
c© 2020 by the authors; licensee RonPub, Lübeck, Germany. This article is an open access article distributed under the terms and conditions of
the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).

Open Access

Open Journal of Internet of Things (OJIOT)
Volume 6, Issue 1, 2020

http://www.ronpub.com/ojiot
ISSN 2364-7108

An Architecture for Distributed Video Stream
Processing in IoMT Systems
Aluizio Rocha NetoA, Thiago P. SilvaA, Thais V. BatistaA,

Flávia C. DelicatoB, Paulo F. PiresB, Frederico LopesC

A Programa de Pós-graduação em Sistemas e Computação (PPGSC), Universidade Federal do Rio Grande do
Norte (UFRN), Natal, Brazil, {aluiziorocha, thiagosilva.inf, thaisbatista}@gmail.com

B Programa de Engenharia de Sistemas e Computação (PESC), Universidade Federal do Rio de Janeiro, Rio de
Janeiro, Brazil, {fdelicato, paulo.f.pires}@gmail.com

C Instituto Metropole Digital, Universidade Federal do Rio Grande do Norte (UFRN) – Campus Universitário
Lagoa Nova – CEP 59072-970 – Natal-RN, Brasil {fred.lopes@gmail.com}

ABSTRACT

In Internet of Multimedia Things (IoMT) systems, Internet cameras installed in buildings and streets are major
sources of sensing data. From these large-scale video streams, it is possible to infer various information providing
the current status of the monitored environments. Some events of interest that have occurred in these observed
locations produce insights that might demand near real-time responses from the system. In this context, the event
processing depends on data freshness, and computation time, otherwise, the processing results and activities become
less valuable or even worthless. An encouraging plan to support the computational demand for latency-sensitive
applications of largely geo-distributed systems is applying Edge Computing resources to perform the video stream
processing stages. However, some of these stages use deep learning methods for the detection and identification of
objects of interest, which are voracious consumers of computational resources. To address these issues, this work
proposes an architecture to distribute the video stream processing stages in multiple tasks running on different edge
nodes, reducing network overhead and consequent delays. The Multilevel Information Fusion Edge Architecture
(MELINDA) encapsulates the data analytics algorithms provided by machine learning methods in different types of
processing tasks organized by multiple data-abstraction levels. This distribution strategy, combined with the new
category of Edge AI hardware specifically designed to develop smart systems, is a promising approach to address
the resource limitations of edge devices.

TYPE OF PAPER AND KEYWORDS

Regular research paper: Internet of Multimedia Things, Edge Computing, Stream Processing

1 INTRODUCTION

Since the early 2000s, the Internet of Things (IoT) has

This paper is accepted at the International Workshop on Very
Large Internet of Things (VLIoT 2020) in conjunction with the
VLDB 2020 conference in Tokyo, Japan. The proceedings of
VLIoT@VLDB 2020 are published in the Open Journal of Internet
of Things (OJIOT) as special issue.

gained more and more notoriety [3]. This paradigm
encompasses an infrastructure of hardware, software,
and services that connect physical objects called things
(devices endowed with sensors and actuators) to the
Internet. Among the countless types of sensors that
are part of the IoT, multimedia sensors represent an
important fraction of the connected objects. According

89

http://creativecommons.org/licenses/by/4.0/
http://www.ronpub.com/ojiot


Open Journal of Internet of Things (OJIOT), Volume 6, Issue 1, 2020

to Cisco [5] by 2022, about 82% of the global
Internet bandwidth will consist of video traffic. A
relevant part of this traffic is related to intelligent
multimedia surveillance systems deployed in smart cities
and smart buildings. In such systems, the Internet
camera is the primary source of information, and the
enormous proliferation of this type of device has raised
a specialized subset of IoT, the Internet of Multimedia
Things (IoMT) [2]. The vast and rapid generation of
multimedia content has posed many challenging factors
for communication infrastructure and data processing
[21].

From the large-scale video streams produced by IoMT
devices, it is possible to infer various information that
can feed multiple applications, providing the current
status of the monitored environment. Some events of
interest occuring in a given observed location produce
insights that demand responses from the system. For
example, in a smart traffic control application, an event
of interest would be: “if a vehicle is on the wrong side of
a highway, it must be stopped immediately.” Considering
that the raw data to be used in this stream processing
is a video from cameras monitoring the traffic, the
application must transform low-abstraction data (pixels
of images) into a piece of high-level information (e.g.,
vehicle, non-permitted movement). In this context, a
smart system aiming needs to process the generated
data to take some automatic action in a near real-time
manner and thus, the response time is critical. Such a
system depends on data freshness and computation time,
otherwise, the processing results become less valuable or
even worthless.

The novel computing paradigm named Edge
Computing [10] has been introduced to support the
computational demand for real-time and latency-
sensitive applications of largely geo-distributed sensing
devices. The main idea in this approach is to bring
the computation resources closer to the data sources -
the sensors - so that applications require less network
traffic and reduce the overall delays. In this context,
edge devices will perform all or part of the various data
stream processing stages.

A promising technique for reducing the volume of
data to be processed and to deal with different levels
of data abstraction is applying Multilevel Information
Fusion (MIF) in data processing [18]. In this approach,
there is a pipeline of processing tasks, where each task
is responsible for transforming data from a lower to an
upper abstraction level. Thus, for the above mentioned
example of a traffic control application, the first task
could be achieving images of interest from the video
stream, the second task identifies the objects or event of
interest in the achieved image, and the third task applies
the business rule for this event accordingly.

In the design of these MIF tasks, a promising approach
to extract high-abstraction data from images is using
Deep Learning (DL) methods [16]. DL is a field of
Machine Learning (ML) which has been widely applied
to application domains that depend on complex and
massive data processing [21]. A DL neural network can
recognize patterns within a data set. A neural network
is trained with a data set where each data element
receives a label determining the class (pattern) it belongs
to. In recent years, with the increasing computational
capacities, new generation edge devices have been able
to apply more advanced neural networks to capture and
understand their environments [29]. For example, in
a smart building, the security system can unlock the
door when it recognizes a user’s face. These high-level
abstraction data can benefit the Intelligent Surveillance
System (ISS) [27] with the rapid identification of objects
of interest and the analysis of their actions within scenes
captured by multiple cameras.

However, applying these techniques in the context
of a large-scale system for smart cities, with hundreds
of cameras, we can identify at least two issues: (i)
the volume of data to be processed is massive, which
can saturate the network infrastructure and increase
latency in response to events of interest; (ii) DL methods
generally run on powerful cloud computers because they
usually need a lot of memory and parallel processing.
Thus, reducing latency by running these algorithms on
resource-constrained edge devices is not a trivial task and
requires a stream processing distribution strategy that
exploits the resources available on as many devices as
possible.

Another relevant aspect in this context is that in most
IoMT smart systems, the intelligence provided by the
DL methods is tightly bound to the application that
implements this intelligence, limiting the provisioning
of that specific intelligence service to other applications,
even in the same system domain [22]. For example, in
a smart campus scenario, it is reasoning that the same
facial recognition system should be applied to register
the presence of students in the classroom as well as to
unlock a laboratory door for a researcher.

In this paper, we tackle the above issues and
present an architecture for a distributed system to
process large-scale multimedia data streams. For issue
(i), the Multilevel Information Distributed Processing
Architecture (MELINDA) applies MIF to breakdown the
intensive processing duty in a pipeline of tasks according
to the input-data abstraction level. The processing
tasks run on different edge nodes close to the data
stream sources. Item (ii) is tackled with the division
of DL methods into two atomic processing tasks to
detect and identify, respectively, the objects of interest
into the video stream. Besides, a DL task runs on

90



A. R. Neto et al.: An Architecture for Distributed Video Stream Processing in IoMT Systems

an edge node equipped with a hardware accelerator for
neural networks, allowing it to make inferences faster.
Another contribution of MELINDA is the encapsulation
of the object identification task into the concept of an
intelligence service shared by an edge node to multiple
data streams.

The organization of this paper is as follows. Section
2 discusses the challenges in processing large-scale
video streams with rapid response. Section 3 presents
the architecture proposed and the software components
to execute and manage the processing tasks. Section
4 explains the application model, and the edge node
allocation process to deploy the distributed video stream
processing. Section 5 presents the related work. Finally,
section 6 brings the final remarks and future work.

2 CHALLENGES IN VIDEO STREAM
PROCESSING AT THE EDGE

The challenge of minimizing network latency and
improving computational performance in the context of
IoMT smart systems is a major concern of the IoT
research community [12]. In the early IoT architecture,
IoMT devices had to resource to servers hosted in
cloud data centers to process multimedia data and wait
for some feedback. With the emergence of the Edge
Computing paradigm, the edge devices collaboratively
process the multimedia data and send only high-level
information to a manager in the cloud. This approach
avoids high network bandwidth consumption and takes
full advantage of all the increasing computational
capacity of devices near the edge of the network. In this
context, an edge video processing system has to process
multiple stream applications with different requirements.
Such a system is composed of heterogeneous devices
running various processing tasks. The core issue is how
to allocate the resources available in the mixed edge
system to accommodate the processing requirements
posed by multiple applications. At first glance, this
issue is similar to the typical processing task allocation
in distributed systems, studied exhaustively in several
areas of computing systems. However, task allocation
for edge systems poses new challenges that call for novel
solutions, tailored for such an emerging scenario. The
next sections discuss two of these challenges.

2.1 Video Stream Processing

Smart applications that use multimedia time-series
data, such as video and audio streams, impose
communication, and processing overheads [2]. Time-
series data are not processed in the same way as the
typical sensing data nor as easily interpreted such as, for
instance, a temperature, or other simple numerical data

[24]. Data items arrive continuously and sequentially as
a stream and are usually ordered by a timestamp value
along with other additional attribute values about the data
item [4]. Such data streams are usually generated by
heterogeneous and scattered sources. In general, IoMT
systems do not have direct access or control over such
data sources. Moreover, the input characteristics of a
data stream are usually not controllable and typically
unpredictable [24]. The input rate of a video stream
ranges from a few bytes per second to a few gigabits per
second, depending on the pixels changes from one frame
to another. In this way, such an input rate can also be
irregular and bursty in nature.

A promising strategy to alleviate the computational
burden of processing for large time-series data volume
is to split the processing stages into tasks using the
information fusion technique. The primary purpose of
information fusion is to gather sensors’ contextual data
into one single data set that the combined data has a
better interpretation than each one treated separately.
This concept is essential to any application interpreting
multiple sensor data. For example, “temperature is
40◦C” could not represent a piece of information that can
be precisely interpreted, and other data should be fused
to do that. This temperature can be normal at noon, but
at night it can be interpreted as a nearby heat source, like
a fire.

According to [18], Information Fusion deals with
three levels of data abstraction: measurement, feature,
and decision, and it can be classified into four categories:

• Low-Level Fusion – Also referred to as signal
(measurement) level fusion. Raw data are provided
as inputs, combined into a new piece of data that
is more accurate (reduced noise) than the individual
inputs.

• Medium-Level Fusion – Attributes or features of
an entity (e.g., shape, texture, position) are fused
to obtain a feature map that may be used for
other tasks (e.g., segmentation or detection of an
object). This type of fusion is also known as a
feature/attribute level fusion.

• High-Level Fusion – Also known as symbol or
decision level fusion. It takes decisions or symbolic
representations as input and combines them to
obtain a more confident and/or a global decision.

• Multilevel Fusion – when the fusion process
encompasses data of different abstraction levels, i.e.
when both input and output of fusion can be of any
level (e.g., a measurement is fused with a feature to
provide a decision) – multilevel fusion takes place.

91



Open Journal of Internet of Things (OJIOT), Volume 6, Issue 1, 2020

Using different levels of data abstraction, the
processing tasks of each stage will execute specific
algorithms to extract information from data according to
that level of abstraction. In this context, image data is
processed into steps according to its level of abstraction:
pixels as low-level, features (contours, shapes, etc) as
medium-level, and real objects (people, vehicle, etc)
as high-level. Such levels of data abstraction require
different processing workload and consequent different
hardware capacity of the computers running the tasks
[23].

2.2 Running Machine Learning in Edge
Devices

In 2015, the authors in [15] published an initial study
aimed to analyze the development of embedded and
mobile devices that could run some deep learning
techniques. They experimented with some device kits
running some neural network models to process audio
and image sensor data. The experiments showed that
running a heavy deep learning model on the lower-
capacity device is possible. However, the response
time and energy consumption will probably make the
solution infeasible for most smart IoMT applications.
Algorithms dealing with deep neural networks require a
massive number of mathematical operations using large
matrices of floating-point numbers that are intensive
time-consuming.

In recent years, with the evolution of machine learning
techniques, specially optimized to run on resource-
constrained computers, a new generation of edge devices
have been able to apply more advanced neural networks
to capture and understand their environments. Using a
cascade of nonlinear processing units (layers) for feature
extraction and transformation, a deep learning method
can extract from an image a hierarchy of concepts that
correspond to different levels of abstraction [26]. Deep
learning architectures, such as Convolutional Neural
Network (CNN), have been applied to many fields
including computer vision, audio recognition, speech
transcription, and natural language processing, where
they have produced results comparable to human experts
[11].

Inferences made by CNN models generally require
parallel processing of operations with huge matrices
of data, which need advanced processors and much
memory on the computer. On the other hand, with the
constant interest of the scientific community to apply
deep learning in solving complex problems in various
areas, the industry has created the novel category of
Edge AI hardware specifically designed to develop ML-
based solutions [29]. These accelerators to run DL
inferences faster are relatively expensive when compared

to the price of the edge devices themselves. Thus, it
is necessary to maximize the use of such devices by
exploiting their entire potential.

3 AN ARCHITECTURE FOR VIDEO STREAM
PROCESSING

This section presents the Multilevel Information
Distributed Processing Architecture (MELINDA). The
primary purpose of our work is to integrate recent
advances in Edge Computing and Machine Intelligence
[22] to create a continuous, intelligent, and near real-
time distributed video stream processing framework.
The proposed architecture provides a set of software
components based on multilevel information fusion to
breakdown the intensive processing duty of transforming
raw data streams into high-abstraction events of interest.
An innovative feature of this approach is the creation of
the concept of intelligence service shared by multiple
applications. For instance, in the context of a smart
building with cameras as a primary sensing system,
people recognition is an intelligence service that might
be shared by two applications. One application could
be created to register the presence of a person in an
environment and, for instance, to adjust the room
temperature according to his/her preferences. Another
application could be specified with the goal to unlock
the door only for authorized people.

3.1 The Tree-Tier Architecture

The focus of our research is on processing video streams
as the primary source of information for intelligent
systems. In a smart city or smart building scenario there
is often a significant set of cameras in the environment.
These cameras are capturing the events of some objects
of interest, such as people and vehicles. Some of
these events may require an almost immediate response
from the system, such as access authorization by facial
recognition or by reading a license plate. Three steps
characterize the processing of these video streams:

1. Filtering of the video stream from the camera,
selecting only those images that have the object of
interest for processing;

2. Identification of these objects;

3. Interpretation of the event held by the object in the
monitored environment for later decision making.

As we discussed in section 2.1, a technique to
deal with different levels of data abstraction in stream
processing and that matches with the three steps above is
Multilevel Information Fusion (MIF). In this technique,

92



A. R. Neto et al.: An Architecture for Distributed Video Stream Processing in IoMT Systems

Figure 1: Three-Tier architecture

low-abstraction data, as pixels of images from cameras,
is fused to extract a higher-abstraction data, as a pattern
of pixels that characterizes a vehicle, for instance.
Therefore, the three steps of video stream processing
are mapped at the three levels of information fusion:
pre-processing or measurement, feature extraction, and
inference/decision.

As the processing of large-scale video streams in
nearly real-time requires high computational power,
traditional approaches process these massive streams
on cloud data centers. However, running all video
stream processing in the cloud presents some drawbacks,
among which we can highlight: (a) the transfer of
videos from the cameras to the data center consumes a
large network bandwidth; (b) the transfer increases the
response latency to the device at the edge that interacts
with the end-user; (c) if the processing infrastructure
is in a public cloud, another problem is the privacy of
sensitive data, such as biometric data (people’s faces)
used as keys in authorization processes.

An option to tackle these issues is applying the
video stream processing near the data sources using
edge nodes. However, due to their limited capacity, a
promising strategy is the distribution of the processing
tasks in different processing nodes. This strategy must be
adopted in advance by the developers of the applications
that want to use the platform. That is, an application
must require the processing of a workflow, which is a
pipeline of three types of processing tasks: Measurement
Level Task (MLT), Feature Level Task (FLT), and
Decision Level Task (DLT). There is a repository of
these types of tasks, and application developers can use

the tasks already registered or register theirs. Several
applications can share some instances of FLT tasks.
This shareable FLT is known as an Intelligence Service.
When registering an FLT task, the developer needs to
define whether it is shareable or not. Other tasks can
be instantiated by different applications to address their
specific streams, as is the case of MLT tasks with
parameters for the IP addresses of the cameras.

Figure 1 illustrates the three-tier architecture to
support our proposed model of video stream processing
system. The Sensors tier encompasses devices that
assume the role of the data source. The Edge tier
contains the edge devices responsible for running the
processing tasks. The nodes in the Cloud tier are
responsible for the management of the entire system
and orchestrating the execution of processing tasks on
the edge nodes. In this way, the software components
of the architecture belong to two logical layers: the
Management Layer and the Processing Layer.

The edge nodes closer to the sensors execute the
measurement level task (MLT). This type of task deals
with the raw data dimensionality reduction by applying
the object detection technique [28] on the video stream
and selecting only the images that contain some objects
of interest. Fusing this image captured with contextual
data, like timestamp and sensor geolocation, is another
role for this node. This information fusion is essential
for a better understanding of the captured event, besides
augmenting the meaning of the captured data for the
following processing tasks. Hence, the edge node
running an instance of an MLT task acts as a filter
to reduce the volume of data to be transmitted and

93



Open Journal of Internet of Things (OJIOT), Volume 6, Issue 1, 2020

Figure 2: Main components for the video stream processing system

processed, which can decrease the bandwidth and energy
consumption.

To alleviate the image processing burden, another
edge node runs the feature level task (FLT). This type
of task corresponds to the feature extraction stage of the
image captured by the previous task. FLT performs the
identification of objects and events of interest in that
image. Initially, based on tasks of pattern-recognition
in pictures, the feature extraction task reduces the
processing to specific image regions where the objects
of interest are located, i.e., it also decreases the amount
of data that has to be processed. Nowadays, a promising
approach is the use of modern Deep Learning (DL)
models to perform pattern-recognition in images [26].
In the context of smart systems, many applications are
interested in pattern-recognition for identifying people
through facial recognition using DL methods. Thus,
an FLT task that performs facial identification is an
intelligence service that can be shared by the nodes
running an instance of this task.

Finally, a third edge node runs the decision level task
(DLT), which is responsible for the upper level fusion
– abstraction/inference of the event occurred. From a
simple counting of vehicles entering a parking lot to a
complex phenomenon, like a person trying to enter in an
environment he/she is not authorized to be, this Complex
Event Processing (CEP) [8] task can analyze and take
some action accordingly. That is, the task of type DLT
uses the features extracted in the previous task to gain
more information about the event and infer valuable and
actionable knowledge from that.

3.2 MELINDA

The components of the MELINDA are organized in two
subsystems, namely Management Subsystem (MS) and
Processing Subsystem (PS). The PS encompasses the
components deployed in the edge nodes near the data
sources to achieve low latency and decrease network
overload. Thus, the architecture foresees that there will
be several instances of these components, each instance
runs in an edge node. On the other hand, to achieve high
reliability, the MS components are hosted in cloud nodes.
Thus, there will be only one centralized instance of each
component of MS for the entire architecture.

Figure 2 illustrates how the main components of PS
(colored yellow) and MS (colored blue) are distributed
in Cloud and Edge tiers. The component Data
Communication Manager (colored green) is common
to both subsystems, as it provides the communication
and standardization of the format of inputs and outputs
of intelligent services and the other type of tasks that
compose a workflow for an application. A detailed view
of all components and their relationship is provided in
Figure 3.

The component Stream Processing Service Delivery
(SPSD) is located in the Cloud and has two purposes:
(i) to receive requests from end-users for the execution
of a video stream processing application (workflow for
an application); and (ii) to receive requests from end-
users to retrieve event data associated with video stream
processing. When receiving a request for execution of an
application, this component forwards the request to the
Intelligence Orchestrator (IO). On the other hand, when

94



A. R. Neto et al.: An Architecture for Distributed Video Stream Processing in IoMT Systems

Figure 3: The relationship between components of MELINDA

an end-user requests event data to SPSD, it returns the
event data produced as the output of stream processing.

The Intelligence Service Instance Manager (ISIM)
keeps a list of intelligence services (FLT tasks) currently
running on each node, allowing new requests for these
services to reuse the current instances of them. The
Processing Node Manager (PNM) is responsible for the
registration of the processing nodes, keeping information
about the location and hardware resources of each node.
The IO uses this information to choose the nodes that are
closer to the data source and have the required hardware
resources for the requested tasks. Also, PNM stores the
resource usage information about each node (e.g. usage
of memory, CPU, GPU, and storage). Such information
is obtained from the Monitor through periodic queries.

The IO is responsible for choosing and allocating the
processing nodes (edge devices) that meet the end-user
request requirements. This component is essential to
distribute the intelligence at the edge tier in systems with

a large number of heterogeneous devices. The workflow
that represents an application contains three types of
tasks (MLT, FLT, and DLT) and its configuration data,
e.g., the addresses of the data sources and the expected
QoS parameter for the application. The addresses of
the data sources indicate camera IP addresses for MLT
tasks to gather the video streams. On the other hand,
the QoS parameter specifies a processing time limit that
cannot be exceeded when executing tasks. In this way,
the IO requests from ISIM the list of intelligent services
already instantiated, and from PNM the capabilities and
resource usage of the nodes. The IO uses a maximum-
flow method (detailed in section 4.1) to distribute tasks
among the nodes taking into account their capabilities
and also aiming at the reuse of intelligent services
currently running.

The Processing Task Repository Manager (PTRM)
offers a hub for storing and sharing descriptions of the
processing tasks demanded by nodes. Each task is

95



Open Journal of Internet of Things (OJIOT), Volume 6, Issue 1, 2020

designed as a Docker image and maintained by PTRM.
PTRM also stores information about the required input
and output parameters of each task in such a way
that it can attend multiple applications requiring that
processing service. The way the description of the
parameters of a task will be implemented is outside
the scope of this work. However, we recommend the
use of widely accepted standards such as XML and
JSON, or even JSON-LD (JSON for Linked Data) for
the description of inputs and outputs using semantic
notations.

The Resource Allocation Manager (RAM) is the
component that has a local view of all tasks that are
running on the node. This component receives requests
from the IO to execute or stop a certain task (or an
intelligence service). It uses the auxiliary component
Resource Provisioning Manager (RPM) to perform the
instantiation of a processing task. When the RAM
receives a request for execution of a task, the request
message contains the reference of the task allowing the
RPM to fetch its Docker image from the PTRM and
properly instantiate the task. On the other hand, when
a request to stop a processing task is received by RAM,
then RAM forwards the request to RPM to deallocate the
task and release the resource.

Considering that video stream processing requires
different hardware resources, our approach organizes the
Processing Task Component to be able to execute tasks
with three levels of information fusion – measurement
level task (MLT), feature level task (FLT), and decision
level task (DLT). This organization facilitates the
decision phase regarding the deployment of the software
architecture in the hardware elements [23]. Each
Processing Task Component performs one task that is a
packaged code that implements a logic part of the video
stream processing.

Finally, the Sensing Manager is the component in
charge of abstracting the access to stream sources
from the underlying tier, providing a service for the
Processing Task Component to gather raw sensing data.

3.3 System Components and Their
Relationship

Figure 3 shows the UML component diagram detailing
the relationship among MELINDA components. The
Data Communication Manager running on the cloud
and edge nodes is a message broker that implements
the Publish/Subscribe pattern communication and is
responsible for communication among the instances
of Processing Task Component. In an environment
where communication nodes form a processing cluster
dynamically, the Publish/Subscribe pattern is the most
suitable to exchange data asynchronously [13]. This

asynchronous communication is mandatory when a
processing task has to serve more than one data stream
and/or to ensure proper routing of outputs from one
processing task to another processing task. We want an
edge node to be able to process images from multiple
cameras to take full advantage of its computational
capacity, attending the system performance requirement.

The Data Communication Manager uses a message
queue to keep the messages published by producers and
forwarding these messages to subscribers. MELINDA
envisions that both producers and consumers are the
processing tasks. In this way, the publisher (producer)
and subscriber (consumer) are able to communicate
without any information about each other. Such
separation has the advantage of allowing dynamic
network topology and high scalability [13]. When
a processing task publishes a message, it uses the
IPub interface provided by the Data Communication
Manager. On the other hand, other processing tasks
act as consumers of that message, i.e., the processing
tasks that have subscribed for it, are notified by ISub
interface. In this way, the IPub interface is used to
publish the output of a task (result of data processing)
and the ISub interface is used to subscribe for a message
(input) of interest, for example a task of type DLF must
be interesting in the output of an intelligence service.

In the Management Subsystem (MS), the component
SPSD offers the IStreamProcessing interface to allow
end users: (i) request execution of a video stream
processing application; and (ii) request event data
associated with video stream processing. A request for
execution of an application is forward to the IO by IIO
interface. When an end user requests event data to SPSD,
it returns the event data produced as outcome of a video
stream processing application querying the IGetEvent
interface provided by Event Data Storage. The Event
Data Storage is the component in charge of storing all
application workflow outcomes. Also, this component
provides the IConfig interface where the Intelligence
Orchestrator can configure it to subscribe to the message
broker offered by Data Communication Manager in
order to receive the output of the processing tasks of
the application. The information about the intelligence
services currently offered is retrieved through the IISI
interface provided by the Intelligence Service Instance
Manager (ISIM) that keeps a catalog of all available
intelligence services and a list of intelligence services
currently running on each node.

The IO is in charge of implementing the algorithm to
allocate the nodes to process the tasks of an application
workflow. It offers the IIO interface used to receive
the request arriving via the SPSD. The Orchestrator
uses a maximum-flow method (detailed in section 4.1)
to distribute tasks among the edge nodes taking into

96



A. R. Neto et al.: An Architecture for Distributed Video Stream Processing in IoMT Systems

Figure 4: Application’s Workflow

account their capabilities and also aiming at the reuse
of intelligent services currently running. In this way,
the IO requests the list of intelligent services available
from ISIM through the IISI interface and also requests
the capabilities and resource usage of the nodes through
INodesCapabilities interface provided by PNM. As
mentioned before, the IO configures the Event Data
Storage through IConfig interface to create a subscription
in the Data Communication Manager.

The PTRM offers the IProcessingTask interface to
allow end-users to register and retrieve descriptions
of the processing tasks demanded by nodes. Before
creating a workflow for an application, the end-user
must retrieve the description of the currently supported
tasks (Docker image and its inputs and outputs). Also,
PTRM provides the IGetTaskDesc interface where other
components can request task descriptions. The PNM
provides the INodeMetrics interface which is used
by Monitor instances to periodically send telemetry
information of each node. In turn, the Monitor belongs
to the Processing Subsystem and provides the IMetrics
interface to capture such metrics.

At the Processing Subsystem (PS), the Resource
Allocation Manager (RAM) offers the IRAM interface
to receive requests for execution or finalize processing
tasks. These requests arrive via Intelligence
Orchestrator. The RAM has a local view of all
tasks currently running on the node, and it uses the
IRPM interface provided by component Resource
Provisioning Manager (RPM) to forward the request
for an instantiation or finalization of a processing task.
When the RAM receives a request for execution of
a task, the request message contains a reference to
the Docker image and all configuration parameters
for this task, allowing the RPM to fetch the image at
the Processing Task Repository Manager through the
IGetTaskDescription interface. Then RPM uses the
interface ICreateTask provided by Processing Task
Component to request the creation of an instance for the
processing task. On the other hand, when a request to
stop a processing task is received by RPM, it uses the
IDestroyTask interface to deallocate the task and release
the resource. RAM also needs to know who to forward

(what task) the output of a processing task. That is, the
outcome of a processing task should be forwarded to
another task as determined in the application workflow.
In this way, RAM instructs RPM to properly configure
the processing task that will be instantiated (or is already
running) in order to publish its result (the output) to the
broker. Thus the broker will distribute the results to the
interested subscribers (tasks). This action is essential to
establish the pipeline in communication between tasks.

The Sensing Manager is the component that provides
connectors for abstracting the different Stream Sensors
(video stream sources). The stream sensor implements
different video streaming protocols (e.g. RTMP, RTSP,
HDS, and HLS), each one with a standardized delivery
method for breaking up video into chunks, sending it,
and reassembling it1. Thus, the connector is a component
that provides a driver interface for interaction with
a specific stream source, understanding the protocol,
gathering, and transforming the video stream into a
common format to serve the Processing Task Component
by the provided interface IGetStream.

4 APPLICATION MODEL

In our application model, processing tasks are organized
in a pipeline and classified by the information level
fusion. This pipeline starts with the measurement
level task (MLT) that filters raw data stream and yields
images of interest, then passes through the resource
level task (FLT) identifying the objects in these images,
and ends with the level task (DLT) producing events
of interest. This workflow abstraction is represented
as a Directed Acyclic Graph (DAG) consisting of data
sources, processing tasks, and data sinks [25], as shown
in Figure 4. This DAG represents the logical plan [14]
of the application and identifies the processing units with
its required input and output data [7].

In this work, we use the term workflow as synonymous
for logical plan. The data exchange among all task
instances is represented by the edges of the graph. As
the identification of objects of interest is a processing
task that can serve multiple workflows, an instance of

1 https://www.dacast.com/blog/video-streaming-protocol/

97



Open Journal of Internet of Things (OJIOT), Volume 6, Issue 1, 2020

FLT defines an Intelligence Service that can be shared
by applications. For example, people identification is an
Intelligence Service instantiated by a facial recognition
FLT. In this case, the object of interest is people’s faces
and any instance of MLT must capture images containing
faces from the video stream.

The measurement level task has as input the raw
stream obtained from a set of data sources So =
{Si, . . . , Sk}. The output stream of any task instance for
the stream source Si is a sequence of images of interest
Ii,1, Ii,2, . . . that arrive one at a time. An element of
this sequence can be viewed as Ii,j = Si(tj , Dm),
where tj is the timestamp of the moment at the image
of interest is captured, and Dm = (d1, d2, . . . ) is the
element payload represented as a tuple of data items.
Each task can add data items in the output tuple as a
result of the input tuple processing. Hence, a workflow
for an application x with a set of data sources Sox is
represented as Wx = {Sox,MLTx, FLTx, DLTx}.

The language that defines the syntax of a workflow
is outside the scope of this work. However, workflows
may also be defined by the use of a simple graphical
language for end-users, like Business Process Model
and Notation (BPMN) that is based on a flowcharting
technique similar to activity diagrams from Unified
Modeling Language (UML) [20].

The identification of each workflow is essential to
organize the deployment of the stream processing tasks
on the edge nodes. This organization will allow the
sharing of intelligence services already in use for further
requisitions of such processing tasks.

4.1 Intelligence Orchestrator Operation
Process

For a given workflow, the Intelligence Orchestrator
component must choose the edge nodes that can run the
processing tasks with the lowest latency as the quality
of service (QoS) parameter to be met. For example, in
an application to open a door by facial recognition, a
response time around 1 second is tolerable, and times
above that can make the system useless. Latency is
affected by delay in communication between nodes to
transfer data, as well as the time needed by the node to
perform the task.

The tasks of types MLT and FLT consume the longest
processing time since they deal with deep learning
methods in the analysis of images. As the transfer
time of images within local and metropolitan networks
is usually low (in comparison to the cloud), so without
loss of generality we can ignore data transfer delays and
consider only the MLT and FLT processing times. In
image processing, the unit generally used is defined in
terms of the number of frames per second (FPS) that

a node can process. The FPS unit is also used by the
cameras as a frame generation rate in the video stream.
Hence, to prevent delays, the node that executes a task
of type MLT must have a processing capacity of frames
per second at least equal to the FPS of the camera’s
video stream. On the other hand, the node running a
task of type FLT will process images only when the
node running MLT captures and sends an image to it.
Thus, to rationalize the use of available resources, a
node executing FLT can and should be used for more
than one workflow, also motivated by the fact that FLT
is a shareable intelligence service of identifying objects
contained in the image.

Considering that the image processing nodes form
a static resource pool with edge devices equipped
with hardware accelerators for deep learning, another
desirable QoS requirement for the system is maximizing
the throughput to process as many streams as possible. In
this work, we define throughput as the number of images
processed per unit of time. In this way, we want to get
the maximum FPS for the set of processing edge nodes
running the detection (MLT) and identification (FLT)
of objects of interest within multiple video streams.
In this work, an operator represents an instantiation
of a processing task running on a node, and thus
we have MLO (Measurement Level Operator), FLO
(Feature Level Operator), and DLO (Decision Level
Operator). Therefore, the Intelligence Orchestrator
component must combine the QoS requirements for
low latency and maximum throughput to allocate the
operators on nodes to serve as many cameras as possible
for the processing infrastructure available on the edge of
the network. The orchestrator component must find the
optimal deployment plan for node allocation that allows
the execution of the tasks with the lowest latency and
maximum throughput for a given demand for stream
processing. The number of cameras and processing
nodes can increase considerably in the context of a
medium to an extensive, intelligent system.

All tasks are executed in edge nodes near the stream
sources to meet low latency requirements. The DLO
node running the instance of the decision level task,
which decides according to the interpretation of the
detected event, acts as the sink of the processing results.
Finding the optimal deployment plan is an issue that can
be characterized by the maximum-flow problem. In the
context of a distributed video stream processing system,
we wish to compute the highest rate at which we can
process streams from the source (cameras) to the sink
(DLO) without violating any capacity constraints. This
capacity constraint determines the maximum number
of images a node can process per unit of time, and
this number depends on the processing task running
on that node. It is possible to determine, through

98



A. R. Neto et al.: An Architecture for Distributed Video Stream Processing in IoMT Systems

Figure 5: Example scenario for the nodes allocation

tests, that a specific task running on a given processing
node reaches a maximum FPS [19]. Thus, the system
has heterogeneous processing capacity nodes that must
process various streams with different rates.

Figure 5 presents a possible scenario of the available
infrastructure of edge nodes that could be allocated by
Intelligence Orchestrator for a new workflow. In this
example, the maximum FPS for the MLO and FLO
nodes is presented in parentheses. The application
demanding this workflow could be a smart building
system that unlocks the door when the camera in front of
it recognizes the people as authorized to do so. Then, the
MLO node detects faces on camera image and forwards
this image to FLO node running the intelligence service
of facial recognition.

Therefore, the Intelligence Orchestrator must choose
the image flow paths across the edge nodes that achieve
the highest throughput. Any algorithm for nodes
allocation that attends this requirement and prevents
bottlenecks is suitable. An example of an efficient and
well-known algorithm for determining the best paths
to achieve maximum flow in a flow network while
respecting the network capacity constraints is the Ford-
Fulkerson method [9]. Such a method works with a
directed graph of vertices and edges, with a single flow
source as well as a single flow sink. Flow capacities are
determined by the edges. Using techniques to convert
vertex capacities into edge capacity as well as the single
source and sink, the nodes network of our example
scenario (Figure 5) is converted to the graph of Figure
6-(a). The MLO nodes running measurement-level tasks
are represented by vertices U = {u1, u2, u3}. The FLO
nodes are represented by vertices V = {v1, v2}. The
sink node is represented by vertex t, and the data sources
by vertex s. Figure 6-(b) shows the resulting graph after
running Ford-Fulkerson algorithm to find the paths with
maximum flow on this network of processing nodes. The
vertices, edges, and flows in this resulting graph are used
by the Intelligence Orchestrator to define the optimal
deployment plan for nodes allocation.

Figure 7 presents an activity diagram as the
Intelligence Orchestrator (IO) operation process to

Figure 6: (a) Graph with edge capacities. (b) Ford-
Fulkerson method to find the maximum flow

allocate nodes to process a new workflow request Wx =
{Sox,MLTx, FLTx, DLTx}. The graph with all edge
nodes is represented by G = {s, U, V, t}, where U =
{u1, . . . , un} is the set of nodes reserved for MLT tasks,
and V = {v1, . . . , vm} is the set of nodes reserved for
FLT tasks. In this graph, there are the following sets of
edges: (s, U), (U, V ), and (V, t). Assume that the sink
node has sufficient capacity to run any number of DLT
tasks, and this node is represented by vertex t. When
IO receives a request to execute a new workflow, the
first activity it does is to check if there is enough idle
processing capacity to process the flow of this workflow,
represented by function F (Wx). As in this case the
graph is bipartite, the available idle capacity (IC) will
be the smallest value between the sums of available idle
capacities of nodes U for MLTx and V for FLTx.

IC(G,Wx) = min(

n∑
i=1

IC(ui,MLTx),

m∑
j=1

IC(vj , FLTx)) (1)

IC(G,Wx) ≥ F (Wx) (2)

If condition (2) is not satisfied, then the workflow
Wx demands processing capacity not available with
the current set of edge nodes, and the request will be
rejected. But, if (2) is true then there are u nodes with
capacities available to process MLTx, and IO chooses
the nodes that will be allocated to the MLTx task, and
these nodes will form the subset of U called U ′, yielding
G′ = {s, U ′, V, t}. The next activity IO performs

99



Open Journal of Internet of Things (OJIOT), Volume 6, Issue 1, 2020

Figure 7: Overview of Intelligence Orchestrator operation process

is to check whether the intelligence service associated
with FLTx is already instantiated and running on
some v nodes. If this condition is not true, then IO
allocates the subset V ′ of V to run FLTx, and changes
G′ = {s, U ′, V ′, t}. Next, IO runs the Ford-Fulkerson
method with G′ as a parameter to obtain the deployment
plan DPx containing the paths to the maximum flow.
Finally, IO submits this deployment plan to the Resource
Allocation Manager (RAM) on nodes U ′ and V or V ′

depending on the composition of G′.

4.2 The Idle Capacity of an Intelligence
Service Node

A question that arises in this model for the allocation
of the processing nodes regards the limit of use and
sharing of an intelligence service (IS). A node executing
an FLT task has an FPS processing capacity considering
that an image will arrive every 1 second. However, the
arrival of an image to this FLO node depends on the
occurrence of an event on the camera that is the data
source of the workflow. With monitoring cameras, the
frequency of events is very dynamic, ranging from a few

seconds to several minutes or even hours. Hence, the
idle capacity of an FLO node running the intelligence
service might be quite high, allowing it to assume new
workflows while attending the QoS requirements. Figure
8 shows a situation where a second workflow Wy is
requested, and it will use the same already allocated IS
for the workflow Wx presented in Figure 5. In this case,
F (Wx ∪Wy) = 50 > IC(V, FLT ) = 32. Thus, the IS
nodes could not process the workflow Wy even though
they have idle capacity given the low frequency of Wx

events.
A possible solution to this problem would be to

estimate a much higher processing capacity value for
V nodes. For example, instead of using the frames
per second unit, using the frames per minute unit, and
multiply the current value by 60. This factor of increase
in the processing capacity would allow a much higher
number of flow passages through these nodes. On
the other hand, IS can become a bottleneck because it
depends on the frequency of events in each stream.

We claim that the ideal solution is one in which
the behavior of each camera is known in terms of
the average frequency of events over time periods.

100



A. R. Neto et al.: An Architecture for Distributed Video Stream Processing in IoMT Systems

Figure 8: The flows for IS nodes might change
constantly

The Monitor component of the edge node running
IS could observe this behavior of each stream source
and report the frequency of events to the Intelligence
Orchestrator. With this periodic information, the IO can
use a machine learning method to predict how the IS
processing demand will be and adjust the allocation of
nodes to absorb the peaks in the workload. This solution
is still under development, and so we can not detail it in
this work.

5 RELATED WORK

This section presents recent papers that include strategies
to overcome the limitations of the resource-constrained
edge devices to process massive data streams applying
machine learning methods. There is a consensus that
with the rapid evolution of hardware, which is becoming
smaller and more energy-efficient, edge devices will be
increasingly powerful in the near future, allowing the
processing of massive data streams, such as videos from
monitoring cameras.

In [6] the authors try to explore this potential
by creating an architecture for distributed stream
processing. This architecture creates a cluster of edge
devices to process stream images (video) in parallel
for faster response time when compared to off-loading
data to cloud platforms. They implement the proposed
solution using the open-source framework Apache NiFi2,
where a data flow represents a chain of processing
tasks with data streamed in flow-based programming.
The processing units are called processors, and each
processor can perform any data operation and has an
input and an output port, which serve to interconnect
the processors creating a data flow topology. To probe
the proposed approach, the authors applied a CCTV-
based intelligent surveillance system (ISS) to recognize

2 https://nifi.apache.org/

persons by their faces from the camera images. The
solution designed with the proposed architecture of an
edge cluster has performed far superior compared to
processing in the cloud. The time delay was up to five
times faster when using a complete training set on all
nodes, and nine times faster when training images into
separate subsets given to each cluster node.

In [17], the authors propose a strategy to process
data streams in wide-area video and audio surveillance
systems utilizing resources at edge, fog, and cloud.
They suggest dividing the application into smaller
parts that can be executed independently and in
parallel using the Java Parallel Processing Framework
(JPPF)3. They also suggest the usage of serverless
execution of stateless functions to create a fundamentally
elastic, distributed data processing system with services
that can be executed at the cloud, fog, and edge
resources. Applications run in stateless containers that
are spawned based on the triggering of events. The
system architecture proposes a 3-layer for processing
the streams: (1) Extreme Edge Layer, represented
by the camera-built embedded system with computing
and storage capacity. When any security threats are
detected (e.g., some object in the restricted area), then
the video is streamed back to the fog node for further
verification; (2) Fog Layer, represented by the fog nodes
where computing and network resources are shared
amongst them for higher performance. They have used
small server computers that are deployed on each floor
of the monitored building as a cloudlet; (3) Cloud
Deployment Layer, represented by public or private
cloud infrastructure of the organization, which is used
when the cloudlet is not able to handle sudden picks in
the workload.

The authors in [1] also present an architecture to
distribute a large-scale video stream analytics towards
the edge of the network. The proposed system
architecture is similar to the 3-layer architecture offered
by the authors in [17] – edge, cloudlet, and cloud
tier. The edge tier is also for pre-processing the video
streams. The edge tier is also for pre-processing the
video streams acting as a filter and forwarding the
image only when some event of interest has occurred.
The second tier is for the cloudlet (fog nodes) that
performs the in-transit analysis using convolution neural
network models that are trained on the third tier – the
cloud. That is, the edge resources are also used for
basic processing stages, such as decoding the video
compression, motion detection, and pre-processing.
The cloudlet comprehends small server computers with
storage and processing capacity equal to or fewer
resources than the cloud. The cloudlet performs the

3 http://jppf.org

101



Open Journal of Internet of Things (OJIOT), Volume 6, Issue 1, 2020

object detection inference and forwards it to the cloud the
result of this processing stage. The focus of this work is
the resource management of the fog nodes, reallocating
the tasks in the cloud when they are overloaded.

The works in [17] and [1] have defined a strategy of
distributing multimedia data processing across the edge,
fog, and cloud nodes. However, they use edge devices
only for the video stream pre-processing stages because
they consider that edge nodes do not have computational
capabilities to run complex ML inferences. This
strategy may bring some performance gain for Intelligent
Surveillance System, but it doesn’t wholly address all
issues in scenarios with hundreds of cameras spread
across a city, for example. To the best of our knowledge,
no work has explored the new single-board computers
and hardware accelerators to run machine intelligence
on edge devices. With the constant evolution of such
hardware and the development of increasingly efficient
deep learning models, soon, edge devices themselves,
like Smart Camera [12], will already be able to make
complex inferences. Even with the detection of objects
of interest made in the smart camera itself, another
nearby node running the intelligence service will identify
these objects. In this way, MELINDA is ready for
scenarios with intelligent cameras.

6 FINAL REMARKS AND ONGOING WORK

The MELINDA architecture was developed as an
approach to distribute the processing of large-scale
multimedia streams in the context of delay-sensitive
smart systems. One of the target systems for MELINDA
is the Intelligent Surveillance System, deployed in a
smart building/city with hundreds of cameras generating
vast amounts of valuable information. As there is a lot
of useful information in a video, the processing of such
stream analytics can benefit various applications in the
context of systems based on smart cameras. Therefore,
the design of the intelligence services in MELINDA had
three goals: (i) data dimensionality reduction to process
only data of interest from the raw data stream; (ii)
achieving low latency by performing the data processing
near the sensors; (iii) reuse of intelligence services
by multiple applications sharing processing tasks and
preventing redundant development of such services.

As future work, we intend to improve the node
allocation procedure of Intelligence Orchestrator by
allowing it to analyze the frequency of events for each
video stream. Another algorithm will enable the IO to
define the sharing limit of an intelligence service by a
node running that service. A promising approach is
machine learning techniques for pattern recognition in
time-series data. With the event pattern of each camera

stream by time window, it is possible to predict at any
given time how many images a camera will yield for the
intelligence service to process. We also intend to carry
out some proofs of concept to validate the architecture
proposals and nodes allocation procedures.

Finally, we believe that machine learning will evolve
along with IoT because there is a whole new industry
for intelligent systems using the Internet as the central
infrastructure [22]. This industry is pushing forward the
development of new hardware, software, and network
protocols to address all the challenges present in such
systems.

ACKNOWLEDGMENTS

This work is partially funded by CNPq (grant number
306747/2018-9) and by FAPESP (grant 2015/24144-7).
Professors Thais Batista, Flavia Delicato and Paulo Pires
are CNPq Fellows.

REFERENCES

[1] M. Ali, A. Anjum, M. U. Yaseen, A. R. Zamani,
D. Balouek-Thomert, O. F. Rana, and M. Parashar,
“Edge enhanced deep learning system for large-
scale video stream analytics,” in ICFEC. IEEE,
2018, pp. 1–10.

[2] S. A. Alvi, B. Afzal, G. A. Shah, L. Atzori,
and W. Mahmood, “Internet of multimedia things:
Vision and challenges,” Ad Hoc Networks, vol. 33,
pp. 87 – 111, 2015.

[3] K. Ashton, “That ’internet of things’ thing,” 2009,
last accessed 24 June 2019. [Online]. Available:
https://www.rfidjournal.com/articles/view?4986

[4] B. Babcock, S. Babu, M. Datar, R. Motwani,
and J. Widom, “Models and issues in data stream
systems,” in Proceedings of the Twenty-First
ACM SIGMOD-SIGACT-SIGART Symposium on
Principles of Database Systems, ser. PODS ’02.
New York, NY, USA: Association for Computing
Machinery, 2002, p. 1–16.

[5] T. Barnett, S. Jain, U. Andra, and T. Khurana,
“Cisco visual networking index (vni) complete
forecast update, 2017 – 2022,” December 2018,
accessed in April, 2020. [Online]. Available: https:
//newsroom.cisco.com/press-release-content?
type=webcontent&articleId=1955935

[6] R. Dautov, S. Distefano, D. Bruneo, F. Longo,
G. Merlino, and A. Puliafito, “Pushing intelligence
to the edge with a stream processing architecture,”
in 2017 IEEE International Conference on Internet
of Things (iThings) and IEEE Green Computing

102

https://www.rfidjournal.com/articles/view?4986
https://newsroom.cisco.com/press-release-content?type=webcontent&articleId=1955935
https://newsroom.cisco.com/press-release-content?type=webcontent&articleId=1955935
https://newsroom.cisco.com/press-release-content?type=webcontent&articleId=1955935


A. R. Neto et al.: An Architecture for Distributed Video Stream Processing in IoMT Systems

and Communications (GreenCom) and IEEE
Cyber, Physical and Social Computing (CPSCom)
and IEEE Smart Data (SmartData). IEEE, 2017,
pp. 792–799.

[7] M. D. de Assunção, A. D. S. Veith, and
R. Buyya, “Distributed data stream processing
and edge computing: A survey on resource
elasticity and future directions,” CoRR, vol.
abs/1709.01363, 2017. [Online]. Available: http:
//arxiv.org/abs/1709.01363

[8] O. Etzion and P. Niblett, Event Processing in
Action. Manning Publications Company, 2010.
[Online]. Available: http://www.manning.com/
etzion/

[9] L. R. Ford and D. R. Fulkerson, “Maximal
flow through a network,” Canadian Journal of
Mathematics, vol. 8, p. 399–404, 1956.

[10] P. Garcia Lopez, A. Montresor, D. Epema,
A. Datta, T. Higashino, A. Iamnitchi, M. Barcellos,
P. Felber, and E. Riviere, “Edge-centric computing:
Vision and challenges,” SIGCOMM Comput.
Commun. Rev., vol. 45, no. 5, pp. 37–42, Sep. 2015.

[11] I. Goodfellow, Y. Bengio, and A. Courville, Deep
Learning. MIT Press, 2016. [Online]. Available:
http://www.deeplearningbook.org

[12] A. James, G. C. Sirakoulis, and K. Roy,
“Smart cameras everywhere: Ai vision on edge
with emerging memories,” in 2019 26th IEEE
International Conference on Electronics, Circuits
and Systems (ICECS), 2019, pp. 422–425.

[13] Y. G. Kim, J. S. Kang, and H. S. Park,
“Publish/subscribe model based communication
for telerobotics,” in 2013 10th International
Conference on Ubiquitous Robots and Ambient
Intelligence (URAI), Oct 2013, pp. 305–308.

[14] S. Kulkarni, N. Bhagat, M. Fu, V. Kedigehalli,
C. Kellogg, S. Mittal, J. M. Patel, K. Ramasamy,
and S. Taneja, “Twitter heron: Stream processing at
scale,” in Proceedings of the 2015 ACM SIGMOD
International Conference on Management of Data,
Melbourne, Victoria, Australia, May 31 - June
4, 2015, T. K. Sellis, S. B. Davidson, and
Z. G. Ives, Eds. ACM, 2015, pp. 239–250.
[Online]. Available: http://dl.acm.org/citation.cfm?
id=2723372

[15] N. D. Lane, S. Bhattacharya, P. Georgiev,
C. Forlivesi, and F. Kawsar, “An early resource
characterization of deep learning on wearables,
smartphones and internet-of-things devices,” in
Proceedings of the 2015 International Workshop

on Internet of Things towards Applications, IoT-
App 2015, Seoul, South Korea, November 1, 2015,
C. Xu, P. Zhang, and S. Sigg, Eds. ACM, 2015,
pp. 7–12.

[16] Y. LeCun, Y. Bengio, and G. E. Hinton, “Deep
learning,” Nature, vol. 521, no. 7553, pp. 436–444,
2015.

[17] I. Ledakis, T. Bouras, G. Kioumourtzis,
and M. Skitsas, “Adaptive edge and fog
computing paradigm for wide area video and
audio surveillance,” in 2018 9th International
Conference on Information, Intelligence, Systems
and Applications (IISA), July 2018, pp. 1–5.

[18] E. F. Nakamura, A. A. F. Loureiro, and A. C.
Frery, “Information fusion for wireless sensor
networks: Methods, models, and classifications,”
ACM Comput. Surv., vol. 39, no. 3, Sep. 2007.

[19] NVIDIA, “Jetson nano: Deep learning
inference benchmarks,” May 2019. [Online].
Available: https://developer.nvidia.com/embedded/
jetson-nano-dl-inference-benchmarks

[20] OMG, “Business process model and notation,”
January 2014. [Online]. Available: https://www.
omg.org/spec/BPMN/

[21] J. Qiu, Q. Wu, G. Ding, Y. Xu, and S. Feng,
“A survey of machine learning for big data
processing,” EURASIP J. Adv. Sig. Proc., vol. 2016,
p. 67, 2016.

[22] E. Ramos, R. Morabito, and J. Kainulainen,
“Distributing intelligence to the edge and
beyond [research frontier],” IEEE Computational
Intelligence Magazine, vol. 14, no. 4, pp. 65–92,
Nov 2019.

[23] A. Rocha Neto, B. Soares, F. Barbalho,
L. Santos, T. Batista, F. C. Delicato, and
P. F. Pires, “Classifying smart IoT devices
for running machine learning algorithms,”
in 45o

¯
Seminário Integrado de Software e

Hardware 2018 (SEMISH 2018), vol. 45.
Porto Alegre, RS, Brazil: SBC, 2018.
[Online]. Available: https://portaldeconteudo.sbc.
org.br/index.php/semish/article/view/3429

[24] A. F. Rocha Neto, F. C. Delicato, T. V. Batista,
and P. F. Pires, “Distributed machine learning for
iot applications in the fog,” in Fog Computing:
Theory and Practice. Wiley Series on Parallel and
Distributed Computing, 2020, ch. 12, pp. 311–346.

[25] H. Röger and R. Mayer, “A comprehensive
survey on parallelization and elasticity in stream
processing,” ACM Comput. Surv., vol. 52, no. 2,
Apr. 2019.

103

http://arxiv.org/abs/1709.01363
http://arxiv.org/abs/1709.01363
http://www.manning.com/etzion/
http://www.manning.com/etzion/
http://www.deeplearningbook.org
http://dl.acm.org/citation.cfm?id=2723372
http://dl.acm.org/citation.cfm?id=2723372
https://developer.nvidia.com/embedded/jetson-nano-dl-inference-benchmarks
https://developer.nvidia.com/embedded/jetson-nano-dl-inference-benchmarks
https://www.omg.org/spec/BPMN/
https://www.omg.org/spec/BPMN/
https://portaldeconteudo.sbc.org.br/index.php/semish/article/view/3429
https://portaldeconteudo.sbc.org.br/index.php/semish/article/view/3429


Open Journal of Internet of Things (OJIOT), Volume 6, Issue 1, 2020

[26] A. Rosebrock, Deep Learning for Computer Vision
with Python, 1st ed. PyImageSearch.com, 2018.

[27] M. Valera and S. A. Velastin, “Intelligent
distributed surveillance systems: a review,” IEE
Proceedings - Vision, Image and Signal Processing,
vol. 152, no. 2, pp. 192–204, April 2005.

[28] J. Xu, “Deep learning for object detection: A
comprehensive review,” September 2017. [Online].
Available: https://medium.com/p/73930816d8d9

[29] S. Yau, “Battle of edge ai — nvidia vs google
vs intel,” June 2019. [Online]. Available: https:
//medium.com/p/8a3b87243028

AUTHOR BIOGRAPHIES

Aluizio Rocha Nt. is a lecturer
at Digital Metropolis Institute
of Federal University of Rio
Grande do Norte (UFRN),
Brazil. He is currently a
PhD Student in System and
Computations at the Federal
University of Rio Grande do
Norte, Brazil. His research
interests include Internet of
Things, Edge Computing,
Machine Learning, Computer

Vision, and Smart Cities.

Thiago P. Silva is currently
a PhD student in System
and Computations at the
Federal University of Rio
Grande do Norte (UFRN). He
has experience in Computer
Science, with emphasis on
programming and distributed
systems, working mainly on
the following topics: Fog
Computing, Middleware,
Cloud Computing, Ubiquitous

Computing and Internet of Things.

Thais Batista is Full Professor
at the Federal University of
Rio Grande do Norte (UFRN),
Brazil. Her main research
interests are Distributed Systems
and Software Engineering,
specifically Internet of Things,
Cloud Computing, Middleware,
Smart Cities, and Software
Architecture. She has published
3 books and more than 200
papers. She was visiting

researcher at the Lancaster University, UK, from
2013-2014.

Flávia C. Delicato is an
Associate Professor at the
Fluminense Federal University,
Brazil. Her primary research
interests are IoT, adaptive
middleware and Edge
Computing. She has published
2 Books and over 160 papers.
She serves as Associate Editor
of the Ad Hoc Networks,
ACM Computing Surveys,
IEEE Transactions on Services

Computing Journals, and Area Editor of the IEEE Open
Journal of the Communications Society.

Paulo F. Pires is an Associate
Professor at the Fluminense
Federal University, Brazil. His
main research interests are at
the intersection of Software
Engineering and Distributed
Systems. He has published
more than 200 articles and has
four patents registered with the
USPTO (United States). He is
currently Associate Editor of
the IEEE Open Journal of the

Communications Society and member of the editorial
board of the International Journal of Computer Networks
(CSC Journals).

Frederico Lopes is Associate
Professor at the Federal
University of Rio Grande
do Norte (UFRN) since
2012. He was post-doctoral
researcher at the University
of British Columbia (UBC),
Canada. He has experience
in Computer Science, acting
on the following subjects:
ubiquitous applications, context-
based middleware, pervasive

computing, smart cities and cloud computing. He is
co-author of dozen smart city systems deployed in Rio
Grande do Norte State.

104

https://medium.com/p/73930816d8d9
https://medium.com/p/8a3b87243028
https://medium.com/p/8a3b87243028

	Introduction
	Challenges in Video Stream Processing at the Edge
	Video Stream Processing
	Running Machine Learning in Edge Devices

	An Architecture for Video Stream Processing
	The Tree-Tier Architecture
	MELINDA
	System Components and Their Relationship

	Application Model
	Intelligence Orchestrator Operation Process
	The Idle Capacity of an Intelligence Service Node

	Related Work
	Final Remarks and Ongoing Work

