
c© 2018 by the authors; licensee RonPub, Lübeck, Germany. This article is an open access article distributed under the terms and conditions of
the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).

Open Access

Open Journal of Internet of Things (OJIOT)
Volume 4, Issue 1, 2018

http://www.ronpub.com/ojiot
ISSN 2364-7108

Middleware Support for Generic Actuation
in the Internet of Mobile Things
Sheriton Valim, Matheus Zeitune, Bruno Olivieri, Markus Endler

Departamento de Informática, Pontifical Catholic University, Rua Marques de São Vicente 225,
Rio de Janeiro, Brazil, {svalim, bolivieri, endler}@inf.puc-rio.br, matheuszeitune@aluno.puc-rio.br

ABSTRACT

As the Internet of Things is expanding towards applications in almost any sector of our economy and daily life,
so is the demand of employing and integrating devices with actuation capabilities, such as smart bulbs, HVAC,
smart locks, industrial machines, robots or drones. Many middleware platforms have been developed in order
to support the development of distributed IoT applications and facilitate the sensors-to-cloud communication and
edge processing capabilities, but surprisingly very little has been done to provide middleware-level, support and
generic mechanisms for discovering the devices and their interfaces, and executing the actuation commands, i.e.
transferring them to the device. In this paper, we present a generic support for actuation as an extension of
ContextNet, our mobile-cloud middleware for IoMT. We describe the design of the distributed actuation support
and present a proof of working implementation that enables remote control of a Sphero mobile BB-8 toy.

TYPE OF PAPER AND KEYWORDS

Regular research paper: Internet of Things, Actuation, Middleware, Bluetooth, Actuator Representation

1 INTRODUCTION

Actuator devices, or Actionable Smart Things (AST), are
an essential element of several IoT applications, such
as smart homes, smart transportation, healthcare, retail
or smart industry, because they can change something
in their physical environment. Examples of AST
are HVAC, smart lights, smart locks - for doors and
equipment -, robots, drones and other mobile or static
equipment. In all these cases, the actionable smart thing
is usually connected wirelessly to some gateway, which
connects the AST to backstage services running in a
cloud or cluster. And many of such AST use Bluetooth

This paper is accepted at the International Workshop on Very
Large Internet of Things (VLIoT 2018) in conjunction with the
VLDB 2018 Conference in Rio de Janeiro, Brazil. The proceedings
of VLIoT@VLDB 2018 are published in the Open Journal of
Internet of Things (OJIOT) as special issue.

Low Energy (BLE) for wireless communication, because
of BLE’s low power consumption, fast discovery and
pairing with devices, and its reliable communication
link. As the downside is the restricted wireless coverage,
which is approximately 50 meters. On the other hand,
almost any modern smartphone also has a Bluetooth
interface, making it eligible to play the role of an Internet
gateway for the smart things, as long as it is within its
BLE range.

This motivated us to tackle the Internet of Mobile
Things (IoMT), where any smart thing – and the
gateways – are mobile, i.e. can be potentially moved or
move autonomously, in case of autonomous robots. And
to implement this support we developed the Mobile Hub
(M-Hub), an Android middleware service that runs in
background and is independent of other mobile apps[15].
Although in IoMT the system has to cope with eventual
wireless disconnection of the AST, which may happen

24

http://creativecommons.org/licenses/by/4.0/
http://www.ronpub.com/ojiot


S. Valim et al.: Middleware Support for Generic Actuation in the Internet of Mobile Things

when the smartphone or the smart thing moves away
from de mutual BLE coverage, this is quite seldom when
the smartphone user is the one that is driving/controlling
the actuation on the AST. Otherwise, if the actuation
commands are produced remotely, and the smartphone
is a mere intermediary, then a reliable actuation has to
rely on the presence of several Mobile-Hubs close to the
AST, and a smart and seamless handover process of the
AST among the Mobile-Hubs.

In most of the current IoT systems, actuation-specific
logic is usually hard-coded and intertwined with the
remaining application logic. This is so because, so
far, IoT applications are tailored to very specific - and
proprietary - smart things with particular/proprietary
actuation protocols and low-level actuation instructions
and feedback signals. Furthermore, most of IoT
systems assume a stable wireless connection between the
wireless gateway and the smart things, which is not the
case in the IoMT.

However, when applications are required to interact
with - and act upon - many and different sorts or products
of ASTs over time, a hardcoded solution has to be
replaced by a more flexible mechanism implemented in
the middleware layer. For example, consider an IoT
application that is able to dim (or change color of)
all smart light bulbs inside several conference/meeting
rooms of an institution. However, since these rooms
belong to different departments, the kinds and makes of
the smart bulbs are different and therefore use different
GATT/BLE commands for the controls, that are defined
by the vendor. Hence, if a user would need to control the
lights in previously unvisited room, he/she would first
have to inspect the bulbs, download the mobile app and
then change the light intensity or color. Moreover, in the
same room, smart light bulbs of different vendors may
be used simultaneously, perhaps because some bulbs
are more economic but the previous bulbs “still work
well”. On the other hand, it would be good if the user
had access to high level commands such as setdim(50),
setRGB(20,10,50), or turn(off), that would be uniformly
applied to any smart light bulb, in any room.

Another hypothetical example is that of futurist
vacuuming robots, deployed for cleaning the floor of
a house, e.g. of elderly people. Many of these
vacuuming robots already now learn the floor plan
of the house to be cleaned so that most of the time
they manage to roam around and clean all the rooms
well. But once and a while it may happen that
the robot faces some obstacle hindering it to proceed
with the planed itinerary. In this case, the robot
may get information about the type and ID of the
probable obstacle (maybe through cameras or other
sensors). It may then issue simple high-level actuation
commands like door.open(X), wheelchair.rotate(W,30)

or serumSuppport.move(Z,100) for opening a door X,
rotating by 30 degrees a wheelchair W or moving
forward 1 meter a motorized serum support Z. But such
generic actuation commands are only possible if the
IoT software infrastructure can discover and identify the
smart things in the vicinity of the robot, automatically
download driver software for actuation and convert the
generic commands into the vendor-specific bytecode
sequences to be sent to the AST.

On-demand drivers enable large-scale actuation
scenario, because in addition to being able to control
multiple devices simultaneously, in the broad scope (e.g.
of a Smart City) drivers can be switched on-demand
by the gateways, allowing them to be reused in the
intermediary function of the actuation. Furthermore,
scripts can be used to remotely control multiple mobile
objects at the same time, since the actuation will be
performed by the millions of gateways scattered.

Unlike other works that assume that the IoT smart
things have sufficient memory and processing resources
so as to allow the provision of an API with high-level
and complex operations for actuation control, or even
the execution of a virtual machine in the AST, we take a
more challenging approach, where we want to primarily
support very simple and resource-constrained smart
things, where a few basic commands and parameters in
raw bytecode format are used to control the device.

This motivated us to extend our IoT middleware
ContextNet [8, 6] with a service and protocol that
support such generic actuation. These services run
partly in the cloud/cluster and partly on a Mobile-
hub, that directly interacts with the AST. The currently
supported WPAN is Bluetooth Low Energy (BLE). The
goal was to allow that actuations composed of sequences
of basic instructions be formulated in terms of high-level
control commands (CC), that are then translated into
corresponding low-level strings of bits-and-bytes that
can be processed by the specific smart thing’s actuation
processor. In order to enable this, two new components,
the Mobile-Actuator (M-Act) which is a microservice
for the Mobile-Hub (for Android devices) and the Smart
Objects Manager (SOM), a microservice of the SDDL
core executing in cloud/cluster were developed. These
two services exchange MACTQuery messages in JSON
format in order to instrument and drive the Mobile-Hubs
to interact and control some AST in its vicinity.

This paper is structured as follows: We proceed with
an overview of the ContextNet middleware (Section 2)
and of BLE technology that was used for interfacing with
the Actionable Smart Things (Section 3). In Section
4 we first give an overview and then present in more
details the M-ACT and SOM microservices, which are
the building blocks of ContextNet’s generic actuation
support (in Subsections 4.1 and 4.2, respectively).

25



Open Journal of Internet of Things (OJIOT), Volume 4, Issue 1, 2018

Section 5 introduces our proof of concept AST, the
Sphero’s toy BB-8, and the peculiarities of its actuation
protocol and commands. We then discuss the rare related
works (in Section 6) and close with concluding remarks
(in Section 7) on actuation in IoT and over wireless
connections.

2 THE CONTEXTNET MIDDLEWARE

In order to support IoMT applications, we developed the
ContextNet middleware, that has a three tier software
architecture that consists of: (a) a SDDL core, a
P2P of nodes executing in a cloud or cluster of
stationary machines and interacting with (b) Mobile-
Hubs executing on Android devices or boards (Android
phones, Raspberry PIs, etc.), and that use their WPAN
interface to discover, select, connect to and exchange
sensor data or actuation commands with sensors and
actuators, respectively, of smart objects/things (AST).
Currently, our Mobile-Hub is capable of connecting only
to Classic Bluetooth and Bluetooth Smart (BLE) enabled
smart objects.

The SDDL core [6] handle the communication
architecture, by enabling a mobile message-oriented
middleware platform. These platform present
lightweight mobile protocol, the MR-UDP [6],
that handle intermittent connections, including soft
handover. This protocol can also maintain data-streams
to the Mobile-Hubs through the usage of low-rate
keep-alive (heartbeat) messages.

The Mobile-Hub [16] is the smartphone middleware
level that supports M-Act as a microservice. The
Mobile-Hub provides multiple Android native access to
M-Act as the lower-level connection to actuators through
Bluetooth and Bluetooth LE and further communication
channels.

2.1 The Mobile Hub

The Mobile Hub (M-Hub) “bridges the gap” between
the Internet connection with the SDDL Core, and
the short-range wireless connections with smart things.
It is composed of the following independent micro-
services that interact through Publish/Subscribe using
the EventBus. The LocationService is responsible for
sampling the M-Hub’s current position and attaching
it to whatever message is sent to the SDDL Gateway
(GW), which can be either a static, manually entered
geo-point, or the latest geo-coordinate obtained from
the smart phone’s embedded GPS sensor. The Short-
Range Sensor, Presence and Actuation (S2PA) Service
implements the TechnologyListener and interacts with
all nearby smart things with either a Bluetooth Classic
or BLE interface (more details in section 2.2). The

ConnectionService, runs the ClientLib/MR-UDP for
communication with the SDDL Core and, in order to
optimize transmission over the wide-area Internet link,
this service may group several messages (commands or
acks) for optimized, bulk transmission.

In order to support local processing of SDDL Core-
inbound or out-bound data M-Hub also features the
Mobile EPA (M-EPA), which is a full-fledged Complex
Event Processing (CEP) engine that is able to analyze
data streams (e.g. commands or sensor data), perform
filtering, aggregation, summarization, and window-
based detection of event patterns, that are described and
implemented as independent ECA rules in a specific EPL
language. The periodicity and duration of many of these
services’ actions, is influenced by the device’s current
energy level (that is classified as LOW, MEDIUM,
HIGH). This level is set by the last service, the Energy
Manager, which periodically will sample the device’s
battery level and check if the smartphone is connected to
a power source.

For the purpose of managing the actuation with smart
things we thus introduced a new M-Hub microservice:
M-Act. Since actuation involves interactions through the
WPAN it is necessary to take a closer look at the S2PA,
which provides some basic BLE interactions functions
for M-Act.

2.2 S2PA

The Short-Range Sensor, Presence and Actuation API
(S2PA) is a microservice of the M-Hub to handle the
discovery and connection with nearby M-OBJs through
different short-range wireless technologies (WPAN). It
was designed to handle any WPAN, implementing an
interface that can be mapped to the capabilities of the
supported WPAN. In order to support any WPAN, S2PA
defines some basic methods and interfaces that should be
implemented in all these technologies: 1) Discovery of,
and connection with M-OBJs, 2) Discovery of services
provided by each M-OBJs, 3) Read and Write of service
attributes and 4) Notifications about disconnection of M-
OBJs. Currently, S2PA supports Bluetooth Low Energy
(BLE) and Classic Bluetooth.

3 BLUETOOTH LOW ENERGY (BLE)

BLE is becoming a very popular WPAN technology
for IoT because it is extremely power efficient, features
fast discovery of peripheral devices and supports up
to 2000 simultaneous connections of peripherals with
devices in master. The main reason for its wide
dissemination - and hence, our reason for choosing
it as the IoT WPAN - is the fact that BLE is now
available on any modern smartphone. Moreover, BLE

26



S. Valim et al.: Middleware Support for Generic Actuation in the Internet of Mobile Things

technology is also being embedded into more and more
peripheral devices, such as gadgets, wearables, badges
with beacons, Smart (sensor) tags, smart light bulbs,
toys, household appliances, etc.

The communication between two connected BLE
devices is based on the Generic Attributes Profile
(GATT). It defines a hierarchical data structures used
to connected devices, which allows the discovery of
services provided by a BLE device. A Profile is
composed of a collection of services that describe
the device’s use case. And a service represents a
specific, independent functionality (or data source) of
the device, and is a collection of characteristics and/or
references to other services. A characteristic contains
a value/parameter used by a service and may also have
information about the value. For example, in the
SensorTag1 the Accelerometer Data is associated with
the characteristic UUID aa11 and the Accelerometer
Configuration is associated with the characteristic
UUID aa12.

In the BLE environment, in order to send an actuation
command, each function of an AST is associated with
one tuple [service, characteristic]. By varying the
service and characteristic the command is assembled.
For the specific example of the Sphero’s BB-8 Toy, a
service 2ba0 that holds a characteristic 2ba1 and the
tuple [2ba0, 2ba1] is responsible for all commands.

4 OVERVIEW OF OUR APPROACH

The extension of ContextNet required for supporting
the control of actionable smart things (or objects) is
based on two microservices, named the Smart Objects
Manager (SOM) and Mobile-Actuator (M-Act). The
SOM runs in the cloud/cluster, i.e. a processing node
of the SDDL Core, and holds a repository of drivers for
actuators, as well as a connectedTable, associating
each discovered AST device with an actuator to a single
M-Hub, that is the current intermediate/surrogate for
controlling this device. Notice that this surrogate M-
Hub for a device may change over time, as a M-Hub
may encounter and connect to many AST devices over
time, and AST devices may, accordingly, be discovered
and served by different M-Hubs. The M-Act is a
microservice running in the M-Hub, i.e. on any Android
based device. The main objective of M-Act is to connect
to actionable BLE devices, discover the actuator of
the device, download the driver from SOM, and then
translate a generic actuation protocol into the native
protocol of the actuator manufacturer.

The actuation process is illustrated in Figures 1 and 2.

1 Texas Instruments CC2451 Sensor Tag -
http://www.ti.com/lit/ug/swru271g/swru271g.pdf

Periodically, the M-Hub scans for devices in its vicinity
and immediately after the discovery of a new AST, it
checks if there is an appropriate driver for the actuator in
its local “drivers cache” (Figure 1 - Case 1). If it does not
find a suitable driver in its cache, it requests this driver
to the SOM (Figure 1 - Case 2). When the SOM has
the driver for the discovered AST, it replies by sending
to M-Act the requested driver, otherwise it notifies M-
Act that no suitable driver was found. When the driver
has arrived and properly deployed in M-Act, it will be
able to connect to the AST and notify the SOM about the
connection status. After this point, actuation commands
can be received, translated into native commands, and
sent to the AST.

In order to send actuation commands to an AST, a
client2 must first query SOM to learn which M-Hub is
the current surrogate of the target AST, and receive a list
of commands available in the AST’s driver specification.
Moreover, a client can query the SOM to receive a list
of available ASTs at a specific location, sending the GPS
coordinates of an area. After the client receives the SOM
reply with the UUID of the M-Hub associated to the AST
and the list of commands, it will be ready to control de
AST by sending actuation commands to it. These generic
actuation commands are delivered to the M-Hub that is
the current surrogate of the target device, and will be
processed by the M-Hub’s local M-Act service. M-Act
and will then translate the generic, high-level actuation
commands into the specific bytecode-level messages of
the native protocol of the AST, in accordance to the
specification of the AST-specific driver. Then, M-Act
will forward the native protocol message to the S2PA
service, which deliver it the AST device using the
corresponding technology. So far, we have only used it
for BLE.

All the messages between the M-Act and SOM
services have the MACTQuery format (Figure 3). The
field type distinguishes a command (cmd) message
from a driver message. Command messages may
hold any generic actuation command aimed at an AST,
while driver messages are used to haul a AST driver
specification from SOM to M-Act, or else, used by
M-Acts to request a required driver. When a client
constructs an actuation command, it should fill the target
field with the UUID of the AST device to be controlled.

4.1 M-Act

The M-Act is a service of M-Hub aimed at managing the
wireless communication aimed at controlling an actuator
of Actionable Smart Things. In a nutshell, M-Act
performs two tasks: (i) to request from SOM a driver

2 This may be any node, mobile or not, running the ContextNet
middleware.

27



Open Journal of Internet of Things (OJIOT), Volume 4, Issue 1, 2018

Figure 1: Connection steps

for this actuator; and (ii) to translate a generic actuation
command (received from a remote ContextNet node) to
the native protocol of the specific actuator.

As already mentioned, the translation from the
generic command to the native protocol of the actuator
is accomplished with the help of the driver. The
driver is written in JSON format (Figure 4) and
supports/implements all - or at least the most important -
actuation commands recognized by the actuator, as well
as the necessary steps to unlock the device, when needed.
The use of drivers enables M-Act to control a wide range
of different devices and gives the ability to extend, on
demand, its actuation capability for new AST when they
are first met. But M-Act will also not indefinitely keep
the drivers of all AST devices that it had been connected
to in the past. Instead, if some downloaded drivers are
unused for some time, the M-Act will “garbage collect”
and dispose them to open some space in memory for
the download of other drivers needed to control newly
encountered ASTs.

As a microservice of the M-Hub, M-Act interacts with
other services running in the M-Hub. It does this through
the eventBus (Figure 5), which is a Publish/Subscribe
(asynchronous) communication interface (Figure 6).
M-Act works receives MACTQuery messages from
the ConnectionService, which handles inbound and

outbound messages from the SDDL core (i.e. the
cloud). A received MACTQuery message may hold
and generic actuation command addressed to a specific
AST device and M-Act translates it into the native
protocol of the actuator manufacturer, then it sends the
translated message to the actuator through the S2PA
Service. As shown in Figure 7, when M-Act receives
a MACTQuery from ConnectionService, internally the
message is received by RegControl, which chooses
the appropriated driver from the local register, then sends
the command and the driver to the Processor unit which
parses the driver and the command and translates the
command to the native protocol of the AST. Finally, M-
Act sends the resulting native bytecode to S2PA.

With this basic actuation support of the middleware,
there are essentially two ways remote actuation can take
place on a AST device:

1. Via a remote application operated by a human (e.g.
remote control of mechanical arm controlled by
someone using a smartphone or PC), or

2. Actuation on a AST device is
autonomously/automatically started as soon as
some Complex Event Processing rule run locally
(in M-Hub’s MEPA service) or remotely (in a
SDDL core Processing Node) as soon as some

28



S. Valim et al.: Middleware Support for Generic Actuation in the Internet of Mobile Things

Figure 2: Actuation sequence

sensor data pattern of interest is detected. E.g. after
the local temperature reaches 30 degrees some
HVAC in the surroundings are turned-on so as to
drop the temperature)

4.2 Smart Objects Manager

The Smart Objects Manager (SOM) is a microservice of
the ContextNet Core. It has two main tasks: (i) it holds a
repository of drivers for sensors and actuators and (ii)
it maintains the connectedTable. The former is
responsible to provide drivers upon requests from M-
Hub, control the drivers live updates and control distinct
versions as well. Drivers are lightweight documents
stored in and transmitted in JSON format.

The connectedTable is the directory that catalogs
M-Hub connections to sensors and actuators. It prevents
two M-Hubs from trying to connect with sensors and
actuators at the same time, respecting the causal order
of the requests. As illustrated in Figure 1, every time a
M-Hub connects to an AST device, the M-Hub sends a
found M-Obj message to SOM, to inform it about this
connection and the SOM uses this message to update
the connectedTable by inserting a tuple [UUID M-
Hub, UUID M-Obj]. And when the M-Hub looses the
connection with the AST, i.e. due to a wide relative
movement among them or a WPAN connection problem,
the M-Hub sends a disconnected M-Obj message to
SOM to inform it about this disconnection, and the SOM
updates the connectedTable by removing the tuple
[UUID M-Hub, UUID M-Obj].

The AST driver contains several parameters
that include the device ID, the driver version, the
communication protocol used by the device (i.e. BLE,
Classic Bluetooth), authentication credentials, when
applicable, and the supported device commands. All

these parameters are stored and exchanged in JSON
format, being interpreted by M-Act. The device
commands are the collection of cataloged possible
commands for data/state query or actuations.

5 CONTROLLING THE TOY ROBOT BB-8

In order to demonstrate the feasibility of our approach
and test it on a rather sophisticated AST, we acquired a
small mobile toy robot from Sphero, with the Star Wars
theme, the BB-8. The toy is controllable by a mobile
app3 and interacts with the robot through BLE.

After a detailed study of Sphero’s official
documentation, we learned BB-8’s main characteristics
and the main commands: for movement and controlling
the light/color of its LED. We separated these
characteristics in two parts: the payloads of the
messages sent to the robot through BLE, and the
available communication channels between the operator
and the AST BB-8. The channels give access to the
low-level, internal controls of the robot, such as registers
for unlocking the BB-8.

5.1 Actuation Protocol

The communication with BB-8 employs some BLE
services and characteristics that are represented through
unique UUIDs. There are two essential BLE
services: the one responsible for acceptance of actuation
commands, and services responsible for communication
with the system.

Before sending any actuation command, it is
necessary to do a specific unlocking procedure. This
unlocking has to be repeated for every new connection
and consists of sending some commands to certain

3 BB-8TM App Enabled Droid, for iOS and Android.

29



Open Journal of Internet of Things (OJIOT), Volume 4, Issue 1, 2018

Figure 3: MACTQuery

Figure 4: Driver sample

30



S. Valim et al.: Middleware Support for Generic Actuation in the Internet of Mobile Things

Figure 5: EventBus

Figure 6: The M-Act microservice in the mobile hub

BLE characteristics. The commands free three
different resources in BB-8, the Anti-Denial-of-Service
mechanism, the txpower control, that is responsible
for activating the electric motors and wakecpu, which
“wakens up” BB-8 for our control commands.

The message format is a simple array of bytes,
including a flag telling if communication will be
synchronous or asynchronous, the command ID, the
length of the bytearray, the parameters of the command
and a checksum. In order to illustrate how the fields of
the message are constructed let’s take command roll,
that commands BB-8 to move some distance in the
“current” direction. To assemble the bytearray, we need
the ID of Roll, the speed, the angle and a flag to tell if
the robot is to start or to stop. Most of these parameters
occupy one byte, except for the angle, that takes two
bytes, so length specifies the total amount of bytes. If, on

the other hand, we need to send command to change the
LED color to red, the commandID would be SerRGB,
and the length will be the total number of bytes.

5.2 Preliminary Tests

Having designed and implemented the driver, we
proceeded to define the tests. Initially, we tested if
the driver was actually playing correctly the commands,
which it did. Then we aimed at evaluating the
performance of the actuation mediated by the proxy.
For this we measured the time from the instant that M-
Hub receives the command from the Gateway of SDDL
Core (which is then processed by M-ACT and sent via
BLE to the robot) until M-Hub receives the response
from the BB-8. We repeated this test 100 times, always
establishing a new connection with the BB-8 and sending

31



Open Journal of Internet of Things (OJIOT), Volume 4, Issue 1, 2018

Figure 7: The M-Act architecture

a mix of Roll and SetRGB commands, and measured this
round-trip delay of a command-and-acknowledgment
transaction. The test environment had one M-Hub
(on a Samsung Galaxy J5 2015 Android Marshmallow
(6.0)) connected to a notebook (configuration i7-4510U,
RAM 8GB, Dell Insiron 5447) both on WiFi in the
same local area network. In these tests we measured
following times: average 35.772ms, median 74.623ms
and minimum time 29.763ms. Hence, if we subtract the
2ms that it takes to unlock the BB-8, we end up with even
slightly smaller times.

In future, we plan to run several other performance
tests, and make more thorough measurements. In
addition, we want to start investigating the problems
of actuation in the presence of sudden disconnections,
automating actuation via scripts high-level commands,
and coordinated actuation on two BB-8s that we have in
the lab. By this, we will circumvent the limitation of the
official Sphero mobile app, which allows only control of
a single BB-8. But we want to enjoy seeing our robots
move in sync.

6 RELATED WORK

There are many approaches to middleware for IoT
[14, 7, 12]. Some of them concentrate more effort in
specific challenges, such as security and interoperability,
others are focused on specific domains, such as Smart

Cities applications [3], while others provide a more
comprehensive support for IoT application development.
There are also approaches to IoT as a Service [2].
However, many of them do not consider mobile nodes,
do not consider movable smart objects or do not scale.
We are unaware of a systematic approach to a scalable
middleware architecture focused on the Internet of
Mobile Things and that supports a uniform treatment of
remote actuation over smart things with actuators.

The application of smartphones to enhance the
monitoring and control of facilities has attracted
academic attention [10]. Indeed, there are proposals
that present integration solutions using smartphones to
ambients where there moving by[10]. These proposals
often take into consideration several sensors and some
actuators[4]. The majority of those ambients are usually
smart homes [9][13][17]. Some works threat open
spaces with equipment like machines [11].

In the best of our knowledge, those proposals have
a low level of abstraction between the smartphone
software and the hardware to sense and control. Is
necessary a previously know the device driver of
the hardware. Moreover, the smartphone needs to
coordinate the processing fully, without providing
remote interaction. The following works present a more
dynamically way to provide the use of the smartphone in
such applications and scenarios.

Aloi et al. proposed architecture for communication

32



S. Valim et al.: Middleware Support for Generic Actuation in the Internet of Mobile Things

between clients (as tablets and smartphones) and IoT
devices (sensors and actuators)[1]. Their architecture
suggests three layers: (1) Clients with mobile
communication such as WiFI, 3G, and LTE; (2) Wireless
Gateways and (3) IoT devices. The first and third layers
regard the off-the-shelf equipment. The second layer
is the abstraction layer that provides services from the
IoT layers to the Clients layer. The Wireless Gateway
has a local IoT devices configuration data bank to
structure their interaction with devices. To describe
the services provided by the Wireless Gateway from
the IoT devices interaction the authors used the Sensor
Markup Language (SenML). Nevertheless, the SenML
is restricted to sensors but actuators. Our approach is
similar to Aloi et al. [1] regarding the idea to use a plain
Language to describe how to connect to the IoT devices
by describing the devices specify a protocol.

In work [5] Datta et al. present the concept of IoT
being accessed by the Internet by smartphone acting as
gateways. The goal of their approach in [5] is to provide
a mobile gateway and an IoT Device Management node
that can maintain a device protocol list and act as a buffer
of collected data from sensors. This related work[5] does
not threat actuators.

Both related works [1] [5] present the necessity of
a central broker to manage the connected devices such
as our proposal of the SOM. As well the need a
central repository of drivers to connect IoT devices.
Furthermore, both works and ours share the idea of the
use of the smartphone as a gateway that controls the
IoT interaction work. Our work proposes to divide the
IoT interaction between the Smartphone (through M-
Act) and a broker (inside the SDDL core).

7 CONCLUSION

We have presented our middleware extension to provide
generic actuation support for the ContextNet IoMT. We
have detailed the whole architecture of the middleware
and the drivers. We have also implemented an
application sample in order to demonstrate the feasibility
of our approach.

This research is still in its initial phase and new factors
will be analyzed. New device drivers and applications
are under implementation, and will be used to evaluate
the generic actuation capability of the middleware in
large-scale scenarios with thousands of smart things.
As another direction of future work the impact of the
WPAN communication delay and its consequences on
remote actuation will be analyzed for different types of
applications and smart things.

REFERENCES

[1] G. Aloi, G. Caliciuri, G. Fortino, R. Gravina,
P. Pace, W. Russo, and C. Savaglio, “Enabling IoT
interoperability through opportunistic smartphone-
based mobile gateways,” Journal of Network and
Computer Applications, vol. 81, no. October, pp.
74–84, mar 2017.

[2] T. Aubonnet, A. Boubendir, F. Lemoine, and
N. Simoni, “Controlled Components for Internet
of Things As-A-Service,” Open Journal of Internet
Of Things (OJIOT), vol. 2, no. 1, pp. 16–33, 2016.
[Online]. Available: http://nbn-resolving.de/urn:
nbn:de:101:1-201704244995

[3] P. Bellavista, C. Giannelli, S. Lanzone, G. Riberto,
C. Stefanelli, and M. Tortonesi, “A Middleware
Solution for Wireless IoT Applications in Sparse
Smart Cities,” Sensors, vol. 17, no. 11, 2017.

[4] B. P. Chandra, K. Geevarghese, and
K. Gangadharan, “Design and Implementation of
Remote Mechatronics Laboratory for e-Learning
Using LabVIEW and Smartphone and Cross-
platform Communication Toolkit (SCCT),” in
2nd International Conference on Innovations
in Automation and Mechatronics Engineering,
vol. 14, jan 2014, pp. 108–115.

[5] S. K. Datta, C. Bonnet, and N. Nikaein, “An IoT
gateway centric architecture to provide novel M2M
services,” in IEEE World Forum on Internet of
Things, 2014, pp. 514–519.

[6] L. David, R. Vasconcelos, L. Alves, R. Andre, and
M. Endler, “A dds-based middleware for scalable
tracking, communication and collaboration of
mobile nodes,” Journal of Internet Services and
Applications, vol. 4, no. 1, pp. 1–15, 2013.

[7] F. Delicato, P. Paulo, and T. Vasconcelos,
Middleware Solutions for the Internet of Things,
ser. Springer Briefs in Computer Science.
Springer, 2013.

[8] M. Endler, G. Baptista, L. D. Silva, R. Vasconcelos,
M. Malcher, V. Pantoja, V. Pinheiro, and
J. Viterbo, “ContextNet: Context Reasoning and
Sharing Middleware for Large-scale Pervasive
Collaboration and Social Networking,” in
Proceedings of the Workshop on Posters and
Demos Track. ACM, 2011, pp. 1–2.

[9] O. Ghabar and J. Lu, “The Designing and
Implementation of a Smart Home System with
Wireless Sensor/Actuator and Smartphone,”
INFOCOMP 2014, The Fourth International
Conference on Advanced Communications and
Computation, no. c, pp. 56–64, 2014.

33

http://nbn-resolving.de/urn:nbn:de:101:1-201704244995
http://nbn-resolving.de/urn:nbn:de:101:1-201704244995


Open Journal of Internet of Things (OJIOT), Volume 4, Issue 1, 2018

[10] O. Ghabar and J. Lu, “Remote Control and
Monitoring of Smart Home Facilities via
Smartphone with Wi-Fly,” in Proceedings of
The Fifth International Conference on Advanced
Communications and Computation, Brussels,
Belgium, 2015, pp. 66–73.

[11] K. Kim, D.-H. Park, H. Bang, G. Hong, and S.-i.
Jin, “Smart coffee vending machine using sensor
and actuator networks,” in IEEE International
Conference on Consumer Electronics (ICCE), jan
2014, pp. 71–72.

[12] A. H. Ngu, M. Gutierrez, V. Metsis, S. Nepal,
and Q. Z. Sheng, “IoT Middleware: A Survey on
Issues and Enabling Technologies,” IEEE Internet
of Things Journal, vol. 4, no. 1, pp. 1–20, 2017.

[13] R. Piyare and S. R. Lee, “Smart Home-Control and
Monitoring System Using Smart Phone,” ICCA,
ASTL, vol. 24, no. April, pp. 83–86, 2013.

[14] M. A. Razzaque, M. Milojevic-Jevric, A. Palade,
and S. Clarke, “Middleware for Internet of Things:
A Survey,” IEEE Internet of Things Journal, vol. 3,
no. 1, pp. 70–95, 2016.

[15] L. Talavera, M. Endler, I. Vasconcelos,
R. Vasconcelos, M. Cunha, and F. Silva, “The
Mobile Hub concept: Enabling applications for
the Internet of Mobile Things,” in Pervasive
Computing and Communication Workshops
(PerCom Workshops), March 2015, pp. 123–128.

[16] R. O. Vasconcelos, L. Talavera, M. Roriz,
and M. Endler, “An Adaptive Middleware
for Opportunistic Mobile Sensing,” in 12th
IEEE Workshop on Managing Ubiquitous
Communications and Services (MUCS 2015),
Saint Louis, 2015.

[17] H. Wang, J. Saboune, and A. El Saddik,
“Control your smart home with an autonomously
mobile smartphone,” in Proceedings of the IEEE
International Conference on Multimedia and Expo
Workshops, 2013.

AUTHOR BIOGRAPHIES

Sheriton Valim is System
Analyst at JGP Wealth
Management and M.Sc.
student at the Pontifical
Catholic University of Rio de
Janeiro. His research interests
are mobile robots control,
pervasive distributed systems
and distributed algorithms.

Matheus Zeitune is
undergraduate student of
Informatics at the Pontifical
Catholic University of Rio de
Janeiro. His research interests
are mobile devices.

Bruno Olivieri is Doctoral
candidate in the Department
of Informatics of the Pontifical
Catholic University of Rio de
Janeiro. His research interests
include UAV swarm control,
mobile robots, distributed
algorithms.

Markus Endler is Associated
Professor in Informatics at PUC-
Rio and Principal Investigator
of LAC. He is also member
of the steering Committee of
INCT InterSCity. His research
interests include mobile and
pervasive distributed systems,
IoT, mobile robotics and stream
processing and reasoning.

34


	Introduction
	The ContextNet Middleware
	The Mobile Hub
	S2PA

	Bluetooth Low Energy (BLE)
	Overview of our Approach
	M-Act
	Smart Objects Manager

	Controlling the Toy Robot BB-8
	Actuation Protocol
	Preliminary Tests

	Related Work
	Conclusion

