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ABSTRACT

The arising Internet of Things (IoT) will require significant changes to current stream processing engines (SPEs)
to enable large-scale IoT applications. In this paper, we present challenges and opportunities for an IoT data
management system to enable complex analytics beyond the cloud. As one of the most important upcoming IoT
applications, we focus on the vision of a smart city. The goal of this paper is to bridge the gap between the
requirements of upcoming IoT applications and the supported features of an IoT data management system. To this
end, we outline how state-of-the-art SPEs have to change to exploit the new capabilities of the IoT and showcase
how we tackle IoT challenges in our own system, NebulaStream. This paper lays the foundation for a new type of
systems that leverages the IoT to enable large-scale applications over millions of IoT devices in highly dynamic and
geo-distributed environments.
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1 INTRODUCTION

The volume, velocity, and variety of data that need
to be processed in real-time have reached unseen
magnitudes over the last decades. This trend fueled
the emergence of the first stream processing engines
(SPEs), such as Aurora, STREAM, TelegraphCQ,
and NiagaraCQ, which process queries over incoming
data streams continuously [16]. However, the ever-
increasing input rates in combination with the demands

This paper is accepted at the International Workshop on Very
Large Internet of Things (VLIoT 2020) in conjunction with the
VLDB 2020 conference in Tokyo, Japan. The proceedings of
VLIoT@VLDB 2020 are published in the Open Journal of Internet
of Things (OJIOT) as special issue.

on low-latency and high-throughput computing led to
a new class of SPEs, called Large-Scale Data Stream
Processing Systems [16]. Systems such as Flink, Spark
Streaming, or Storm are representatives of this class.
These systems scale-out the processing of high-velocity
data streams in a cluster of commodity hardware.
Although these systems enable large scale execution on
hundreds or thousands of servers, they are most effective
when data are generated and used within the cloud.
However, transferring data from external sources into
the cloud induces a major bottleneck that limits the
scalability. Furthermore, sending computation results
back to devices outside the cloud further exacerbates this
bottleneck.

The arising Internet of Things (IoT) represents a
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Figure 1: Complex Analytics in NES.

new environment that challenges the above scalability
bottleneck as data are mainly generated outside the cloud
and results must be sent back to cloud-external devices.
In particular, the IoT adds further pressure on current
SPE architectures as estimations predict that by 2025
the global amount of data will reach 175ZB and 30%
of these data will be gathered in real-time [59] by as
many as 20 billion connected devices [36]. As a result,
the majority of these data will be generated and used by
devices in highly-distributed, potentially geo-distributed,
environments. However, state-of-the-art cloud-based
SPEs are not built for such an environment and require
data to be transferred into the cloud to extract value from
them. In contrast, an IoT data management system will
enable data processing along the path from data sources
to the cloud, using the increasing capabilities of cloud-
external devices.

Over the last decades, many research communities
cover specific parts of the overall IoT vision. First,
Mobile Cloud Computing (MCC) outsources data
storage and processing from devices to the cloud [7].
Second, Mobile-Edge Computing (MEC) extends IoT
services through hub devices at the edge of the topology,
which act as local control centers [62]. Third, Fog-
aware IoT data processing uses the Fog, a collective
term for resources outside the cloud, as an extension of
cloud [3, 63, 75, 10]. Finally, Sensor networks (SNs),
in particular Wireless Sensor Networks (WSN) target
distributed processing in a wireless network of sensors as
a particular sub-area of the IoT [48]. With NebulaStream
(NES), we are currently building a data management
system for upcoming IoT environments that combines
approaches from these research communities as well as
the broad literature of cloud-based SPEs and introduces
novel solutions [78]. In our vision, NES pioneers a
new class of systems, that copes with heterogeneity
and distribution of compute and data, supports
diverse data and programming models going beyond
relational algebra, deals with potentially unreliable
communication, and enables constant evolution under

continuous operation.
In Figure 1, we outline the component stack of NES.

NES will support various algorithms from different
application domains with different requirements and
expressiveness. These algorithms are implemented on
top of a common intermediate representation, which
expresses the common set of functionality offered by
NES. The NES Engine takes the queries expressed in
the intermediate format as input and orchestrates their
processing. To this end, the NES Engine consists of
1) a query compiler to generate executable code, 2) a
sensor manager to interact with the attached sensors,
3) a distributed dataflow engine that efficiently executes
long-running stateful queries, 4) a secure processing
engine that ensures privacy-aware and secure processing,
and 5) a transactional engine that orchestrates consistent
transactional processing. The NES Engine runs on
a variety of heterogeneous and diverse devices, e.g.,
sensors, low-end devices (e.g., Raspberry Pi), network
devices (e.g., smart routers), cloudlets, or cloud
nodes. With this component stack, the main goal of
NebulaStream is to enable the emerging IoT applications
of the future.

In this paper, we bring together the requirements of
upcoming IoT applications and the supported features
of an IoT data management system. While developing
NES, we constantly review state-of-the-art approaches to
identify which concepts and algorithms can be adopted
and for which problems we require novel solutions. As
our main IoT application, we target a smart city, where
millions of sensors are distributed across the city to
gather information about traffic, air and water quality,
crowdedness, and many more. In the following paper, we
first describe core features that are necessary to enable
the next generation of IoT applications for smart cities
but are not yet supported by state-of-the-art systems, i.e.,
adaptive sensor handling (Sec. 2.1), massive scalability
(Sec. 2.2), heterogeneity of workloads and devices
(Sec. 2.3), and delivery guarantees (Sec. 2.4). After
that, we investigate two new features that will enable
new classes of applications within a smart city but
are currently neither part of common SPEs nor IoT
data management systems, i.e., secure-privacy-aware
(Sec. 2.5) and transaction processing (Sec. 2.6). Finally,
we investigate domain-specific features that can support
various application scenarios within a smart city, i.e.,
support for signal processing (Sec. 3.1), spatial analytics
(Sec. 3.2), complex event processing (Sec. 3.3), and
machine learning (Sec. 3.4). For all presented features,
we outline the challenges and requirements, discuss the
state-of-the art, show their limitations, and highlight how
to efficiently use them in IoT infrastructures. Overall,
this paper lays the foundation for a new type of SPEs
that leverages the IoT to enable new possibilities for
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application scenarios such as smart cities.

2 CORE FEATURES

In this section, we describe core features that are required
to enable the next generation of IoT applications but are
not yet supported by state-of-the-art systems.

2.1 Adaptive Handling of Sensor Data Streams

Sensor data in IoT environments have a fluctuating
nature, which poses a challenge for resource-constrained
devices that cannot easily cope with the velocity and
volume of incoming data. Overwhelmed devices incur
back-pressure, which further results in data losses and
high query latency. To address this challenge and avoid
performance deterioration, an IoT system needs to adapt
the number of sensor reads to the observed phenomenon
and maximize sharing of sensor results, thereby avoiding
resource overuse.

2.1.1 State-of-the-Art Systems

Current state-of-the-art systems focus on handling
processing at the edge and under a homogeneous
hardware assumption [56], i.e., homogeneous
networking equipment or execution nodes. Other
state-of-the-art SPEs deal with stream fluctuation
by employing input admission [9], where systems
keep in check incoming data streams, but forego any
optimizations at the source level. Finally, well-known
sensor-based systems focus on disseminating a single
query over a sensor network [48, 74].

2.1.2 Limitations of State-of-the-Art

In the IoT, streams are ephemeral and start from the
level of sensors. Sensors are distributed, transient,
prone to failure, resource-constrained, and offer a
diverse feature set that is heterogeneous among nodes.
Moreover, applications require sensor data under
multiple assumptions and constraints, e.g., outlier
detection requires real-time data but monitoring trends
over large time-series requires low sampling and no
filtering.

Current state-of-the-art systems either deal with
specific parts of an IoT environment or assume the
existence of homogeneous resources. At the same
time, systems that only focus on sensors do not take
the increased capabilities of the nodes that host the
sensors (sensor nodes) into account and cannot be easily
integrated into existing SPEs. In general, existing
systems do not treat sensor nodes as a first-class
component of an SPE and, thus, do not allow for

applications to benefit from any optimizations on that
particular level.

Supporting adaptive operations at the sensor node
level allows one to scale the number of sensors while
reducing the volume of network traffic without harming
the precision of the results. The system will be able
to distinguish interesting events while allowing only
transmission of important data.

2.1.3 Enabling Emerging IoT Applications

IoT applications, such as real time monitoring of drone
fleets or outlier detection of sensor data on a city-
wide infrastructure, produce workloads of fluctuating
nature. This causes local bottlenecks that need to
be dealt as early as possible, before they propagate
downstream. With NES, we envision a true end-to-end
system, where fluctuation mitigation starts at the sensor
nodes. By utilizing adaptive sampling and adaptive
filtering of sensor data at the source, we keep in check
the dynamicity of various workloads without altering the
context of the data. Through these operators, we are
able to a) conserve energy and b) reduce unnecessary
network communication while c) retaining a high-
quality representation of the original data stream.

2.2 Massive Scalability

An IoT data management system continuously receives
various machine-generated or user-submitted long-
running and ad-hoc queries. To be effective, it needs to
provide support for millions of concurrent queries [70].
In addition, an IoT system needs to handle millions of
highly heterogeneous and distributed data streams that
can be achieved by routing the streams as efficiently as
possible through the network of processing nodes.

2.2.1 State-of-the-Art Systems

Several approaches for processing IoT data exist today.
A cloud-based system such as Mobile Cloud Computing
(MCC) relies on gathering and sending the data from a
pool of sensors to cloud for storage and processing [7].
Cloud infrastructures make use of common SPEs,
such as Apache Flink [17], Spark Streaming [77], or
Storm [68] for processing the incoming data streams.

Edge-aware systems such as Mobile-Edge Computing
(MEC) overcome the limitations of cloud-centric
approaches by utilizing hub devices to extend their IoT
services [62, 6]. Hub devices reside at the edge of the fog
topology for gathering data from attached sensors and
performing simple processing steps.

Fog-aware systems, e.g., Frontier [56], Disco [11], or
the extension of Cisco’s Connected Streaming Analytics
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(CSA) [62] utilize the processing capability of the fog by
distributing queries over the topology.

2.2.2 Limitations of State-of-the-Art

Existing approaches for processing IoT data have several
limitations. The cloud-based approach is limited by
the amount of data it can receive from IoT devices.
A higher number of IoT devices results in a higher
volume of data, which can potentially create a network
bottleneck and thus create delays in the processing.
Similarly, an edge-aware approach that uses hub devices
has the limitation in terms of performing holistic data
processing. Also, this approach does not leverage the
cloud resources for performing additional computations.
This affects the type of queries that are supported
by the system. Additionally, the hub device controls
the number of IoT devices that it can support and
thus restricts the scalability. Fog-aware approaches
mentioned above have limitations in handling evolving
infrastructure. This restricts the processing of queries in
a large dynamic environment where the IoT devices are
constantly joining and leaving the environment.

NES considers a unified fog and cloud environment
for processing IoT data. This enables NES to perform
early computations in fog and any remaining or holistic
computations in the cloud. Additionally, the support for
sustaining network or node failures and device mobility
allows NES to handle evolving topology.

2.2.3 Enabling Emerging IoT Applications

NES will efficiently process large volumes of data
coming from millions of devices in a dynamic
environment. This will enable NES to support a new
generation of applications spanning over millions of geo-
distributed devices across a smart city, such as connected
cars or smart public transport systems. Furthermore,
efficient query execution allows for handling massive
amount of queries generated by external systems or
submitted by users.

2.3 Support for Heterogeneous Devices

IoT environments consist of a wide range of diverse
compute devices (from small sensors to high-
performance data centers). Sensors that generate
the source data stream are often battery-powered
and have typically limited computing resources. In
contrast, the cloud has nearly unlimited compute and
storage resources, while cloud nodes are equipped with
high-performance multi-core CPUs and accelerators
like GPUs and TPUs. The fog represents a suitable
middle-ground between the sensors and the cloud, since
it contains more capable nodes than sensors. These

nodes consist of embedded System-on-a-Chip Devices
(SoCs), low-energy servers, or contain specialized
accelerators like embedded GPUs (e.g., Nvidia Jetson)
or TPUs (e.g., Coral Edge TPU). As a result, an
IoT data management system needs to support an
unseen variety of heterogeneous devices, which it must
efficiently exploit. This heterogeneity introduces several
challenges, as devices use different data formats (little-
vs. big-endian), different programming models (CPUs
vs. GPUs), and different instruction sets (ARM vs.
x64). Depending on the workload, the system has to
pick the right device and accelerator to meet the desired
performance and energy requirements.

2.3.1 State-of-the-Art Systems

Current data processing systems usually choose between
two extreme design choices. General-purpose SPEs
are usually hardware-oblivious, e.g., Flink [17], Spark
Streaming [77], or Storm [68]. They use virtual
machines, e.g., the Java Virtual Machine, to abstract
from the underlying hardware. This allows the
support of a wide range of computing devices.
However, it limits the efficiency as specific hardware
characteristics are not utilized. In contrast, other SPEs
are hardware-specific, e.g., TinyDb [48], Streambox-
TZ [57], Grizzly [34], or BriskStream [81], and optimize
for very specific hardware characteristics. However,
they cannot generalize across a diverse set of devices
with heterogeneous hardware capabilities. As a result,
no state-of-the-art system provides a system architecture
that can support a wide range of diverse devices and, at
the same time, exploits specific hardware characteristics,
if available.

2.3.2 Limitations of State-of-the-Art

The IoT has fundamental challenges that make current
data processing solutions insufficient. First, devices are
very diverse, which requires system support for a wide
range of different hardware characteristics. Second, the
devices in the IoT have limited hardware resources and
energy budgets, which make abstractions, e.g., a virtual
machine, not feasible. To this end, NES is heterogeneous
hardware-conscious and optimizes both requirements in
a holistic and general way.

2.3.3 Enabling Emerging IoT Applications

The support of diverse devices is a core requirement
of every SPE in an IoT environment. The efficient
exploitation of the individual hardware resources of such
devices is crucial for enabling a range of new innovative
applications.

69



Open Journal of Internet of Things (OJIOT), Volume 6, Issue 1, 2020

One example of such an application is a smart public
transport monitoring system [31]. Such systems gather
data from different sources and process it across diverse
compute nodes. For instance, vehicles collect the source
data and use small battery-powered SoCs to perform
preprocessing. Using a wireless connection, data are
transferred to intermediate base stations, which may
perform further calculations. As soon as the data
reach the cloud, the SPE computes a final result. The
above layers consist of very diverse hardware and have
different requirements. NES takes this heterogeneity into
account to generate highly efficient code to run in each
layer.

2.4 Delivery Guarantees

IoT applications require diverse guarantees for record
delivery and state update semantics. These semantics
affect the consistency of query results and are
categorized as (a) at-most-once i.e. record losses are
allowed, (b) at-least-once i.e. record duplicates are
allowed, and (c) exactly-once i.e. every record must be
processed only once.

2.4.1 State-of-the-Art Systems

State-of-the-art, cloud-based SPEs support exactly-once,
at-most-once, and at-least-once state updates [15, 22, 5].
They assume reliable, TCP-based network connections
that do not lose data. Furthermore, they assume upstream
backup [37] and sophisticated recovery mechanisms [15,
5] via persisted state checkpoints to prevent record and
state loss.

2.4.2 Limitations of State-of-the-Art

In an IoT environment, the assumption of reliable
network connections no longer holds. Furthermore,
upstream backup and state checkpoints are not feasible
as the underlying infrastructure is volatile and unreliable.
As a result, IoT applications will perform inefficiently
and be error-prone if the above issues are not
solved. Furthermore, deterministic computation (see
Section 2.6) is not feasible, if there is no reliable partial
order-preserving delivery guarantee. Overall, enabling
reliable stream processing on a highly unreliable
infrastructure of low-end devices is an open research
question. In particular, the level of consistency
achievable and the trade-off between consistency and
performance must be carefully investigated.

2.4.3 Enabling Emerging IoT Applications

Supporting delivery guarantees enables applications
to enforce or relax constraints on record processing.

Delivery guarantees are not a new concept in stream
processing. However, the volatility of the IoT makes
them particularly hard to provide. We envision to address
this challenge with NES, by allowing applications
to trade performance for consistency or vice versa,
depending on the use case. In particular, applications
that do not need tight constraints on results may use
at-most-once semantics and allow record loss to speed
up analytics, e.g., on temperature reads. However,
applications that deal with sensitive data, e.g., car
accident detection, may employ at-least-once or exactly-
once semantics at the expense of latency.

2.5 Secure & Private Stream Processing

There is a fast increasing volume of data generated in
the IoT environment. To achieve timely analysis, rather
than processing in the cloud, data must be processed near
the source (e.g., the cloud edge) as much as possible to
reduce transmission overhead. However, the above edge
processing scheme exposes sensitive data to significant
security threats as edge devices are vulnerable to being
attacked, causing information leakage. Secure & private
stream processing aims to provide a built-in security
protection mechanism for SPEs, which has to be both
scalable and energy efficient. Existing mechanisms
such as Trusted Execution Environment (TEE) and
homomorphic encryption (HE) may require a revisit in
order to be applied in an IoT environment.

2.5.1 State-of-the-Art Systems

The Trusted Execution Environment (TEE) technique
is one promising approach to secure data processing.
It isolates a special encrypted area of memory called
an enclave. Subsequently, it guarantees that code and
data loaded in the enclave are protected with respect to
confidentiality and integrity. Park et al. [57] reported
how to extend existing SPEs [52] to utilize ARM
TrustZone, which is one of the implementations of
TEE. However, it still remains unclear how to efficiently
support stateful applications, in particular when the
enclave can not hold large application states. For
example, it can only hold up to tens of megabytes (MB)
for ARM TrustZone and up to 128 MB for Intel SGX
enclave [13].

Another promising approach is to utilize a
homomorphic encryption (HE) mechanism [14],
which allows directly processing on encrypted data
(i.e., cyphertext) without decryption. However, how to
efficiently utilize homomorphic encryption mechanisms
in SPEs still remains an open question. On the one hand,
partial HE mechanisms, which allow for a restricted set
of operations (e.g., ordering) on cyphertext, may still
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lead to information leakage. For example, CryptDB [58]
utilizing order-preserving encryption is reported to be
easily crackable [30]. On the other hand, all known
fully HE schemes, which support any operations on
encrypted datasets and provide more reliable security
guarantees, still have a long way to go before they can
be used in practice due to the significant computational
complexity [54]. The strict low-latency processing
requirement of SPEs and the low processing capability
of IoT devices prohibit the use of any computationally
heavy encryption scheme.

There exists an extensive body of literature focusing
on privacy preservation in relational databases, e.g., k-
anonymity [66] and differential privacy [25]. However,
both approaches focus on statistical queries on static
relational data. They are not directly applicable to
stream processing, which has to achieve low processing
latency while dealing with continuous input streams.
Specific solutions have also been designed for privacy-
aware stream processing, such as privacy-aware complex
event processing [35]. However, how best to design a
general-purpose privacy-aware SPE still remains an open
question. Unstable network connections and potentially
noisy data sources in the IoT environment bring even
more challenges to the privacy-aware system design. For
example, it becomes hard to tell whether the noise [25] or
suppression [35] is introduced by the privacy protection
mechanism or by the dynamic IoT environment.

2.5.2 Limitations of State-of-the-Art

The shift from powerful servers in a cloud environment
to low power IoT devices requires us to revisit
existing security mechanisms. On the one hand,
providing security guarantees often requires one to trade-
off performance as it brings significant computation
complexity. On the other hand, IoT devices are often
equipped with relatively low computation capacity with
unstable connections.

The federated environment of IoT also prohibits
us from relying on centrally governed mechanisms
to provide security guarantees. For example, an
application may require data streams generated across
different regions (e.g., data from the capital of different
countries). However, sensitivity information may not be
allowed to leave a specific region. However, existing
mechanisms are mostly non-scalable when we have to
provide security guarantees to millions of devices across
different layers (i.e., edge, fog, and cloud center) in a
large geographic scale.

2.5.3 Enabling Emerging IoT Applications

Secure & Private stream processing enables NES to
process confidential data by providing security and
integrity guarantees. This allows NES to be adopted
into many sensitive aspects of a smart city such as
smart health care, and smart finance, where data may
be generated over millions of sensors, and privacy
and integrity need to be protected. For example,
heart rate variability analysis [61] requires analyzing
electrocardiograms (ECG) and photoplethysmograms
(PPG). Both signals must be captured and processed
reliably in real time. It is challenging in supporting
this use case. On the one hand, any unauthorized read
or even modification to the input signals or application
states (e.g., range of typical values of signals) can
be dangerous and should be prevented. On the other
hand, large processing latency can cause delays in
identifying emerging situations. To minimize network
transmission overhead, we need to process the data
close to the source (e.g., sensors on the patients), which
is however vulnerable to be attacked. NES aims to
bring security guarantee to stream processing without
introducing significant overhead. In particular, we will
take a holistic approach by applying suitable solutions
on different components of stream processing across
different layers.

2.6 Transactional Stream Processing

SPEs with transactional state management relieve
the burden of managing state consistency from the
users. However, scaling stream processing while
providing transactional state management is challenging,
in particular for emerging dynamically distributed
environment such as the IoT. On the one hand, to
achieve both low latency and high throughput, SPEs
can process multiple input events (including streaming
data and ad-hoc user queries) [42] at the same time
to aggressively exploit parallelism. On the other
hand, processing different events concurrently may lead
to conflict accesses (reads and writes) to the same
application state (i.e., concurrent state access), hence
leading to higher chances of violating the transactional
state consistency [51, 83]. Furthermore, more than
simply guaranteeing the ACID properties, SPEs need
to enforce the state access order according to the
input event sequence. This is very different from
the conventional concurrency control protocols, which
serialize transactions in an order that is conflict-
equivalent to any certain serial schedule.

71



Open Journal of Internet of Things (OJIOT), Volume 6, Issue 1, 2020

2.6.1 State-of-the-Art Systems

In the area of general stream processing engines, recently
proposed SPEs achieve excellent performance when
processing large volumes of data under tight latency
constraints [79]. In particular, SPEs such as Flink [17],
Storm [68], and Heron [46], achieve high performance
via disjoint partitioning of application states [15] –
often through hash partitioning [43]. This ensures
that each execution thread (i.e., executor) maintains a
disjoint subset of states and thereby bypasses the issue
of concurrent state access. However, this type of design
can lead to tedious implementation and ineffective
performance in many cases [83].

Transactional stream processing engines have recently
received attention from both academia [2, 83] and
industry [27]. In emerging use cases, large mutable
application states can be concurrently accessed by
multiple operators (and their executors) [83, 51,
2] during stream processing and transactional state
consistency has to be preserved. Many such applications
have been proposed covering various domains (e.g.,
Health-care [71], IoT [12], and E-commerce [51]).
Recent transactional SPEs typically model state accesses
as transactions [12]. Subsequently, state consistency
is maintained by the system by adopting transactional
semantics (such as ACID properties). However, they
typically rely on locks, where concurrent access to
each state is permitted only if the lock is granted
to the thread. As a result, it scales poorly while
underutilizing hardware resources [12, 51]. TStream
is a recently proposed transactional SPE [83], and
it significantly improves the execution efficiency by
completely avoiding locks. However, it is designed for
a single node assuming a shared-memory architecture. It
might require a system redesign to fully take advantage
of TStream’s approach in an IoT environment.

2.6.2 Limitations of State-of-the-Art

A straightforward mechanism to support transactional
stream processing is to adopt an off-the-shelf
transactional database management system (DBMS)
for state maintenance during stream processing.
Unfortunately, this mechanism not only degrades
the system performance but may also violate state
consistency [51]. On the one hand, using a third-party
DBMS for frequent data access can cause high inter-
process communication overhead between two different
systems (i.e., DBMS and SPE). On the other hand,
conventional DBMSs’ concurrency control protocol
only guarantees that the execution order of concurrent
transactions is conflict-equivalent to any certain serial
schedule, which may not obey the event order implied

by the attached timestamps [51, 83].
Furthermore, a central state storage is often not

available in an IoT environment. This brings
even more challenges to provide state consistency as
transactional states have to be stored in a distributed
manner. Although distributed databases/key-value stores
have been extensively studied and adopted in some
SPEs, they are not designed to support concurrent
ordered state accesses [83, 2]. Guaranteeing a
deterministic execution sequence and state consistency
while supporting concurrent state access is also in
contradiction to the highly dynamic IoT environment
where input record can arrive out of order, have an
inaccurate timestamp, and miss information. Common
problems in the IoT environment, e.g., transient node
errors, unreliable connections, low-quality hardware,
low storage capacities, and no upstream backups, further
make existing scale-up [83] and scale-out [2] solutions
hardly applicable.

2.6.3 Enabling Emerging IoT Applications

Transactional stream processing opens the gate of
linking two popular research fields, OLTP and stream
processing. It eases the development of many emerging
complex stateful stream applications [83], where the
processing of a single event may need to access multiple
overlapping states while preserving state consistency.
Let us take self-driving vehicle monitoring [50] as
an example, which is one of the popular applications
of a smart city. Millions of cars are continuously
generating status data via their sensors, and SPEs can
offer many services, such as a warning and a list of
nearby gas stations whenever the fuel tank level is below
a certain threshold. The SPE then needs to maintain
gas station information, road condition information,
while processing the flood of sensor data streams from
vehicles. To make the right decisions timely, consistent
and up-to-date states of both gas stations and roads is
crucial in this example. This is challenging because
the processing of input signals from different vehicles
may access common application states, e.g., status of
a common gas station or road. To relieve users from
managing shared state consistency by themselves, NES
will provide an efficient transactional state management
component to perform data integration, analytics,
cleaning, and transformation on fresh data in near real
time.

3 DOMAIN-SPECIFIC FEATURES

In this section, we describe domain specific features that
are required to enable a richer set of applications over an
IoT data management platform such as NES.
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3.1 Signal Processing

Networked sensors are at the core of the IoT. To
analyze sensor data and extract insights, IoT applications
employ a variety of signal processing techniques,
e.g., interpolation to handle missing sensor values,
digital filters to recover noisy signals, and Fast Fourier
Transform (FFT) to do spectral analysis [55]. In
addition, applications need relational operators, e.g.,
filters to select data subsets, joins to combine signals
with external data sources, or group-by aggregates to
group signals according to their source.

Domain experts typically use numerical frameworks
such as Matlab or R to perform signal processing.
However, these frameworks lack support for relational
operators, are not suited for online analyses, and cannot
scale to large datasets. To address these limitations,
big data frameworks, such as Spark, integrate with
R, allowing domain experts to re-use their R scripts,
which are now executed on Spark’s processing engine.
Nevertheless, there is an impedance mismatch between
general-purpose data processing systems and numerical
frameworks, which introduces high communication
overhead, making it hard to attain real-time performance.

3.1.1 State-of-the-Art Systems

Conventional SPEs do not have built-in signal processing
support. A naive solution to enabling digital signal
processing (DSP) is to implement signal processing
operations as user-defined functions. This is, however,
counter-intuitive for domain experts, as it requires a
deeper understanding of the system’s data model.

There is a limited amount of work in unifying
relational and signal processing operations into a single
system (e.g., WaveScope [32] and TrillDSP [55]).
WaveScope provides little support for distributed query
execution. It executes distributed applications over a
cluster of a few processing nodes or between processing
nodes and sensors. Only lightweight operations are
offloaded to sensors, while a centralized component
collects data for further processing. TrillDSP extends
Microsoft’s Trill streaming analytics engine [18], which
does not support distributed execution.

3.1.2 Limitations of State-of-the-Art

There are only a few stream processing engines that
provide adequate support for DSP operators [32, 55].
However, these engines have no or little support for
distributed query execution. Therefore, they cannot
be deployed in a highly distributed IoT environment.
Enabling signal processing over streams in such a
heterogeneous environment is challenging for several
reasons. First, some DSP operations are compute or

memory intensive, and thus cannot be executed on
resource-constrained, low-end fog devices. At the
same time, there might be devices close to the input
sensor sources that are equipped with specialized signal
processing hardware and are thus particularly tailored for
efficiently executing DSP operators. Furthermore, DSP
operations are typically not commutative. Therefore,
event-ordering has to be maintained, which is hard
in a highly volatile and distributed fog infrastructure.
NES aims to provide efficient native support for signal
processing by tightly integrating DSP operators in
the execution engine, performing semantic-aware data
routing, and implementing smart operator placement
strategies to optimize resource utilization.

3.1.3 Enabling Emerging IoT Applications

Sensors capture and transmit signals in streams. To
analyze these data, IoT workflows in various domains
combine relational and signal logic. ShotSpotter [64],
for example, is a gunshot detection and localization
application that captures impulsive audio signals likely
to correspond to gunshots using acoustic sensors placed
in a city. The signals are grouped by regions and
are filtered to remove background noise, prior to being
further processed by sophisticated detection techniques.
NES aims to support the execution of DSP operators
close to the sensors, and thereby enable emerging
IoT applications to efficiently process high-rate signals
originating from millions of sensors.

3.2 Efficient Spatial Analytics

Data produced by IoT devices are inherently geospatial
in nature. Some devices have fixed static locations (e.g.,
smart house appliances), while others (e.g., smartphones,
smartwatches, wearables) have a continuously changing
location, as they are attached to a moving entity (e.g.,
a human or a car). The volume and rate of geospatial
data collected in the IoT are ever-increasing. Cellular
networks produce millions of records per second [38].
Service weather stations have a broad range of sensors
that measure atmospheric conditions with increasing
granularity, generating millions of records with each
scan. At the same time, a variety of applications in
domains such as transportation, environmental sciences,
health, and public safety rely on efficient, real-time
spatial data processing. Connected vehicle applications
leverage spatial data to seamlessly optimize mobility in
smart cities. Monitoring systems require fresh spatial
data to prevent dangerous situations and trigger alerts.
Given the central role that spatial information plays in
the IoT and the interactivity expected from applications,
there is the need for an IoT data management platform
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that supports low-latency spatial analytics.

3.2.1 State-of-the-Art Systems

In the area of cluster-based systems, most existing
distributed spatial systems are designed for static (batch)
processing, and thus incur high latency for streaming
queries over streaming data. They are based on
Hadoop [4, 26] or Spark [67, 72, 76].

Existing general-purpose SPEs [17, 68] have no direct
support for spatial data. MobyDick [29] is a library
built on top of Apache Flink [17] that extends Flink
with a set of spatio-temporal data types and operators.
Tornado [49] extends Apache Storm [68] to support
continuous spatial-keyword queries. These extensions
are initial research prototypes supporting only a limited
set of spatial query types.

3.2.2 Limitations of State-of-the-Art

Existing systems face many challenges in supporting
spatial analytics in the IoT. First, they need to collect
all data in a centralized cluster or cloud environment
prior to applying processing. Given the large amounts
of data originating from millions of geo-distributed
sensors, this centralized processing paradigm results in
high query latency. Second, data are multidimensional,
heavily skewed, and come at high velocity. As a
result, load balancing and indexing techniques employed
by existing spatial data frameworks either incur high
ingestion rates due to frequent re-balancing operations
or penalize query performance due to partitioning
schemes that do not preserve spatial locality [39]. To
achieve low-latency and scalability, NES will employ
novel solutions that process spatial data in-network,
in a locality-aware manner. Finally, spatial analytics
involve costly geometric computations (such as Point-
in-Polygon tests) to evaluate relations between objects
in space (e.g., intersection, containment) and are thus
computationally expensive [44, 65, 69], more expensive
than typical relational queries. Low-end IoT devices
have limited computational resources, and are thus
unsuitable for executing such costly operations. To make
efficient use of the available resources, NES will employ
smart placement strategies that distribute spatial queries
across fog and cloud nodes while exploiting specialized
hardware (e.g., GPUs) and respecting device limitations.

3.2.3 Enabling Emerging IoT Applications

Most phenomena in the IoT are location-dependent.
Consequently, the relevance, value, and utility of IoT
data typically depend on the geographic context of
the devices that produce data and of the users that
consume them. NES aims to provide efficient, real-time

spatial data analytics, and thereby facilitate emerging
IoT applications in domains such as transportation (e.g.,
driverless vehicles, connected cars), public safety (e.g.,
a network of connected cameras or acoustic sensors) and
health (e.g., wearable health trackers)

3.3 Complex Event Processing

The IoT is one of the main domains that successfully
leverage the monitoring features of Complex Event
Processing (CEP) [21, 82]. CEP is a stateful
stream processing method that detects user-defined rule
patterns in large data streams. Herewith, it enables
autonomous real-time decision making for data-intensive
IoT applications where manual monitoring is infeasible
and prompt reactions are required, e.g., intelligent
transportation systems, smart street lamps, vehicle
pollution control, or supply chain management [3].
Thus, efficient CEP is a necessary feature for future IoT
applications with millions of connected devices.

3.3.1 State-of-the-Art Systems

Several SPEs offer CEP features, e.g., Esper1,
Cayuga [23], STREAM [8], and Aurora [1]. Due to the
ever-increasing volume and rate of data, the concurrent
detection of thousands of patterns requires massive
resource capacities. To efficiently utilize the existing
resources of these mostly single-machine approaches,
optimization techniques can be applied, e.g., rewriting
and prefix sharing [45, 60]. However, the majority of
these systems use pattern specification languages, which
make automated optimization of their pattern detection
mechanism challenging [60].

Examples of Large-Scale Data Stream Processing
Systems [16] that offer CEP are Flink [17], Spark [77],
and Storm [68]. These systems are often cloud-based
and, thus, provide almost unlimited resources. Parallel
stream processing and distributed pattern detection
monitoring are techniques to distribute the centrally
collected data and efficiently utilize these unlimited
cloud resources [28]. However, these techniques do not
solve the central data collection bottleneck.

Overall, CEP consists of two components: a pattern
specification language (to define complex event patterns)
and a pattern detection mechanism (to detect patterns
in data streams). For neither of the two components,
a general solution exists, i.e., several CEP systems
provide their own specification languages (e.g., EPL1,
SASE+ [80], and CCL [82]) optimized for their pattern
detection mechanism. Detection mechanisms typically
focus on either several variations of state machines or

1 http://www.espertech.com/
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trees, but also event processing networks and column-
based approaches exist [45]. The missing generality of
CEP systems leads to various approaches with individual
optimizations that are hard to adapt to another CEP
system or computing paradigm [45, 84]. Besides, these
variations strengthen the challenge of coping with the
rapid evolution of future IoT applications.

3.3.2 Limitations of State-of-the-Art

The central data collection bottleneck of current SPEs
prevents their CEP engine from exploiting the spatial
closeness of event sources as well as data reduction
and distributed pattern detection close to the network’s
edge [19, 20]. To this end, current SPEs are not ready yet
to provide CEP solutions that fulfill the low-latency and
real-time requirements of IoT applications for millions
of distributed IoT devices.

Fog environments enable data processing at the edge
of the network using geographically distributed low-end
devices. As a result, computational and time-intensive
cloud-based pattern detection mechanisms cannot be
applied out-of-the-box and require adjustments to fit the
hardware capabilities and be network-aware.

Future data management platforms need CEP to
enable autonomous monitoring applications for the IoT.
Within NES, we want to provide a distributed in-network
CEP for future IoT applications by exploiting the fog
paradigm given limitations of the low-end devices and
dynamic network topology.

3.3.3 Enabling Emerging IoT Applications

CEP is a powerful stream processing method, commonly
used by various monitoring applications. By adapting
current CEP systems with enhanced distribution
strategies beyond cloud solutions, NES will provide
CEP also for future IoT monitoring applications.
These monitoring applications profit further from the
previously introduced features, i.e., spatial data analysis
for location-aware patterns, adaptive filtering for early
data reduction as well as secure and transactional
processing techniques. In particular, the union of the
cloud and fog paradigms in a single environment will
allow applications to control the reporting of partial
and full matches flexibly to the interested sinks. Some
applications may run entirely autonomously in the fog
layer, e.g., smart street lamp monitoring [40]. Other
applications might expose their matches to the cloud
layer, but their sensitive data, which was analyzed to
detect the match, will not leave a private fog and is
therefore secured. For example, smart hospitals [73]
reporting COVID-19 cases to a smart city application
for further analysis. Overall, distributed CEP for the

IoT enables a wide range of autonomous monitoring
applications that are currently prevented by cloud
bottlenecks and data security concerns.

3.4 Machine Learning

Complex machine learning (ML) tasks, e.g.,
classification, clustering, and prediction are key
applications to extract knowledge from massive amount
of IoT data. Therefore, it is necessary to provide native
ML support in an IoT data management platform to
fully profit from the insights extracted from the data.

3.4.1 State-of-the-Art Systems

As presented by Derakshan et al. [24], a machine
learning model training pipeline consists of several
stages. A pipeline is iterative as every stage is repeated
to improve the performance of the model continuously.
The key components for each stage of such a pipeline
are the following: (1) Definition of the input sources,
(2) Data cleansing and transformation, (3) Training, (4)
Evaluation, (5) Materialization, (6) Deployment.

State-of-the-art SPEs, e.g., Flink do not support all
stages natively. In most application scenarios only Stage
(1) and (2) are executed in the SPE. For training and
evaluation (Stage 3 and 4), the data is then loaded to a
batch processing system like Spark or Tensorflow. After
the model is trained, it is transmitted in Stage 5 to a
ML model management system like MLFlow [53] or
ModelDB [47] At this point, the model is persisted at
a central location, and a versioning number along with
additional metadata, is attached to it. The deployment of
the model is performed in Stage 6, where all destinations
that require the newest version of the trained model can
access it from the centrally located model management
system in the cloud.

In situations where training or inference is required
within the SPE, users have to implement customized
solutions using User Defined Functions (UDFs). In these
cases, the processes for inference are running as micro-
services in a central location and are called via REST or
Remote Procedure Calls (RPCs).

3.4.2 Limitations of State-of-the-Art

Pushing training and inference operators down to edge
devices is challenging from a system perspective, mainly
due to the complexity of ML pipelines. As described
above, there is no system supporting all the needed
functionality for all stages of the pipeline.

In the IoT domain, a data management system
for ML should also cope with the following three
characteristics of IoT topologies and their corresponding
challenges. First, heterogeneity: The training of a
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model is a computationally expensive operation that
requires many resources and is usually executed on
GPUs. Consequently, model training tasks should
be preferably executed in the cloud. Devices in
the IoT vary in resources and run on different
operating systems and hardware. Applying ML in
such a heterogeneous IoT environment is currently not
supported by common ML Systems like Tensorflow or
Spark. In particular, specialized approaches for ML
inference in IoT environments [41, 33] are not supported
by a general purpose systems for ML.

Second, limited resources: Difficulties arise from the
large sizes of the trained models. The states of operators
that incorporate pre-trained ML models usually reach
sizes of several gigabytes. Handling states of this
magnitude is challenging for memory-constrained IoT
devices. Additionally, distributed training of an ML
model requires many synchronization messages across
all devices. Given that typical IoT topologies consist
of several thousands of edge devices, this becomes
problematic in a setting where network bandwidth is
limited. Third, unreliability: A foundational problem
in the context of streaming in the IoT is also the way
data is transmitted to the different devices. Applying
existing cloud-based solutions in a fog infrastructure
risk to stall the whole system, as these solutions are
prone to backpressure or high latency. In application
scenarios with long-running ML pipelines, it is thus
essential to handle these issues, as they could prohibit
the completion of the pipeline.

With NES, we propose a system that will support
processing tasks on CPUs and GPUs in the cloud, fog,
and edge. As a result, NES eliminates the need to
perform all pipeline stages in the cloud and thus enables
more efficient execution of ML pipelines.

3.4.3 Enabling Emerging IoT Applications

Nowadays, data engineering use cases depend heavily
on statistical models or machine learning. In the era of
IoT, where thousands of devices and millions of sensors
are inter-connected across distributed locations, there is
a need to shift these applications to the edge. In large-
scale IoT environments like a smart city, NES is going
to enable us to push down aggregate or filter operations
with on-the-fly analytical decisions. By executing these
complex analytical tasks in early stages of data pipelines,
we have knowledge what data to forward across the
network and thus reduce network load and latency.

4 CONCLUSION

This paper presented challenges and opportunities for
an IoT data management system to enable complex

analytics beyond the cloud. To this end, we described
changes to existing core features, investigated new
features, as well as domain-specific features. For each
feature, we presented the challenges and requirements,
discussed the state-of-the-art, showed their limitations,
and highlighted how we can use IoT infrastructures
efficiently. Furthermore, we outlined our envisioned
solutions for these challenges in our own system
NebulaStream. We hope that this paper lays the
foundation for a new type of systems that leverages
the IoT to enable large-scale applications over millions
of IoT devices in highly dynamic and geo-distributed
environments. Overall, we envision NebulaStream and
its new set of features and possibilities as a major step
towards the smart city of the future.
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