reduces the uncertainty to 0.055, while the 

consensus of all 4 opinions results in the lowest 

uncertainty of 0.044. 

 

Figure 6. Example of an Inconsistency Graph 
 

Figure 5 shows a simulated internal global credence 

assessment for a data source which provided 800 

reports. The yellow line reflects the real user’s 

reliability over time used in the simulations. In the left 

figure, we use the complete set of reports from the 

provider to assess her/his reliability, while on the right 

one we use only the 10 most recent reports. As we can 

see in the latter case, we are able to react to the 

reliability dynamic much faster. 

External credence: To handle external credence 

assessment, the rating process enables users to provide 

an external reliability opinion on data. Here, they can 

also provide external opinions on the global reliability 

of a provider (e.g., if they are aware of faulty data 

gathering etc.). These external opinions can be fused 

using the recommendation operator of subjective logic. 

When a user (say Jack) provides an external reliability 

opinion (local or global) ωext, the system can use its 

own opinion on Jack’s external reports in conjunction 

with ωext to obtain a final external (local or global) 

reliability recommendation. 

Another approach that we propose towards 

assessing data credence is to represent conflicting data 

in the form of an Inconsistency Graph and to use 

efficient graph analysis techniques (e.g., based on a 

modification of the well-known page-rank algorithm). 

We can generate the Inconsistency Graph (IG) with 

nodes corresponding to different data sources or data 

items and edges reflecting inconsistencies between the 

data source/items.  Graphs with higher connectivity 

correspond to data with lower credence. For each node, 

higher connectivity means lower credence/reliability. 

Inconsistency with less reliable nodes is less severe 

than inconsistency with more credible nodes. 

Disconnected nodes correspond to data sources/items 

with the highest credence.  

 Figure 6 shows an example of an IG reflecting 

conflicts among three data sources providing event area 

reports from Figure 4. Here we assume that data source 

Charlie provides the report R4, while Beta provides R2. 

Both Charlie and Beta conflict with the data source 

Alpha providing the report R3. Note, that the conflict 

between Alpha and Charlie is more severe than the 

conflict between Alpha and Beta, since R3 contradicts 

R2 in combination with R1.  Both  number  of  conflicts 
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Figure 7: Credence in a mix of trusted and untrusted network paths 

and conflict severity should be taken into account to 

evaluate the credence of each of the data sources. 

We can evaluate the credence of each node in an 

Inconsistency Graph extending spreading activation 

models and Appleseed model [9] [46].  Under this 

approach we inject an initial energy to each node and 

have it propagated to other nodes along the IG edges 

until the energy distribution on all nodes converged. 

The IG edges are also updated continuously during the 

energy propagation based on the current energy 

distribution on each node as follows: 

𝐼𝐺(𝑖, 𝑗) = −𝑙𝑜𝑔10 (
𝐸𝑛𝑒𝑟𝑔𝑦(𝑗)

∑ 𝐸𝑛𝑒𝑟𝑔𝑦(𝑖)𝑁
𝑖=1

)  

Nodes with the higher final energy are considered less 

reliable and with lower credence. 

We note here that the IG approach uses only the 

actual reports and not the subjective assessments of 

credibility (that may come from the <l,g> tuples). A 

challenge we envision is combining the graph approach 

with subjective logic, which may be possible with new 

methods for conjunction, consensus, and discounting 

proposed in [37]. 

4 TUNING DATA CREDENCE 

In this section we consider major challenges in tuning 

the data credence stratum considered in previous 

sections. Challenges that exist include assessing 

credence in the presence of malicious actors, 

identifying relationships between data sources, and 

efficiency considerations. We elaborate on these 

challenges below. 

Challenge 1: How do we authenticate for credence? 
The data credence stratum must consider the 

authenticity of the data using both network level 

security and cryptographic metrics. In the previous 

section, we introduced data credence metrics using 

subjective logic, and these have to be amended with 

security metrics in the presence of malicious actors. 

While there are no standard metrics for assessing the 

network level security, it may be possible to use 
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quantifiable metrics, such as the number of hops (see 

for example [2]), link and end-to-end security protocols 

in use, key management in the system of interest (e.g., 

how fresh are keys) etc. An illustration of these issues 

is shown in Figure 7. The red sources have no 

authentication or integrity, the blue hexagons have only 

link-level authentication with a private access point 

(AP) and the green sensors have both link and end-to-

end authentication. 

Cryptographic metrics may also be characterized 

quantitatively based on the algorithms and key sizes 

(for example, using well known public estimates such 

as https://www.keylength.com). In the case of stored 

data, we suggest to include the effects of encrypted 

storage, storage ownership, and integrity checks of data 

blocks in models for credence assessment. These 

metrics may be incorporated in the internal credence 

model both locally (for data sources and blocks) and 

globally for a provider of different data sources. To the 

best of our knowledge, using both data and 

cryptographic credence at the same time has not been 

previously investigated. 

Challenge 2: How do we assess relationships 

between data sources?  

Often times, it is not clear as to which data source is 

related with which other data sources. Identifying the 

links for the inconsistency graph in Section 3 may not 

be a trivial problem. For example, sources that are 

close together in space should be part of the same 

group, but if the uncertainty in the location is very 

large, this may be an indication of whether or not it 

belongs to the set of data sources to be considered. We 

may know that a sensor is reporting soil moisture and it 

is in the vicinity of Fiona’s farmland, but the precise 

location may not be available. We suggest to employ 

techniques from network science for this purpose. 

Research work in network science (see for example 

[10]) looks at group detection in social networks using 

stochastic models of link emissions from group entities 

and a maximum likelihood clustering. 

Challenge 3: How do we improve data credence?  

In some applications, it may be inevitable that 

deployment of additional sources in the field is the only 

option to improve data credence, because of the 

inconsistencies or sparsity of reports to adequately 

quantify the credence. For example, if the 

inconsistencies are due to large geographical 

separation, it may be useful to deploy additional 

sensors in the field to obtain higher granularity in 

space. In general, we expect the dimensions of the data 

credence assessment problem and the capability of the 

data sources to influence this additional deployment – 

as another example, if a sensor is unable to provide 

samples in time at a specific granularity, a duplicate 

sensor whose samples are offset in time may be an 

option. 

Consider the example of the bank Bob and Fiona. If 

the data credence desired by the bank Bob is below an 

acceptable level, what strategies can Bob adopt? Two 

of the many possibilities are perhaps increasing the 

integrity of some of the less credible sources or adding 

more sources. For the sake of illustration, let us 

suppose that some of the sources deployed by Owen do 

not employ cryptographic protocols, raising the 

possibility that their reports could be modified reducing 

data credence. Addressing this may involve the use of 

integrity checks or better cryptographic techniques, or 

more granular samples in time – all of which may 

impact the battery life of sensors. Alternatively, only 

specific reports (either periodically or randomly) may 

be attached with integrity checks, which will enable the 

assessment of credence of the check-free reports. An 

alternative approach may involve either getting 

additional data from Oscar or Ogden or the deployment 

of additional sensors by the outsourced company 

Owen. The question that needs to be addressed is what 

strategies will provide the best result and are the most 

efficient in terms of deployment costs or energy costs 

at the sensors. 

Challenge 4:  How can we use cryptography 

efficiently for data credence?  

As a second example consider the issue of auditing or 

forensics. Let us suppose that the storage cost of all of 

the collected data is unacceptable. How much data 

should be stored to have a specific level of data 

credence in the case of a needed audit? Should all of 

the stored data have integrity checks? Are there 

suitable data structures that can be used to reduce the 

storage/computational burden (see for example work 

that looks at detecting modifications in stored data in 

an untrusted cloud in [15])? These are open questions 

and challenges that need to be addressed for data 

credence. 

5 TECHNOLOGIES ON THE HORIZON 

In this section we describe two recent technological 

advances that introduce the potential for improving 

data credence but have inherent challenges as well. 

Challenge 1: How can we exploit multiple link layer 

technologies for data credence?  

There are multiple communications technologies that 

can support data exchange between “things”. This 

includes long-range wireless RF-based technologies 

(such as GPRS, LoRa, Sigfox); short-range wireless 

RF-based technologies, free-space optical 

communications (e.g., visible light communications, 

Infrared-based communications), and wired 
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technologies (power line communications, Ethernet, 

optical fibers). Each link technology has its unique 

features and associated credibility (interface-dependent 

credibility). For example, data exchanged over wired 

medium is less likely to be spoofed compared to data 

exchanged over a wireless interface (assuming that it is 

hard to physically get access to the wired medium). 

Similarly, data exchanged through optical wireless 

interface is confined in space, and hence is inherently 

more secure than wireless radio-frequency interfaces 

[25] that may be attacked from farther distances.  

Multiple communication interfaces can jointly be 

utilized in assessing and/or improving data credence. 

When multiple link technologies are exploited, the 

interface with higher reliability could help in enhancing 

the reliability of data exchanged over other interfaces. 

For example, visible light communications can be used 

to establish secure keys over RF links; consider a thing 

A that sends a master key to things B and C through 

visible light communications when they are in close 

proximity, then B and C use this key to establish 

session keys over wireless RF channels [39]. This 

enables secure key establishment and hence improves 

the reliability of data exchanged over RF. 

Data exchanged over different interfaces can be 

correlated or fused (as in Figure 2, but even between 

the same pairs of things). By extracting correlated 

information and/or fusing data, the a priori credibility 

of information can be improved. For example, consider 

a network where some devices have an interface that 

allows communications using optical signals and 

another that uses RF. The advantage of using optical 

signals between things and a network infrastructure 

are: (a) ensuring that only things within the same 

physical location (where the information/data is 

relevant) will receive it; (b) minimizing interference on 

RF links; (c) enabling more reliable communications, 

since optical communications is less susceptible to 

attacks (e.g., eavesdropping - passive or replay- active 

attacks). In this case, under good weather conditions, 

the data exchanges over optical wireless channels may 

be associated with higher credence than data received 

over RF. In other words, the different links of a data 

source may have varying levels of internal credence! 

The challenges here lie in adapting these 

technologies for improving data credence. Not all 

things are likely to have multiple interfaces, and there 

will likely be a mix of devices in a given 

environment/application. Efficiently deploying 

technologies to improve credence will be an ongoing 

challenge. 

 

 

Challenge 2: What constraints/benefits do energy 

harvesting schemes bring to assessment of data 

credence?  

The second emerging technology of interest is wireless 

energy harvesting. Devices can exploit the ever-

increasing volume of wireless communications to 

harvest energy [26], hence prolong their lifetime. It is 

to be noted that different link technologies can be used 

for energy harvesting. In [35], energy is harvested from 

the received wireless optical signal, which is then used 

for transmitting RF signals. A simple view of energy 

harvesting is that devices have a “duty cycle” where 

things need time to recharge their batteries using 

ambient wireless signals which is significantly larger 

than the time for which they can transmit sensed data 

or take actions based on triggers. This duty cycle 

imposes constraints on the data credence (Is the sensed 

data sampled adequately?). 

Among the challenges with energy harvesting are 

how things should be dispersed/deployed for satisfying 

a level of data credence for an application. For 

example, different “things” may be triggered with 

offset duty cycles, but such things may have varying 

levels of internal and external credence. Tuning and 

optimizing the deployment will have interesting 

problems to solve, in a manner similar to case of the 

multiple links. 

6 SUMMARY AND CONCLUSIONS 

We propose a vision with a systematic approach to 

maintain a data credence stratum assessing the 

credence or integrity of the data generated by Internet 

of Things. We suggest an integrated data credence 

analysis exploring data redundancy and data 

inconsistencies so as to provide automatic data 

credence assessment that also takes into account issues 

of information assurance (through cryptographic 

methods). We consider an approach to discover data 

inconsistency through the analysis of relationships 

between data items and data sources with additional 

metrics that may include cryptographic assurance.  Our 

work is the first attempt to envision and utilize efficient 

inconsistency analysis and information assurance for 

implementing a scalable data credence stratum. 
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