

A. E. Khaled, W. Lindquist, A. Helal: Service-Relationship Programming Framework for the Social IoT

35

Service-Relationship Programming

Framework for the Social IoT

Ahmed E. KhaledA, Wyatt LindquistB, Abdelsalam (Sumi) HelalB

A Computer and Information Science and Engineering Dept., University of Florida, Gainesville, Fl 32611 USA,

aeeldin@ufl.edu
B School of Computing and Communication, Lancaster University, Lancaster, LA1 4WA, UK,

{w.lindquist, s.helal}@lancaster.ac.uk

ABSTRACT

We argue that for a true realization of innovative programming opportunities for smart spaces, the developers

should be equipped with informative tools that assist them in building domain-related applications. Such tools

should utilize the services offered by the space’s smart things and consider the different relationships that may

tie these services opportunistically to build applications. In this paper, we utilize our Inter-thing relationships

programming framework to present a distributed programming ecosystem. The framework broadens the

restricted set of thing-level relationships of the evolving social IoT paradigm with a set of service-level

relationships. Such relationships provide guidance into how services belonging to different things can be

combined to build meaningful applications. We also present a uniform way of describing the thing services and

the service-level relationships along with new capabilities for the things to dynamically generate their own

services, formulate the corresponding programmable interfaces (APIs) and create an ad-hoc network of socially

related smart things at runtime. We then present the semantic rules that guide the establishment of IoT

applications and finally demonstrate the features of the framework through a proof-of-concept application.

KEYWORDS

Social IoT, Atlas thing architecture, inter-thing relationships, IoT programming model, service

1 INTRODUCTION

Current advancements in the Internet of Things (IoT)

have evolved from the ubiquitous presence of the smart

and cyber things, to the actual establishment of

applications that realize the true capabilities of smart

spaces [9][10]. Such inter-connected things (from the

state-of-art of the current IoT infrastructures, platforms,

sensing technologies and communication protocols)

have triggered endless innovative scenarios that guide

developers to program the surrounding smart spaces

[24]. However, for a realization of the smart spaces’

resources and capabilities to establish domain-related

applications, the development environment should not

only be based on the services offered by the things but

also on the relationships that describe how such

services can unite to build meaningful applications

[16]. These relationships create a new paradigm named

social IoT [1][11], as a social network of smart things

 Open Access

Open Journal of Internet of Things (OJIOT)

Volume 4, Issue 1, 2018

www.ronpub.com/ojiot

ISSN 2364-7108

© 2018 by the authors; licensee RonPub, Lübeck, Germany. This article is an open access article distributed under the terms and conditions

of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).

This paper is accepted at the International Workshop on Very

Large Internet of Things (VLIoT 2018) in conjunction with the

VLDB 2018 Conference in Rio de Janeiro, Brazil. The

proceedings of VLIoT@VLDB 2018 are published in the Open

Journal of Internet of Things (OJIOT) as special issue.

Open Journal of Internet of Things (OJIOT), Volume 4, Issue 1, 2018

36

that inform the developer how things’ services can

build domain-related IoT applications.

The recently proposed ideas on social IoT [1][11]

logically link the things according to their

identification attributes (e.g., things from same vendor,

things collocated in the same smart space). Such thing-

level relationships don’t reflect how the different

services offered by these things are related. However,

the exploitation of the service-level relationships in the

context of social IoT adds an effective programming

perspective to the evolving paradigm of Social IoT

[16].

On the other hand, the current programming

frameworks for the IoT [24][25] consider a restricted

set of relationships which we think are not sufficient to

build a wide range of applications. For instance, If This

Then That (IFTTT) [15][26] only offers applications

where one service controls the operation of another

service (e.g., initiate an emergency call if smoke is

detected). However, the exploitation of more service-

level relationships that logically and functionally tie the

different services for new engagement opportunities

will highly enrich the space of innovative applications

[16]. These frameworks also ignore the ad-hoc nature

of the smart things and require additional effort for the

manual configuration and registration of the things and

services to powerful platforms (e.g., cloud). However,

enabling both thing-to-thing and thing-to-cloud

interactions along with the seamless integration of the

things in the ecosystem empowers the properties of

distributed programming environments [9][10] that

reside on both the things and cloud (e.g., no single

point of failure, seamless integration and management).

In [16], we presented an overview of the inter-thing

relationships detailed in this paper. We demonstrated

how such relationships can be utilized within a

programming framework based on our Atlas thing

architecture and its IoT Device Description Language

(IoT-DDL) [17][18] to build a distributed programming

ecosystem for the social IoT. In this paper, we extend

our inter-thing relationships programming framework

presented in [16] with a detailed formalization along

with algorithmic implementations of each primitive or

operator in the framework. Effectively, the framework

broadens the social IoT thing-level relationships with a

set of concrete service-level relationships that can

empower developers to establish a much wider class of

IoT applications.

The framework introduces service (abstraction of

the function offered by a thing), relationship

(abstraction of how different services are linked

together) and recipe (abstraction of how different

services and relationships build up an app) as three

primitives. The relationships defined in the framework

can be utilized by vendors of the thing, utilized by

developers while building apps, and dynamically

inferred from the knowledge exchanged between the

things as new programming opportunities. The

framework also defines Filter, Match, and Evaluate as

three operators that define how the primitives are

wired. The thing vendor, Atlas thing (a thing with the

Atlas thing architecture) and developer are the main

poles of the framework: 1) the vendor describes a

thing’s services and relationships with other things; 2)

the thing generates services and exchanges knowledge

with the other things; and 3) the developer utilizes our

Atlas IDE to sense the smart space, infer new

programming opportunities, and communicate back

with the things for services calls.

We present the framework in detail in this paper

and show how it facilitates describing an IoT

application through a set of semantic rules. The

semantic rules evaluate the correctness of the

established application by the developer and guide the

execution of the application. We also present the

capability of the thing through the Atlas architecture to

dynamically: 1) build run-time programmable objects

for the offered services and the relationships that link

them to other things; 2) generate actual services from

the description provided by the vendor; and 3)

formulate and generate the appropriate programming

interfaces (APIs) to access the offered services by the

thing.

Throughout this paper, we present a detailed proof-

of-concept scenario for engaging the proposed

programming framework with the Atlas thing

architecture and the IoT-DDL. The presented

application is a home automation scenario triggered

when the smart door locker senses that no one is

present at home. The scenario utilizes three things in

the smart space: 1) a smart lock that locks the home

door if no one is home; 2) a thermostat that adjusts

room temperature; and 3) motorized window blinds

that can be tilted up and down. The presented

application illustrates how a service is described (as

will be detailed in Section 4.1.a), how a relationship is

described (as will be detailed in Section 4.1.b), how the

Atlas thing dynamically generates the service (as

detailed in Section 5) and how the framework

primitives are wired to build such meaningful scenario

(as will be detailed in Section 6).

The paper is organized as follows. Section 2

highlights related work in both social IoT and

programming models for IoT. Section 3 presents an

overall view on the Atlas thing architecture and the

thing IoT-DDL with focus on the layers that implement

the framework. Section 4 presents the details of the

Inter-thing relationship programming framework and

the semantic rules followed by the details of the actual

generation of services at the runtime in Section 5.

A. E. Khaled, W. Lindquist, A. Helal: Service-Relationship Programming Framework for the Social IoT

37

Building an Atlas IoT app is described in Section 6.

Finally, a discussion and future work along with the

conclusion are presented in Section 7 and Section 8

respectively.

2 RELATED WORK

Atzori et al. [1] proposed a paradigm of a social

network of smart objects named Social Internet of

Things (SIoT) to mimic human behavior. The authors

analyzed the types of social relationships between

things to be: parental (things built by the same vendor),

co-location and co-work (things reside in the same

place or cooperate to provide applications), and owner

(things owned by the same user). The authors in [8]

also presented an architecture to address network

navigability along with service discovery and

composition. The architecture is made up of server and

objects (the physical devices) as the network elements.

The server holds the relationship management module

where the selection and setting of the relationships is

based on human control settings along with appropriate

interfaces to objects, humans and third-party services.

The object side holds an abstraction layer for the

device and the social management module for the

communication between the device and the server.

Holmquist et al. [11] presented a context proximity

procedure that creates friendship between embedded

devices named Smart-Its. Smart-Its are wireless tiny

devices, equipped with sensing and processing

capabilities in addition to onboard accelerometers. The

movement data of the device is captured and broadcast

to other smart-its in range to be compared to their

movement patterns. If similar patterns are detected, the

former smart-it is accepted as a friend and a connection

is then established with the other smart-its. The

author’s main concern was on the qualitative and

selective connections that can be established between

such smart devices.

Turcu et al. [28] considered building an RFID-

based social network of cognitive robots, for human-

robot and robot-robot social interactions. The authors

used Twitter as a social network to build online

communities, where they created Twitter accounts for

each robot. A robot’s behavior is determined according

to the RFID-tagged entities that come across its path;

the robot then exhibits a predefined behavior (e.g. love,

fear, repulsiveness). Such behavior is sent as a message

on Twitter and the robot then waits for a reply to

decide what to do next. Kranz et al. [20] introduced

further steps in integrating IoT with social networks.

The authors have also chosen Twitter as an online

social network, and then created accounts for cognitive

plant controllers. Such controllers are equipped with a

Twitter-enabled sensing system that tweets the

humidity information to the plant’s Twitter account.

If This Then That (IFTTT) [15][26] is a web-based

service that allows users to connect various Internet-

based services (e.g., Facebook) by creating rules

(called recipes). IFTTT allows two services to be

manually combined using simple if-then statements to

accomplish a task and utilizes the APIs offered by

services’ vendors (e.g., Twitter) to access the client’s

data. As an instance, IFTTT can be used to send files

uploaded into Dropbox into Evernote, automatically.

As mentioned earlier, IFTTT uses recipes to describe

actions, where the users of the platform can search

existing preconfigured recipes. The user then needs to

give permission for the services to allow IFTTT access

to the personal data associated with the accounts.

Recently, IFTTT has been working on integrating these

services with smart products (e.g., Belkin WeMo Home

automation, Philips Hue LED light bulb) through

utilizing the open APIs offered by the vendors and

manufacturers of these devices.

Jaeseok Yun et al. [32] demonstrated a prototype

service named TTEO (Things Talk to Each Other) that

enables users to program IoT through a set of if-then

rules. TTEO utilizes two platforms, the connectivity

platform named Mobius that resides in an IoT server

and the smart service server named &Cube. The server

registers and collects data from the devices, and

maintains virtual representations of them. The devices

can be interoperated with each other through the

Mobius platform. The server allows developers to

customize and configure devices connected to the

Mobius and enables the developer to build new

services through a predefined set of if-then rules.

Stefan Nastic et al. [25] proposed an on-cloud

platform named PatRICIA for high-level IoT

programming. PatRICIA is based on Service-oriented

architecture (SOA) design principles. The platform

holds virtualizations of the connected devices,

communication protocols and connectors, and a device

manager and service discovery utility. The platform

also contains the application development and

deployment tools as well as the programming model.

The programming model defines a set of constructs and

operators for the development of applications through

predefined domain-specific tasks defined by domain

experts. The control task represents a sequence of

actuating steps to control physical devices, while the

monitor task represents processing and analysis of

sensory data streams for meaningful information. Each

task is represented via an Intent: a data structure to

describe, configure and invoke the operation of the

control or monitoring task, where the execution and

processing reside on the cloud.

Open Journal of Internet of Things (OJIOT), Volume 4, Issue 1, 2018

38

Chao Chen et al. [5] proposed an event-driven

programming model named E-SODA, as an extension

of the service-oriented device architecture (SODA).

SODA focuses on the services provided by system,

rather than the sensor data streams. The authors

developed a reference implementation of SODA, which

features the Atlas sensor platform and middleware

proposed in [19]. The Atlas middleware enables service

discovery and composition to create an app. The Atlas

sensor platform automatically represents the devices as

service bundles that implement a uniform service

interface and abstract the physical details. E-SODA

abstracts sensor data into events while an application

follows a rule-oriented processing paradigm that is

composed of a list of Event-Condition-Action (ECA)

rules. An ECA rule listens to the occurrence of a

predefined event derived over sensor data and responds

by taking the corresponding action if the condition is

satisfied. An E-SODA application is a collection of

interrelated services together performing the function

of rule evaluation. A rule object keeps references to

three services of different types that represent the

event, condition, and action components of this rule.

The Web of Things (WoT) framework by the

World Wide Web Consortium (W3C) [30][31] is an

active research field that explores access to and

handling things’ digital representations through a set of

web services. These services are based on event-

condition-action rules that involve these virtual

representations as proxies for physical entities. Such

objects are modeled in terms of metadata, events, and

actions, where servers then provide an interface for

instantiating and registering such proxies for the things

along with their descriptions. A client script interacts

with these proxies exported by the server, where

applications can register callbacks for events. Darko et.

al. [22] utilize Thing Description (TD) to describe the

different things in the WoT, in terms of thing’s

metadata, how to access them, different events and the

corresponding actions. The TD relies on the Resource

Description Framework (RDF) [13] as an underlying

data model that can be extended to involve domain

specific information.

The inter-thing relationship programming

framework proposed in [16] broadens the social IoT

thing-level relationships proposed in [1][8][11] with

service-level relationships that logically and

functionally show how the things’ services may tie to

build applications. Such service-level relationships

extend the limited and restricted set of relationships

presented in [5][26][32][15] with a new set of concrete

of relationships that can empower developers to

establish a much wider class of IoT applications. The

developer utilizes the framework to describe an

application (in terms of the different primitives and

operators), such application is governed by a set of

semantic rules that evaluate the correctness and guide

the execution. On the other hand, for a true distributed

programming ecosystem, the thing (through the

mounted Atlas architecture on the thing and the IoT-

DDL uploaded to the thing) dynamically builds run-

time programmable objects for the offered services and

the relationships and generates services along with the

appropriate APIs to them.

The focus of this paper is on: 1) the capability of

the vendor to describe services and relationships to the

thing through the uploaded IoT-DDL; 2) the capability

of framework to connect the different primitives and

operators to build an IoT application; and 3) the

capability of the thing to generate services and

formulate the appropriate APIs. We also presented

Atlas IDE (an application development environment

that implement the proposed programming framework)

that enables the developer to discover announced

knowledge about TS(s) and TR(s) from the things and

infers the existence of new programming opportunities

from the exchanged knowledge between the things.

The discovered relationships reflect how the current

services can be further related to each other and enrich

the programmability of the space to the developer with

new service engagement opportunities. However, for

space constraints and to keep the focus of the paper, the

details of the implementation of the Atlas IDE is

outside the scope of this paper.

3 ATLAS ARCHITECTURE AND IOT-DDL

As mentioned earlier, our inter-thing relationship

programming framework is built upon the Atlas thing

architecture project and the IoT Device Description

Language (IoT-DDL) specification [17][18]. The IoT-

DDL is a machine- and human-readable XML-based

descriptive language that describes the identity of the

thing, its inner entities, resources, and offered services,

and the cloud-based accessories attached to it. The

architecture, utilizing the IoT-DDL specifications,

allows the thing to self-discover its own capabilities

and engage through different thing-to-thing and thing-

to-cloud interactions with other platforms and thing

mates. The thing, through the architecture, handles the

dynamic formulation of services, the generation of

corresponding access interfaces (APIs), and the

building of run-time programmable objects for the

offered services and the relationships that link them to

other things. In this section, we present a brief

overview of the architecture and the IoT-DDL with

focus on the main aspects that empower the proposed

framework.

A. E. Khaled, W. Lindquist, A. Helal: Service-Relationship Programming Framework for the Social IoT

39

3.1 IoT-DDL

The IoT-DDL is a schema used to describe, through a

set of attributes and parameters, the thing in a smart

space in terms of the set of resources, inner entities,

cloud-based attachments, and interactions that engage

the thing with other things and cloud platforms [17].

Resources are the components that shape the OS

services (e.g., network module, memory unit).

Moreover, thing entities are the physical devices,

software functions, and hybrid devices that can be

attached to, built into, or embedded inside the thing,

where each entity provides a set of services to the smart

space. A cloud-based attachment is an expansion of the

thing that provides further representations (e.g., thing

virtualization) and functionalities (e.g., log server,

database, or dashboard) that require heavyweight

resources that may not be available on more

constrained things. A thing engages with others

through a set of information- and action-based

interactions. Information-based interactions (referred to

as tweets) enable a thing to announce its identity,

capabilities, and services, while the Action-based ones

include management commands and lifetime updates as

well as the apps that target the thing’s services.

IoT-DDL is based on Atlas DDL [4], which uses an

XML-based schema to describe devices to facilitate

their integration in a smart space. It has been used to

develop the Atlas Cloud-Edge-Beneath (Atlas-CEB)

architecture [12], which uses DLL to generate Java

bundles representing the devices that can be deployed

on an edge and/or cloud to connect back and interact

with the devices the DDL describes. DDL is used to

describe a single device (sensor, actuator, or hybrid)

through the device's metadata, functions, and

operations. Atlas IoT-DDL extends Atlas DDL to

describe the different components of the thing as

outlined above. The Atlas thing section in the IoT-

DDL, as illustrated in Listing 1, provides a description

metadata subsection about the thing (e.g., name,

vendor, operating system, overall description, Atlas

thing ID, smart space ID [18]), and a resources

subsection (e.g., network module, memory properties).

The Atlas entity section in the IoT-DDL, on the

other hand, provides information on the attached, built-

in or connected hardware and software entities of the

thing. In addition to descriptive metadata information,

each entity section details the set of services it can

offer. Each service is characterized by its functional

properties, the required inputs, and the expected

outputs (in terms of the data type, units, and expected

range). The properties (functional description, inputs

and outputs) of these services are utilized by the Atlas

thing architecture (as will be detailed in Section 5)

to generate services dynamically and formulate the

1. <Atlas_Thing>
2. <Descriptive_Metadata>
3. <Owner>Mobile Computing Lab</Owner>
4. <Name>Raspberry Pi 3</Name>
5. <OS>Raspbian</OS >
6. <ATID>AtlasThing128</ATID>
7. <SSID>SmartSpace326012</SSID>
8. …
9. </Descriptive_Metadata>
10. ...
11. <Resources>
12. <Network_Properties>
13. <Module>Wifi</Module>
14. <UUID>Lab Network</UUID>
15. <Protocol>REST</Protocol>
16. <URL>192.168.1.54</URL>
17. …
18. </Network_Properties>
19. <Memory_Properties>
20. …
21. </MemoryProperties>
22. </Resources>
23. </Atlas_Thing>

Listing 1: An IoT-DDL snippet showing the Atlas

thing section

appropriate interfaces (APIs), allowing things in the

smart space to utilize the generated services.

3.2 Atlas Thing Architecture

The architecture consists of a set of new operating

layers that we propose to provide novel capabilities a

thing requires to engage and interact with other things

and platforms in the smart space. An implementation of

the architecture is to be flashed into the thing using the

vendor’s provided IDE or OS (e.g., C/C++ for Linux-

based platforms such as Raspberry Pi, Java for Android

smartphones, or IDE for Arduino).

The architecture, as illustrated in Figure 1, consists

of three main layers: Atlas IoT platform, host interface,

and IoT OS services. IoT OS services are the basic

functionalities provided by the thing’s operating engine

to enable the thing to be part of the ecosystem (e.g.,

network module, memory units, I/O ports and physical

interfaces, and its process manager).

The Atlas IoT platform represents the logical layer

of the architecture that provides new functionalities not

currently provided by IoT OS services. Such new

services revolve around the descriptive and semantic

aspects of the thing as a basis for discovering and

announcing presence, formulating services and access

interfaces, and handling interactions. The host interface

layer gives the platform the portability and

interoperability needed to maximize its reliance on the

IoT OS’s services. The interface creates a gateway that

manages the interactions between the platform and OS

Open Journal of Internet of Things (OJIOT), Volume 4, Issue 1, 2018

40

Figure 1: The Atlas thing architecture

services. On systems with little or no operating system

support (e.g., Arm Mbed and Arduino), this layer also

provides an implementation for the missing required

functionalities.

The Atlas IoT platform is further divided into three

sublayers: the DDL, Tweeting, and Interface sublayers.

The DDL sublayer (the focus of this paper), through

the uploaded IoT-DDL file, manages the configuration

of the architecture. Such configuration enables the

thing to self-discover its own properties and resources

(Identity Parser module), enables the generation of

services (API Engine), the creation of programmable

representations of the services and their relationships

with other services (Knowledge Engine), and thing

management and lifetime configuration (Device

Manager). From the service description detailed in

Section 2, the API Engine dynamically creates the

services (as will be described in Section 5), exposes the

appropriate programmable access interface (API) for

each, routes API calls, and checks the API inputs’

types and ranges.

The DDL layer then utilizes the Tweeting and

Interface layers to formulate messages and engage with

the smart space, respectively. The current version of

the architecture takes advantage of lightweight device

management standard OMA-LwM2M [21] and

communication standards CoAP [6], MQTT [23], and

HTTP REST, along with the capability to interoperate

between the different communication protocols through

common channels [18].

4 INTER-THING RELATIONSHIP

FRAMEWORK

The proposed programming framework introduces

three primitives to build IoT applications: 1) Thing

Service (TS) – an abstraction of the service offered by

a thing to the smart space; 2) Thing Relationship (TR)

– an abstraction of how the different TSs are linked

together; and 3) Recipe – an abstraction of how the

different TSs and TRs build up a segment of an app (an

Atlas IoT app is a sequence of recipes). The framework

also defines Filter, Match, and Evaluate as three

operators that logically and functionally define how the

primitives are wired. The thing vendor, Atlas thing (a

thing that runs the Atlas thing architecture code) and

developer are the main poles of the proposed

framework. This section presents the framework’s

primitives and operators, and highlights the different

relationships that can take place between the services

along with the different recipe types. This section then

presents the semantic rules that govern the

establishment of applications as well as the roles of the

main poles in establishing the IoT app at the runtime.

A. E. Khaled, W. Lindquist, A. Helal: Service-Relationship Programming Framework for the Social IoT

41

4.1 Primitives

The proposed framework introduces Thing Service,

Thing Relationship, and Recipe as the three primitives

to build an Atlas IoT application, as follows:

a. Thing Service (TS): is an abstraction of a service

that an Atlas thing offers to the smart space things and

developers. The vendor describes the services offered

by an Atlas thing through the IoT-DDL to be uploaded

to the thing (as discussed in Section 3.1). The Atlas

thing—when powered up or when any change to the

service description occurs—parses the IoT-DDL and

creates a programmatic abstraction for each service it

offers, named Thing Service (TS) in the knowledge

engine of the DDL sublayer of the architecture. The

TS represents the characteristics of the service in terms

of the offered functionality, who is offering it, and how

it can be accessed. The Atlas thing then advertises

these TSs (one TS for each offered service) to thing

mates and saves received mates’ TSs. It is worth

mentioning that the TS object uses the assets and ideas

in service discovery protocols defined by SOA [19].

We are using the same idea in a slightly different way

to enable the dynamic declaration of relationships

between the different TSs in a distributed programming

ecosystem. Each TS, as illustrated in Listing 2,

describes the service through a set of attributes

(Attributes) and an interface to access the offered

service (Interface).

A TS’s Attributes are the metadata that describe the

characteristics of the service in key-value pairs. The

attributes are sub-divided into three groups: a)

Identification information for the thing with ‘Space ID’

[18], ‘Thing ID’, ‘Name’, ‘Vendor’ and ‘OS’ as the

keys, where the values of the keys are extracted from

the uploaded IoT-DDL (e.g., identity attributes for a

thing that offers GPS can be {(Name, nuvi58LM),

(Vendor, Garmin)}); b) Descriptive information that

describes the offered functionality using a set of words

declared in the IoT-DDL, with ‘Keywords’ as the key,

(e.g., descriptive information for a navigation service

could be Keywords: {Location, Map, Route}); and c)

Type of the offered service, where the key ‘Type’ takes

condition, report or action as value. Condition is a type

of service that examines specific phenomena, returning

a domain value if the condition exists and false

otherwise (e.g., check if there is a parking spot, return

the available spot). Report is a type of service that

returns a numerical value (e.g., read a temperature

sensor, return the value). Action is a type of service

that performs an actuation function, returning a domain

value upon a successful call and false otherwise (e.g.,

turn on the electric switch, return true if the function

was triggered).

Structure TS (Thing Service)
1- Attributes

 Space ID //ID for the smart space where the thing
coexist

 Thing ID //ID for the thing that offers the service
 Name //Name of the thing
 Vendor //Name of the thing vendor
 OS //The operating system the thing is

running
 Keywords //Descriptive attributes in terms of a set

of keywords that describes the offered service
 Type //condition, report or action

2- Interface
 Name //Name of the function
 Inputs //Data variables
 Output //Domain value if successful execution,

and false otherwise

Listing 2: Structure of the thing service (TS)

1. <Entity_1>
2. <Descriptive_Metadata>
3. <Name>Thermostat</Name>
4. <Vendor>Honeywell</Vendor>
5. <ATID>AtlasThing128</ATID>
6. <SSID>SmartSpace326012</SSID>
7. <Description>Manage House Temperature

 </Description>
8. …
9. </Descriptive_Metadata>
10. <Resource_Service>
11. <Service_1>
12. <Name>Read Temperature</Name>
13. <OutputType>Real</OutputType>
14. <OutputName>Temperature Value</OutputName>
15. <OutputRange>[0:100]</OutputRange>
16. <OutputUnit>C</OutputUnit>
17. <InputType>NULL</InputType>
18. <Type>Report</Type>
19. <Keywords>read, ambiance, AC</Keywords>
20. …
21. </Service_1>
22. <Service_2>
23. <Name>Set Temperature</Name>
24. <InputType>Real</InputType>
25. <InputName>Temperature Value</InputName>
26. <InputRange>[0:100]</InputRange>
27. <InputUnit>C</InputUnit>
28. <OutputType>NULL</OutputType>
29. <Type>Action</Type>
30. <Keywords>adjust, ambiance, AC</Keywords>
31. …
32. </Service_2>
33. </Resource_Service>
34. </Entity_1>

Listing 3: IoT-DDL for the thermostat hardware

entity

A TS’s Interface provides a direct way to trigger the

offered service on the hosting thing. The interface,

from the IoT-DDL, is defined in terms of the function’s

name, inputs, and output. Each input is a data variable

that is defined by a short description, data type (e.g.,

Open Journal of Internet of Things (OJIOT), Volume 4, Issue 1, 2018

42

integer, float point) and domain range (the acceptable

input values). The output depends on the type of the

offered service (condition, report or action). The API

Engine of the architecture (as will be detailed in

Section 5) handles the dynamic generation of the

services, formulation of the appropriate programmable

interfaces (APIs), routing of API calls and performing

the corresponding check on the expected inputs’ types

and ranges.

Take a thermostat hardware entity for an Atlas

thing as an example. The IoT-DDL’s descriptive

metadata and services sub-sections [17][18], as

illustrated in Listing 3, enable the thing to create a TS

that represents each of the offered services. The

descriptive metadata sub-section (Line 2 to 9)

represents the identification attributes for the offering

thing, where ATID stands for Atlas thing ID and SSID

stands for smart space ID [18]. The services subsection

(Line 10 to 33) represents the parameters and attributes

for the two services offered by the thermostat (reading

and setting room temperature) in terms of the inputs

(types, descriptions, ranges and units) and outputs.

Each service is further described in terms of a set of

descriptive keywords (Line 19 and Line 30) and the

service type (Line 18 and Line 29).

b. Thing Relationship (TR): is an abstraction of a

connection between TSs that defines how two or more

services are logically and functionally tied to build

meaningful applications. The relationships defined by

the framework, as will be detailed in Section 4.3, can

be: 1) utilized by the vendor in the thing’s IoT-DDL as

prior knowledge to the thing, 2) utilized by the

developer while building applications, and 3) inferred

as new programming opportunities by the development

environment from the exchanged knowledge between

the things (as will be detailed in Section 4.4). The Atlas

thing—when powered up or after any change to the

relationship description—parses the IoT-DDL and

creates a programmable object named a Thing

Relationship (TR) for each relationship established by

the vendor in the IoT-DDL. The Atlas thing then

advertises such TR(s) to thing mates and the Atlas IDE

and saves received mates’ TRs.

However, due to the lack of knowledge about all

services offered by things ahead of their

announcements, vendors require a way to establish a

TR between an offered service (TS) and an unbounded

service (UB). A UB enables the relationship establisher

to describe a service, which may not yet be announced

by a thing in the smart space, to be matched with one

of the TSs offered by an Atlas thing later in time.

During the execution of an application, the offered TSs

are checked for the closest matches to the UB(s).

Structure TR (Thing Relationship)

1- Attributes
 Name //Name of the establisher (e.g., Samsung)
 Type //Control, drive, support, or extend for

cooperative relations, or contest, interfere, refine, or
subsume for competitive relations

2- UB(s)
 Vendor //The expected service vendor (e.g., Philips)
 Type //Condition, report or action
 Keywords //Set of keywords that describes the service
 Match //Acceptable match with TS attributes

3- Interface
 Formula //Input order and dependencies
 Inputs //TS(s), UB (s), Data variable(s)
 Output //Domain value if successful, and false

otherwise

Listing 4: Structure of the thing relationship (TR)

When a match occurs (as will be detailed in Section

4.2), the UB is replaced with a reference (space id,

thing id and TS name) to the closest matched TS (in

case of a tie, the first match will be selected). The

evaluation of such a TR is enabled only when there is a

match for each UB defined in it. Each UB is described

in terms of the expected vendor of such service, the

service type (e.g., report), a set of descriptive words for

the functionality, and the acceptable value of match

with a TS. The acceptable value of match reflects how

similar a TS should be to replace the UB. Each

attribute of the UB may accept the wildcard as input

(e.g., to match any TS’s vendor, the UB vendor holds *

as value).

 Each TR, as illustrated in Listing 4, describes the

characteristics of the relationship through a set of

attributes (Attributes), a set of unbounded services

defined by the relationship vendor (UBs), and an

interface to access the relationship (Interface).

 Attributes, metadata in key-value pairs that declare

who established this relationship with ‘Name’ as the

key and the type of the established relationship with

‘Type’ as the key (takes one of the following values:

control, drive, support, or extend for cooperative

relationships, or contest, interfere, refine, or subsume

for competitive ones – will be declared in Section

4.3).

 UB(s), one or more unbounded services defined in

the TR, each defined with a vendor, type, keywords

and match value.

 Interface, a direct way to execute the relationship

with inputs, formula, and output. The interface input

can be a TS or UB, or a data variable defined by a

description, type, and domain. The formula reflects

A. E. Khaled, W. Lindquist, A. Helal: Service-Relationship Programming Framework for the Social IoT

43

1. <Thing_Relationship>
2. <Relation_1>
3. <Establisher_Name>Honeywell</Establisher_Name>
4. <Type>Contest</Type>
5. <Unbounded_Services>
6. <UB_1>
7. <Vendor>Nest</Vendor>
8. <Type>* </Type>
9. <Keywords>ambience, AC</Keywords>
10. <Match_Required>80</Match_Required>
11. </UB_1>
12. </Unbounded_Services>
13. <Name>Adjust Roomtemperature</Name>
14. <Inputs>Service_1, UB_1</Input>
15. ….
16. </Relation_1>
17. </Thing_Relationship>

Listing 5: Extending the IoT-DDL for the

thermostat to establish a contest relationship with

other thermostat services

Structure Recipe:

1- Attributes
 Name //Name of the recipe establisher
 Type //Simple or conditional

2- Interface
 Formula //Inputs order and dependencies
 Inputs //TS(s), TR(s)
 Output //Domain value if successful, and false

otherwise

Listing 6: The structure of the Recipe

how the inputs are processed (will be declared in

Section 4.3). The relationships are evaluated

independently, even if a single TS is involved in

multiple relationships (dependent relationships are

outside the scope of this paper).

Consider an expanded IoT-DDL for the thermostat

example with a thing relationship sub-section to

describe a contest relationship with another Atlas thing,

a thermostat from Nest. As illustrated in Listing 5, the

other thermostat is described as a UB

(Lines 7-10) to be from Nest as ‘Vendor’, with any

type (condition, action or report), and ambience and

AC as the ‘Keywords’. The defined UB is to be

compared for a match with the TSs offered by other

Atlas things in the smart space. The acceptable match

(to replace the UB with TS) is of value 80. The

relationship is of type contest (Line 4) and is

established by Honeywell (Line 3). The relationship

accepts the service offered by the thing (defined in

Listing 3) and the declared UB as the two inputs

(Line 14).

c. Recipe: is an abstraction of a connection between

different TSs and TRs to build up a segment of an

application, where an IoT application is a sequence of

one or more recipes. It is worth mentioning that the

term Recipe was first used in IFTTT [15] to describe an

application; in this paper, we use the same term to

describe a sequence of TSs and TRs established by the

developer and evaluated sequentially. Each Recipe, as

illustrated in Listing 6, describes a segment of an

application through a set of attributes (Attributes) and

an interface through which this recipe is accessed

(Interface).

 Attributes, metadata in key-value pairs that declare

who established the recipe with ‘Name’ as the key

and the type of the recipe with ‘Type’ as the key

(either simple or conditional – will be declared in

Section 4.3).

 Interface, a direct way to execute the recipe in terms

of the inputs, formula, and output. Each input can be

TR or TS. The formula reflects the sequence of how

the inputs are processed and maintains the required

dependencies between them (will be declared in

Section 4.3).

4.2 Operators

The framework defines Filter, Match, and Evaluate as

three operators that logically and functionally define

how the primitives are wired. In this section, we will

detail the operations and the attributes that configure

each of the three operators.

a. Filter accepts a set of TSs and selects a subset

according to preferences. A preference (declared in

Equation 1) is a key-value pair that represents one of the

TS attributes’ keys (e.g., service type, service vendor)

while the value is declared by the operator establisher

(e.g. developer). The filter operator accepts (as declared

in Equation 2) n TSs and m preferences then selects the

subset of TSs that follows the input preferences (e.g., for

TSs from ‘Philips’, the establisher uses (Vendor,

‘Philips’) as the preference – where Vendor is one of the

TS’s attributes while ‘Philips’ is the value declared by

the establisher). The operator can be extended to accept

a set of TRs and select a subset (e.g., get all relationships

established by ‘Samsung’ as Name – where Name is one

of the TR’s attributes).

The preference, through the filter operator, can: 1) be

optionally negated using the logical negation (), thus

the logical negation of the preference (Vendor, ‘Philips’)

selects services from all vendors other than ‘Philips’;

and 2) be accumulated with other preferences using the

logical AND (∧), OR (∨), and XOR (⊕) operators to

select one or more TSs. Thus, as illustrated in

Equation 2, the operator filters a set of n TSs {TS1, TS2,

… TSn} into either: 1) {TSi, TSj, … TSk} as the subset

of services that follows the logically linked and

optionally negated m preferences (P1, P2, … Pm), where

Open Journal of Internet of Things (OJIOT), Volume 4, Issue 1, 2018

44

i, j, and k are the indexes of the selected TSs in the

original set, and 1 ≤ i, j, k ≤ n; or 2) an empty set {∅}
when no service from the n TSs follows the preferences.

𝑃𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑝 = (𝐾𝑒𝑦, 𝑉𝑎𝑙𝑢𝑒),
𝑤ℎ𝑒𝑟𝑒 𝐾𝑒𝑦 ∈ {Name, Vendor, OS, Type, Keywords} (1)

𝐹𝑖𝑙𝑡𝑒𝑟(𝑝1) ⊝ (𝑝2) ⊝ … (𝑝𝑚) {𝑇𝑆1, 𝑇𝑆2, … 𝑇𝑆𝑛}

𝑤ℎ𝑒𝑟𝑒 𝑖𝑠 𝑎𝑛 𝑜𝑝𝑡𝑖𝑜𝑛𝑎𝑙 𝑎𝑛𝑑 ⊝ ∈ {∧,∨,⊕} =

{
{𝑇𝑆𝑖 , 𝑇𝑆𝑗 , … 𝑇𝑆𝑘}, 𝑇𝑆𝑠 𝑓𝑜𝑙𝑙𝑜𝑤 𝑝𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒𝑠 𝑤ℎ𝑒𝑟𝑒 1 ≤ 𝑖, 𝑗, 𝑘 ≤ 𝑛

{∅}, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (2)

b. Match measures the similarity between an

unbounded service UB declared in a TR and a TS

offered by an Atlas thing in the smart space through

two methods. The first method (Equation 3) accepts a

UB and a TS as input and measures the similarity

between the attributes’ values (vendor, type, keyword).

The calculated match value (initially zero) is increased

by a constant value V1 (defined in the framework), for

each match in the vendor or the type. The value is also

increased by a constant value V2 (defined in the

framework) for each word in the UB’s keywords that

exists in the TS’s keywords. The two positive constant

values (V1 and V2) are declared and configured by the

development environment that implements the

proposed programming model (e.g., Atlas IDE –

Section 4.5.c) to reflect the weight of each of the

attributes (vendor, type, keyword) on the calculated

match value.

The two positive constant values (V1 and V2) can be

set as required by the development environment or the

developer’s preferences. The match value is then

compared to the acceptable match value defined in the

UB object. The higher the match value is, the closer the

TS is to replacing the UB. In order to find a match to a

UB, the development environment should apply the

first method (Equation 3) on each of the available TS in

the smart space. However, the second method utilizes

the available relationships in the smart space for an

efficient search for a match. For a smart space with n

TSs and m TRs, if a UB is related to TSx (x is the index

of this TS in the n TSs where 1≤ x ≤ n) through a

relationship TRi, (i is the index of this TR in the m TRs

where 1≤ i ≤ m).

This method (Equation 4) first checks if TSx also

exists in another relationship TRj (j is the index of this

TR in the m TRs where 1≤ j ≤ m and i ≠ j) that is: 1) of

inverse type with TRi (control/controlled-by,

support/supported-by, extend/extended-by or

drive/driven-by for cooperative relationships, or

refine/refined-by or subsume/subsumed-by for

competitive ones –Section 4.3); or 2) of same type with

TRi (both are either contest or interfere). The method

then applies the first method (Equation 3) between the

UB declared in the TRi and the other TS(s) declared

TRj for a probabilistic match.

c. Evaluate accepts either a TS or a TR (as declared in

Equation 5) and triggers the interface member defined

in the corresponding object. A TS’s Interface (as

illustrated in Section 4.1.a) provides a way (API call)

to trigger the offered service on the hosting thing. Such

API call is defined in terms of the function’s name,

required inputs (data variable defined by a description,

type, and domain), and expected output. The TS is

evaluated by an announcement to the thing that offers

𝑀𝑎𝑡𝑐ℎ (𝑈𝐵, 𝑇𝑆) = 𝑚𝑣𝑎𝑙𝑢𝑒, 𝑤ℎ𝑒𝑟𝑒 𝑚𝑣𝑎𝑙𝑢𝑒 =

{

𝑚𝑣𝑎𝑙𝑢𝑒 + 𝑉1, 𝑖𝑓 𝑈𝐵 𝑎𝑛𝑑 𝑇𝑆 𝑎𝑟𝑒 𝑜𝑓 𝑠𝑎𝑚𝑒 𝑉𝑒𝑛𝑑𝑜𝑟
𝑚𝑣𝑎𝑙𝑢𝑒 + 𝑉1, 𝑖𝑓 𝑈𝐵 𝑎𝑛𝑑 𝑇𝑆 𝑎𝑟𝑒 𝑜𝑓 𝑠𝑎𝑚𝑒 𝑇𝑦𝑝𝑒
𝑚𝑣𝑎𝑙𝑢𝑒 + 𝑉2, 𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝑐𝑜𝑚𝑚𝑜𝑛 𝑘𝑒𝑦𝑤𝑜𝑟𝑑 𝑖𝑛 𝑈𝐵 𝑎𝑛𝑑 𝑇𝑆

 𝑤ℎ𝑒𝑟𝑒 0 ≤ 𝑉1 𝑎𝑛𝑑 0 ≤ 𝑉2 (3)

𝑀𝑎𝑡𝑐ℎ (𝑇𝑅𝑖 , 𝑇𝑅𝑗) = 𝑀𝑎𝑡𝑐ℎ (𝑈𝐵, 𝑇𝑆𝑦) 𝑤ℎ𝑒𝑟𝑒

{

 𝑇ℎ𝑒𝑟𝑒 𝑖𝑠 𝑎 𝑐𝑜𝑚𝑜𝑛 𝑠𝑒𝑟𝑣𝑖𝑐𝑒 (𝑇𝑆𝑥) 𝑖𝑛 𝑏𝑜𝑡ℎ 𝑇𝑅𝑖 𝑎𝑛𝑑 𝑇𝑅𝑗

𝑇𝑅𝑖 𝑎𝑛𝑑 𝑇𝑅𝑗 𝑜𝑓 𝑖𝑛𝑣𝑒𝑟𝑠𝑒 𝑡𝑦𝑝𝑒𝑠 || 𝑏𝑜𝑡ℎ 𝑎𝑟𝑒 𝑐𝑜𝑛𝑡𝑒𝑠𝑡 𝑜𝑟 𝑖𝑛𝑡𝑒𝑟𝑓𝑒𝑟

𝑈𝐵 𝑖𝑠 𝑑𝑒𝑐𝑙𝑎𝑟𝑒𝑑 𝑖𝑛 𝑇𝑅𝑖 𝑇𝑆𝑦 ∈ 𝑠𝑒𝑟𝑣𝑖𝑐𝑒𝑠 𝑑𝑒𝑐𝑙𝑎𝑟𝑒𝑑 𝑖𝑛 𝑇𝑅𝑗
1 ≤ 𝑖, 𝑗 ≤ 𝑚 𝑖 ≠ 𝑗 1 ≤ 𝑥, 𝑦 ≤ 𝑛 𝑥 ≠ 𝑦

 (4)

𝐸𝑣𝑎𝑙𝑢𝑎𝑡𝑒 (𝑝𝑟𝑖𝑚),𝑤ℎ𝑒𝑟𝑒 𝑝𝑟𝑖𝑚 ∈ {TS, TR} =

{

𝐼𝑛𝑖𝑡𝑖𝑎𝑡𝑒 𝑠𝑒𝑟𝑣𝑖𝑐𝑒 𝐴𝑃𝐼 𝑐𝑎𝑙𝑙 𝑓𝑜𝑟 𝑡ℎ𝑒 𝑜𝑓𝑓𝑒𝑟𝑖𝑛𝑔 𝑡ℎ𝑖𝑛𝑔 , 𝑖𝑓 𝑝𝑟𝑖𝑚 𝑖𝑠 𝑇𝑆

(
𝑡𝑟𝑖𝑔𝑔𝑒𝑟 𝑎 𝑀𝑎𝑡𝑐ℎ 𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝑖𝑛𝑝𝑢𝑡 𝑈𝐵

𝑟𝑒𝑐𝑢𝑟𝑠𝑖𝑣𝑒𝑙𝑦 𝐸𝑣𝑎𝑙𝑢𝑎𝑡𝑒 𝑒𝑎𝑐ℎ 𝑖𝑛𝑝𝑢𝑡 𝑇𝑆 𝑎𝑛𝑑 𝑚𝑎𝑡𝑐ℎ𝑒𝑑 𝑈𝐵
) , 𝑖𝑓𝑝𝑟𝑖𝑚 𝑖𝑠 𝑇𝑅

 (5)

the service with the API call, where the API Engine of

the architecture of such thing (as detailed in Section 5)

routes the captured API call and perform the

corresponding check on the expected inputs’ types and

ranges then triggers the corresponding service.

At the same time, a TR’s Interface (as illustrated in

Section 4.1.b) details a way to evaluate the

relationship. Such interface is defined in terms of the

expected inputs (TS or UB, or a data variable defined

by a description, type, and domain), the formula (as

detailed in Section 4.3) that reflects how the inputs are

processed, and the expected output. Evaluating a TR

first requires finding a match (through the match

operator) for each UB defined as input to the TR. If

there is a match for each declared UB, then -according

to the relationship formula and type- evaluating TR

requires the evaluation (Equation 5) to each TS defined

in the input and each TS that replaces a declared UB

(as detailed in Equation 3).

Thus, for a smart space with n services and m

relationships, to evaluate TRi (i is the index of this TR

in the m TRs where 1≤ i ≤ m) with p input TSs (where

1 ≤ p ≤ n) and q input UBs (where 1 ≤ q), the evaluate

operator: 1) applies either the first or the second match

methods to find match for each of the q UBs from the

A. E. Khaled, W. Lindquist, A. Helal: Service-Relationship Programming Framework for the Social IoT

45

available n TSs; and 2) triggers a recursive evaluate

call for each of the input p TSs and the q matched UBs,

as detailed in the interface’s formula and relationship

type.

4.3 Types Relationships and Recipes

The framework so far has introduced TS, TR and Recipe

as the primitives of an app with Filter, Match and

Evaluate as the operators to wire these primitives. In this

section, we introduce the types and formulas of the

different relationships and recipes defined by the

framework.

A. Types of relationships and formalizations

A relationship between two or more services is either

cooperative (control/controlled-by, drive/driven-by,

support/supported-by, or extend/extended-by) or

competitive (contest, interfere, refine/refined-by, or

subsume/subsumed-by) as follows:

 Control/Controlled-by evaluates TSb (Equation 6) if

evaluating TSa results in logical true for condition C.

The control condition C, utilized by the relationship

establisher, either reflects the successful evaluation

of TSa (e.g. Pressure sensor checks the existence of

someone in the room, Philips hue turns on the light

when someone exists in the room) or the numerical

output of evaluating TSa is mathematically

comparable to an input real or decimal value. As

declared in Equation 6, TSa is said to control TSb

(TSb is said to be controlled-by TSa). Control can be

extended (Equation 7) to either evaluate TSb or TSc if

evaluating TSa results in logical true or false for

condition C, respectively. The indices a, b and c

refer to the first, second and third TS respectively in

the input set of TSs to the TR’s interface. Control

can be extended to sequentially evaluate a set of

services based on the evaluation of condition C.

𝐸𝑣𝑎𝑙𝑢𝑎𝑡𝑒 (𝑇𝑆𝑎)
 𝐶
→ 𝐸𝑣𝑎𝑙𝑢𝑎𝑡𝑒 (𝑇𝑆𝑏),

 𝑤ℎ𝑒𝑟𝑒 𝐶 = {
 𝑆𝑢𝑐𝑐𝑒𝑠𝑠𝑓𝑢𝑙 𝑐𝑎𝑙𝑙 𝑓𝑜𝑟 𝑇𝑆𝑎

 𝑇𝑆𝑎. 𝑜𝑢𝑡𝑝𝑢𝑡 ∘ 𝑣𝑎𝑙𝑢𝑒, ∘ ∈ {=,≠,<,>}
 (6)

 𝐸𝑣𝑎𝑙𝑢𝑎𝑡𝑒 (𝑇𝑆𝑎)
 𝐶
→ 𝐸𝑣𝑎𝑙𝑢𝑎𝑡𝑒 (𝑇𝑆𝑏); 𝐸𝑣𝑎𝑙𝑢𝑎𝑡𝑒 (𝑇𝑆𝑐) (7)

 Drive/Driven-by feeds the output of evaluating TSa

(Equation 8) to the input (for the TS’s interface

member) required for the evaluation of TSb (e.g.

Read the value of temperature sensor, and turn on

AC accordingly). As declared in Equation 8, TSa is

said to drive TSb (TSb is said to be driven-by TSa).

The indices a and b refer to the first and second TSs

respectively in the input set of TSs to the TR’s

The interface of Extend relationship

 Inputs //inputs for TSa and inputs for TSb
 Output //Result_Set, false by default
 Formula

Resulta = Evaluate (TSa)
Resultb = Evaluate (TSb)
If Resulta is false OR Resultb is false then exit
else add both Resulta and Resultb to Result_Set
end if

Listing 7: The Extend relationship

interface. Drive can be extended (Equation 9) for a

nested sequence of output-input feeds.

𝐸𝑣𝑎𝑙𝑢𝑎𝑡𝑒(𝑇𝑆𝑏. 𝐼𝑛𝑡𝑒𝑟𝑓𝑎𝑐𝑒. 𝐼𝑛𝑝𝑢𝑡(𝐸𝑣𝑎𝑙𝑢𝑎𝑡𝑒 (𝑇𝑆𝑎))) (8)

𝐸𝑣𝑎𝑙𝑢a𝑡𝑒(𝑇𝑆𝑛. 𝐼𝑛𝑡𝑒𝑟𝑓𝑎𝑐𝑒. 𝐼𝑛𝑝𝑢𝑡(… (𝐸𝑣𝑎𝑙𝑢𝑎𝑡𝑒(𝑇𝑆𝑎)))) (9)

 Support/Supported-by enables the evaluation of TSa

(Equation 10) to be the pre-condition for the

evaluation of TSb (e.g. the proper display of an

indoor TV requires the window blinds to close, thus

the window blinds support the indoor TV). As

declared in Equation 10, TSa is said to support TSb

(TSb is said to be supported-by TSa). The indices a

and b refer to the first and second TSs respectively in

the input set of TSs to the TR’s interface.

𝐸𝑣𝑎𝑙𝑢𝑎𝑡𝑒(𝑇𝑆𝑏), 𝐼𝑓 𝐸𝑣𝑎𝑙𝑢𝑎𝑡𝑒(𝑇𝑆𝑎) 𝑖𝑠 𝑡𝑟𝑢𝑒/𝑠𝑢𝑐𝑐𝑒𝑠𝑠𝑓𝑢𝑙 (10)

 Extend/Extended-by concatenates the interfaces of

TSa and TSb (Equation 11) into the interface of a

newly created TS (TSextended) (e.g. A DVR that

records a TV channel, thereby enriching the

functionalities of a smart TV that can display

channels). As declared in Equation 11, TSa is said to

extend TSb (TSb is said to be extended-by TSa). The

indices a and b refer to the first and second TSs

respectively in the input set of TSs to the TR’s

interface. The operation of Extend is algorithmically

illustrated in Listing 7.

𝑇𝑆𝑒𝑥𝑡𝑒𝑛𝑑𝑒𝑑 . 𝐼𝑛𝑡𝑒𝑟𝑓𝑎𝑐𝑒(𝑇𝑆𝑎. 𝐼𝑛𝑡𝑒𝑟𝑓𝑎𝑐𝑒, 𝑇𝑆𝑏. 𝐼𝑛𝑡𝑒𝑟𝑓𝑎𝑐𝑒)(11)

 Contest, Interfere contest refers to two or more TSs

that provide mutually exclusive solutions to the same

problem (e.g. Garmin as GPS device, and a

smartphone offering GPS service through Google

maps), and Interfere refers to two or more TSs are

considered inappropriate or insecure to coexist at

same time and space (e.g. Turn off smoke detector

and turn on the oven). Both types follow the same

formula (Equation 12), where the relationship

establisher (e.g., developer, vendor) filters a set of n

competitive TSs through a set of m preferences

(Equation 1), then evaluates the resulting TS (in the

case that more than one TS is filtered, the formula

selects the first one in the filtered set to evaluate).

𝐸𝑣𝑎𝑙𝑢𝑎𝑡𝑒 (𝐹𝑖𝑙𝑡𝑒𝑟𝑝 1, 𝑝 2,… 𝑝 𝑚 (𝑇𝑆1, 𝑇𝑆2, . . . 𝑇𝑆𝑛)) (12)

Open Journal of Internet of Things (OJIOT), Volume 4, Issue 1, 2018

46

Table 1: Atlas IoT application Semantic rules

Semantic Rule Description

App = {Recipe}+ Atlas IoT app is a sequential set of one or more Recipes.

Resource = Relationship | Service Resource can be either a Service or Relationship.

Recipe = {Resource}+

|C→ {Resource}+

|C→ {Resource}+; {Resource}+

Recipe is a sequential set of one or more resource.

Execute set of resources for a true evaluation of condition C.

Execute the first resource set if condition C is evaluated to true

or the second set otherwise.

Relationship =

Resource Connection Resource

Relationship is a connection between two resources

that indicates how these resources are executed.

Connection =

{Control|Support|Extend| Drive}

or{Subsume|Refine|Interfere|Contest}

The cooperative and competitive relationships.

Service = Report

| Action

| Condition

Returns a numerical value.

Performs actuation service.

Checks the occurrence of a specific event.

C = True

| False

| Not C

| A OPR A

| C OPL C

| Evaluate Service Type Condition

Logical True

Logical False

Negation of expression

Apply relational operator on arithmetic expressions

Apply logical operator on logical expressions

The result of evaluation a Service of Type Condition

A = n

| A OPA A

| Evaluate Service Type Condition

| Evaluate Service Type Report

| Evaluate Service Type Action

Holds a numerical value

Apply arithmetic operator on arithmetic expressions

The result of evaluation a Service of Type Condition

The result of evaluation a Service of Type Report

The result of evaluation a Service of Type Action

OPA = + | * | / | - The arithmetic operations

OPR = < | > | == | != The relational operations

OPL = AND | OR | XOR The logical operations

 Refine/Refined-by, Subsume/Subsumed-by refine

refers to TSa that offers more specific functionality

compared to TSb (e.g. Wifi triangulation for indoor

positioning, and proximity beacons for indoor

positioning), and Subsume refers to TSa that offers

functionality which is included within that offered by

TSb (e.g. Stand lamp turns on the light, and Philips

hue controls the brightness). Both types follow the

same formula (Equation 13) where an evaluation call

for TSa is triggered if both TSa and TSb are currently

offered by Atlas things in the smart space. The

indices a and b refer to the first and second TSs

respectively in the input set of TSs to the TR’s

interface.

𝐸𝑣𝑎𝑙𝑢𝑎𝑡𝑒 (𝑇𝑆𝑎), 𝐼𝑓 𝐵𝑜𝑡ℎ 𝑇𝑆𝑎 𝑎𝑛𝑑 𝑇𝑆𝑏 𝑎𝑟𝑒 𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒 (13)

B. Types of recipes and formalizations

This section introduces the different types of recipes and

the corresponding formulas defined in the interface

member of the recipes.

 Linear evaluates one or more services and

relationships sequentially (Equation 14). The indices

a and n refer to the first and last primitives

respectively in the input set to the recipe’s interface.

The linear recipe (Equation 15) can also accumulate

the output results of evaluating the input primitives

using the logical AND, OR and XOR operations.

{𝐸𝑣𝑎𝑙𝑢𝑎𝑡𝑒 (𝑝𝑟𝑖𝑚𝑎),… 𝐸𝑣𝑎𝑙𝑢𝑎𝑡𝑒(𝑝𝑟𝑖𝑚𝑛)},
𝑤ℎ𝑒𝑟𝑒 𝑝𝑟𝑖𝑚 ∈ {TS, TR} (14)

{𝐸𝑣𝑎𝑙𝑢𝑎𝑡𝑒 (𝑝𝑟𝑖𝑚𝑎) ⊝ … 𝐸𝑣𝑎𝑙𝑢𝑎𝑡𝑒(𝑝𝑟𝑖𝑚𝑛)},
𝑤ℎ𝑒𝑟𝑒 𝑝𝑟𝑖𝑚 ∈ {TS, TR}, 𝑖𝑠 𝑎𝑛 𝑜𝑝𝑡𝑖𝑜𝑛𝑎𝑙 ,⊝ ∈ {∧,∨,⊕}
 (15)

 Conditional evaluates one or more application

primitive (TS, TR) if the logical result of evaluating

the first app primitive (TS, TR) is true/successful

(Equation 16). The indices a, b and n refer to the

first, second, and last primitives respectively in the

input set to the recipe’s interface.

{𝐸𝑣𝑎𝑙𝑢𝑎𝑡𝑒 (𝑝𝑟𝑖𝑚𝑏), … 𝐸𝑣𝑎𝑙𝑢𝑎𝑡𝑒(𝑝𝑟𝑖𝑚𝑛)},
𝐼𝑓 𝐸𝑣𝑎𝑙𝑢𝑎𝑡𝑒 (𝑝𝑟𝑖𝑚𝑎) 𝑖𝑠 𝑠𝑢𝑐𝑐𝑒𝑠𝑠𝑓𝑢𝑙 𝑤ℎ𝑒𝑟𝑒 𝑝𝑟𝑖𝑚 ∈ {TS, TR}
 (16)

A. E. Khaled, W. Lindquist, A. Helal: Service-Relationship Programming Framework for the Social IoT

47

Figure 2: Atlas IoT application primitives and operators tree

4.4 Primitives Interplay and Semantic

Rules

For a uniform way to establish and to evaluate the

validity of Atlas IoT applications, we present the

semantic rules (Table 1) that describe applications in

terms of the services, relationships and recipes that

formulate their structures. The rules: 1) describe the

application in terms of the individual services,

relationships and recipes; 2) ensure the correctness and

compatibility of the application; and 3) govern the

execution. The application is composed of one or more

sequential recipes. The recipe is a sequential set of one

or more resources, where the resource can either be a

relationship or a service. A relationship is either a

cooperative or competitive connection between two

resources (service or another relationship). These

semantic rules enable the seamless composition of

different types and complexities of applications ranging

from a simple service to a composite relationship

(relationship that imposes upon another relationship).

Figure 2 illustrates the app primitives that build up an

IoT app in a top-down tree fashion and how such

primitives are connected through the defined operators

(filter, match and evaluate). The recipes (the high level

of the tree) are established by the app developer where

each recipe (linear or conditional type) is composed of

one or more TRs. The TRs (the middle layer of the tree)

are either established by the vendors through the IoT-

DDLs, established by the developer through the IDE

(will be detailed in Section 4.5), or dynamically inferred

by the IDE from the exchanged knowledge between the

Atlas things. Each TR (cooperative or competitive type)

is composed of one or more TSs. The TSs (the low level

of the tree) are established by the vendors through the

things’ IoT-DDLs and are created by the Atlas things

from the uploaded IoT-DDLs.

4.5 Poles of the Framework

The poles of the framework to build an IoT app are the

thing’s vendor, the Atlas thing, and the developer. In this

section, we explain in detail the role of each pole.

a. Thing vendor: utilizes the Atlas IoT-DDL web tool

[14] to declare an IoT-DDL to be uploaded to the thing.

Such IoT-DDL (as declared in Section 3) reflects the

thing’s identity, entities, services, and relationships. The

vendor also utilizes the OMA-DM device management

server [21] to send authorized updates during the

lifetime of the Atlas thing through the device manager

module of the Atlas thing architecture.

b. Atlas thing: creates, at runtime, a TS programmable

object for each service it offers and a TR object for each

declared relationship. Such runtime objects reside in the

Knowledge Engine of the architecture. The thing creates

Open Journal of Internet of Things (OJIOT), Volume 4, Issue 1, 2018

48

information-based messages (known in this paper as

tweets) describing the newly created TS(s) and TR(s)

through the tweeting sublayer of the architecture, then

utilizes the interface sublayer of the architecture to

announce these tweets to other things in the smart space.

At the same time, the thing creates a local graph in the

knowledge engine of the architecture with TSs as

vertices and TRs as edges.

This graph is updated with the received TSs and TRs

from other things, and from the lifetime updates sent by

the thing’s vendor. The graph enables the thing to keep

track of the available services and relationships in the

smart space and to route the API calls to the API engine

[17] of the architecture for the services hosted by the

thing (as will be detailed in Section 5). The API Engine

dynamically creates the services from their description in

the IoT-DDL, formulates programmable interfaces for

the services, captures API calls, performs checks on the

expected inputs’ types and ranges, and evaluates the

service with respect to the inputs.

c. Developer utilizes our Atlas IDE to build IoT apps.

The IDE is Java-based tool equipped with a graphical

interface to sense the currently available primitives and

operators, enabling the developer to establish TRs and

recipes, and build up an IoT app tree as illustrated in

Figure 2. The tool captures announced knowledge about

TS(s) and TR(s) from the things. The IDE, from the

exchanged knowledge between the things, can

dynamically infer the existence of new relationships as

new programming opportunities for the developer. The

discovered relationships reflect how the current services

can be further related to each other and enrich the

programmability of the space to the developer with new

service engagement opportunities.

The IDE utilizes the Transitivity, Exchange and

Composition properties to discover new relationships

from the previously established relationships by the

developer and the received relationships from Atlas

things. It is worth to mention that these properties

(composition, transitivity and exchange) are logical

properties that deal with the available relationships and

services as black boxes to suggest the probabilistic

existence of new relationships. The current version of

these properties doesn’t consider the linguistic meaning

nor the semantical structure that define these service and

relationships. To keep the focus of the paper, the

implementation details of the IDE is outside the scope of

the paper.

 Transitivity Property: If Service A is in a cooperative

relationship (types: Control, Support, Drive or Extend)

with Service B and Service B is in a cooperative

relationship of the same type with Service C, then the

existence of a cooperative relationship of the same

type is inferred between Service A and Service C. The

same property works for competitive relationships

(types: Contest, Interfere, Subsume or Refine) [16].

Take the following examples to illustrate the usage of

this property for both cooperative and competitive

relationships, respectively: 1) If an alarm clock A

controls a coffee maker B and the coffee maker B

controls a toaster oven C, then the alarm clock A can

control the toaster oven C: 2) If a Garmin GPS A

contests a smart phone offering a GPS service B and

the GPS service B contests a TomTom GPS C, then

the Garmin GPS A can contest the TomTom GPS C.

 Exchange Property: If Service A is in a cooperative

relationship (types: Control, Support, Drive or Extend)

with Service B and Service B is in a competitive

relationship (types: Contest, Interfere, Subsume or

Refine) [16] with Service C, then the existence of a

cooperative relationship of the same type is inferred

between Service A and Service C. Take the following

example to illustrate the usage of this property: If an

alarm clock A controls a Bosch coffee maker B and

the Bosch coffee maker B contests with a Keurig

coffee maker C, then the alarm clock A can also

control the Keurig coffee maker C.

 Composition Property: If Service A is in a

cooperative relationship (type: Extend) with Service B

and Service B is in a cooperative relationship (types:

Control, Support, or Drive) with Service C, then the

existence of a cooperative relationship of the same

type is inferred between the Service C and the

resultant of extending Service A and Service B. The

same property works for competitive relationships

(types: Contest, Interfere, Subsume or Refine)

between Service B and Service C, where the existence

of a competitive relationship of the same type is

inferred between the Service C and the resultant of

extending Service A and Service B. Taking the

following example can illustrate the usage of this

property: a DVR that records a TV channel

enriches/extends the functionalities of a smart TV can

be merged together as one extended service. If

window blinds support the smart TV for better movie

watching experience, then the window blinds also

support the extended service of the DVR along with

the smart TV service.

5 MICROSERVICES

To handle the runtime and just-in-time API-ing of thing

services, the Atlas thing architecture utilizes the Micro-

Services framework [7] in the API Engine of the DDL

sublayer [17] to facilitate dynamic service

generation, registration, and discovery. The Atlas thing

A. E. Khaled, W. Lindquist, A. Helal: Service-Relationship Programming Framework for the Social IoT

49

Figure 3: The structure of the API Engine

1. <Service>
2. <Description>Set Temperature</Description>
3. <Name>SetTemperature</Name>
4. <InputType>Float</InputType>
5. <InputName>TempCelsius</InputName>
6. <OutputType>Integer</OutputType>
7. <OutputName>Success</OutputName>
8. <Formula>
9. <SPIWrite channel=1>TempCelsius/100 +0.5</SPIWrite>
10. <DigitalRead pin=12>Success</DigitalRead>
11. </Formula>
12. <Type>Action</Type>
13. Keywords>Control,Temperature,Thermostat</Keywords>
14. </Service>

Listing 8: An IoT-DDL snippet representing a

service offered by a thermostat thing

dynamically generates a software bundle for each

service described by the vendor in the thing’s IoT-DDL

(as declared in Section 3.1). The bundle is a package

containing the actual code and resources [27][29] a

thing needs to provide the described functionality. The

creation of the bundles, as well as installing (adding)

and uninstalling (removing) them from a pool of

bundles [2] is maintained by the thing through the

microservices framework at the runtime.

As illustrated in Figure 3, the Bundle and API

Generator module converts service descriptions into

executable packages (bundles), interacting with the

DDL manager and the compiler service provided by the

IoT OS Services of the Atlas thing architecture (as

detailed in Section 3.2). The API Generator then

formulates appropriate programmable interfaces (API)

for each created bundle. The API is composed of a

descriptive name and the expected inputs and output (in

terms of the data-type, data-range, unit, and

description). The API Engine then exposes the created

1. int SetTemperature(float TempCelsius) {

2. int Success;

3. float data = TempCelsius / 100.f + 0.5f;

4. spi_write(1, (byte*)&data, sizeof(float));

5. Success = digital_read(12);

6. return Success;

7. }

Listing 9: The generated C code equivalent for the

thermostat service

APIs to the Tweeting sublayer of the architecture for

advertisement to other things in the smart space. The

generated bundle is then passed to the repository,

where all bundles are stored. When an Atlas thing

captures an API call for one of its offered services, the

call is routed to the API Parser and Validator module.

This module checks on the validity of the input

parameters to the interface in terms of the number of

arguments and the expected data-type of each input.

The Service Execution module then retrieves the

relevant bundle from the repository and executes the

service with respect to the inputs of the API call.

Consider a thermostat service in which the user

passes the desired temperature value, as shown in

Listing 8. The service takes a floating-point value,

issues the command over an SPI interface, and returns

a success value on another GPIO pin. From the created

TS object from the IoT-DDL, the API Engine generates

the bundle for this service in terms of executable code

along with the appropriate resources. The bundle

interface is synthesized using the given names and

types, and the code by mapping the IoT-DDL tags in

the formula to executable code provided by the host

interface layer of the architecture. The result is a valid

Bundle

Repository Bundle

and API

GeneratorService

Execution

API Parser and

Validator

API
API call and

Application
Result(s)

Interactions and

Tweeting Engine

Security Engine and

Application Run-Time

IoT-DDL Manager

A
P

I
E

n
g

in
e

IoT-DDL

Services’ sections

DDL

Sublayer

Tweeting

Sublayer

Open Journal of Internet of Things (OJIOT), Volume 4, Issue 1, 2018

50

Figure 4: Home automation Atlas IoT application proof-of-concept

1. <Service_1>
2. <Description>Lock House</Description>
3. <Name>Lock</Name>
4. <InputType>Integer</InputType>
5. <InputName>LockOrUnlock</InputName>
6. <InputRange>[0,1]</InputRange>
7. <OutputType>Integer</OutputType>
8. <OutputName>Success</OutputName>
9. <Formula>
10. <DigitalWrite pin=3>LockOrUnlock</DigitalWrite>
11. <DigitalRead pin=3>Success</DigitalRead>
12. </Formula>
13. <Type>Action</Type>
14. <Keywords>Security,Lock,Door</Keywords>
15. </Service_1>
16. <Service_2>
17. <Description>Check if House is empty</Description>
18. <Name>NobodyHome</Name>
19. <OutputType>Integer</OutputType>
20. <OutputName>Empty</OutputName>
21. <OutputRange>[0,1]</OutputRange>
22. <Forumla>
23. <DigitalRead pin=7>Empty</DigitalRead>
24. </Formula>
25. <Type>Report</Type>
26. <Keywords>Energy Saver,Utility,Occupied</Keywords>
27. </Service_2>

Listing 10: An IoT-DDL snippet representing

services offered by a smart lock

1. int Lock(int LockOrUnlock) {

2. digital_write(3, LockOrUnlock);
3. return digital_read(3);

4. }

5. int NobodyHome() { return digital_read(7); }

Listing 11: The generated C codes equivalent for

the smart lock services

C function performing the equivalent operations, as

seen in Listing 9.

The software bundles, once created, can be loaded

(installed) and unloaded (uninstalled) according to the

dynamic features of the API calls and the established

applications to provide the required services to

other things in the smart space. Bundles are loaded as

dynamic libraries and can be utilized on any device

running the Atlas thing architecture, including boards

that do not provide explicit operating system support

(such as Arduino and Arm Mbed). The self-contained

nature of bundles allows for easy transfer of services,

enabling things which cannot generate their own

bundles to still obtain dynamic functionality. Once

loaded, a bundle exists independently alongside

previously created bundles on the thing and may be

searched for and referenced from the framework by its

interface. At this point, the bundle itself is transparent

to the rest of the thing architecture and can be called in

the same manner as any normal functionality by the

framework and other things.

6 BUILDING IOT APPLICATIONS

In this section, we continue the proof-of-concept

scenario started in the introduction section for engaging

Atlas things in a smart space. As mentioned earlier, the

application illustrates how the framework primitives

are instantiated and wired to build a meaningful

scenario. The presented application, as illustrated in

Figure 4, is a home automation scenario when the

smart door locker senses that no one is present at home.

A. E. Khaled, W. Lindquist, A. Helal: Service-Relationship Programming Framework for the Social IoT

51

Relationship TR1
1- Attributes: (Name, Vendor 1), (Type, Control)
2- UB1: (Vendor, *), (Type, action), (Keywords, ‘thermostat,

room temperature’), (Match, 20)
3- Interface: Formula: {Evaluate UB1}, If Evaluate TS1

 Inputs: TS: {TS1} and UB: {UB1}
 Output: true {successful execution} or false

Listing 12: TR1 relationship

Recipe R1
1- Attributes: (Name, Developer 1), (Type, Conditional)
2- Interface: Formula: {Evaluate TR2}, If Evaluate TR1

 Inputs: TS: {TS1, TS2, TS3} and TR: {TR1, TR2}
 Output: true {successful execution} or false

Listing 13: R1 recipe

The scenario utilizes three Atlas things: 1) a smart lock

that locks the home door if no one is home as TS1; 2) a

thermostat that adjusts room temperature as TS2; and 3)

motor-powered window blinds that tilt the blinds down

as TS3. The vendor of each thing, in the corresponding

IoT-DDL, declares the services offered by the things,

as illustrated in Listing 10.

The vendor of the smart lock thing, in the IoT-

DDL, declares a control relationship (Relationship

TR1) with UB that adjusts the room temperature. The

vendor of the thermostat, in the IoT-DDL, declares a

support relationship (Relationship TR2) with a UB that

adjusts the window blinds as a post-condition for

adjusting the thermostat. When the things are powered

on, each thing identifies itself, discovers the services it

offers, and generates and advertises its TS(s). Each

thing, through the API engine and the microservices,

creates a bundle with actual code for the service along

with the appropriate programmable interface (API), as

illustrated in Listing 11.

The smart lock thing generates a TR1 that reflects

the control relationship with a UB as given in

Listing 12. The thermostat thing also generates a TR2

that reflects the support relationship with a UB that

adjusts the window blinds as a precondition for

adjusting the thermostat. The smart lock thing then

starts matching its UB with TSs received from other

Atlas things, which is then replaced with a reference to

TS2. The thermostat thing also matches its UB with the

TSs for the window blinds control functionality, which

is then replaced with a reference to TS3.

The developer, through the IDE, starts capturing

announced knowledge about the TSs and TRs, and

establishes a conditional recipe R1. R1 evaluates TR2 if

the evaluation of TR1 is successful (no one exist in the

room and the thermostat is adjusted) as given in

Listing 13. The developed IoT app tree (Figure 4) is of

one recipe, and the IDE parses the tree in top-down

approach. R1 requires evaluating TR1 first, and if a

successful evaluation took place the recipe then

evaluates TR2, where a relationship is evaluated

through the interface’s formula with respect to the

interface’ inputs and expected output. TS2 is evaluated

if evaluating TS1 is successful for TR1, while TS2

should be true as a precondition to evaluate TS3 for

TR2. Evaluating the service takes place by sending a

request to the offering thing; that thing then utilizes the

API engine of the architecture (as detailed in Section 5)

to evaluate the API call and return the result back to the

IDE.

7 DISCUSSION AND FUTURE WORK

The current implementation of the Atlas IDE (the

development environment that implements the

presented programming model - outside the scope of

this paper) utilizes the inference properties

(composition, transitivity and exchange) to: 1) infer

logical relationship possibilities; 2) suggest new recipes

with respect to previously established applications and

the developers preferences to certain application

categories and functionalities; and 3) to present these

possibilities in 1) and 2) only as suggestions to the

developer.

The presented programming framework as well as

the IDE can be extended to extend logical relationship

inference into a semantically sound inference

operations. Such extension, through the appropriate

ontologies and the linguistic analysis, should be

considered on the level of: 1) defining a service or

relationship through the IoT-DDL by the vendor and

establishing relationships through the Atlas IDE by the

developer; and 2) by performing semantical and logical

validation of the newly inferred relationships (e.g., the

operation and environment constraints that guide the

relationship between these services).

Through such new extension of the current IDE, we

should be able to answer the following important

questions: What is the level of expressiveness such tool

make available for the developer to describe IoT

applications?, How can the IDE validate and verify

both the established and the newly suggested

applications (e.g., how secure is the application, is

there a cycle of dependencies)?, and What is the level

of usability of our approach in terms of the capability

of the IDE to automatically convert applications’

description into modular structures that improve the

execution/validation performance and enable the reuse

of the different parts in other applications?

8 CONCLUSIONS

We presented the details of the Inter-thing relationships

framework for a distributed programming ecosystem

for the social IoT. The framework utilizes our Atlas

Open Journal of Internet of Things (OJIOT), Volume 4, Issue 1, 2018

52

thing architecture and thing IoT-DDL to create a

uniform way of describing thing services and service-

level relationships, along with new capabilities for the

things to dynamically generate their own services,

formulate the corresponding programmable interfaces

(APIs), and create an ad-hoc network of socially

related smart things at runtime. The framework

proposed a set of powerful relationships over thing

services that can be exploited by developers to build

meaningful IoT apps. We presented these relationships

in terms of a formal system of primitives and their

associated operations, along with the semantic rules to

guide developers to build applications. We also

discussed the prerequisite roles of the thing, the vendor,

and the developer as the three main actors in the

framework. Finally, we demonstrated how the

framework can be used through a proof-of-concept IoT

application.

REFERENCES

[1] L. Atrozi, A. Lera, G. Morabito, and M. Nitti,

"The Social Internet of Things (SIoT) – When

social networks meet the internet of things:

Concept, architecture and network

characterization," Computer networks, pp.3594-

3608, vol. 56, no. 16, 2012.

[2] B. Butzin, F. Golatowski, and D. Timmermann,

"Microservices approach for the internet of

things," In IEEE 21st International Conference on

Emerging Technologies and Factory Automation

(ETFA), pp. 1-6, Sep. 2016.

[3] C. Chen, Y. Xu, K. Li, and S. Helal, "Reactive

programming optimizations in pervasive

computing," In 10th IEEE/IPSJ International

Symposium on Applications and the Internet

(SAINT), pp. 96-104, 2010.

[4] C. Chen and A. Helal. "Device integration in

SODA using the Device Description Language,"

The IEEE Ninth Annual International Symposium

on Applications and the Internet, pp. 100-106,

2009.

[5] C. Chen and S. Helal, "Sifting through the jungle

of sensor standards," IEEE Pervasive Computing,

vol. 7, no. 4, Dec. 2008.

[6] CoAP, "CoAP RFC 7252 Constrained

Application Protocol," http://coap.technology/,

2014.

[7] CppMicroservices, "C++ Micro Services,"

http://cppmicroservices.org/, 2016.

[8] R. Girau, M. Nitti and L. Atzori, "Implementation

of an experimental platform for the social internet

of things," In the seventh international conference

on Innovative Mobile and Internet Services in

Ubiquitous Computing, pp. 500-505, 2013.

[9] S. Helal, "Programming pervasive spaces," IEEE

Pervasive Computing, pp. 84-87, vol. 4, no. 1,

2005.

[10] A. Helal and S. Tarkoma, "Smart paces [Guest

editors' introduction]," IEEE Pervasive

Computing, pp. 22-23, vol. 14, no. 2, 2015.

[11] L.E. Holmquist, F. Mattern, B. Schiele, P.

Alahuhta, M. Beigl, and H.W. Gellersen, "Smart -

its friends: A technique for users to easily

establish connections between smart artefacts," In

the proceedings of the International ACM

conference on Ubiquitous Computing, Berlin,

Heidelberg, pp.116-122, 2001.

[12] A. Helal and Y. Xu, "Scalable and energy-

efficient cloud-sensor architecture for cyber

physical systems," NSF Workshop on Big Data

Analytics in CPS: Enabling the Move from IoT to

Real-Time Control, Seattle, April 2015.

[13] H. Hasemann, A. Kröller, and M. Pagel, "RDF

provisioning for the Internet of Things," The 3rd

IEEE International Conference on the Internet of

Things, Wuxi, pp. 143-150, 2012.

[14] IoT-DDL Builder, "Atlas Thing IoT-DDL

configuration service," https://cise.ufl.edu/

~aekhaled/AtlasIoTDDL_Builder.html, 2016.

[15] IFTTT, "If this then that," https://ifttt.com/,

accessed 2017.

[16] A. Khaled and S. Helal, "A framework for inter-

thing relationships for programming the social

IoT," IEEE 4th World Forum on Internet of

Things, pp. 670-675, Singapore, Feb. 2018.

[17] A. Khaled, A. Helal, W. Lindquist, and C. Lee,

"IoT-DDL–device description language for the

“T” in IoT, " IEEE Access, pp. 24048-24063,

vol. 6, 2018.

[18] A. Khaled and S. Helal, "Interoperable

communication framework for bridging RESTful

and topic-based communication in IoT," Future

Generation Computer Systems, (in press), 2018.

[19] J. King, R. Bose, H. Yang, S. Pickles, and A.

Helal, "Atlas: A service-oriented sensor platform:

Hardware and middleware to enable

programmable pervasive spaces," In proceedings

of the 31st IEEE conference on local computer

networks, pp. 630-638, 2006.

[20] M. Kranz, L. Roalter, and F. Michahelles,

"Things that Twitter: Social networks and the

A. E. Khaled, W. Lindquist, A. Helal: Service-Relationship Programming Framework for the Social IoT

53

Internet of Things," In What Can the Internet of

Things Do for the Citizen (CIoT) Workshop at the

8th international conference on pervasive

computing, pp. 1-10, May 2010.

[21] G. Klas, F. Rodermund, Z. Shelby, S. Akhouri,

and J. Höller, "Lightweight M2M: Enabling

device management and applications for the

Internet of things, " White paper from Vodafone,

Ericsson and ARM 26, Feb. 2014.

[22] S. Käbisch and D. Anicic, "Thing description as

enabler of semantic interoperability on the Web of

Things," The IoT Semantic Interoperability

Workshop, 2016.

[23] MQTT, "MQTT is a machine-to-machine (M2M)/

"Internet of Things" connectivity protocol,"

http://Mqtt.org, 2014.

[24] D. Namiot and M. Sneps-Sneppe, "On Internet of

Things programming models," In International

Conference on Distributed Computer and

Communication Networks, pp. 13-24, Springer,

Cham, Nov. 2016.

[25] S. Nastic, S. Sehic, M. Vogler, H.L. Truong, and

S. Dustdar, "PatRICIA – A novel programming

model for iot applications on Cloud Platforms," In

the 6th IEEE International Conference on Service-

Oriented Computing and Applications (SOCA),

pp. 53-60, 2013.

[26] S. Ovadia, "Automate the internet with “if this

then that” (IFTTT)," Behavioral & Social

Sciences Librarian, pp. 208-211, vol. 33, no. 4,

2014.

[27] D. Shadija, M. Rezai, and R. Hill, "Towards an

understanding of microservices," The 23rd IEEE

International Conference in Automation and

Computing (ICAC), pp. 1-6, Sep. 2017.

[28] C. Turcu and C. Turcu, "The social internet of

things and the RFID-based robots," In the 4th

international IEEE congress on the Ultra-Modern

Telecommunications and Control Systems and

Workshops (ICUMT), pp. 77-83, 2012.

[29] T. Vresk, and I. Čavrak, "Architecture of an

interoperable IoT platform based on

microservices," In the IEEE 39th International

Convention on Information and Communication

Technology, Electronics and Microelectronics

(MIPRO), pp. 1196-1201, May 2016.

[30] W3C, "Web of Things at W3C,"

https://www.w3.org/WoT/, 2017.

[31] Web of Things Framework, "Experimental

implementation of the web of things framework

2016," https://github.com/w3c/web-of-things-

framework, 2016.

[32] J. Yun, I.Y. Ahn, S.C. Choi, and J. Kim, "TTEO

(Things Talk to Each Other): Programming smart

spaces based on IoT systems," Sensors, p. 467,

vol. 16, no. 4, 2016.

AUTHOR BIOGRAPHIES

Ahmed E. Khaled is currently

pursuing the Ph.D. degree in

computer engineering, at the

Department of Computer and

Information Science and

Engineering, University of

Florida, Gainesville, FL, USA.

He received the B.Sc. and M.Sc.

degrees in computer engineering from Cairo

University, Egypt in 2011 and 2013, respectively. His

current research interests include Internet of Things,

smart spaces, and ubiquitous computing.

Wyatt Lindquist received the

B.Sc. degree in computer

engineering from the University

of Florida, Gainesville, FL,

USA, in 2017. He is currently

pursuing the Ph.D. degree in

computer science at the School

of Computing and

Communications, University of Lancaster, UK. His

current research interests include Internet of Things,

operating systems, and embedded systems, with

applications to digital health.

Abdelsalam (Sumi) Helal
(F’15) received the Ph.D. degree

in computer sciences from

Purdue University, West

Lafayette, IN, USA. He is

professor and the Chair in

Digital Health, School of

Computing and Communications, and the Division of

Health Research, Lancaster University, UK. Before

joining Lancaster University, he was professor in the

department of Computer and Information Science and

Engineering, University of Florida, USA, where he

directed the Mobile and Pervasive Computing

Laboratory and the Gator Tech Smart House. His

research interests span pervasive systems, the Internet

of Things, smart spaces, with applications to digital

health and assistive technologies for successful aging

and independence.

https://www.w3.org/WoT/

