(© 2018 by the authors; licensee RonPub, Liibeck, Germany. This article is an open access article distributed under the terms and conditions of
the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).

Research
online
Publishing

www.ronpub.coim

Open Journal of Internet of Things (OJIOT)
Volume 4, Issue 1, 2018

http://www.ronpub.com/ojiot
ISSN 2364-7108

Query Rewriting by Contract
under Privacy Constraints

Hannes Grunert, Andreas Heuer

Database Research Group, University of Rostock, 18051 Rostock, Germany,
{hg, ah} @informatik.uni-rostock.de

ABSTRACT

In this paper we show how Query Rewriting rules and Containment checks of aggregate queries can be combined
with Contract-based programming techniques. Based on the combination of both worlds, we are able to find new
Query Rewriting rules for queries containing aggregate constraints. These rules can either be used to improve
the overall system performance or, in our use case, to implement a privacy-aware way to process queries. By
integrating them in our PArADISE framework, we can now process and rewrite all types of OLAP queries, including
complex aggregate functions and group-by extensions. In our framework, we use the whole network structure, from
data producing sensors up to cloud computers, to automatically deploy an edge computing subnetwork. On each
edge node, so-called fragment queries of a genuine query are executed to filter and to aggregate data on resource
restricted sensor nodes. As a result of integrating Contract-based programming approaches, we are now able to not
only process less data but also to produce less data in the result. Thus, the privacy principle of data minimization is
accomplished.

TYPE OF PAPER AND KEYWORDS

Regular research paper: query rewriting, privacy-by-design, aggregate constraints, edge computing

1 INTRODUCTION ensured that parts of the query can be applied directly on
sensor nodes while the rest of the filtering has to be done

The Internet of Things consists of a variety of on amore powerful device.

heterogeneous devices [13] with different capabilities.
Several devices build a computation chain (see Figure
1) to process complex queries that are sent from a web
service and process data collected by sensor nodes.
Especially in wireless sensor networks with reduced
capabilities, it is not ensured that the sensor nodes can
handle every type of query. To avoid privacy issues by
sending all raw data to the cloud provider, it has to be

This paper is accepted at the International Workshop on Very
Large Internet of Things (VLIoT 2018) in conjunction with the
VLDB 2018 Conference in Rio de Janeiro, Brazil. The proceedings
of VLIoT@VLDB 2018 are published in the Open Journal of
Internet of Things (OJIOT) as special issue.

By limiting the amount of data to a minimum, privacy
leaks can be prevented. To minimize data, calculations
can partially be pushed down from web servers to local
computers or even to sensor nodes. By adapting Query
Containment algorithms, these parts can be determined.

Contribution: In our previous paper [14], we introduced
the concept of a Rewriting Supremum Q2 of a query @1,
such that Q2 3 @1, where Q) only consists of operators
that are executable on the current layer and contains the

"'Q2 3 Q1 holds for two queries Q2 and Q1 iff Q2(d) 2 Q1(d)
for all databases d satisfying the database schema and the integrity
constraints.

54

http://creativecommons.org/licenses/by/4.0/
http://www.ronpub.com/ojiot

H. Grunert, A. Heuer: Query Rewriting by Contract under Privacy Constraints

tracks ({id,
tracks (album) — albums(id)
albums ({id, name}, {{id}})

title , length, album}, {{id}})

users ({id, firstname , lastname, birthday}, {{id}})

buys({user, track}, {{user,
buys(user) — users(id)
buys(track) — tracks(id)

track }})

Listing 1: Relational scheme for the running example

minimal amount of additional tuples in respect to Q.
This paper examines existing algorithms and rules for
query rewriting and adapts them to find the Rewriting
Supremum. To achieve this, we combine the results from
various Query Containment techniques with the Design
by Contract concept known from the programming
language Eiffel into our own approach, Query Rewriting
by Contract. Our approach covers the problem of query
rewriting in resource restricted environments where not
every operator is available by giving a substitute query.
Finally, we give an evaluation of our rewriting rules
regarding runtime and data minimization.

Running Example: As a running example in this paper,
we will use an excerpt of a music database, which
consists of the relations users, tracks and albums (see
Listing 1). To explain our notation in the listing, we use
tracks as an example: This relation scheme consists of
attributes id, title, length, and album. The attribute id is
the only key of this scheme. The attribute album in this
relation is a foreign key referring to the attribute id in
relation albums.

For reasons of space, we can not present our full use
case with all evaluated rules and queries in this paper.
For the full study, including detailed execution plans,
please refer to our website?, which also includes the
evaluations on the TCP-H benchmark and on an IoT
scenario.

At a first glance, it seems as if this example has
nothing to do with the Internet of Things, but when
it comes to Smart Metering and Smart Environments,
the data in such relations can be used for various (and
unintended!) analysis, like media piracy detection [10].

Outline: The rest of the paper is structured as follows:
The next section gives a brief overview of our framework
for privacy aware query processing. Section 3 describes
the state of the art in Query Rewriting approaches and the
Design by Contract concept. In Section 4 we introduce
our concept to rewrite complex queries with aggregate
constraints. Section 5 evaluates our approach on some

2 Permalink: https://dbis.informatik.uni-rostock.
de/links/v1db2018

55

example queries. Our conclusions and future research
directions are outlined in Section 6.

2 PARADISE

Our Contract-based Query Rewriting concept is part
of the PArADISE? framework for privacy aware query
processing. The execution of a given query is vertically
distributed in a given system environment (see Figure
1) by our framework. This Layered System Approach,
which can be compared to Edge Computing approaches
[29], enables information systems to guarantee privacy
aspects on the fly.

This architecture consists of sensors and mobile
devices in the lower layers. The sensors are very
resource-constrained in terms of CPU, memory, and
power. Mobile devices, like mobile phones or edge
nodes of a WSN, are less resource-constrained. The
higher layers consists of routers, home media centers,
local servers as well as Cloud-based web services,
which are executed on powerful servers. Going from
the top layer to the bottom layer, resource constraints
are increasing, while the amount of executable database
related operations is decreasing.

From the privacy point of view, each layer is a strict
borderline to define the granularity of the data that is
passed upwards. While the lower layers allow the user
to control its own data, lower layers are more resource
constrained. To solve this problem, an optimized query
execution according to the given constraints is necessary.

Our framework is deployed as a middleware query
processor (see Figure 2) on every node. The query
processor consists of a preprocessor, which analyzes and
rewrites the query, while the postprocessor modifies the
result of the query in terms of anonymization metrics like
k-anonymity [27]. The preprocessor is also responsible
for the query rewriting of the input query into (1) a
remainder query that is executed on the current layer and
(2) a query fragment that is executed on the lower layers.

In [14], we showed how complex OLAP queries, e. g.
regression and correlation analysis, can be split up into
several query fragments that consist of basic aggregates.

3Privacy AwaRe Assistive Distributed Information

Environment

System

https://dbis.informatik.uni-rostock.de/links/vldb2018
https://dbis.informatik.uni-rostock.de/links/vldb2018

Open Journal of Internet of Things (OJIOT), Volume 4, Issue 1, 2018

Figure 1: Layered System Approach

Preprocessor

Query processor

Postprocessor

Query Containment

Query Rewriting
Q — Q’
Optimization

Query
Execution

=

Generalization

Slicing

L)

Differential Privacy

Views

Information loss

£ - |

Figure 2: The Query Processor of PArADISE. (If query rewriting (left side) does not supply enough privacy,
the result is anonymized by different techniques (right side). Quasi-Identifiers (QI) are used to parameterize the

rewriting and anonymization.)

In this paper, we show how previous research on Query
Containment and Contract-based programming can be
utilized to optimize the fragments even more. We
will concentrate on three classes of queries: (1) simple
conjunctive queries, (2) linear arithmetic constraints and
(3) aggregate queries with grouping.

3 STATE OF THE ART

In the following, the current state of the art in research
and technology in the affected fields is briefly presented.
This concerns the areas of cloud, edge and fog
computing, theoretical and practical approaches to
Query Containment and Query Rewriting.

3.1 Privacy

Data privacy, in particular the aspects of data avoidance
and data minimization, has been seen as a legal rather
than a technical problem in the past [20]. While
many approaches have dealt with the anonymization of
the result of a query [27, 15, 23], the aspect of data
minimization by rewriting the query has been neglected
as a key concept for achieving data protection on the
technical side [19].

3.2 Cloud, Edge and Fog Computing

In the age of Big Data, the storage and processing of
information are increasingly taking place in the cloud.
Providers of such systems offer a variety of online
services and ways to store our (personal) information.
This also includes services used in assistive systems
(e.g. in our own home). Unfortunately, the providers
of the services usually do ignore or, at least, do not
guarantee privacy with regard to unintended analysis by
the provider.

Instead of using the server farms in data centers,
the Internet of Things, consisting of sensors and
devices, can process those data to take over parts of
the query execution. This leads to an approach similar
to that of fog or edge computing [28, 8], with the
difference that in our approach the decision about how
to distribute the query is done automatically (Privacy-
by-Design). The distribution is based on the restricted
query capabilities of the devices; e. g. TinyDB* does not
support projections.

4https://tinydb.readthedocs.io/en/latest/

56

https://tinydb.readthedocs.io/en/latest/

H. Grunert, A. Heuer: Query Rewriting by Contract under Privacy Constraints

3.3 Query Containment

In this subsection, we give a brief overview on a variety
of concepts to test the containment and equivalence of
relational queries. The formal foundations of Query
Containment and Query Equivalence, as well as the NP-
completeness proof for the complexity of conjunctive
queries, have been formally introduced by Chandra and
Merlin in [3]. The Query Containment Problem (QCP)
is defined as follows:

A query ()5 is contained in the query Q1 (Q2 C (1),
if and only if for each instance d of the database D the
query result Q2(d) is a subset of the query result Q1 (d):

Vd € D : Qa(d) C Q1(d). (H

Two queries are equivalent ()1 = ()2), if they contain
each other.

For simple conjunctive queries (SPJ for short;
consisting of simple selections with equality, projections
and joins), Chandra and Merlin [3] show that the
problem is computable. Based on their work, many
approaches to further classes of queries have been
developed: In [31] and [1], negated query predicates
are added to the queries. Klug [17] extends the possible
comparison predicates by further arithmetic operators
(<, <, >, >). Chaudhuri and Vardi [4] translate the
lessons learned from considering the QCP from set
semantics to multiset semantics. The complexity of
using multisets for general queries remains still open [5].
For a recent review of different bag and set approaches,
please refer to Kolaitis in [18].

In addition to multiset semantics, the consideration
of aggregation and grouping predicates in complex
queries is also important. Klug [16] allows the
integration of simple aggregates (sum, max, min,
count) by extending the relational algebra. In [6, 7],
these approaches are transferred from set to multiset
semantics, whereby the sum, the maximum, minimum
and the counting of (distinct) tuples also allows the
comparison of queries on multisets. Grumbach [12]
introduces additional aggregates with the average and
the percentage calculation. In [2] the QCP is extended
to queries with recursion.

More complex query containment considerations,
especially the combination of aggregates with arithmetic
comparisons (including negation) and functional
dependencies as well as inclusion dependencies are
considered by Can Tiirker in [30]. Tiirker divides the
so-called linear arithmetic constraints into four classes:
Attribute-value predicates (for range queries, LAC1),
attribute-attribute comparisons (LAC?2), with addition
(LAC3) and multiplication (LAC4) over the integer
domain. He further extends his approach by adding
aggregate constraints for simple aggregate functions.

57

3.4 Answering Queries Using Views or Using
Capabilities

To describe the operators or capabilities at the lower
layers of our system, we have to adapt techniques used
for the Answering Queries using Views problem (AQuV)
so far. Here, Query Containment is checked for a query
()1 against the base relations on our database and Q)
against (materialized) views available in our database
schema.

Algorithms for testing Query Containment for
Answering Queries using Views include the Bucket
algorithm [21], the Inverse Rules algorithm [9] and the
MiniCon algorithm [26].

Instead of concrete views, we need more abstract
capabilities to describe the operators at the lower layers
of the system. Approaches for integrating capabilities
are GenCompact [11], Capability Based Rewritings
(CBR) [25] and capabilities or operators defined by
equivalence classes of views in [22].

3.5 State of the Art: Summary

What is missing in the previous approaches are
extensions of relational queries to arbitrary combinations
of aggregate functions, groupings as well as window
functions and fuzzy joins, for example on timestamps.
The operations are needed in smart and assistive
IoT environments and applications. Such complex
queries cannot be analyzed adequately with the existing
approaches and algorithms.

In addition, the query capabilities of the individual
devices are included as parameters in the query
transformation approach. The previous approaches
to capability-based query transformation have been
used for simple queries in mediator-based information
integration systems. Unfortunately, these techniques are
only suitable for simple SPJ queries and assume that
the data sources have unrestricted main and hard disk
memory for the calculation. To reduce the complexity,
we adapted and combined the Design by Contract
approach [24] from the programming language FEiffel
with Query Containment checks to our own concept
Query Rewriting by Contract.

4 CONCEPT

Our general approach to achieve data minimization is to
split a complex query vertically into query fragments and
remainder queries. The results of the fragment queries
always contain a superset of the results of what is needed
to get the same result as the original query. Each of these
fragments and remainders can be calculated on a node

Open Journal of Internet of Things (OJIOT), Volume 4, Issue 1, 2018

that has enough capacities and allows specific operations
to be executed (see [14]).

First, we give a short overview of our concept for
rewriting queries under constraints. Then, we explain
our new extension Query Rewriting by Contract to find
the most suitable rewriting. Finally, we show how basic
contract rules can be combined to find more complex
rewritings.

4.1 Query Rewriting under Constraints in
General

Given a query () and a set of Node Layers L, Q)
is rewritten and split into a partial query (); and a
remainder query (Js5. (Q1 can be executed on L; locally,
while the remainder @5 is sent to the next Layer Lo. If
Lo supports all operations in Q5, Q5 is executed on Lo
and the result is returned. Otherwise, ()s is split into a
partial query Q2 and a new remainder query)5/ and the
procedure is repeated with Qs until the cloud layer L,
is reached. This leads to a query chain on a database D:

QD) = Qn(Qn-1(...Q1(D)))

Based on the Query Containment Problem, we
define our Answering Queries using Operators (AQuO)
problem as follows: Given a database D, a query Q)
and a set of Layers L with each L; € L having a set of
operators O;. The AQuO-problem asks for a rewriting
with 7(Q) = @, such that

@)

Qi(D) QD) & Vde D:Qi(d) 2Q(d) (3)
and @; uses only operations from 0.
We call Q; a Rewriting Supremum?, if
AQ; : Qi(D) 2 Qi(D) 2 Q(D). “

In the best case, Q;(D) = Q(D) holds.

4.2 Query Rewriting by Contract

Our Query Rewriting by Contract concept to find the
mentioned Rewriting Supremum is based on a huge set
of rewriting rules. Each rule consists of a left side, the
original query fragment, and a right side, the rewritten
query fragment. Additionally, we assign invariants,
preconditions and postconditions for each rule, which
have a similar meaning as the corresponding terms in
Eiffel. Invariants are conditions that are always valid (for
example, a constant ¢ has to be greater than zero all the
time). Pre- and postconditions are tracked for the lower
and the upper layer separately.

5 A Rewriting Supremum is a rewritten query, that returns minimally
more than or the same amount of tuples as the original query.

58

To trigger a rule, the preconditions and the invariants
have to be satisfied. Regarding restricted capabilities,
this will be the existence of an unsupported operator
on the lower layer in most cases, e.g. an unsupported
aggregate function, like the average over a numeric
attribute. If we find a query fragment that matches the
left side of the rule and satisfies the preconditions and
invariants, the rule is triggered and the query fragment
is replaced by the right side of the rule. Afterwards,
the postconditions are checked. If all postconditions are
satisfied, the rewriting of the given query fragment is
finished. Otherwise, the postconditions are transformed
into new preconditions that have to be satisfied by
another rule. This procedure is repeated, until all
fragments are rewritten and satisfy every postcondition
and every invariant.

To prevent cycles, we keep track of equivalent
rewritings, so that we do not execute the same rule
twice for the same query fragment. Because of the
definition of Query Containment, the prevented cycles
and the higher capabilities on each layer, the rewriting
process will terminate.

To introduce our rule set, we first present our simplest
rule, the 6 — O rule:

Rule: 6(r) Cx O(r)
Invariants: —
Preconditions:

e lower layer: 6 is not supported

e upper layer: —
Postconditions:

e lower layer: —

e upper layer: 6 is supported

Contract-based rules are marked with an K (Cg) to
delimit them from normal containment rules. The main
idea behind the # — [J rule is to push any unsupported
operator 6 from the lower layer to the upper layer.
This circumstance can also be seen in the pre- and
postconditions. The rule takes any relational operator
from the lower layer and adds a function for the identical
mapping [J, where [J(r) = r holds, to each child node
r of #. On the upper layer, 6(r) is executed instead of
a(r).

We assume, that the operator [] can be executed on
every layer. Without executing any other operation on
the lower layer, (1(r) is equal to transmitting every tuple
and every attribute from 7 to the upper layer.

The visualization of the § — [J rule is given in Figure
3 as a relational algebra tree. The small example
query fragment shows a simple projection 7 on the

H. Grunert, A. Heuer: Query Rewriting by Contract under Privacy Constraints

Talbum,length

Figure 3: A simple rewrite rule for placing an operator on a higher layer

WITH X AS(
SELECT album,
FROM tracks)

SELECT

FROM X

length

WITH X AS(

SELECT x

FROM tracks)
SELECT album, length
FROM X

Listing 2: Unmodified SQL sample query for
rewriting rule § — [

relation tracks. On the left side, we see the unmodified
query, which executes the projection on the lower layer
(below the red line), while the upper layer just reads the
data transmitted from the lower layer. The right side
shows the modified query, whereby the projection is not
executed on the lower layer, but on the upper layer. To
realize this, [J and 7 (as an instance of 6) are swapped
between the layers.

For the evaluation of our rule set, we transform the
expression from the relational algebra back to SQL. To
simulate a multi node environment, we used Common
Table Expressions (CTE, the WITH clause in SQL) to
prevent unintended optimization between the two layers.
Listing 2 represents the unmodified query fragment,
while Listing 3 shows the corresponding rewritten SQL
statement.

The operator [J will be not present in the query
fragments in most cases. If possible, we use the § — [
rule in combination with other rules without mentioning
it explicitly.

To prevent unnecessary many rewritings, we apply the
basic optimization rules from database theory to push
down selections and projections towards the leaf nodes
of the rewriting tree of the whole query and not only in
the query fragments. Simple selections and projections
are supported by most database system and embedded
devices, so we only have to deal with more complex
operators like aggregates and grouping. Additionally,
we are breaking down complex functions, aggregates
and group-by extensions into sets of primitives. By
this, we get the advantage that we do not have to test
the containment relation for every function against every
other function. For instance, a regression analysis can
be split into its primitives, addition, multiplication and
count, so that we can apply our rule set on it.

59

Listing 3: Rewritten SQL sample query for rewriting
rule § — [

Based on this initial query tree, we calculate an
initial distribution of the query fragments to the specific
layer. Beginning at the leaf nodes, we go up the tree
until we find an unsupported operator. The child node,
or nodes in case of binary operators like joins, resp.,
of the unsupported operator are then marked as query
fragments, which can be executed on the lowest layer.
The results of the fragments are inserted as new leaf
nodes in the remainder query. The procedure is repeated
on the next layer until the root node is reached. Details
on this algorithm can be found in [14]. In the following,
we concentrate on applying further optimizations after
the initial distribution of the query.

After the initial distribution, the algorithm for the
execution of our Contract-based rewriting is executed.
While there is no possibility to swap operators by rules
of the “normal” optimization, our rule set contains
additional rules to push down further operators towards
the leaf nodes. By applying rules that return no equal
result, but a superset of the desired result, we can add
more filter operations on lower nodes.

At a first glance, this might look like a deoptimization
of the query, because additional and unnecessary
operators are added to the execution of the query.
This is true for “traditional” database systems, where
everything is executed on a single node or a single
cluster of homogeneous computing units. In the Internet
of Things, we have a heterogeneous network of different
devices, like sensor, router and server nodes. All nodes
in the processing chain of a query have to touch the data
at least once until the result is computed on the root node
(e.g., a cloud server). If the nodes have to forward the
data anyway, they can pre-filter or pre-aggregate the data
in addition.

This procedure has three advantages: First, the

Open Journal of Internet of Things (OJIOT), Volume 4, Issue 1, 2018

[mm(A) > c] [sum(A) > c]

b b

Figure 4: Rewriting rule A14 for the aggregate
function min

parallelization on thousands or millions of nodes can
be exploited. Second, with transferring less data to the
upper layers, these layers have to compute less data from
all nodes. Thus, they execute the query fragments much
faster. And finally, the lower nodes have a lower power
consumption due to the reduced data transmission.
Especially in mobile nodes, the batteries of such devices
have a longer lifetime.

4.3 Finding New Rules

By converting unsatisfied postconditions into new
preconditions, multiple contract rules can be applied
at once on the same fragment. However, this can result
in unnecessary operators between the supported filter on
the lower layer and the final filter on the upper layer. To
overcome this problem, we can apply our rule set also to
detect these unnecessary operators. This algorithm finds
these operators as follows: Consider two rewriting rules
X Cxg Yand Y Cxg Z. When both rules are applied
on the same query fragment, we get the rewriting chain
XCgYLCg Z If X and Y are executed on the upper
layer and Z is executed on the lower layer, we can skip
Y, because it is not a Rewriting Supremum w.r. t. to the
upper layer. Otherwise, if X is executed on the upper
layer and Y and Z are executed on the lower layer, Z
can be skipped.

The second case is illustrated in the following
example. Let X be the minimum over a numeric
attribute A, which has to be greater than a constant
c. Let Y be the sum and Z the average over the same
attribute, whereby the average is compared to 0 and
not to ¢. The first rule, internally numbered as A14, is
visualized in Figure 4; the second rule, A23, is shown in
Figure 5.

Rule A14 is defined as follows:

Rule A14: min(A) > ¢ Cg sum(A) > ¢
Invariants: ¢ > 0
Preconditions:

e Lower layer: min is not supported

e Upper layer: —

60

(sum(4) > ¢] (avg(4) >0
&> &>

Figure 5: Rewriting rule A23 for the aggregate
function sum

Postconditions:
e Lower layer: sum is supported

e Upper layer: min and > are supported

Rule A23 is defined as follows:

Rule A23: sum(A) > ¢ Ck avg(A) >0
Invariants: ¢ > 0
Preconditions:

e Lower layer: sum is not supported
e Upper layer: —
Postconditions:
e Lower layer: avg is supported
e Upper layer: sum and > are supported

Suppose that min(A) > ¢ and sum(A) > c are not
supported on the lower layer, we can apply first rule A14
and rule A23 afterwards. This will first result in the
second tree from the left in Figure 6 after applying the
first rule, and in the third tree after the second rule. As we
can see, the sum-filter is unnecessary on the upper layer
and can be removed, because sum(A4) > ¢ C avg(A)
holds (fourth tree).

This results in the following new rule:

New rule: min(A) > ¢ Ck avg(A) >0
Invariants: ¢ > 0
Preconditions:
e Lower layer: min is not supported
e Upper layer: —
Postconditions:

e Lower layer: avg is supported

e Upper layer: min and > are supported

H. Grunert, A. Heuer: Query Rewriting by Contract under Privacy Constraints

Figure 7: Rewriting tree for the rewriting rule K09 Figure 8: Rewriting tree for the rewriting rule L03

WITH X AS(WITH X AS(
SELECT title , length SELECT
FROM tracks FROM tracks
) WHERE length > 250000
SELECT) _
FROM X SELECT title , length

WHERE length > 250000 FROM X

Listing 5: Rewritten SQL query for rewriting rule

Listing 4: Unmodified SQL query for rewriting rule K09

K09

. 5.1 Rules in Detail
Please note, that the new rule is only used for the

specific query and is not added to our basic rule set, For each rule, we list the left and right side of the
where we only store the minimal amount of rules needed. rewriting, the invariants, the preconditions and the
In the next section, we evaluate the runtime of such postconditions. To achieve a better understanding, we
rewriting rules in a simulated environment. While data also show the visualization of the rewriting tree. For the
minimization — and maintaining the correct result — can evaluation, we give two queries, one without and one

be achieved by applying these rules, it is unknown how with the applied rewriting rule. The results regarding
this affects the runtime of IoT information systems. runtime are given in the next subsection.

5.1.1 KO09: Commutativity of Selection and
5 EVALUATION Projection — V1

The following rule changes the order of a simple
selection with a projection (see Figure 7). This rule
is based on standard database optimizer engines, so we
needed a CTE in the SQL examples (see Listings 4 and
5) to prevent unintended optimizations. Note that the
rewriting itself is equivalent, but because of different pre-
and postconditions it results in two different Contract-
based rules.

For reasons of space, we cannot evaluate every rewriting
rule of our rule set® in this paper. To show the variety
of our rule set, we present detailed measurements for
one rule of the classical query rewriting (class K), one
rule for linear arithmetic constraints (class L) and two
different aggregate constraints (class A).

6Currently 80 rules, see https://dbis.informatik.
uni-rostock.de/links/v1db2018 for the current rule
set. Rule: oy (7x(r)) Cx 7x(oy (1))

61

https://dbis.informatik.uni-rostock.de/links/vldb2018
https://dbis.informatik.uni-rostock.de/links/vldb2018

Open Journal of Internet of Things (OJIOT), Volume 4, Issue 1, 2018

SELECT album, length
FROM tracks
WHERE length = 250000

Listing 6: Unmodified SQL query for rewriting rule
L03

WITH X AS(
SELECT album, length
FROM tracks
WHERE length >= 250000
)
SELECT album, length
FROM X

WHERE length = 250000

Listing 7: Rewritten SQL query for rewriting rule
L03

Figure 10: Rewriting tree for the rewriting rule A29

Invariants: — .
Preconditions: 5.1.3 A10: maximum-equal-to — average-less-

than-or-equal-to (attribute-constant)

e lower layer: mx is not supported The following rule adds an additional aggregate

constraint to an other aggregate constraint (see Figure
e upper layer: — 9). This rule is also based on [30]. For such aggregate
queries we do not need a CTE, because most database
engines are unable to optimize such queries (see Listings
8and 9).

Postconditions:

e lower layer: oy is supported

Rule: maz(X) = ¢ Ck avg(X) < ¢
e upper layer: mx is supported Invariants: —

Preconditions:

e lower layer: max or = are not supported
5.1.2 L3: equal-to — greater-than-or-equal-to

(attribute-constant) e upper layer: —

The following rule adds an additional filter to a query
(see Figure 8). This rule is based on [30] and uses CTEs
(see Listings 6 and 7).

Postconditions:

e lower layer: avg and < are supported

Rule: x =cCgrx>c
Invariants: —
Preconditions:

e upper layer: maxz and = are supported

514 A29: equal-to — minimum-equal-to

e Jlower layer: = is not supported (attribute-constant)

The following rule replaces a universal quantifier

e upper layer: — constraint with an aggregate constraint (see Figure 10).
This rule is based on the work from Can Tiirker [30]. At
Postconditions: a first glance, the rewriting may sound confusing, so we
took a quite simple rule: If the value of an attribute A is
e lower layer: > is supported always equal to the constant ¢, the minimum of A has
to be equal to c. Please note, that the rule is only valid
e upper layer: = is supported in the given direction. Example queries are shown in

Listings 10 and 11.

62

H. Grunert, A. Heuer: Query Rewriting by Contract under Privacy Co.

nstraints

SELECT album

FROM tracks

GROUP BY album
HAVING max(length)

250000

Listing 8: Unmodified SQL query for rewriting rule
Al10

SELECT album
FROM (
SELECT album ,
FROM tracks
WHERE album IN (
SELECT album
FROM tracks
GROUP BY album
HAVING avg(length) <= 250000
)
) AS X
GROUP BY album
HAVING max(length)

length

250000

Listing 9: Rewritten SQL query for rewriting rule
Al10

Rule: Vo € X :x =cCxg min(X) =c
Invariants: —
Preconditions:

e lower layer: V is not supported
e upper layer: —
Postconditions:
e lower layer: min and = are supported

e upper layer: —

5.2 Evaluation Results in Detail

The following tables present our evaluation results for
every rewriting rule. The tests were performed on
a single database server running PostgreSQL 9.6 on
Centos 7.4. Regarding hardware aspects, the server
was equipped with four single core CPUs (Intel Xeon
E312xx (Sandy Bridge) @ 2000 MHz and 4 MB Cache)
and 8 GB main memory. In contrast to sensor hardware,
the server is of course over equipped. The goal of our
performance measurement is to only show the runtime
increase by rewriting the query.

Each table shows up to eight rewriting rules in both
variants: — for the unmodified query, + for the rewritten
query. The corresponding example queries for every
rule and variant were executed ten times (measured in
milliseconds). By building the ratio of the average

SELECT DISTINCT album

FROM tracks

WHERE album NOT IN (
SELECT album
FROM tracks
WHERE NOT(length

)

Listing 10: Unmodified SQL query for rewriting rule
A29

250000)

SELECT DISTINCT album
FROM tracks

GROUP BY album
HAVING min(length)

250000

Listing 11: Rewritten SQL query for rewriting rule
A29

runtime of both variants, we calculated the overhead for
the rewritten query.

In case of the classic optimization rules (class K, see
Tables 1, 2 and 3), we used common table expressions
for the subqueries to prevent internal, unintended
optimizations. If there is no significant increase through
the rewriting, the overhead should be around -20% to
20% due to measuring fluctuations. As we can see, some
of the rules result into a huge overhead, while some
increase the overall performance of the system. That
confirms years of research in database optimization.

In case of the aggregate constraints (class A, see
Tables 4, 5, 6, 7, 8, 9 and 10), we used CTEs. For linear
arithmetic constraints (class L, see Table 11), we used
CTEs only on the right side of the rule to express the
additional filter operation. Through the additional filter,
the runtime decreased slightly or increased up to 100%
(except to rule LO7 that had a terrible performance).
Most of the queries had an increase around 50% to 80%.
This has confirmed our expectation, because most of the
queries filtered out around 20% to 50% of the tuples,
so that at least half of the database was scanned twice.
Regarding a possible IoT scenario, this will not affect
the runtime, because the data from sensor etc. will be
queried, no matter if a filter is added or not.

Most interesting and surprising is the decrease in the
runtime by replacing universal quantifier with group-
by aggregate constraints (A27 to A34). If aggregate
functions are supported on the lower layers, like sensors,
the rewriting will help to increase the performance of the
system.

6 CONCLUSIONS AND FUTURE WORK

In this paper we presented our evaluation results for our
approach to rewriting queries with aggregate constraints

63

Open Journal of Internet of Things (OJIOT), Volume 4, Issue 1, 2018

Rule Ko1 K02 K03 K04 K05 K06 K07 K08
Variant - + - + - + - + - + - + - + - +
#1 40 24 8 22 68 93 84 89 34 31 7 10 6 10 11 8
#2 38 23 7 21 59 85 83 82 32 24 6 10 7 10 11 8
#3 39 22 7 21 60 96 81 81 32 24 6 11 6 10 11 8
#4 39 20 7 21 59 97 84 81 32 25 6 11 6 10 11 8
#5 39 20 7 22 59 98 82 81 34 26 6 10 6 10 11 7
#6 38 21 7 21 60 95 81 83 33 27 6 11 6 10 11 8
#7 38 | 21 6| 21 61 94 83| & 32 27| 6 11 6 11 11 7
#8 40 21 6 21 59 97 84 78 33 24 6 10 7 11 11 7
#9 39 21 6 21 62 99 84 80 32 24 7 10 6 14 11 7
#10 39 20 7 22 59 94 83 78 32 24 6 10 6 13 11 7
AVG 389 (21,3168 21,3606 |948 | 82,9 | 81,5 | 32,6 | 25,6 | 6,2 | 104 | 6,2 | 109 | 11,0 | 7,5
Overhead in % 4524 213,24 56,44 -1,69 21,47 67,74 75,81 31,82
Table 1: Measurements for the rules K01 to KO8 on the Amarok dataset

Rule K09 K10 K11 K12 K13 K14 K15 K16

Variant - + - + - + - + - + - + - + - +

#1 24 | 21 8 16| 22 18] 7 6] 5] 3] 3] 3] 2 1 1 1

#2 24 | 21 7 16 | 21 17] 6 6] 3 1 2 3] 2 2] 2] 2

#3 22 22 7 16 21 17 6 16 2 2 2 3 1 1 1 2

#4 21 22 7 16 23 17 6 16 3 2 3 3 2 2 1 2

#5 21 22 6 16 21 17 6 16 3 1 2 4 2 1 2 2

#6 21 2] 6 16 | 21 17 6 6] 21 2| 3] 3 1 2 1 2

#7 21 2] 6 16 | 21 17] 6 16| 3 1 2 3] 2 1 1 2

#8 21 4] 6 16 | 21 17] 6 6] 3] 2| 2] 4 1 1 2 2

#9 25 27 6 16 21 17 6 16 3 2 3 3 2 2 1 1

#10 34 23 6 16 21 16 6 16 3 1 2 4 2 1 1 2

AVG 234 1236 |65|160 | 21,3 |170|6,1 | 160 (30|17 |24 |33 |1,7 14|13] 18

Overhead in % 0,85 146,15 -20,19 162,30 -43,33 37,50 -17,65 38,46

Table 2: Measurements for the rules K09 to K16 on the Amarok dataset

Rule K17 K18 K19 K20 K21
Variant - + - + - + - + - +
#1 1 2 4 4 3 7 25 34 28 32
#2 2 2 5 3 4 5 24 34 27 31
#3 2 1 4 4 3 6 25 33 28 30
#4 3 2 5 3 4 5 24 33 28 30
#5 1 2 4 4 3 6 24 33 28 38
#6 2 1 5 3 3 5 24 33 28 33
#7 2 2 4 4 4 5 24 33 28 28
#8 2 2 5 5 3 4 24 33 28 28
#9 2 1 5 5 6 5 24 33 27 27
#10 1 2 4 5 3 5 24 33 28 27
AVG 1,8 1,7 145|40 |36 |53]|242|332|278 | 304
Overhead in % -5,56 -11,11 47,22 37,19 9,35

Table 3: Measurements for the rules K17 to K21 on the Amarok dataset

under privacy and capability constraints. We introduced
a concept for rewriting complex aggregate queries with
Contract-based rewriting rules to show how a query can
be rewritten into another query with a restricted set of
given operators.

As a use case, we used an intuitive example based
on a music database which can be part of an Internet of
Things scenario, where music is analyzed to determine
user preferences. In this scenario, multiple queries,
containing simple filters and projections as well as

6

complex aggregates were rewritten and split into
multiple queries in order to execute them between
the sensors and the cloud server. Thus, no unintended
additional analysis can be applied by the cloud provider,
because the data is transmitted only in the form of highly
aggregated information for the specified purpose.

We showed on some example queries how the runtime
as well as the amount of transmitted information changes
in contrast to normal queries. Taking into account
that data have to be touched on every node in the

4

H. Grunert, A. Heuer: Query Rewriting by Contract under Privacy Constraints

Rule A01 A02 A03 A04 A05 A06 A07 A08
Variant - + - + - + - + - + - + - + - +
#1 41 23 12 37 11 23 11 30| 12 27 2] 27 2] 26| 11 25
#2 13] 23 12 30 11 23 11 35 11 27 11 27 2] 29 11 33
#3 12 22 12 26 11 30 11 29 11 27 11 30 11 27 11 26
#4 13 22 17 26 11 29 11 28 11 27 11 28 11 26 11 28
#5 12 37 14 23 11 28 11 28 14 27 11 27 11 25 11 26
#6 2] 271 13] 23 11| 28 11| 28 17 27 1] 27 11| 26| 11| 26
#7 2] 23 2] 23 11 38 11 34| 14| 27 11 27 11 30 | 11 24
#8 11 23 13] 23 11 30 11 28 13] 27 11 27 11 26 | 11 25
#9 11 22 12 22 11 40 11 37 12 27 11 31 11 29 11 24
#10 11 29 11 22 11 33 11 28 11 27 11 29 11 26 11 25
AVG 14,8 | 251 | 12,8 [25,5 [11,0 [30,2 | 11,0 | 30,5 | 12,6 | 27,0 | 11,1 | 28,0 | 11,2 | 27,0 | 11,0 | 26,2
Overhead in % 69,59 99,22 174,55 177,27 114,29 152,25 141,07 138,18
Table 4: Measurements for the rules A01 to A0S on the Amarok dataset
Rule A09 Al10 All Al12 Al3 Al4 Al5 Al6
Variant - + - + - + - + - + - + - + - +
#1 11 25 2] 22 12 22| 12| 31 12 28 12 28 12| 31 14 34
#2 11 25 11 2 12| 25 12 28 12] 28 12] 28 15 30| 13| 32
#3 11 25 11 22 12 23 12 23 12 28 12 28 15 31 13 33
#4 11 25 12 22 11 25 12 22 12 28 12 28 13 31 13 32
#5 11 25 12 22 12 24 12 22 11 29 12 27 12 30 12 33
#6 11| 25 2] 221 12 23 12 22 12 29| 11| 24| 12| 30| 12] 32
#7 11 25 5] 22 12] 23 12 22 12 29| 12| 24 11 36 | 12| 33
#8 12] 25 13] 22 11 29 12 22 12] 30| 11 24 [11 34 13| 34
#9 12 25 12 22 12 24 12 22 11 29 12 29 12 25 13 32
#10 12 24 12 22 12 22 12 22 12 29 12 29 11 24 13 31
AVG 11,3 1249 | 12,2 | 220 | 11,8 | 24,0 | 12,0 | 23,6 | 11,8 | 28,7 | 11,8 | 26,9 | 12,4 | 30,2 | 12,8 | 32,6
Overhead in % 120,35 80,33 103,39 96,67 143,22 127,97 143,55 154,69
Table 5: Measurements for the rules A09 to A16 on the Amarok dataset
Rule Al17 Al18 A19 A20 A21 A22 A23 A24
Variant - + - + - + - + - + - + - + - +
#1 13 32| 13] 27 9] 25 4] 25 15 29| 16] 29| 12| 25 13] 25
#2 13 30| 13] 27 15 25 4] 25 15 20 15] 29| 12| 25 13] 25
#3 13 27 13 27 14 25 14 25 15 29 15 29 12 25 13 25
#4 12 27 13 27 14 25 14 25 15 29 15 29 13 25 12 26
#5 12 27 13 27 14 25 14 25 15 29 22 29 14 25 12 25
#6 13 27 13 27| 14| 24| 14| 26| 15| 28 18] 29| 14| 25 2] 26
#7 13 43 13 27 4] 25 4] 26| 15| 28 6] 20| 13] 25 2] 26
#8 13 27 13] 27 14| 25 14 25 15] 28 15] 28 13] 25 2] 26
#9 14 27 13 27 14 25 14 25 15 29 15 29 13 25 12 25
#10 13 27 21 27 14 25 14 25 15 29 15 29 12 25 12 25
AVG 129 | 29,4 | 13,8 | 27,0 | 14,6 | 24,9 | 140 | 25,2 | 15,0 | 28,7 | 16,2 | 28,9 | 12,8 | 25,0 | 12,3 | 254
Overhead in % 127,91 95,65 70,55 80,00 91,33 78,40 95,31 106,50

Table 6: Measurements for the rules A17 to A24 on the Amarok dataset

processing chain to transmit it to the next layer, the
runtime increases in most cases only slightly. In some
cases, it even decreases, because significantly less data
is processed on the next layer.

It remains an open research question, if this result
also holds on real, heterogeneous hardware, where the
lower layers have less computing power than the upper
layers but allow the parallel execution of the queries.
The longer runtime on the lower layers may be repealed

65

by the fact that the higher layers, which integrate all
information from the sensors, have to compute less data.

Our future work will concentrate on integrating
more Query Containment checks and thus on finding
even more possible rewritings in combination with our
existing Contract-based rule set. If you find one, do not
hesitate to contact us! Also, we want to investigate the
effect of the selectivity of the query predicates on the
runtime in the distributed IoT scenario.

Open Journal of Internet of Things (OJIOT), Volume 4, Issue 1, 2018

Rule A25 A26 A27 A28 A29 A30 A3l A32
Variant - + - + - + - + - + - + - + - +
#1 14 28| 14| 28] 17| of 17] o 19| 26| 19] 26| 19| 16| 17| 15
#2 13 28 13 29 25 9 17 9 19 26 20 26 18 15 17 19
#3 13 28 13 29 19 9 17 9 19 25 20 26 18 15 17 17
#4 14 29 13 29 17 9 17 9 20 26 19 26 22 16 17 17
#5 13 29 13 30 17 9 17 9 19 26 19 26 20 16 17 16
#6 130 20 13 30| 17| 9| 17| 9| 19| 26| 19] 26| 18| 16| 17| 16
#7 13 29 16 29 17 9 17 9 19 26 19 26 17 15 17 16
#8 13 29 17 29 17 9 17 9 20 26 19 26 17 15 17 16
#9 16 28 15 30 17 9 17 9 20 26 21 26 17 15 17 16
#10 14 28 13 29 17 9 17 9 19 26 21 26 17 15 17 16
AVG 13,6 | 28,5 | 14,0 [29,2 [18,0 [9,0 | 17,0 | 9,0 | 19,3 | 25,9 | 19,6 | 26,0 | 18,3 | 15,4 | 17,0 | 16,4
Overhead in % 109,56 108,57 -50,00 -47,06 34,20 32,65 -15,85 -3,53
Table 7: Measurements for the rules A25 to A32 on the Amarok dataset
Rule A33 A34 A35 A36 A37 A38 A39 Ad0
Variant - + - + - + - + - + - + - + - +
#1 171 9] 16| 10| 17] 27| 16| 27| 19] 28| 17| 27| 18| 27| 19| 28
#2 6] 9 16| 10| 16| 26| 18| 27| 19| 27| 17| 27| 17| 27| 18] 28
#3 16 9 16 10 16 26 17 27 19 27 17 26 17 30 19 27
#4 16 9 16 10 16 26 17 27 23 27 17 26 17 37 18 28
#5 16 | 10 16 10 16 26 17 27 23 27 17 26 18 29 18 28
#6 17 10] 16| 10 17] 26| 17| 27| 20| 28| 17| 26| 18| 26| 18] 28
#7 1610 17| 10| 16| 26| 19| 26| 20| 45 171 271 17 26| 18] 28
#8 16 | 10 17 10 16 27 18 26 20 30 17 26 17 25 18 28
#9 16 9 16 10 16 27 16 26 20 28 17 26 17 26 18 28
#10 16 9 16 10 16 26 16 26 20 28 17 27 17 26 18 28
AVG 16,2 | 94 | 16,2 | 10,0 | 16,2 | 26,3 | 17,1 | 26,6 | 20,3 | 29,5 | 17,0 | 26,4 | 17,3 | 27,9 | 18,2 | 27,9
Overhead in % -41,98 -38,27 62,35 55,56 45,32 55,29 61,27 53,30
Table 8: Measurements for the rules A33 to A40 on the Amarok dataset
Rule Adl Ad42 Ad43 Ad44 Ad5 Ad6 Ad47 A48
Variant - + - + - + - + - + - + - + - +
#1 18] 20| 18] 31 17] 33 14| 33| 16| 34| 9] 16| 11 16| 16| 28
#2 171 28| 18] 31 16 | 33 14] 31 16 34| of 16| 11 16 14| 30
#3 16 28 18 40 16 31 14 30 17 42 9 16 11 16 12 35
#4 15 28 18 36 16 32 14 30 16 33 9 16 11 16 11 28
#5 15 28 18 38 16 32 14 35 17 32 9 16 11 16 11 27
#6 15 28| 18] 39| 17| 28| 14| 39| 16| 32| 9| 16| 11 6] 10| 27
#7 15] 28| 18] 38| 17| 26| 14| 31 6] 44 o] 16| 11 19 10| 27
#8 15 28 18 38 16 26 14 30 16 36 9 16 11 17 9 27
#9 15 28 18 37 16 26 14 32 16 351 12 16 11 17 9 27
#10 15 28 18 37 16 26 14 31 16 32 1 11 16 11 17 9 27
AVG 15,6 | 28,1 | 18,0 | 36,5 | 16,3 | 29,3 | 140 | 32,2 | 16,2 | 354 | 95| 16,0 | 11,0 | 16,6 | 11,1 | 28,3
Overhead in % 80,13 102,78 79,75 130,00 118,52 68,42 50,91 154,95

Table 9: Measurements for the rules A43 to A48 on the Amarok dataset

REFERENCES

(1]

(2]

F. N. Afrati, C. Li, and P. Mitra, “On
containment of conjunctive queries with arithmetic
comparisons,” in the 9th International Conference

on Extending Database Technology, Heraklion,
Crete, Greece, March 14-18, 2004, pp. 459-476.

M. Benedikt, G. Puppis, and H. Vu, “The
complexity of higher-order queries,” Inf. Comput.,

66

(3]

(4]

vol. 244, pp. 172-202, 2015.

A. K. Chandra and P. M. Merlin, “Optimal
implementation of conjunctive queries in relational
data bases,” in the 9th ACM Symposium on Theory
of Computing, 1977, pp. 77-90.

S. Chaudhuri and M. Y. Vardi, “Optimization of
real conjunctive queries,” in the 20th Symposium

on Principles of Database Systems, C. Beeri, Ed.,
1993, pp. 59-70.

H. Grunert, A. Heuer: Query Rewriting by Contract under Privacy Constraints

(5]

(6]

(7]

(8]

(9]

Rule A49 A50 A51
Variant - + - + - +
#1 9 17 9 17 9 27
#2 9 16 9 16 9 27
#3 9 16 9 16 9 28
#4 9 16 9 17 9 30
#5 9 16 9 16 9 35
#6 9 17 9 16 9 29
#7 9 16 9 16 9 37
#8 9 17 9 17 9 29
#9 9 16 9 16 9 35
#10 9 16 9 17 9 30
AVG 9,0 |1 16,3 |90 164 | 9,0 | 30,7
Overhead in % 81,11 82,22 241,11

Table 10: Measurements for the rules A49 to A51 on the Amarok dataset

Rule LO01 L02 LO03 L04 LO05 LO06 LO07 LO08
Variant - + - + - + - + - + - + - + - +
#1 150 200 7] 11| 6] 18] 15] 19| 10| 12| 6] 9] 8] 15| 23| 29
) 5] 19| 6| 11| 7] 13| 15| 23] 10| 11| 7] 8| 7| 14| 23| 30
#3 14 18 7 11 6 12 15 26 11 13 7 9 6 14 22 30
#4 15 19 7 12 7 12 15 21 10 12 6 8 8 15 23 29
#5 15 19 6 10 6 11 14 20 10 12 7 8 7 14 22 30
#6 5] 19 7] nn| 7] 1] 15] 19| 10| 13| 6| 8] 6] 14| 23| 29
#7 16 200 6| 12 6| 11| 14| 19| 10| 12 7] 9] 7] 14] 23] 31
#3 4] 190 7] 1| 6] 11| 15 18| 11| 12| 7] 8] 7] 15] 23| 30
#9 15 19 6 10 7 11 14 19 12 13 6 8 6 14 23 30
#10 15 20 6 11 6 10 15 18 10 12 7 9 7 14 23 30
AVG 149 | 192 | 65 | 11,0 | 64 | 12,0 | 14,7 | 202 | 104 | 122 | 6,6 | 84 | 6,9 | 14,3 | 22,8 | 298
Overhead in % 28,86 69,23 87,50 37,41 17,31 27,27 107,25 30,70

Table 11: Measurements for the rules L01 to L08 on the Amarok dataset
S. Cohen, “Equivalence of queries combining [10] M. Enev, S. Gupta, T. Kohno, and S. N.
set and bag-set semantics,” in Proceedings Patel, “Televisions, video privacy, and powerline
of the Twenty-Fifth ACM SIGACT-SIGMOD- electromagnetic interference,” in ACM Conference
SIGART Symposium on Principles of Database on Computer and Communications Security.
Systems, June 26-28, Chicago, Illinois, USA, ACM, 2011, pp. 537-550.
S. Vansummeren, Ed., 2006, pp. 70-79. [11] H. Garcia-Molina, W. Labio, and R. Yerneni,
S. Cohen, W. Nutt, and Y. Sagiv, “Deciding “Capability-sensitive query processing on internet
equivalences among conjunctive aggregate sources,” in the 15th International Conference on
queries,” J. ACM, vol. 54, no. 2, p. 5, 2007. Data Engineering, 1999, pp. 50-59.
S. Cohen, W. Nutt, and A. Serebrenik, “Rewriting [12] S. Grumbach, M. Rafanelli, and L. Tininini,
Aggregate Queries Using Views,” in Proceedings “On the equivalence and rewriting of aggregate
of the Eighteenth ACM SIGACT-SIGMOD-SIGART queries,” Acta Inf., vol. 40, no. 8, pp. 529-584,
Symposium on Principles of Database Systems, 2004.
May 31 - June 2, Philadelphia, Pennsylvania, USA, [13] H. Grunert and A. Heuer, “Privacy Protection
1999, pp. 155-166. through Query Rewriting in Smart Environments,”
A. V. Dastjerdi, H. Gupta, R. N. Calheiros, in Proceedings of the 19th International
S. K. Ghosh, and R. Buyya, “Fog computing: Conference on Extending Database Technology,
principles, architectures, and applications,” CoRR, Bordeaux, France, Bordeaux, France, March
vol. abs/1601.02752, 2016. 15-16, 2016, pp. 708-709.
O. M. Duschka and M. R. Genesereth, “Query [14] H. Grunert and A. Heuer, “Rewriting complex

planning in infomaster,” in Proceedings of the 1997
ACM symposium on Applied computing. ACM,
1997, pp. 109-111.

67

queries from cloud to fog under capability
constraints to protect the users’ privacy,’
Open Journal of Internet Of Things (OJIOT),

Open Journal of Internet of Things (OJIOT), Volume 4, Issue 1, 2018

[15]

[16]

[17]

[18]

[19]

[20]

[21]

vol. 3, no. 1, pp. 3145, 2017, special
Issue: Proceedings of the International Workshop
on Very Large Internet of Things (VLIoT
2017) in conjunction with the VLDB 2017
Conference in Munich, Germany. [Online].
Available: http://nbn-resolving.de/urn:nbn:de:101:
1-2017080613421

I. Hegedus and M. Jelasity, “Differentially private
linear models for gossip learning through data
perturbation,” Open Journal of Internet Of Things
(OJIOT), vol. 3, no. 1, pp. 62-74, 2017,
special Issue: Proceedings of the International
Workshop on Very Large Internet of Things
(VLIoT 2017) in conjunction with the VLDB
2017 Conference in Munich, Germany. [Online].
Auvailable: http://nbn-resolving.de/urn:nbn:de:101:
1-2017080613445

A. C. Klug, “Equivalence of relational algebra
and relational calculus query languages having
aggregate functions,” J. ACM, vol. 29, no. 3, pp.
699-717, 1982.

A. C. Klug, “On conjunctive queries containing
inequalities,” J. ACM, vol. 35, no. 1, pp. 146-160,
1988.

P. G. Kolaitis, “The query containment problem:
Set semantics vs. bag semantics,” in Proceedings
of the 7th Alberto Mendelzon International
Workshop on Foundations of Data Management,
Puebla/Cholula, Mexico, May 21-23, L. Bravo and
M. Lenzerini, Eds., vol. 1087, 2013.

B.-J. Koops, J.-H. Hoepman, and R. Leenes,
“Open-source intelligence and privacy by design,”
Computer Law & Security Review, vol. 29, no. 6,
pp- 676-688, 2013.

M. Langheinrich, “Privacy by design—principles
of privacy-aware ubiquitous systems,” in
International conference on Ubiquitous
Computing. Springer, 2001, pp. 273-291.

A. Levy, A. Rajaraman, and J. Ordille, “Querying
heterogeneous information sources using source
descriptions,” Stanford InfoLab, Tech. Rep., 1996.

68

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

(30]

[31]

A. Y. Levy, A. Rajaraman, and J. D. Ullman,
“Answering queries using limited external query
processors,” J. Comput. Syst. Sci., vol. 58, no. 1,
pp. 69-82, 1999.

T. Li, N. Li, J. Zhang, and I. Molloy, “Slicing:
A new approach for privacy preserving data
publishing,” IEEE Transactions on Knowledge and
Data Engineering, vol. 24, no. 3, pp. 561-574,
2012.

B. Meyer, “Applying design by contract,” IEEE
Computer, vol. 25, no. 10, pp. 40-51, 1992.

Y. Papakonstantinou, A. Gupta, and L. Haas,
“Capabilities-based query rewriting in mediator
systems,” Distributed and Parallel Databases,
vol. 6, no. 1, pp. 73-110, 1998.

R. Pottinger and A. Halevy, “MiniCon: A scalable
algorithm for answering queries using views,” The
VLDB Journal - The International Journal on Very
Large Data Bases, vol. 10, no. 2-3, pp. 182-198,
2001.

P. Samarati, “Protecting respondents identities
in microdata release,” I[EEE Transactions on
Knowledge and Data Engineering, vol. 13, no. 6,
pp. 1010-1027, 2001.

W. Shi and S. Dustdar, “The promise of edge
computing,” Computer, vol. 49, no. 5, pp. 78-81,
May 2016.

W. Shi and S. Dustdar, “The promise of edge
computing,” Computer, vol. 49, no. 5, pp. 78-81,
2016.

C. Tirker, Semantic Integrity Constraints in
Federated Database Schemata, ser. DISDBIS.
Infix Verlag, St. Augustin, Germany, 1999.

F. Wei and G. Lausen, “Containment of conjunctive
queries with safe negation,” in 9th International
Conference on Database Theory, Siena, Italy,
January 8-10, vol. 2572. Springer, 2003, pp. 343—
357.

http://nbn-resolving.de/urn:nbn:de:101:1-2017080613421
http://nbn-resolving.de/urn:nbn:de:101:1-2017080613421
http://nbn-resolving.de/urn:nbn:de:101:1-2017080613445
http://nbn-resolving.de/urn:nbn:de:101:1-2017080613445

H. Grunert, A. Heuer: Query Rewriting by Contract under Privacy Constraints

AUTHOR BIOGRAPHIES

Hannes Grunert was born in
Ribnitz-Damgarten (Germany).
He received his B.Sc. and
his M.Sc. degree in Computer
Science from the University of
Rostock, Germany, in 2011
and 2013, respectively. He is
currently a PhD student at the
University of Rostock. His work
is focused on privacy aware

Andreas Heuer studied
Mathematics and Computer
Science at the Technical
University of Clausthal from
1978 to 1984. He got his PhD
and Habilitation at the TU
Clausthal in 1988 and 1993,
resp. Since 1994, he is full
professor for Database and
Information Systems at the
University of Rostock. He
is interested in fundamentals

query processing. of database models and languages, and in big data
analytics, here especially performance, privacy and
provenance.

69

	Introduction
	PArADISE
	State of the Art
	Privacy
	Cloud, Edge and Fog Computing
	Query Containment
	Answering Queries Using Views or Using Capabilities
	State of the Art: Summary

	Concept
	Query Rewriting under Constraints in General
	Query Rewriting by Contract
	Finding New Rules

	Evaluation
	Rules in Detail
	K09: Commutativity of Selection and Projection – V1
	L3: equal-to greater-than-or-equal-to (attribute-constant)
	A10: maximum-equal-to average-less-than-or-equal-to (attribute-constant)
	A29: equal-to minimum-equal-to (attribute-constant)

	Evaluation Results in Detail

	Conclusions and Future Work

