
c© 2020 by the authors; licensee RonPub, Lübeck, Germany. This article is an open access article distributed under the terms and conditions of
the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).

Open Access

Open Journal of Internet of Things (OJIOT)
Volume 6, Issue 1, 2020

http://www.ronpub.com/ojiot
ISSN 2364-7108

Towards Knowledge Infusion for Robust and
Transferable Machine Learning in IoT

Jonathan Fürst, Mauricio Fadel Argerich, Bin Cheng, Ernö Kovacs

NEC Laboratories Europe GmbH, Kurfürsten-Anlage 36, Heidelberg, Germany,
{jonathan.fuerst, mauricio.fadel, bin.cheng, ernoe.kovacs}@neclab.eu

ABSTRACT

Machine learning (ML) applications in Internet of Things (IoT) scenarios face the issue that supervision signals,
such as labeled data, are scarce and expensive to obtain. For example, it often requires a human to manually label
events in a data stream by observing the same events in the real world. In addition, the performance of trained
models usually depends on a specific context: (1) location, (2) time and (3) data quality. This context is not static
in reality, making it hard to achieve robust and transferable machine learning for IoT systems in practice. In this
paper, we address these challenges with an envisioned method that we name Knowledge Infusion. First, we present
two past case studies in which we combined external knowledge with traditional data-driven machine learning in
IoT scenarios to ease the supervision effort: (1) a weak-supervision approach for the IoT domain to auto-generate
labels based on external knowledge (e.g., domain knowledge) encoded in simple labeling functions. Our evaluation
for transport mode classification achieves a micro-F1 score of 80.2%, with only seven labeling functions, on par
with a fully supervised model that relies on hand-labeled data. (2) We introduce guiding functions to Reinforcement
Learning (RL) to guide the agents’ decisions and experience. In initial experiments, our guided reinforcement
learning achieves more than three times higher reward in the beginning of its training than an agent with no external
knowledge. We use the lessons learned from these experiences to develop our vision of knowledge infusion. In
knowledge infusion, we aim to automate the inclusion of knowledge from existing knowledge bases and domain
experts to combine it with traditional data-driven machine learning techniques during setup/training phase, but
also during the execution phase.

TYPE OF PAPER AND KEYWORDS

Visionary paper: Machine Learning, IoT, Robustness, Transfer Learning, Knowledge Infusion

1 INTRODUCTION

The Internet of Things (IoT) is expanding rapidly in
various sectors such as smart buildings, smart cities and
smart transportation. At the same time, machine learning
(ML) supported systems are increasingly used to provide

This paper is accepted at the International Workshop on Very
Large Internet of Things (VLIoT 2020) in conjunction with the
VLDB 2020 conference in Tokyo, Japan. The proceedings of
VLIoT@VLDB 2020 are published in the Open Journal of Internet
of Things (OJIOT) as special issue.

meaningful insights by performing classification or
prediction tasks on top of IoT data [32] and to efficiently
orchestrate tasks between cloud and edge [11, 3].
Based on our practical experience, the IoT domain
poses various challenges for generalizing traditional data
driven ML approaches to provide robust and transferable
results. This often has to do with changes in location,
time and in data quality context as depicted in Figure 1:

1. Location. Different locations (e.g., separate sensor
deployments in a single city or deployments in

24

http://creativecommons.org/licenses/by/4.0/
http://www.ronpub.com/ojiot


J. Fürst, et al.: Towards Knowledge Infusion for Robust and Transferable Machine Learning in IoT

Time

Location

Data Quality

t0 t1

La

Knowledge

Lb

New
model

Old
model

Figure 1: Context-dimensions of ML in IoT

multiple cities) behave differently. For example, the
radio-frequency (RF) signal propagation depends
heavily on the deployment location (e.g., through
varying signal attenuation) [12].

2. Time. Deployment characteristics as well as data
patterns change through time. I.e., a ML model that
works well when training data is collected (e.g., in
the lab), might degrade in performance throughout
the lifetime of a deployment. Further, it is hard
to quantify this degradation, because continuously
obtaining ground truth data is expensive and
deployment times comprise often several years.

3. Data Quality. In IoT deployments, data is
frequently noisy, sparse and heavily imbalanced.
E.g., an application might require the classification
of relatively rare events such as road accidents
or infrequent transport modes; a sensor network
deployment might result in high variances in
sampling frequency and missing data due to packet
loss. As IoT devices have limited power and
computation, collecting highly dense data is often
not possible.

We believe that machine learning in the IoT domain
needs to achieve robustness and transferability during
setup/training as well as during execution phase in order
to deal with such varying context.

1.1 Our Vision

In previous works, the transferability problem has been
addressed often through transfer learning, which has
the aim to transfer knowledge learned for one task
to a related task. The robustness problem has been
recently addressed in the context of safe learning
systems (see Section 4 for a discussion of related
work). In this paper, we envision a Knowledge
Infusion method to address these issues: Instead of
transferring trained knowledge to another task (as

in transfer learning), Knowledge Infusion intends to
transfer knowledge used for the training phase between
tasks with little effort. We achieve this transferability
through adaptive weak and strong knowledge functions
that are interfacing with a knowledge graph and external
knowledge sources (for example open knowledge bases
such as OpenStreetMap [16] or Wikidata [36]) in order
to adapt dynamically to a new context by querying these
knowledge sources. Towards this goal, we propose
two types of knowledge functions: weak knowledge
functions, that are thought to be mostly true and strong
knowledge functions that comprise axioms (canonical
truths). We then combine these knowledge functions into
a weak ensemble and a strong ensemble that together
form a “white-box” knowledge model. Next, we use
this knowledge model to train any traditional supervised
machine learning model (e.g., using the labels generated
with the knowledge model). As has been shown in
previous works [25, 13], the machine learning model
will usually perform better than the model/labels used
for training it. The reason is that the machine learning
model will learn to generalize the patterns found in the
data while also partially removing noise in it.

In Knowledge Infusion, the “white-box” knowledge
model is continuously updated (through new knowledge
or added/updated knowledge functions) and then used to
ensure robustness of our system during execution, while
also identifying situations in which the context in the real
world shifts away from the trained ML model and re-
training is needed.

In this vision paper, we first present two promising
previous experiences where external knowledge is
exploited in the training process: (1) In supervised
machine learning for a smart mobility use case
by adapting the recently published weak-supervision
framework Snorkel [25] to fit the IoT domain
and (2) For reinforcement-learning, where we use
external knowledge to guide agent exploration. These
experiences and the lessons learned open up the way
to our envisioned method for knowledge infusion
(Section 3). We conclude our paper with a discussion
of related work and an outlook on future work (Section 4
and Section 5).

2 PREVIOUS EXPERIENCES

In this section, we summarize two previous works
in which we successfully used external knowledge in
machine learning systems in the IoT domain: (1)
In supervised machine learning for transport mode
detection [13]; (2) for reinforcement-learning [4]. We
take the lessons learned from these cases as a starting
point to develop our vision of knowledge infusion.

25



Open Journal of Internet of Things (OJIOT), Volume 6, Issue 1, 2020

2.1 Supervised Machine Learning: Transport
Mode Detection

An important application of context-aware
computing [1] is detecting transportation modes of
people using mobile devices such as smartphones.
Transport mode detection is a key enabler for physical
activity monitoring as well as personal environmental
impact monitoring [26, 21]. It is also critical to optimize
urban multimodal human mobility [15] and to enable
end-user applications, such as automated and individual
CO2 emission tracking [30].

Transport mode detection requires a two step
segmentation of sensor data to trips and sections (based
on transport modes), and an accurate classification of
these sections into modes (e.g., walking, bicycling,
riding a bus). Previous works have proposed transport
mode detection using smartphone sensors such as
GPS [39], accelerometer [17], barometer [27], or
combinations of these [26] and adding GIS data [33]
to improve accuracy. Most of these works leverage
supervised ML using labeled data points as training
data. This labeled data is usually provided by
users/participants of the studies.

2.1.1 Our Approach

We addressed the transport mode detection problem by
adopting weak supervision techniques originally used in
information extraction [25] to our problem. Figure 2
depicts our main building blocks.

First, sensor data (location and activity data) is sensed
from user smartphones. In the Segmentation Phase,
we then align time series from multiple sensors to the
same sampling time and segment time series first into
trips (by applying a dwell time heuristics) and section
candidates (using a developed activity supported walk
point segmentation algorithm). The outcome of this step
is a set of section candidates, each candidate contains a
time-series of location and activity data points.

Second, in the Label & Training Phase, we apply a set
of labeling functions to these candidates. Each function
encodes human heuristics and/or external knowledge
(e.g., from OpenStreetMap) to “vote” on the transport
class of a candidate section. We feed the resulting
label matrix into Snorkel [25], which learns a generative
model from all labeling functions and their votes on each
candidate section, taking into account the underlying
accuracy of each labeling function.

Finally, we use the generative model to label all
candidate segments and train a discriminative ML
model with the probabilistic labels. The ML model
generalizes beyond the information encoded in the
labeling functions. In the Classification Phase, this

Table 1: F1 score of generated labels and end models
against hand-labeled ground truth

Generative Model
(generated Labels)

Weakly-supervised
Random Forest

Fully-supervised
Random Forest

74.1 % 80.2 % 81.0 %

model is then used to classify incoming candidate section
into transport modes. Based on this classification, we
then re-segment by merging adjacent sections of the
same mode and return the results (classified trips and
sections) to users.

2.1.2 Results

We validated our method against a dataset that we
collect in the wild over a period of 4months, containing
300k datapoints from 8 end-users. We sense GPS
location through iOS and Android Location API and
accelerometer based activity data through the Activity
API. Users have partially labeled data with a developed
visual labeling tool. We use these data to evaluate our
method, splitting our data in training (1/2) and test data
(1/2). We classify four transport modes: walk, bike, car
and train.

Our implementation uses seven labeling functions
that combine external knowledge with sensor data
to vote on the transport classification of a section.
For example, we implement functions that use the
sensed speed together with human heuristics on
common speeds for different modalities to vote on
the transport mode (LF_median_sensed_speed
and LF_quantile_sensed_speed). We also
integrate OpenStreetMap (OSM) and use the provided
annotations of public transport stops (LF_osm). We
train ML models using the data labeled by the generative
model, oversampling underrepresented classes with
SMOTE [8].

We test several classifiers, from simple linear models
to neural networks and observe the best performance
with Random Forests (RF), achieving 80.2 % in F1 score.

We compare our results against a traditional
supervised approach that uses the hand-labeled data of
the training split results and results in an only marginally
better F1 score of 81.0 %. Table 1 summarizes our
overall results.

2.2 Reinforcement Learning: IoT-ML Pipeline
Orchestration

Reinforcement Learning (RL) has proven its ability to
deal with complex problems, achieving super-human
performance in some cases [20, 35, 18]. However,

26



J. Fürst, et al.: Towards Knowledge Infusion for Robust and Transferable Machine Learning in IoT

Train 
Discriminative 

Model

User Smart 
Phone

Trip 
Segmentation

Section 
Candidate 

Segmentation

F1 ([s1 , s2 ... si ])

F2 ([s1 , s2 ... si ])

F3 ([s1 , s2 ... si ])

Fn ([s1 , s2 ... si ])

Learn Generative 
ModelDwell-time 

heuristic

Accelerometer 
supported walk 

point segmentation

Filtering and 
resampling

•Location APIs
•Activity Detection 
APIs

Label & Training Phase

Classification Phase

Transport Mode 
Classification

Mobile Sensor 
Data Collection

Segmentation Phase

Classified  
Trips & 
Sections

Re-segment 
sections based on 
classified modes

Version 2

Figure 2: Transport mode detection steps

its applicability in real-world problems is still lagging
for a number of reasons, among which we highlight:
(1) learning on the real system from limited samples,
(2) safety constraints that should never or at least
rarely be violated. Several approaches have emerged to
address these problems such as (1) learning from human
demonstrations or historical data [7], (2) calculating
uncertainty in decisions to manage safety [19] and
combinations with supervised learning and human
intervention [2].

Recently, researchers have applied RL to computer
systems tasks, such as database management system
configuration [28] or container orchestration for Big
Data and IoT systems [3]. In this domain, the
previously mentioned approaches are not applicable or
inconvenient because (1) data from the system might
not be available if the system is new, and even when
data is available, the system deployment, load and
parameters vary, making these data partially true at best;
in addition, (2) the cost of incorrect actions might be high
when dealing with systems in production environments,
training a supervised model is not possible for the
reasons mentioned before, and the reaction of a human
operator is expensive and slow to accommodate the
system performance in a timely manner.

2.2.1 Our Approach

To address these problems and make RL applicable to
real-world problems, we have introduced Tutor4RL [4].
Figure 3 shows our overall design. We add a new
component to the regular RL framework called Tutor to
guide the agent’s decisions when the agent has no or little
experience. The tutor is able to guide the agent to take
reasonable decisions because it can directly leverage a
set of knowledge functions defined by domain experts.
In this way, Tutor4RL improves greatly the performance
of the agent in its early phase.

The tutor possesses external knowledge and interacts
with the agent during training. The tutor takes as input

the state of the environment, and outputs the action to
take; in a similar way to the agent’s policy. However,
the tutor is implemented as programmable functions, in
which external knowledge is used to decide the mapping
between states and actions, e.g., for Atari Breakout, the
tutor takes the frame from the video game as input, and
outputs in what direction the bar should be moved. For
every time step, the tutor interacts with the agent and
gives advise to the agent for making better decisions,
based on all provided knowledge functions.

In order to decide when to use the policy’s decisions
or the Tutor’s guides, we define the parameter τ that
assumes a value in the range (0, 1), which is linearly
decreased during training. τ is a parameter of our model
and the best value to initialize it depends on the use
case; thus its initial value is left to be decided during
implementation.

The tutor’s behavior provides a guide to the agent,
but the agent can still improve upon it, reaching an even
better performance than the one defined by experts. This
is achieved thanks to two mechanisms that are already
present in RL: (1) empirical evaluation of decisions and
(2) ε-greedy exploration. In (1), if the action suggested
by the Tutor is incorrect, i.e., it provides a negative
reward, the agent will learn that this action is wrong
and should therefore, not be used for the given state.
In the case the reward is positive but could still be
improved, the agent can still find an action which will
return a higher reward thanks to maintaining an ε-greedy
exploration (2). However, the Tutor knowledge is used
heavily in the initial phase, more than exploration, so
even when an incorrect random action is chosen, the
Tutor knowledge can correct this action quickly in most
cases. The initial value for ε can be chosen according
to the use case and how high is the cost of an incorrect
action.

27



Open Journal of Internet of Things (OJIOT), Volume 6, Issue 1, 2020

Reward

State
Action

Tutor

Agent

Environment

𝑟"
𝑠"

𝑎"

Domain
experts

knowledge 
functions

Figure 3: Overall working of Tutor4RL

2.2.2 Results

In order to leverage existing methods and libraries, we
chose a well-known task in RL to evaluate our approach:
Atari games. We implement Tutor4RL for a DQN [20]
agent, one of the most popular and successful approaches
to solve this kind of tasks in literature. We use the DQN
implementation provided in the library Keras-RL [24]
with Tensorflow and apply it to the game Breakout, using
OpenAI Gym [6]. To evaluate the performance of our
approach, we compare it to a regular DQN agent and use
the same set of parameters for both agents; DQN with
Tutor4RL and plain DQN.

Figure 4 depicts the mean reward per episode of both
agents during training. Until step 500, 000, the plain
DQN Agent shows a predictable low reward (< 15
points), while the DQN Agent with Tutor4RL—thanks
to the use of its tutor’s knowledge—manages to achieve
a mean reward between 15 and 35 points, almost double
the maximum of the plain DQN Agent. From step
500, 000 we see the plain DQN agent improves thanks to
acquiring more experience, until finally in step 1.1M the
plain DQN agent achieves similar results to the tutored
one. From there on we see a similar reward for both
agents, with the tutored agent achieving a slightly higher
mean reward.

To evaluate the performance of the learned policy, we
test both agents after 1.75M steps with ε = 0.05 and
τ = 0, so no tutor knowledge is used. We see that the
plain DQN agent achieves an average reward of 40.75
points while the agent trained with Tutor4RL achieves a
reward of 43.

2.3 Lessons Learned

Both, our experience with weak-supervision for a
typical classification problem in the Internet of Things
domain, as well as applying external knowledge in
form of guiding functions to the reinforcement learning
process have shown promising results. For transport
mode detection, we were able to encode external
knowledge into 7 simple functions, potentially reducing
the requirement for huge amounts of hand-labeled data in
supervised learning scenarios. We also bootstrapped the
performance of an inexperienced agent in reinforcement
learning cases through external knowledge. What is
currently missing to tackle the challenges of dealing with
different context in IoT are three aspects:

1. Self-adaptive functions. Functions need to become
adaptive based on the current context. E.g., a
function for transport mode detection needs to
adapt to different locations and their context (e.g.,
different speed limits) automatically.

2. Notion of weak and strong functions. We
experienced that often humans can easily define
some conditions which they know to be true.
We need to have a notion to transfer this strong
knowledge into the training and execution phase of
machine learning.

3. Common method for both training and execution
phase. We need to be able to introduce knowledge
into both the training/setup phase of machine
learning, but also continuously during execution
in order to ensure robustness throughout changing
contexts.

Based on these lessons learned, we present an initial
idea for our knowledge infusion method that improves
on these aspects in the next section.

3 KNOWLEDGE INFUSION

Knowledge Infusion aims to dynamically infuse
knowledge, i.e., logic based on human reasoning and
internal and external knowledge bases (e.g., stored in a
knowledge graph) into teacher-based machine learning
methods (i.e., supervised learning and reinforcement
learning) to improve overall robustness, transferability
and accuracy. The infusion of weak and strong
knowledge has two benefits: (1) it reduces the effort
needed to train or startup a ML model/agent and (2) the
knowledge model can be executed side-by-side with
the ML model/agent to correct wrong outputs, thereby
improving robustness, and enabling the calculation of
an uncertainty value that gives an indication of when

28



J. Fürst, et al.: Towards Knowledge Infusion for Robust and Transferable Machine Learning in IoT

Figure 4: Average mean reward per episode achieved by plain DQN agent and DQN agent with Tutor4RL
during training. Data was averaged over 4 tests for each agent and with a rolling mean of 20 episodes, bands
show 0.90 confidence interval.

reality and the ML model have shifted too much apart so
that performance would suffer.

3.1 Application Areas

Some important application areas that can benefit from
Knowledge Infusion in the IoT domain are:

• Smart city analytics and control (actuation).
Cities are increasingly becoming smart, connecting
heterogeneous sensing and actuating infrastructure
through smart city platforms. The key promise
of such platforms is to improve certain aspects
of a city (e.g., traffic, air quality, life quality,
waste reduction, etc.) in an informed manner,
based on the processing of sensor data and the
machine learning processing pipelines for this
data. Knowledge infusion helps to: (1) build
these pipelines efficiently; (2) enable a transfer of
pipelines between cities and automatically adapt
them based on the context provided through the
queried knowledge (for example adapt models
based on knowledge of speed limits and public
transport stops); (3) achieve robust ML systems,
which outputs can be directly applied through
actuations in the city (e.g., to traffic lights, smart
parking or to guide public transport planning).

• Smart retail decisions. The retail sector is
increasingly using machine learning to optimize
their stock to fit the expected customers’ purchases.
Knowledge infusion enables shops to develop
a set of strong knowledge functions to ensure
base availability of certain products or the
availability of some seasonal/holiday specific
products (e.g., seasonal sweets for Christmas
holidays). Such predictions can be hard to learn
for a ML model, but further seasons/holidays are
often distinct in different countries (for example,

orthodox Christmas is later than roman-catholic
Christmas). In such scenario, knowledge functions
can automatically adapt themselves by querying a
knowledge base (knowledge graph) that contains
the particular holiday dates (for example Wikidata,
or an internal knowledge base).

• Energy management for buildings. Buildings
are one of the prime consumers of energy as
humans in many countries spend most of their time
inside them. Intelligently managing the energy
consumption in buildings can save large amounts
of energy especially for heating, ventilation and
cooling (HVAC) [10]. The most advanced
energy management systems for buildings have
applied machine learning (for example they have
been controlling HVAC based on an occupancy
prediction) [14]. However, commercial buildings
have strong safety regulations that specify certain
conditions that always need to be met (e.g.,
a minimum flow of ventilation). With our
method, these regulations can be encoded in
strong knowledge functions. They can be updated
dynamically to regulations in different states or
countries through the knowledge base. Our
combination of knowledge model (the combined
ensemble of weak and strong knowledge functions)
and ML model can safely be applied to actuate the
energy management system of a building, ensuring
robustness in relation to the current regulations.

In the following, we describe our envisioned method
through two steps: (1) Setup Phase and (2) Execution
Phase.

3.2 Setup Phase

We infuse knowledge through adaptive weak and strong
knowledge functions. Knowledge functions output a

29



Open Journal of Internet of Things (OJIOT), Volume 6, Issue 1, 2020

Knowledge
Infusion

KF1 KF2 KF3 KF4 KFn

Physical 
models

Domain 
knowledge

Ontologies

Knowledge 
Bases

External
Knowledge

Knowledge Base

Data

Interface to internal and external knowledge
Development of Knowledge 
Functions
(1) Weak Functions
(2) Strong Functions

Knowledge
Based

Adaptation of 
Knowledge 
Functions

Integration/
Linkage

User 
Interface

New weak and strong 
knowledge functions

Ensemble Methods

Knowledge
Model

ML
Model

Training with 
Ensemble

Optimized 
Weak 

Ensemble

Optimized 
Strong 

Ensemble

Knowledge 
Fusion
Model

Dynamic
Updates

Figure 5: Knowledge infusion overview and setup

single value, which can either be a label (for supervised
machine learning) or an action (for reinforcement
learning). Functions consist of a reasoning part,
defined by human provided logic (e.g., conditional
operators) and input knowledge that is derived/queried
from internal and external knowledge bases through
well-defined interfaces (e.g., through SPARQL, other
graph query languages such as GraphQL or IoT specific
standards such as NGSI-LD [9]). Through such well-
defined interface, knowledge functions are practically
able to adapt their behavior automatically, based on
changes in the input derived from the knowledge bases.
For example, a knowledge function that outputs if there
is a fire based on values from a temperature sensor can
interface with a knowledge base that contains current
weather data, including the current temperature. The
reasoning logic inside the knowledge function might
then use the weather temperature and the value from
the temperature sensor to decide if there is a fire
(binary classification, fire: True/False). It becomes
clear that such function would adapt to different weather
conditions automatically.

Weak knowledge functions are thought to be mostly
true, while strong knowledge functions comprise axioms
(canonical truths). Strong functions can be used as a fail-
safe mechanism for the ML model, correcting outputs
that experts know as a fact, cannot be true. In the
previous example, we know that if temperature from the
temperature sensor is within a margin of error from the
weather temperature, then there is no fire. Even though
the ML model will work correctly almost always in this
case, it could happen that a very high, unusual weather
temperature is reached in a hot wave and the model
incorrectly indicates there is a fire. In this case, our

strong function will correct the output.
In knowledge infusion, we create an ensemble of these

knowledge functions into a knowledge model and use it
to label data that we later use to train a supervised ML
model with it. In RL, this step is not needed but instead,
the knowledge model will guide the exploration of the
agent while training its policy. During execution, both
are then used jointly, i.e., both are processing every new
input. See Figure 5 for an overview of these setup steps.
As depicted in the figure, external knowledge might
either be directly accessed by the knowledge functions
(e.g., a weather API) or integrated/linked into a common
knowledge base (e.g., a knowledge graph that integrated
various aspects of a smart city).

3.3 Execution Phase

During the execution phase, new data is processed by
both the ML model and the knowledge model. As
described previously, the knowledge model allows us
now to correct some obviously wrong outputs of the ML
model (improving overall robustness) and to calculate
an uncertainty value that enables knowledge infusion
systems to understand if the reality has drifted away from
the ML model. Such uncertainty value can be calculated
based on the probability values obtained from the ML
model as well as the windowed disagreement between
the knowledge and the ML models. We then use a
moving average of this uncertainty value to decide if we
should add the output to the knowledge base when the
output is certain, or if we need to re-train the ML model.
As the re-training will occur with an updated knowledge
model, the resulting ML model will then better fit to
reality, resulting in improved performance.

30



J. Fürst, et al.: Towards Knowledge Infusion for Robust and Transferable Machine Learning in IoT

4 RELATED WORK

Related work to knowledge infusion can be found
in the machine learning sub domains of transfer
learning, weakly-supervised learning and safe/robust or
trustworthy learning.

Transfer learning, aims to transfer knowledge learned
for one task to a related task [23]. Transferring such
knowledge has the benefit of reducing the training effort,
both from computing time and from data collection and
labeling time (state of the art models in computer vision
or NLP have been trained with millions of datapoints
and the training compute time can costs millions of
dollars for large models [31]). Transfer learning can,
for example, be achieved by replacing the final layer
of a large deep neural network (e.g., a model trained
with millions of images for object detection) to fit the
model to the new task (e.g., a more specific object
recognition for a single domain, such as smart appliances
in a building). Further, existing approaches are fine-
tuning larger models to fit to a new task, by re-training
only few layers, while leaving the more task-unspecific
layers of the neural network fixed [29, 22]. In addition,
hierarchical approaches in RL aim to break down the task
in sub-tasks and introduce the use of sub-policies to solve
them. Once these sub-policies are trained, they can be
re-used in similar tasks to the original one [35].

Weakly-supervised learning deals with the lack of
labeled training data in machine learning systems
through the use of noisy and higher-level supervision
signals [40]. With Snorkel, the authors recently proposed
a framework for weak supervision in which users, such
as domain experts, write labeling functions that are then
combined in a generative process [25]. Snorkel has
been successfully applied and adapted to tasks such
as knowledge base construction from transistor data
sheets [38], product classification [5] up to our own
recent application to transport mode detection [13].

Safe learning systems, such as safe reinforcement
learning ensure that the current system state is bound to
a terminal set of states, that is known to be safe [37].
Uncertainty estimates are also used to limit the risks
assumed by RL agents, regulating the exploration of
actions in early learning phases as well as in new
situations in which the agent has not experience and
is uncertain about how to act [19]. Another related
emerging field is trustworthy machine learning, which
among others, tries to improve adversarial robustness
to protect against adversaries which can fool traditional
machine learning systems.

Knowledge infusion differs from these works. Instead
of transferring trained knowledge to another task (as
in transfer learning), Knowledge Infusion intends to
transfer knowledge used for the training phase between

tasks with little effort. Compared to existing weak
supervision approaches, we employ our knowledge
model not only during the training phase, but use it
during execution. By introducing the concept of adaptive
weak and strong knowledge functions, we are able to
provide robustness during execution, while triggering a
re-training of the ML model in case of a context shift.
With our approach we are partially inspired by Leslie
Valiant’s early work on knowledge infusion [34]. In the
future, we intend to evaluate to which extend his ideas of
combining reasoning techniques with learned knowledge
can be introduced to our method.

5 CONCLUSION AND FUTURE WORK

We presented some initial experiences in which external
knowledge has been introduced to a data-driven machine
learning process. Our experiences for supervised
machine learning and reinforcement learning and the
lessons learned with them open up our vision of
Knowledge Infusion. Knowledge Infusion aims to
improve the robustness, transferability and accuracy
of machine learning in IoT systems. Towards that
goal, we proposed two types of knowledge functions:
(a) weak knowledge functions, that are thought to be
mostly true and (b) strong knowledge functions that
comprise axioms (canonical truths). The purpose of
these functions is two-fold: (1) They enable the infusion
of knowledge into the training phase of supervised
machine learning methods through ensemble methods;
(2) They act as a white box counter-part to the black-box
trained model/agent of a supervised or reinforcement
learning system during the execution phase that (a) can
identify and correct (infrequent) wrong outputs of the
ML model/agent (by using the set of strong knowledge
functions) and (b) can identify through the calculation of
uncertainty values when a model has drifted away from
the input data characteristics and must be re-trained with
new data to re-gain adequate performance.

We have already started to build such Knowledge
Infusion system and intend to evaluate it on various use
cases in the IoT domain. Knowledge Infusion opens
up many interesting avenues for future research on how
and to which extend to combine data-driven machine
learning techniques with knowledge and reasoning.

ACKNOWLEDGEMENTS

The research leading to these results
has received funding from the European
Community’s Horizon 2020 research
and innovation programme under grant
agreement no 779747.

31



Open Journal of Internet of Things (OJIOT), Volume 6, Issue 1, 2020

REFERENCES

[1] G. D. Abowd, A. K. Dey, P. J. Brown, N. Davies,
M. Smith, and P. Steggles, “Towards a better
understanding of context and context-awareness,”
in International symposium on handheld and
ubiquitous computing. Springer, 1999, pp. 304–
307.

[2] M. Alshiekh, R. Bloem, R. Ehlers, B. Könighofer,
S. Niekum, and U. Topcu, “Safe reinforcement
learning via shielding,” in Thirty-Second AAAI
Conference on Artificial Intelligence, 2018.

[3] M. F. Argerich, B. Cheng, and J. Fürst,
“Reinforcement learning based orchestration for
elastic services,” in 2019 IEEE 5th World Forum
on Internet of Things (WF-IoT). IEEE, 2019, pp.
352–357.

[4] M. F. Argerich, J. Fürst, and B. Cheng,
“Tutor4rl: Guiding reinforcement learning with
external knowledge.” in AAAI Spring Symposium:
Combining Machine Learning with Knowledge
Engineering (1), 2020.

[5] S. H. Bach, D. Rodriguez, Y. Liu, C. Luo,
H. Shao, C. Xia, S. Sen, A. Ratner, B. Hancock,
H. Alborzi et al., “Snorkel drybell: A case study in
deploying weak supervision at industrial scale,” in
Proceedings of the 2019 International Conference
on Management of Data, 2019, pp. 362–375.

[6] G. Brockman, V. Cheung, L. Pettersson,
J. Schneider, J. Schulman, J. Tang, and
W. Zaremba, “Openai gym,” arXiv preprint
arXiv:1606.01540, 2016.

[7] T. Brys, A. Harutyunyan, H. B. Suay, S. Chernova,
M. E. Taylor, and A. Nowé, “Reinforcement
learning from demonstration through shaping,” in
Twenty-Fourth International Joint Conference on
Artificial Intelligence, 2015.

[8] N. V. Chawla, K. W. Bowyer, L. O. Hall, and
W. P. Kegelmeyer, “Smote: synthetic minority
over-sampling technique,” Journal of artificial
intelligence research, vol. 16, pp. 321–357, 2002.

[9] ETSI GS CIM 009, “Context Information
Management (CIM); NGSI-LD API,”
https://www.etsi.org/deliver/etsi gs/CIM/001 099/
009/01.02.01 60/gs CIM009v010201p.pdf, 2019.

[10] J. Fürst, IoT Based Human-building Interaction.
IT-Universitetet i København, 2017.

[11] J. Fürst, M. F. Argerich, K. Chen, and
E. Kovacs, “Towards adaptive actors for scalable
iot applications at the edge,” Open Journal of

Internet Of Things (OJIOT), vol. 4, no. 1, pp.
70–86, 2018, special Issue: Proceedings of the
International Workshop on Very Large Internet
of Things (VLIoT 2018) in conjunction with the
VLDB 2018 Conference in Rio de Janeiro, Brazil.
[Online]. Available: http://nbn-resolving.de/urn:
nbn:de:101:1-2018080519303887853107

[12] J. Fürst, K. Chen, H.-S. Kim, and P. Bonnet,
“Evaluating bluetooth low energy for iot,” in 2018
IEEE Workshop on Benchmarking Cyber-Physical
Networks and Systems (CPSBench). IEEE, 2018,
pp. 1–6.

[13] J. Fürst, M. Fadel Argerich, K. Shankari,
G. Solmaz, and B. Cheng, “Applying Weak
Supervision to Mobile Sensor Data: Experiences
with TransportMode Detection,” in AAAI-20
Workshop on Artificial Intelligence of Things, New
York, New York, USA, feb 2020.

[14] J. Fürst, G. Fierro, P. Bonnet, and D. E. Culler,
“Busico 3d: building simulation and control
in unity 3d,” in Proceedings of the 12th ACM
Conference on Embedded Network Sensor Systems,
2014, pp. 326–327.

[15] R. Gallotti and M. Barthelemy, “Anatomy and
efficiency of urban multimodal mobility,” Scientific
reports, vol. 4, p. 6911, 2014.

[16] M. Haklay and P. Weber, “Openstreetmap:
User-generated street maps,” IEEE Pervasive
Computing, vol. 7, no. 4, pp. 12–18, 2008.

[17] S. Hemminki, P. Nurmi, and S. Tarkoma,
“Accelerometer-based transportation mode
detection on smartphones,” in Proceedings of the
11th ACM conference on embedded networked
sensor systems. ACM, 2013, p. 13.

[18] M. Jaderberg, W. M. Czarnecki, I. Dunning,
L. Marris, G. Lever, A. G. Castaneda, C. Beattie,
N. C. Rabinowitz, A. S. Morcos, A. Ruderman
et al., “Human-level performance in 3d multiplayer
games with population-based reinforcement
learning,” Science, vol. 364, no. 6443, pp.
859–865, 2019.

[19] B. Lötjens, M. Everett, and J. P. How, “Safe
reinforcement learning with model uncertainty
estimates,” in 2019 International Conference on
Robotics and Automation (ICRA). IEEE, 2019,
pp. 8662–8668.

[20] V. Mnih, K. Kavukcuoglu, D. Silver, A. A.
Rusu, J. Veness, M. G. Bellemare, A. Graves,
M. Riedmiller, A. K. Fidjeland, G. Ostrovski et al.,
“Human-level control through deep reinforcement
learning,” Nature, vol. 518, 2015.

32

https://www.etsi.org/deliver/etsi_gs/CIM/001_099/009/01.02.01_60/gs_CIM009v010201p.pdf
https://www.etsi.org/deliver/etsi_gs/CIM/001_099/009/01.02.01_60/gs_CIM009v010201p.pdf
http://nbn-resolving.de/urn:nbn:de:101:1-2018080519303887853107
http://nbn-resolving.de/urn:nbn:de:101:1-2018080519303887853107


J. Fürst, et al.: Towards Knowledge Infusion for Robust and Transferable Machine Learning in IoT

[21] M. Mun, S. Reddy, K. Shilton, N. Yau, J. Burke,
D. Estrin, M. Hansen, E. Howard, R. West,
and P. Boda, “Peir, the personal environmental
impact report, as a platform for participatory
sensing systems research,” in Proceedings of the
7th international conference on Mobile systems,
applications, and services. ACM, 2009, pp. 55–
68.

[22] A. Ng, “Nuts and bolts of building ai applications
using deep learning,” NIPS Keynote Talk, 2016.

[23] S. J. Pan and Q. Yang, “A survey on transfer
learning,” IEEE Transactions on knowledge and
data engineering, vol. 22, no. 10, pp. 1345–1359,
2009.

[24] M. Plappert, “keras-rl,” https://github.com/keras-rl/
keras-rl, 2016.

[25] A. Ratner, S. H. Bach, H. Ehrenberg, J. Fries,
S. Wu, and C. Ré, “Snorkel: Rapid training
data creation with weak supervision,” The VLDB
Journal, vol. 29, no. 2, pp. 709–730, 2020.

[26] S. Reddy, M. Mun, J. Burke, D. Estrin,
M. Hansen, and M. Srivastava, “Using mobile
phones to determine transportation modes,” ACM
Transactions on Sensor Networks (TOSN), vol. 6,
no. 2, p. 13, 2010.

[27] K. Sankaran, M. Zhu, X. F. Guo, A. L. Ananda,
M. C. Chan, and L.-S. Peh, “Using mobile phone
barometer for low-power transportation context
detection,” in Proceedings of the 12th ACM
Conference on Embedded Network Sensor Systems.
ACM, 2014, pp. 191–205.

[28] M. Schaarschmidt, A. Kuhnle, B. Ellis, K. Fricke,
F. Gessert, and E. Yoneki, “Lift: Reinforcement
learning in computer systems by learning from
demonstrations,” arXiv preprint arXiv:1808.07903,
2018.

[29] J. Schmidhuber, “Deep learning in neural
networks: An overview,” Neural networks,
vol. 61, pp. 85–117, 2015.

[30] K. Shankari, J. Fuerst, M. Fadel Argerich,
E. Avramidis, and J. Zhang, “Mobilitynet: Towards
a public dataset for multimodal mobility research,”
in Climate Change AI 2020 (Spotlight Talk).
ICLR, 2020.

[31] O. Sharir, B. Peleg, and Y. Shoham, “The cost of
training nlp models: A concise overview,” arXiv
preprint arXiv:2004.08900, 2020.

[32] G. Solmaz, E. L. Berz, M. F. Dolatabadi, S. Aytaç,
J. Fürst, B. Cheng, and J. d. Ouden, “Learn from
iot: pedestrian detection and intention prediction
for autonomous driving,” in Proceedings of the 1st
ACM Workshop on Emerging Smart Technologies
and Infrastructures for Smart Mobility and
Sustainability, 2019, pp. 27–32.

[33] L. Stenneth, O. Wolfson, P. S. Yu, and B. Xu,
“Transportation mode detection using mobile
phones and gis information,” in Proceedings of the
19th ACM SIGSPATIAL international conference
on advances in geographic information systems.
ACM, 2011, pp. 54–63.

[34] L. G. Valiant, “Knowledge infusion,” in AAAI,
vol. 6, 2006, pp. 1546–1551.

[35] A. S. Vezhnevets, S. Osindero, T. Schaul, N. Heess,
M. Jaderberg, D. Silver, and K. Kavukcuoglu,
“Feudal networks for hierarchical reinforcement
learning,” in Proceedings of the 34th International
Conference on Machine Learning-Volume 70.
JMLR. org, 2017, pp. 3540–3549.

[36] D. Vrandečić and M. Krötzsch, “Wikidata: a free
collaborative knowledgebase,” Communications of
the ACM, vol. 57, no. 10, pp. 78–85, 2014.

[37] K. P. Wabersich, L. Hewing, A. Carron, and M. N.
Zeilinger, “Probabilistic model predictive safety
certification for learning-based control,” arXiv
preprint arXiv:1906.10417, 2019.

[38] S. Wu, L. Hsiao, X. Cheng, B. Hancock,
T. Rekatsinas, P. Levis, and C. Ré, “Fonduer:
Knowledge base construction from richly
formatted data,” in Proceedings of the 2018
International Conference on Management of Data,
2018, pp. 1301–1316.

[39] Y. Zheng, Q. Li, Y. Chen, X. Xie, and W.-Y. Ma,
“Understanding mobility based on gps data,” in
Proceedings of the 10th international conference
on Ubiquitous computing. ACM, 2008, pp. 312–
321.

[40] Z.-H. Zhou, “A brief introduction to weakly
supervised learning,” National Science Review,
vol. 5, no. 1, pp. 44–53, 2018.

33

https://github.com/keras-rl/keras-rl
https://github.com/keras-rl/keras-rl


Open Journal of Internet of Things (OJIOT), Volume 6, Issue 1, 2020

AUTHOR BIOGRAPHIES

Jonathan Fürst is a Research
Scientist in the IoT Platform
group at NEC Laboratories
Europe. Previously he was a
PostDoc at IT University of
Copenhagen (ITU) in Denmark.
He holds a Ph.D. and a M.Sc.
from ITU advised by Prof.
Philippe Bonnet and a B.Eng.
in Industrial Engineering at

University of Aalen (HTW Aalen). During his Ph.D., he
spent six months as a visiting researcher at UC Berkeley
in AMPLab (Software Defined Buildings group) advised
by Prof. Randy Katz and Prof. David Culler. His
interests are in the area of IoT systems and practical
applications such as smart buildings & cities, indoor
localization and augmented reality. His current research
focuses on developing better abstractions to program
and run IoT applications easily and efficiently from edge
to cloud and automated data integration and knowledge
extraction using machine learning.

Mauricio Fadel Argerich is
a Research Associate at NEC
Laboratories Europe. He has
received his Master’s degree in
Data Science from University
of Rome and his Engineering
degree in Information Systems
from the National Technological
University (UTN), Argentina.
He has worked as a Software

Engineer, being involved in the development of multiple
web and mobile systems. His research focuses on
methods and applications of Machine Learning for IoT
analytics and context-aware services, with particular
interest in Reinforcement Learning.

Dr. Bin Cheng is a senior
researcher in the group of IoT
Platform at NEC Laboratories
Europe. He has been leading the
design and implementation of
an open source edge computing
framework called FogFlow,
which is a unique generic
enabler to support serverless

fog computing in the FIWARE ecosystem for smart
cities and smart industry. He also led the design and
implementation of a big data and analytics platform for
the Santander city, which has been already in production
use. His recent research interests include Edge AI,
serverless fog computing, and knowledge extraction for
IoT platforms. He had publications at several top-tier
journal and conferences such as IEEE IoT Journal,
EuroSys, NSDI, and IMC.

Ernö Kovacs received his Ph.D
from the University of Stuttgart
in 1996. In 1997, he joined
Sony’s R&D lab in Stuttgart
and was responsible for research
projects in mobile multimedia,
multi-access service portals
(integrating mobile and
broadband access), context-
aware services, adaptation

technologies for services and content, Bluetooth PAN
standardization, and middleware for UWB-based ad-hoc
networks. In 2005, he joined NEC’s “Networking
Laboratories” as Senior Manager for “Cloud Services
and Smart Things”. His group works on Cloud
Computing, IoT analytics, self-organisation and context-
aware services. He was a leading architect in the SPICE
and in the MAGNET Beyond project. He is currently
contributing to the FIWARE, FIESTA and Mobinet
projects. He was an advisor to the Singapore Smart
Nation program in the Functional Specification round
table and was leading NECs engagement in the Safe
City Singapore test bed. He has publications in various
journals (including “IEEE Communication Magazine”
and “IEEE Personal Communications”), conferences
and books. He holds 27 granted patents.

34


	Introduction
	Our Vision

	Previous Experiences
	Supervised Machine Learning: Transport Mode Detection
	Our Approach
	Results

	Reinforcement Learning: IoT-ML Pipeline Orchestration
	Our Approach
	Results

	Lessons Learned

	Knowledge Infusion
	Application Areas
	Setup Phase
	Execution Phase

	Related Work
	Conclusion and Future Work

