
c© 2020 by the authors; licensee RonPub, Lübeck, Germany. This article is an open access article distributed under the terms and conditions of
the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).

Open Access

Open Journal of Internet of Things (OJIOT)
Volume 6, Issue 1, 2020

http://www.ronpub.com/ojiot
ISSN 2364-7108

MASCARA (ModulAr Semantic CAching
fRAmework) towards FPGA Acceleration for

IoT Security Monitoring
Van Long Nguyen HuuAB, Julien LalletA, Emmanuel CasseauB, Laurent d’OrazioB

A Nokia Bell Labs, 2 Rue Louis de Broglie, 22300 Lannion, France, {long.nguyen_huu, julien.lallet}@nokia.com
B Univ Rennes, CNRS, IRISA, 22305 Lannion, France, {emmanuel.casseau, laurent.dorazio}@irisa.fr

ABSTRACT

With the explosive growth of the Internet Of Things (IOTs), emergency security monitoring becomes essential to
efficiently manage an enormous amount of information from heterogeneous systems. In concern of increasing
the performance for the sequence of online queries on long-term historical data, query caching with semantic
organization, called Semantic Query Caching or Semantic Caching (SC), can play a vital role. SC is implemented
mostly in software perspective without providing a generic description of modules or cache services in the given
context. Hardware acceleration with FPGA opens new research directions to achieve better performance for
SC. Hence, our work aims to propose a flexible, adaptable, and tunable ModulAr Semantic CAching fRAmework
(MASCARA) towards FPGA acceleration for fast and accurate massive logs processing applications.

TYPE OF PAPER AND KEYWORDS

Vision paper: hardware acceleration, semantic caching, security monitoring, IoT

1 INTRODUCTION

Recently, the Internet of Things (IoT) is strongly
growing from industries to society. A myriad of
IoT devices are currently used in smart homes,
smart campus, or even smart cities with numerous
benefits and also the vulnerabilities or unprecedented
security challenges. Thus, cybersecurity is essential to
protect the various IoT ecosystems against increasingly
cybercriminals. Within the cybersecurity activities,
security monitoring as an instance of a Big Data context
aims to observe and detect continuously the unusual

This paper is accepted at the International Workshop on Very
Large Internet of Things (VLIoT 2020) in conjunction with the
VLDB 2020 conference in Tokyo, Japan. The proceedings of
VLIoT@VLDB 2020 are published in the Open Journal of Internet
of Things (OJIOT) as special issue.

Figure 1: Overview of security monitoring for the IoT

events from an enormous amount of distributed system
logs. Unfortunately, fine-grained re-usability is not
addressed well in Big Data technologies. As an example,
Figure 1 shows the data flow from IoT devices to a HTTP
server where security monitoring is maintained by the
activities of big data reasoning and visualization.

14

http://creativecommons.org/licenses/by/4.0/
http://www.ronpub.com/ojiot


V. Huu, et al.: MASCARA (ModulAr Semantic CAching fRAmework) towards FPGA Acceleration for IoT Security Monitoring

Query caching, in which the queries and/or the
query results are stored in a cache system with query
relevance management, is a crucial service to improve
the performances of long term historical data processing
or avoiding unnecessary query re-executions in security
monitoring. The query-based monitoring tools reduce
time-consuming of CPU to investigate the unusual events
or harmful intrusions due to a well designed caching
system [2]. A query cache uses semantic organization,
called Semantic Query Cache (SQC) [12] or Semantic
Caching (SC), is flexible and can keep the relevance of
information. The most advantages of SC are allowing
data processing and analysis effectively, reducing data
transmission on servers, exploiting query relevance
themselves [12], [19], [21], [7]. However, besides
the expressiveness gain, the query processing of SC
could induce non-negligible overhead [16] due to its
complexity.

Researches from [10] or [3] proposed the component
interfaces, adaptable services or abstracting functions
to facilitate developing a new cache solution from
existing adaptable techniques. According to these
approaches, the performance indicators related to
hardware acceleration opportunities could be explored.
However, they do not face directly with the SC
framework implementation.

From the hardware perspective, data processing
with hardware acceleration has been well presented
in terms of Graphic Processing Unit (GPUs)
implementation [31], [17] or more recently on Field
Programmable Gate Arrays (FPGAs) [30], [26] thanks
to its data throughput performance and low energy
effort. Their contributions are limited with a dedicated
hardware architecture and processing model that depend
heavily on the context characteristics because of the lack
of modular or service-oriented approach as a software
perspective.

In our previous works, we took into account the
SC framework towards FPGA acceleration [11], [22].
In [11], we proposed the vision of an abstract and tunable
SC framework with multi-layer implementation. In [22],
we continued with this vision and proposed a prototype
where Apache Spark [1], Hadoop HDFS [23] are used
to build a semantic cache prototype. Unfortunately,
we have not yet presented any associated experiment
of query processing within this prototype except for
data communication between host and FPGA. Thus,
the experiment in [22] is not complete to examine the
performance indicators and point out the opportunities of
SC framework acceleration with FPGA. Moreover, both
works [11] and [22] did not present the mechanism of
query processing as well as semantic management.

Therefore, our motivation is providing an appropriate
solution like SC framework that not only maintains

the adaptable, flexible, and tunable cache but also
takes advantage of computing acceleration of hardware
perspective. Our solution is called MoudlAr Semantic
CAching fRAmework (MASCARA) towards FPGA
acceleration directly aims to security monitoring
application for IoT. Compared with these works in [11]
and [22], MASCARA addresses an entire architecture
of semantic caching which contains Query processing
and Semantic management in detail. On one hand,
MASCARA presents a modular architecture with
different services to serve dedicated tasks in semantic
query processing. On the other hand, it pointed
out the opportunities of FPGA acceleration with high-
level experiments for a given data store and execution
environment.

Although FPGA and GPU acceleration for data
processing has many issues to compare and analysis, we
do not consider and express these issues as our research
objective. We focus on FPGA acceleration because
FPGAs have been noted by the database community
as a data processing solution for their high parallelism,
reconfigurability, and low power consumption, e.g.
OpenCAPI [25], DoppioDB [31]. Thus, it can mitigate
the computational pressure in the CPU to accelerate
database analytic performance. In particular, with
MASCARA, the circuit in FPGA allows us to customize
only the semantic cache specific function, e.g. query
processing, instead of designing as a generic task
on CPU that do not use all the resources efficiently.
Moreover, the modular approach allows us to extend,
deploy MASCARA as a micro-service container for
other related researches by using the orchestration
platforms in the context of cloud computing services,
such as Docker, Kubernetes, etc.

The remainder of this paper is organized as follows.
In Section 2, we describe in detail the modules of
MASCARA framework. Then, in section 3, we present
our experimental results for MASCARA with different
scenarios at high-level deploying on Massively Parallel
Processing (MPP), i.e. Apache Spark and distributed
file system based solution, i.e. Hadoop HDFS. Through
the experiments at a high level, we prove that our
MASCARA is the right approach for security monitoring
application towards FPGA acceleration. Finally, in
section 4, we conclude the proposed contribution and
discuss several preliminary opportunities to accelerate
the performance of MASCARA using FPGA.

2 MASCARA FRAMEWORK

The proposed MASCARA framework is based on a
modular semantic caching approach which aims to
exploit FPGA acceleration for large scale logs analysis

15



Open Journal of Internet of Things (OJIOT), Volume 6, Issue 1, 2020

Figure 2: An overview of MASCARA architecture

Figure 3: A log data pattern from Apache HTTP
server

with a given data store and execution environment.
MASCARA presents two main contributions: 1)
Abstract but comprehensive modular structure with
different services to serve dedicated tasks in semantic
query processing. These modules address how a user
query is broken, trimmed, extracted and managed in
terms of Query processing and Semantic management;
2) FPGA acceleration opportunities are pointed out with
high-level experiments considering Select Project Join
(SPJ) queries with aggregation.

Figure 2 illustrates an overview of MASCARA
architecture where Query analyzing engine and
Distribute file system are described abstractly to be
easily tuned to match the requirements of the considered
application. In particular, HDFS could be used as a
distributed storage solution. Meanwhile, log analysis
can rely on Spark engine.

The general concept of SC could be divided
into 2 parts: Query processing and Semantic cache
management [27]. Due to this design principle, our
MASCARA framework is composed of 4 main stages:
(1) Query Broking, (2) Query Trimming, (3) Semantic
Management, and (4) Result refining. The Query
Trimming, or called Query Processing, is an attractive
study in terms of sastifiablity [34], or automatically
executed queries [33], etc. The modules in stages
of MASCARA could be easily replaced, removed,
composed, decomposed, or even delegated to low level
such as hardware acceleration according to desirable
context. Moreover, in each stage, we present the
appropriate and flexible library services to serve different
module activities.

Along with this proposal, we also state an example
through HTTP big log analysis in which the monitoring

Figure 4: Modules and services of Query Broking

security tool frequently supports Select Project Join
(SPJ) queries with aggregation (illustrated in Figure 3).
These kinds of activities are a part of Big Data issue
where efficiently collecting, storing and analyzing the
data from a huge amount of heterogeneous systems of
the IoT is required.

2.1 Query Broking

Query Broking is responsible to identify the user posed
queries are in Simple Format or in Complex Format as
illustrated in Figure 4.

Simple Format query is selection or even projection
over single relation. An example of SELECT - PROJECT
query is illustrated below with the reduced version of
two log files User < ip, time, date, idcam > and
Campus < idcam, name, stage >.

Q1: SELECT ip, time FROM Log
WHERE ip >= ’192.168.1.0’ AND
ip <= ’192.168.255.255’

Complex format query may be join queries with no
additional selection predicates that are not well suited
for SC. In this case, the cache should manage more than
one relation which effects directly in cache performance.
Besides join query, ordered or top-n query could be
considered as Complex format query [16]. An example
of a join query with no selection on either relation is
illustrated below:

Q2: SELECT *
FROM User JOIN Campus
ON User.idcam = Campus.idcam

The appropriate services would be called to
materialize the query. In particular, the query would be
decomposed into various types of elements, such as:
Relations, Attributes, Predicates and Operators. These
elements and their relationship would be examined and
managed in the form of a hierarchy list or plan tree in
the next stage (2) Query Trimming [20].

16



V. Huu, et al.: MASCARA (ModulAr Semantic CAching fRAmework) towards FPGA Acceleration for IoT Security Monitoring

2.2 Query Trimming

The concept of Query Trimming that is firstly presented
in [19] in which a query would be turned into two
disjoint parts: the overlapped part and the non-
overlapped part. Later, in [9], the two disjoint parts
are further called: probe query and remainder query,
respectively. Unlike Page or Tuple cache, thanks to
probe and remainder query, besides HITS and MISSES,
SC proposes PARTIAL HITS which is an unique and
impressive advantage of SC [12]. It reduces waiting
time to get the answer because the probe query can be
processed in the cache while the remainder query has
to be sent to the server. Probe and remainder query
have been built by extracting explicitly or implicitly
the semantic information from user query. This Query
Trimming stage can be divided into two sub steps that
have a strong relation: Query Matching and Query
Trimming.

For instance, assume that the semantic cache stores
a semantic entity se: (date <′ 17/03/2020 − 10 :
00 : 00′). The incoming query incq: (ip =′

208.115.111.72′) would be divided into the probe query
prq: (date <′ 17/03/2020 − 10 : 00 : 00′ ∧ ip =′

208.115.111.72′) and the remainder query query req:
(date 6=′ 17/03/2020 − 10 : 00 : 00′ ∧ ip =′

208.115.111.72′)

The Sub Query engine in stage (2) of MASCARA is
designed with the concept of [9] to divide and manage
a list of sub-queries with a given query equivalence
management schema (illustrated in Figure 5). This
schema, called Query Matching, is used to check the
satisfiability or implied relationship between the queries
and/or semantic fragment. Solving this problem in
an appropriate time constraint is the key point for
effectively Query Trimming stage. Hence, a lot of
works has been done in this context, such as: Relational
algebra [8], Set Theory [24], or Satisfiability Modulo
Theories - SMT recently [34]. In our MASCARA, we
use Relational algebra and Set Theory with several rules
and constraints to express Query Matching in terms of a
matching series: Relation Matching, Attribute Matching
and Predicate Matching. The matching procedure is
an iteration or even nested-iteration through list of
candidate semantic information. Thus, it will take time
to execute and get the matching conclusion on CPU,
especially when the time complexity of query processing
increases, i.e. complexity of semantic information needs
to be decomposed in user query.

The information (attributes, relations, predicates...) of
probe or remainder query would be turned in form of a
semantic tuple Q < QR, QA, QP , QC > as presented
in [27] with A is Attributes, R is Relations, P is
Predicates and C is number of result tuples. For instance,

Figure 5: Modules and services of Query Trimming.
Schema Evaluator is used for Query Matching

using the Simple Format query Q1 in Section 2.1, Q1
could be presented as Q1 < Log, {ip, time} , (ip ≥′

192.168.1.0′, ip ≥′ 192.168.255.255′),∅ >. Before Q1
gets answer, it contents is empty, then QC = ∅

Service library composes different computations
(intersect, different...) to find out the query relevance.
Currently, we are working on Select Project Join (SPJ)
queries although MASCARA can be extended to handle
other more complicated or aggregate queries.

2.3 Semantic Management

There are several ways to physically store semantic
information of each query, called a semantic segment.
To start with, we choose to store semantic segment as a
basic tuple S < SR, SA, SP , SC > and associates every
segment with a semantic region in form of a list of the
corresponding records [9] or linked pages [27]. This
approach works fine for memory caching or even disk
caching with a minimum of space overhead.

In stage (3), the Semantic Management is composed
of two parts: Semantic Description Table and Semantic
Data Region (illustrated in Figure 6). For allocation,
if there is enough free memory to hold the semantic
region, then store the semantic segment into Semantic
description table and the relevant query results into
Semantic data region at the same time. For de-allocation,
remove the semantic segment and clean the relevant
semantic data region.

There are two implemented engines at this stage (3):
Replacement Engine and Semantic Indexing Engine. SC
is usually allocated with a fixed amount of storage for
holding items. When this storage space fills up (both for
Semantic description table and Semantic data region),
the Replacement Engine is responsible to determine
one or more items to evict to make free space for

17



Open Journal of Internet of Things (OJIOT), Volume 6, Issue 1, 2020

Figure 6: Modules and services of Semantic
Management

newly referenced items based on various policies, such
as: Least Recently Used (LRU), First In First Out
(FIFO), Most Recently Used (MRU) or Semantic locality
with Manhattan distance [9]. Time consumption of
finding, removing, or replacing policies the semantic
segment and data are strongly influenced by different
strategies [28], [16], such as sequential, suffix tree or
graph-based indexing are described in Semantic Indexing
Engine.

Figure 7 illustrates the semantic segments S1, S2,
S3 are stored in Semantic Description Table after
continuously queries Q1, Q2 and Q3 as log query
analysis. The last column SC provides a number of
query results in terms of the data region. Query results
could be managed in terms of tuple, chunk or dynamic
data structure. The implementation of the semantic
description table could be easily extended with other
parameters, such as time for replacement, dirty mark for
data overwrite, etc. To avoid redundant information in
semantic tuples, we do not allow saving and keeping
existed semantic information through decomposition
and coalescence with two following options: Partial
Coalescence in Query and Partial Coalescence in
Segment. MASCARA already implemented Partial
Coalescence in Query where only the different part
of semantic information from user query is saved in
Semantic Description Table.

2.4 Result Refining

Result Refining receives the result of remainder queries
from server and results of probe queries from SC
(illustrated by Figure 8). While every individual segment
may contain only a small part of a query result, multiple
segments can be combined together to generate a much
bigger part of, or even the whole result. Thus, Result

Figure 7: Association between Semantic Description
Table and Semantic Data Region

Figure 8: Modules and services of Result Refining

Refining is the process in which an entire cache or a
list of candidate segments is considered to contribute
the final result. Therefore, to keep track with the
relationship between every part of the query and the
involved semantic segments, a binary tree is constructed
simultaneously with the Query Trimming procedure.
Finally, it can combine or merge the results into the
final result as query answer. This final result could be
sometimes updated back into the semantic data region if
required.

3 EXPERIMENTS

In this section, we first describe the environment for
preliminary experiments, the system parameter settings.
Then, based on the results, we present the performance
of MASCARA compared to No Cache and Exact
Matching Cache. Finally, through the experiment,
we can analyze and point out the FPGA acceleration
opportunities with the help of several performance
indicators, e.g. response time of query processing.

3.1 Experiment Setting

Spark [1] is a general-purpose cluster computing engine
with libraries for streaming, graph processing, machine
learning, and SQL. We use Spark SQL [32], a Spark
module for structured data processing, which provides
Data Frame API to perform relational operations on both

18



V. Huu, et al.: MASCARA (ModulAr Semantic CAching fRAmework) towards FPGA Acceleration for IoT Security Monitoring

Figure 9: MASCARA modules implemented on
Spark and HDFS towards FPGA acceleration

external data sources and Spark’s built-in distributed
collections. The Semantic Management of MASCARA
is based on Spark caching mechanism with multiple
storage (memory only, disk only, or both).

At the same time, we use HDFS to store a massive
number of logs because it is suitable for applications that
have large data sets with high throughput access [23].
The implementation of MASCARA framework on Spark
and HDFS is illustrated by Figure 9 with Query
Trimming stage could be accelerated by offloading to
FPGA.

The server used for the evaluation is based on an
Intel R© CoreTM i7-6700 CPU to run at 3.40GHz with
32GB of RAM. The operating system is a Linux Ubuntu
14.04.6 Long Term Support distribution based on kernel
4.4.0-31-generic. We use Spark version 2.4.5 Pre-build
for Apache Hadoop 2.7.

3.2 Preliminary Performance Study

To show the performance of MASCARA, we want
to examine the Response Time with 6 tests in which
ratios of HITS (H), MISSES (M), or Partial HITS
(PH) are changed (illustrated in Table 1). The
Response Time consists of Query Processing Time
(Query Broking, Query Trimming, Result Refining) and
Semantic Management. In Semantic Management, the
time of data transferring from storage to cache when
MISSES or PARTIAL HITS is very expensive. We
compare our MASCARA with NO Cache and Exact
Match Cache. The Exact Match Cache is built based
on Spark cache. When the contents of the two queries
are the same, we have HITS. In contrast, with a minor
difference in query content, we have MISSES. Thus, we
call it the Exact Match Cache.

Each test contains 100 SELECT-PROJECT queries to
apply with a HTTP log file 2.5 GBytes. Each query
composes SELECT condition which is a disjunction
(OR) of conjuntions (AND) of compare predicates. We
use 10 warm-up queries, that are not measured in our

Table 1: Scenario tests to measure Response Time

No cache Exact Match Semantic

Test 1

100% M

100% H 100% H

Test 2 70% H, 30% M 70% H, 20% PH, 10% M

Test 3 60% H 40% M 60% H, 30% PH, 10% M

Test 4 50% H, 50% M 50% H, 40% PH, 10% M

Test 5 40% H, 60% M 40% H, 50% PH, 10% M

Test 6 30% H, 70% M 30% H, 60% PH, 10% M

Figure 10: Response Time of 6 scenario tests

experiment, to initiate data into cache. The cache
replacement strategy, Least Recently Used (LRU), is
applied for both caches and they can store a maximum
of 1,000,000 records. We assume that the result of each
query do not exceeded the cache capacity. Figure 10
presents the result on Response Time for SC, Exact
Match cache, and No-cache.

In most cases, using cache is far more better than No-
cache. In the ideal case (Test 1 with 100% HITS), the
Response Time of Exact Match cache is slightly better
than SC because the Query Processing Time of SC is
more complex. In particular, it needs to broke and trim
the query into a list of sub-queries that compose a list
of attributes, predicates, and operators. For detail, when
the HITS ratio is decreased to 70% (while Partial HITS
is 20%), the SC is 1.41 times better Exact Match. In
conclusion, if we ignore the ideal case (100% HITS), we
have found that the SC is faster than Exact Match 1.60
times and 3.69 times than No-cache for tests with Partial
HITS and MISSES.

3.3 FPGA Acceleration Opportunity

MASCARA is a framework towards FPGA acceleration.
Thus, to point out the opportunities to offload some parts
or modules of to accelerate on FPGA, we check the
average percentage of computing time of 4 stages in over
the query response time (illustrated in Figure 11)

Meanwhile the Query Broking and Result Refining
do not consume too much time in processing a

19



Open Journal of Internet of Things (OJIOT), Volume 6, Issue 1, 2020

Figure 11: Average of percentage in time computing
of MASCARA modules

query, the Query Trimming (from 32% to 36%),
and Semantic Management (from 57% to 62%) are
noticeable. Skipping the first test which does not
have much value for analysis, we do focus on the
others. The results showed that if we could do
the acceleration for Query Trimming and Semantic
Management, then the performance of MASCARA
would be improved. However, accelerating the Semantic
Management stage seems not the most promising.
Semantic Management consists of data transfers from
disk or distributed storage that do not fit with FPGA
acceleration. In contrast, Query Trimming is quite
interesting and reasonable enough to accelerate with
FPGA. In particular, finding the relevance between
queries, checking query satisfiability (Query Matching
sub-stage) and semantic information extracting (Query
Trimming sub-stage), are very expensive in terms of
computing time due to the time complexity of query
processing (see Section 2.2). Even we can not offload
all of the Query Trimming into FPGA, it is still valuable
by accelerating some services or parts of this module, i.e.
Predicate Matching over semantic segments. Moreover,
the Query Broking stage (from 4.66% to 5.71%), where
queries are materialized into various elements, is also
considered to accelerate. By opportunistically offloading
compute-heavy, compression tasks (Query Trimming
stage) to FPGA, the CPU is freed to perform other
tasks, resulting in an improved overall performance for
MASCARA. Thus, consequently, in this preliminary
analysis, we do point out what modules or services that
we will focus on to accelerate with FPGA as the next
step of our research.

4 CONCLUSION AND RESEARCH
CHALLENGES

This paper presents the MASCARA framework towards
FPGA acceleration with direct application in security

monitoring for IoT. The proposal context works not
only in security monitoring but also in relevant use
cases for many research directions, such as: database
management, parallel and distributed system, etc.
Moreover, with this modular approach, MASCARA
would be reasonable to deploy as a micro-service
container by using the orchestration platforms in the
context of cloud computing services.

This paper has first introduced the characteristics and
operations of the framework through HTTP log analysis.
Then, it has presented the experiment results to prove
the performance of MASCARA preliminary. After that,
it has pointed out a few limitations in query processing
workflow and discussed at the same time about the
opportunities in MASCARA to accelerate with FPGA.
Soon, in our next developing step, we will extend
MASCARA in both complicated queries processing
with join and SC replacement strategy with semantic
locality. It will result in having a comprehensive
experiment to analyze deeply the performance indicators
and show more convincing evidences to delegate works
of MASCARA into FPGA.

Consequently, in this section, we intend to work along
the following dimensions for the future research.

4.1 FPGA Accelerator Deployment

FPGAs have high intrinsic parallelism and internal
bandwidth to speed up the query workloads. However,
besides the high kernel throughput is achieved by
FPGA [14], [18], the oblivious challenge of offloading
modules or services to FPGA is the significant data
communication overhead between high-level modules
and low-level accelerators. Thus, the problem of using
JNI (Java Native Interface) to support communication
between JVM at high level and FPGA kernels at low
level, needs to be considered carefully [6] [15].

4.2 Query Containment

The query containment, which includes query
optimization, determining the independence of
queries from updates, and rewriting queries using
views, attracts a lot of attention for many years [4],
[29], [5]. The latency of the workflow pipeline of
the MASCARA framework can be improved by
minimizing data movement, making stages faster, or
even merging stages. Thus, with our early vision, the
expensive query processing stage of MASCARA could
benefit from answering conjunctive queries that are
NP-complete [13].

20



V. Huu, et al.: MASCARA (ModulAr Semantic CAching fRAmework) towards FPGA Acceleration for IoT Security Monitoring

ACKNOWLEDGEMENTS

We would like to thank members of SHAMAN team at
IRISA and ENSA members at Nokia Bell Labs. We also
thank the VLIoT reviewers for insightful comments and
suggestions that improved the quality of this paper.

REFERENCES

[1] M. Armbrust, R. S. Xin, C. Lian, Y. Huai, D. Liu,
J. K. Bradley, X. Meng, T. Kaftan, M. J. Franklin,
A. Ghodsi, and M. Zaharia, “Spark sql: Relational
data processing in spark,” in Proceedings of the
2015 ACM SIGMOD International Conference
on Management of Data, ser. SIGMOD ’15.
New York, NY, USA: Association for Computing
Machinery, 2015, p. 1383–1394.

[2] R. Baeza-Yates, A. Gionis, F. Junqueira,
V. Murdock, V. Plachouras, and F. Silvestri,
“The impact of caching on search engines,” in
Proceedings of the 30th Annual International ACM
SIGIR Conference on Research and Development
in Information Retrieval, ser. SIGIR ’07. New
York, NY, USA: Association for Computing
Machinery, 2007, p. 183–190.

[3] C. Bobineau, C. Collet, and T.-T. Vu, “A strategy to
develop adaptive and interactive query brokers,” in
Proceedings of the 2008 International Symposium
on Database Engineering & Applications, ser.
IDEAS ’08. New York, NY, USA: Association
for Computing Machinery, 2008, p. 237–247.

[4] A. K. Chandra and P. M. Merlin, “Optimal
implementation of conjunctive queries in relational
data bases,” in Proceedings of the Ninth Annual
ACM Symposium on Theory of Computing, ser.
STOC ’77. New York, NY, USA: Association for
Computing Machinery, 1977, p. 77–90.

[5] C. Chekuri and A. Rajaraman, “Conjunctive query
containment revisited,” Theor. Comput. Sci., vol.
239, no. 2, p. 211–229, May 2000.

[6] Y.-T. Chen, J. Cong, Z. Fang, J. Lei, and P. Wei,
“When apache spark meets fpgas: A case study
for next-generation dna sequencing acceleration,”
in Proceedings of the 8th USENIX Conference on
Hot Topics in Cloud Computing, ser. HotCloud’16.
USA: USENIX Association, 2016, p. 64–70.

[7] B. Chidlovskii and U. Borghoff, “Semantic caching
of web queries.” The VLDB Journal, vol. 9, pp. 2–
17, 04 2000.

[8] S. Chu, A. Cheung, and D. Suciu, “Axiomatic
foundations and algorithms for deciding semantic

equivalences of SQL queries,” CoRR, vol.
abs/1802.02229, 2018. [Online]. Available:
http://arxiv.org/abs/1802.02229

[9] S. Dar, M. J. Franklin, B. T. Jónsson, D. Srivastava,
and M. Tan, “Semantic data caching and
replacement,” in Proceedings of the 22th
International Conference on Very Large Data
Bases, ser. VLDB ’96. San Francisco, CA,
USA: Morgan Kaufmann Publishers Inc., 1996, p.
330–341.

[10] L. d’Orazio, F. Jouanot, C. Labbé, and
C. Roncancio, “Building adaptable cache services,”
ACM International Conference Proceeding Series,
vol. 117, pp. 1–6, 01 2005.

[11] L. d’Orazio and J. Lallet, “Semantic caching
framework: An fpga-based application for iot
security monitoring,” Open Journal of Internet Of
Things (OJIOT), vol. 4, no. 1, pp. 150–157, 2018.
[Online]. Available: http://nbn-resolving.de/urn:
nbn:de:101:1-2018080519321445601568

[12] P. Godfrey and J. Gryz, “Answering queries by
semantic caches,” in Proceedings of the 10th
International Conference on Database and Expert
Systems Applications, ser. DEXA ’99. Berlin,
Heidelberg: Springer-Verlag, 1999, p. 485–498.

[13] A. Y. Halevy, “Answering queries using views:
A survey,” The VLDB Journal, vol. 10, no. 4, p.
270–294, Dec. 2001.

[14] R. J. Halstead, I. Absalyamov, W. A. Najjar, and
V. J. Tsotras, “Fpga-based multithreading for in-
memory hash joins,” in CIDR, 2015.

[15] M. Huang, D. Wu, C. H. Yu, Z. Fang, M. Interlandi,
T. Condie, and J. Cong, “Programming and runtime
support to blaze fpga accelerator deployment at
datacenter scale,” in Proceedings of the Seventh
ACM Symposium on Cloud Computing, ser. SoCC
’16. New York, NY, USA: Association for
Computing Machinery, 2016, p. 456–469.

[16] B. T. Jónsson, M. Arinbjarnar, B. Þórsson, M. J.
Franklin, and D. Srivastava, “Performance and
overhead of semantic cache management,” ACM
Trans. Internet Technol., vol. 6, no. 3, p. 302–331,
Aug. 2006.

[17] T. Kaldewey, G. Lohman, R. Mueller, and P. Volk,
“Gpu join processing revisited,” in Proceedings
of the Eighth International Workshop on Data
Management on New Hardware, ser. DaMoN ’12.
New York, NY, USA: Association for Computing
Machinery, 2012, p. 55–62.

21

http://arxiv.org/abs/1802.02229
http://nbn-resolving.de/urn:nbn:de:101:1-2018080519321445601568
http://nbn-resolving.de/urn:nbn:de:101:1-2018080519321445601568


Open Journal of Internet of Things (OJIOT), Volume 6, Issue 1, 2020

[18] K. Kara, J. Giceva, and G. Alonso, “Fpga-based
data partitioning,” in Proceedings of the 2017
ACM International Conference on Management of
Data, ser. SIGMOD ’17. New York, NY, USA:
Association for Computing Machinery, 2017, p.
433–445.

[19] A. M. Keller and J. Basu, “A predicate-based
caching scheme for client-server database
architectures,” in Proceedings of 3rd International
Conference on Parallel and Distributed
Information Systems, 1994, pp. 229–238.

[20] P.-r. Larson and H. Z. Yang, “Computing queries
from derived relations,” in Proceedings of the
11th International Conference on Very Large Data
Bases - Volume 11, ser. VLDB ’85. VLDB
Endowment, 1985, p. 259–269.

[21] K. C. K. Lee, H. V. Leong, and A. Si,
“Semantic query caching in a mobile environment,”
SIGMOBILE Mob. Comput. Commun. Rev., vol. 3,
no. 2, p. 28–36, Apr. 1999.

[22] M. Maghzaoui, L. d’Orazio, and J. Lallet, “Toward
fpga-based semantic caching for accelerating data
analysis with spark and HDFS,” in Information
Search, Integration, and Personalization - 12th
International Workshop, ISIP 2018, Fukuoka,
Japan, May 14-15, 2018, Revised Selected Papers,
ser. Communications in Computer and Information
Science, D. Kotzinos, D. Laurent, N. Spyratos,
Y. Tanaka, and R. Taniguchi, Eds., vol. 1040.
Springer, 2018, pp. 104–115.

[23] J. Nandimath, E. Banerjee, A. Patil, P. Kakade,
S. Vaidya, and D. Chaturvedi, “Big data analysis
using apache hadoop,” in 2013 IEEE 14th
International Conference on Information Reuse
Integration (IRI), 2013, pp. 700–703.

[24] M. Negri, G. Pelagatti, and L. Sbattella, “Formal
semantics of sql queries,” ACM Trans. Database
Syst., vol. 16, no. 3, p. 513–534, Sep. 1991.

[25] OpenCAPI, “A new standard for high performance
memory, acceleration and networks,” https://
opencapi.github.io/oc-accel-doc/, Last accessed on
2020-20-06.

[26] M. Owaida, D. Sidler, K. Kara, and G. Alonso,
“Centaur: A framework for hybrid cpu-
fpga databases,” in 2017 IEEE 25th Annual
International Symposium on Field-Programmable

Custom Computing Machines (FCCM), 2017, pp.
211–218.

[27] Qun Ren, M. H. Dunham, and V. Kumar, “Semantic
caching and query processing,” IEEE Transactions
on Knowledge and Data Engineering, vol. 15,
no. 1, pp. 192–210, 2003.

[28] Q. Ren and M. H. Dunham, “Using semantic
caching to manage location dependent data
in mobile computing,” in Proceedings of the
6th Annual International Conference on Mobile
Computing and Networking, ser. MobiCom ’00.
New York, NY, USA: Association for Computing
Machinery, 2000, p. 210–221.

[29] Y. Sagiv and M. Yannakakis, “Equivalences among
relational expressions with the union and difference
operators,” J. ACM, vol. 27, no. 4, p. 633–655, Oct.
1980.

[30] D. Sidler, Z. István, M. Owaida, and G. Alonso,
“Accelerating pattern matching queries in hybrid
cpu-fpga architectures,” in Proceedings of the 2017
ACM International Conference on Management of
Data, ser. SIGMOD ’17. New York, NY, USA:
Association for Computing Machinery, 2017, p.
403–415.

[31] D. Sidler, Z. Istvan, M. Owaida, K. Kara, and
G. Alonso, “Doppiodb: A hardware accelerated
database,” in Proceedings of the 2017 ACM
International Conference on Management of Data,
ser. SIGMOD ’17. New York, NY, USA:
Association for Computing Machinery, 2017, p.
1659–1662.

[32] Spark SQL Guide, “Spark sql, dataframes and
datasets guide,” https://spark.apache.org/docs/
latest/sql-programming-guide.html, Last accessed
on 2020-20-06.

[33] S. Werner, D. Heinrich, S. Groppe, C. Blochwitz,
and T. Pionteck, “Runtime adaptive hybrid query
engine based on fpgas,” Open Journal of Databases
(OJDB), vol. 3, no. 1, pp. 21–41, 2016. [Online].
Available: http://nbn-resolving.de/urn:nbn:de:101:
1-201705194645

[34] Q. Zhou, J. Arulraj, S. Navathe, W. Harris,
and D. Xu, “Automated verification of query
equivalence using satisfiability modulo theories,”
Proc. VLDB Endow., vol. 12, no. 11, p. 1276–1288,
Jul. 2019.

22

https://opencapi.github.io/oc-accel-doc/
https://opencapi.github.io/oc-accel-doc/
https://spark.apache.org/docs/latest/sql-programming-guide.html
https://spark.apache.org/docs/latest/sql-programming-guide.html
http://nbn-resolving.de/urn:nbn:de:101:1-201705194645
http://nbn-resolving.de/urn:nbn:de:101:1-201705194645


V. Huu, et al.: MASCARA (ModulAr Semantic CAching fRAmework) towards FPGA Acceleration for IoT Security Monitoring

AUTHOR BIOGRAPHIES

Van Long Nguyen Huu is a
lecturer of CanTho university,
Vietnam since 2010. He
received the MSc degree in
Embedded system from USTH,
Vietnam and from University of
Limoges, France in 2015. He
has started his PhD in Computer
Science at University of Rennes
from 2019. His research is
financed by CIFRE scholarship

and supported by IRISA, CNRS and Nokia Bell Labs.
His research interests are semantic caching, query
processing and hardware acceleration in Big Data.

Julien Lallet joined the
company Alcatel-Lucent in
2011 and is currently a research
engineer at Nokia Bell Labs
since 2016. He received his PhD
degree in electrical engineering
from the University of Rennes
in 2008. He was a Post-doctoral
fellow at the University of
Bielefeld in Germany from

2009 to 2010. His research interests include efficient
processing in the context of cloud computing and
hardware acceleration on FPGA. He has published
papers in computing architectures and FPGA systems.

Emmanuel Casseau is a
Professor at the University of
Rennes, Lannion, France. He
is a member of the IRISA Lab.
/ INRIA (French Institute for
Research in Computer Science
and Automation), France. He
received the Ph.D Degree in
Electronic Engineering from
UBO University, Brest, France,
in 1994 and the MS Degree in

Electronic Engineering in 1990. His research interests
are in the broader area of computer architecture, where
he investigates the design of high-performance and
cost-effective embedded systems and reconfigurable-
based architecture design. Within this context,
he has performed research in high-level synthesis,
mapping/scheduling techniques, custom and application-
specific hardware architectures targeting multimedia
and signal processing applications, reconfigurable
architectures and FPGA-based accelerators.

Laurent d’Orazio has been
a Professor at Unv Rennes,
CNRS, IRISA since 2016.
He received his PhD degree
in computer science from
Grenoble National Polytechnic
Institute in 2007. He was a
Associate Professor at Blaise
Pascal University and LIMOS

NCRS, Clermont-Ferrand from 2008 to 2016. His
research interests include (big) data algorithms and
architectures, distributed and parallel databases. He
has published papers in Information Systems, Sigmod
Record, Concurrency and Computation Pratice and
Experience. He served in Program Committees in
BPM, workshops affilicated to VLDB, EDBT, etc. and
Reviewing Commitees in Transactions on Parallel and
Distributed Systems, Concurrency and Computation
Pratice and Experience. He is or has been involved
(sometimes as a coordinator) in research projects such
as the NSF MOCCAD project (since 2013), the ANR
SYSEO project (797 000 euroes funding, 2010-2015)
and the STIC ASIA GOD project (30 000 euros funding,
2013-2015).

23


	Introduction
	MASCARA Framework
	Query Broking
	Query Trimming
	Semantic Management
	Result Refining

	Experiments
	Experiment Setting
	Preliminary Performance Study
	FPGA Acceleration Opportunity

	Conclusion and Research challenges
	FPGA Accelerator Deployment
	Query Containment


