
c© 2020 by the authors; licensee RonPub, Lübeck, Germany. This article is an open access article distributed under the terms and conditions of
the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).

Open Access

Open Journal of Internet of Things (OJIOT)
Volume 6, Issue 1, 2020

http://www.ronpub.com/ojiot
ISSN 2364-7108

ParkingJSON: An Open Standard Format
for Parking Data in Smart Cities

Gowri Sankar RamachandranA, Jeremy StoutB, Joyce J. EdsonB, Bhaskar KrishnamachariA

A Viterbi School of Engineering, University of Southern California, 3650 McClintock Ave, Los Angeles,
CA 90089, USA, {gsramach, bkrishna}@usc.edu

B Information Technology Agency, City of Los Angeles, 200 N Main St 1400, Los Angeles, CA 90012, USA,
{jeremy.stout, joyce.edson}@lacity.org

ABSTRACT

Data marketplaces and data management platforms offer a viable solution to build large city-scale Internet of
Things (IoT) applications. Contemporary data marketplaces and data management platforms for smart cities such
as Intelligent IoT Integrator (I3), Cisco Kinetic, Terbine, and Streamr present a middleware platform to help the
data owners to provide their data to the application developers. However, such platforms suffer from adoption
issues because of the interoperability concerns that stem from heterogeneous data formats. On the one hand, the IoT
devices and the software used by the device owners follow either a custom data standard or a proprietary industrial
standard. On the other hand, the application developers consuming data from multiple device owners expect the
data to follow one common standard to process the data without developing custom software for each data feed.
Therefore, a common data standard is desired to enable interoperable data exchange through data marketplace and
data management platforms while promoting adoption. We present our experiences from developing a city-scale
real-time parking application for a smart city. We also introduce ParkingJSON, a new open standard format for
parking data in smart cities, which could help the parking data providers to cover all types of parking infrastructures
through a single JSON schema. To the best of our knowledge, this is the first parking data standard proposed that
a) covers a wide range of parking spaces and structures, b) integrates spatial information, and c) provides support
for data integrity and authenticity.

TYPE OF PAPER AND KEYWORDS

Regular research paper: IoT, Parking, Smart City, Interoperability, Data Standard, ParkingJSON, Data Marketplace

1 INTRODUCTION

Data marketplaces and data integration platforms
are being considered as a solution for connecting
hundreds of IoT devices with the application

This paper is accepted at the International Workshop on Very
Large Internet of Things (VLIoT 2020) in conjunction with the
VLDB 2020 conference in Tokyo, Japan. The proceedings of
VLIoT@VLDB 2020 are published in the Open Journal of Internet
of Things (OJIOT) as special issue.

developers. Intelligent IoT Integrator [17, 12] (I3),
Cisco Kinetic1, Terbine2, and Streamr3 are examples of
data marketplaces. Such solutions offer a middleware
platform to let the device owners share their data with the
application developers. This application development
model provides a promising solution for building large
city-scale IoT applications.

1 https://www.cisco.com/c/en/us/solutions/index.html
2 https://www.terbine.io/
3 https://streamr.network/

105

http://creativecommons.org/licenses/by/4.0/
http://www.ronpub.com/ojiot

Open Journal of Internet of Things (OJIOT), Volume 6, Issue 1, 2020

Such IoT marketplaces and data management
platforms make data available to the application
developers from a wide range of IoT deployments,
including parking sensors, weather stations, and solar
monitoring systems. In this model, the data standard
followed by the IoT devices and the device owners
may vary depending on the hardware, software, and
other business and policy constraints, including privacy.
Consider an application developer interested in building
a parking monitoring system for a city using a data
marketplace. For this application, the application
developer has to buy the parking data from multiple data
providers, including the transportation department of
cities, counties, and towns and various private garage
owners. If each parking provider follows a custom and
proprietary data format, then the application developers
have to convert the data coming from such different
sources into a single consistent format to aid their
application. Given this friction, the lack of common data
standard may even prevent some application developers
from buying data from the marketplace, which, in turn,
would reduce the revenue for the device and data owners,
ultimately affecting the adoption of data marketplaces.
These considerations lead to the following requirement:

Data marketplace and data management platforms
for smart cities must support data standards for each
application to help the device and data owners to easily
provide data and the application developers to build
applications.

Contemporary literature on data standards and IoT
interoperability have articulated the need for a common
standard [1, 7, 2]. Many existing efforts in this
space either focus on enabling interoperability between
messaging protocols such as MQTT [3] and CoAP [1, 7]
or emphasize the need for interoperability at networking
and MAC layers [2]. Other approaches for addressing
data standardization include semantic interoperability [9,
10, 13]. Such methods lead to the standardization
of networking and messaging protocols, but the data
standardization remains an application-specific problem.

In this work, we consider the interoperability
challenges in developing a real-time parking application
for a smart-city using a data marketplace. In particular,
we illustrate through multiple parking deployment
scenarios why a new parking data standard is desired
to interconnect heterogeneous and real-time parking
feeds to a data marketplace. Based on the review
of existing real-world parking feeds, we propose
ParkingJSON, a new parking data standard for city-
scale IoT applications. To the best of our knowledge,
this is the first parking data standard proposed that a)
covers a wide range of parking spaces and structures, b)
integrates spatial information, and c) provide support for
data integrity and authenticity.

The rest of the paper is structured as follows: Section 2
motivates the need for city-wide real-time parking
applications involving an IoT data marketplace. The
architecture of a marketplace-based parking application
and its interoperability challenges are discussed in
Section 3. Section 4 introduces ParkingJSON, our newly
proposed parking data standard. We provide an example
of data following our new standard in Section 5. The
evaluation results is presented in Section 6. Finally,
Section 7 concludes the paper with pointers to future
work.

2 MOTIVATION

2.1 Parking Application

The vehicle population is continuously increasing in
metropolitan cities, which also increases the demand
for parking spaces [8]. Multiple community members,
including the government transportation agency, garage
owners, and other private organizations, address the
parking demands of the vehicle owners. However,
studies suggest that the vehicle drivers are spending tens
of hours searching for parking in each year4. Another
study indicates that searching for parking costs $73
Billion for Americans5. Minimizing the searching time
has the potential to reduce fuel usage and cost, while
immensely reducing the drivers’ stress. Gathering real-
time parking information from all the parking providers
in the city and making that data available to drivers
in real-time is essential to enhance the driver’s parking
experience.

2.2 The role of a Smart City Data Platform

IoT data marketplaces and data management platforms
have been developed to let the device and data owners
in the community provide their data to the application
developers. Examples of IoT data marketplaces include
Intelligent IoT Integrator (I3) [12, 17], Terbine.io, and
Streamr. Another example of a data management
platform that is not based on a marketplace model
is Cisco Kinetic. Such platforms enable the cities
to develop large-scale city-wide IoT applications by
leveraging the data sources provided by the community
members. Following a marketplace-based application
model, the city administration and the government
agencies need not deploy and manage hundreds of IoT
devices throughout the city for gathering sensor data.
Instead, the community members deploy, manage, and
make their IoT devices and their sensor data available
4 https://www.usatoday.com/story/money/2017/07/12/parking-pain-

causes-financial-and-personal-strain/467637001/
5 https://inrix.com/press-releases/parking-pain-us/

106

G. S. Ramachandran et al.:ParkingJSON: An Open Standard Format for Parking Data in Smart Cities

to the city and the other application developers because
the data marketplace provides an incentive for the
sellers [15].

In the next section, we describe how a real-time
parking application can be developed by using a data
marketplace. The same concepts can be readily extended
to other data management and integration platforms.

3 A REAL-TIME PARKING APPLICATION
USING AN IOT DATA PLATFORM

The City of Los Angeles’ Information Technology
Agency (ITA) is considering a real-time data-driven
parking application to help the community members
make an informed parking decision. A parking
application is being developed in collaboration with
researchers at the University of Southern California and
other government and academic partners. In this section,
we will present the architecture of this application.

3.1 Architecture of Data-driven Parking
Application

Figure 1 shows the architecture of the real-time parking
application that is currently under development at the
City of Los Angeles. The key stakeholders and their
roles in this application are described below.

3.1.1 Parking Data Providers

These are owners and managers of public and private
parking establishments. Most of the parking sites in
metropolitan cities have a system in place to gather data
about the parking availability in real-time. Currently, the
parking information is mainly posted at the entrances
of each parking site. However, the parking systems let
the garage managers share this information with other
entities, including the city administrators. Through an
incentive-oriented application development model, we
encourage the independent garage owners and managers
to share their parking data in real-time with other
application developers via the data marketplace [15],
as shown in Figure 1. One of the incentives is that
the garage owners could attract more vehicles to their
parking garages since the application developers would
present their parking data through a city-wide unified
application to help the vehicle drivers easily find parking
spots. Besides, the parking data providers could also
charge a small fee to consume their data.

3.1.2 I3 Data Marketplace

I3 [12, 17] is the open-source data marketplace
developed at the University of Southern California in
collaboration with a number of government, industry,

Figure 1: The Architecture of Marketplace-
based Parking Application that is Currently Under
Development at the City of Los Angeles

and academic partners, including the City of Los
Angeles. In Figure 1, I3 marketplace middleware
is used to bridge the data providers with the
application developers. The key functionalities of
the marketplace middleware include user and device
management, authentication and access control, ratings,
data exchanging protocol, among other things. For more
information, we refer the reader to works describing
I3 [12, 17]. Besides, open-source software is also
made available to the researchers and marketplace
enthusiasts at the following link: https://github.
com/ANRGUSC/I3-Core. For readers interested in
understanding the marketplace functionalities through a
demonstration, we have released a video here: https:
//youtu.be/qFee7mlhriE.

3.1.3 Parking Application Developers

These are community members, including government
agencies, private organizations, and other individuals
interested in building an IoT application using the data
sources available in the data marketplace. Figure 1
shows how the application developers would receive
parking data from the I3 data marketplace by agreeing
to data usage polices and providing incentives. There
can be tens to hundreds of application developers at the
north end of the data marketplace, focusing on various
IoT applications. In our parking application use case,
the City of Los Angeles creates a real-time parking
application using the I3 data marketplace.

107

https://github.com/ANRGUSC/I3-Core
https://github.com/ANRGUSC/I3-Core
https://youtu.be/qFee7mlhriE
https://youtu.be/qFee7mlhriE

Open Journal of Internet of Things (OJIOT), Volume 6, Issue 1, 2020

Table 1: Examples of Data Formats Used by the Parking Providers

Neighborhood Parking Type Fields Notes

Downtown
Los Angeles

(Parking
Occupancy)

Street Parking Spaceid, Eventtime, Occupancystate

This API only provides
occupancy details for
each spaceids. To translate
the spaceid into location,
another API (see the next
row) should be issued.

Downtown
Los Angeles
(Parking
Inventory)

Street Parking
Spaceid, Blockface, Metertype,
Ratetype, Raterange, Timelimit,
Parkingpolicy, Latlng

This API should be used
in combination with the
above API.

Los Angeles
International

Airport (LAX)

Multi-level
Parking

Structure

Lotdescription, Lot 1
Occupancy, Parkingid,

Parkingname,
Totalparkingspaces,

Occupied, Freespaces,
Fullcapacity, Color,
Dataexportdatetime,
Long (Longitude),

Lat (Latitude)

This API provides parking
data for all the parking
structures at LAX airport.
But, it does not provide
parking status for each
floor (or level).

Parking
Deployment at
Los Angeles

Multi-level
Parking

Structure

lotName, lotID, totalSpots,
availableSpots, occupiedSpots,

percentOccupied, percentAvailable,
occupancyLevel, availabilityLevel,
parkingPolicies, spotAvailability

This API provides parking
availability for each multi-
level parking structure.
And, it includes a field for
parking policies and spot
availability. Through
spot availability field, this
API notifies free parking
spots available for
handicapped.

Figure 2 shows the visualization dashboard of the
parking application that is currently under development.
The real-time parking information is available for
seven different neighborhoods, including Downtown Los
Angeles, parts of Hollywood, Los Angeles International
Airport (LAX), and Long Beach. This application shows
parking availability for streets and parking garages. The
community members can check the parking availability
in real-time based on the color-coding. For a particular
parking garage or a street, if the number of free
parking spots exceeds 50%, then it is denoted in yellow
color. Otherwise, the map presents the results in red
color. Besides, the users can click each color-coded
block to see how many parking spots are currently
available, including its total parking capacity. At the
time of writing this paper, a demonstration of the
parking application was hosted online here: https:
//findmeaspot.lacity.org/.

3.1.4 Interoperability Challenges

Although the architecture of the parking application
presented in Figure 1 provides a platform for the
City of LA to gather parking feeds from the various
neighborhood, there were several interoperability
challenges, with respect to the City of LA from taking
feeds via the I3 data marketplace platform. In this
section, we will describe the interoperability challenges
and why a custom application with custom standards is
not sustainable and scalable.

Protocol Inconsistency: All the parking data
providers in the city use REST-based services for sharing
their parking data. Protocols following the request-
reply messaging model are not scalable [14] for data
marketplaces, which is the reason behind the selection
of MQTT, a publish-subscribe system, as a messaging
protocol for our I3 data marketplace. However, it is very
easy to build and deploy simple gateway scripts that can

108

https://findmeaspot.lacity.org/
https://findmeaspot.lacity.org/

G. S. Ramachandran et al.:ParkingJSON: An Open Standard Format for Parking Data in Smart Cities

Figure 2: A Visualization Dashboard of Real-time Parking Application developed by the City of Los Angeles

convert between a REST API feed from a parking data
provider and an MQTT stream to interface with the data
marketplace.

Heterogeneous Data Format: Each parking data
provider follows a different data format. Therefore, the
application developers cannot consume the data without
writing a custom data parser for each parking provider.
Table 1 provides examples of parking data formats from
real-world deployments.

Continuous Management of Custom Software: To
deal with protocol and data format inconsistencies,
custom software can be developed. However, such
software has to be employed either at the data provider’s
end or the application developer’s end. Running custom
software for each data provider at the marketplace
middleware is not scalable, and it leads to continuous
development and management of software for each
protocol and data format, which is not sustainable.
Alternatively, the application developers could also
deploy custom software as part of their application.
Still, this model creates friction and may discourage
application developers from adopting the marketplace-
based application model.

These challenges show that the parking monitoring
infrastructure deployed and managed by various

government and private agencies are not interoperable,
which hinders their effectiveness and utility. Note that
many current parking availability system deployments
have limited use because they are typically only used
for displaying the parking availability information at
the entrances of the parking garages and nearby streets.
Therefore, the vehicle drivers are still required to drive
close to the digital displays to check parking availability.
Creating a city-wide real-time parking application
accessible through a mobile interface, therefore, offer a
promising alternative, but it requires a set of common
standards.

We review the parking data standards followed by
real-world parking deployments and propose a new
parking data standard, ParkingJSON, to mitigate the
data interoperability challenges at data marketplaces and
other large-scale city-wide parking applications.

3.2 Design Requirements

Table 1 shows the different parking data formats
currently employed by parking management systems. In
particular, the table highlights the following issues:

• Multiple Parking Types: Multiple parking
modalities are presented in a city. These range from

109

Open Journal of Internet of Things (OJIOT), Volume 6, Issue 1, 2020

street-side parking, single-level parking garages, to
multi-level parking structures.

• Diverse Reporting Model for Parking
Availability: Some parking establishments provide
individual spot status using a Boolean variable that
switches between occupied and vacant. In the case
of multi-level parking structures, the information
about the total spots and total availability is
reported, and some deployments could also provide
parking availability at each level.

• Inconsistent Metadata: Building a map-based
visualization or to understand the freshness of the
data, it is important to receive information including
the GPS coordinates and timestamp associated
with the last update. In the case of street-side
parking, the app. developers may also need
information about specific parking spots. Some
parking deployments provide both the metadata
and the parking availability information through a
single API. But, in some cases, multiple APIs are
required to interpret the parking data for a particular
location. As shown in Table 1, the parking
availability data is reported using spaceids for
Downtown LA neighbourhood, and the application
developer is required to issue an additional API
to gather location information associated with each
spaceid, when processing and plotting the data on a
map.

These issues must be taken into account when creating
a new parking data standard. We list down the
requirements for a parking data standard below:

• R1 The parking data format should flexibly cover a
wide range of parking infrastructures.

• R2 All the relevant metadata should be part of the
parking data standard, and it should not require
multiple data queries or messages to interpret the
parking data.

• R3 The spatial data should be embedded within
the data standard to help the application developers
create map-based visualizations.

• R4 The data should follow a programmer-friendly
data schema.

• R5 Some mechanisms should be added to ensure
integrity and the authenticity of the data.

Related Work on Parking Data Standard: To
the best of our knowledge, the topic of parking data
standard has not been discussed in the literature.
Existing literature describes how IoT and wireless

sensor networks can be used to create smart parking
applications [16, 4]. The Alliance for Parking Data
Standards6 is looking into standardizing the parking
data through a consortium of government and industrial
partners. But, there is no open-source parking data
standard available to help the parking data providers and
application developers.

4 PARKINGJSON: AN OPEN STANDARD
FORMAT FOR PARKING DATA IN SMART
CITIES

We propose ParkingJSON, a new parking data standard
satisfying the requirements elucidated in Section 3.2.
The key features of ParkingJSON are discussed below.

4.1 Capturing Spatial Relationships through a
Hierarchical Layering Schema

Figure 3 shows the hierarchical layering scheme
followed by our parking data standard, ParkingJSON.

Within a city, there are multiple areas or
neighborhoods. For example, the Los Angeles
International Airport (LAX), Downtown Los Angeles,
and an university campus are considered as areas. In
our parking data standard, an area covers one particular
neighborhood. Formally, we can denote the area as
A. Within a city, there can be n areas, which can be
represented as a1, a2, ..., an.

Within each area, ai, there could be multiple parking
lots—for example, Lot 6 within LAX airport area or
City Center Parking in the Downtown Los Angeles area.
In our parking data standard, a lot covers a particular
parking structure, which may have tens to hundreds of
parking spaces across one or more levels (or floors).
Formally, we can represent lots as L. Within each area,
ai, there can be n parking lots, which can be represented
as l1, l2, ..., ln.

Within each lot, li, there could be multiple sections (or
floors). For example, section 2 (denotes level 2 or floor
2) of Lot 6 within LAX airport area or section 5 (denotes
level 5 or floor 5) of City Center Parking in Downtown
Los Angeles area. In our parking data standard, a section
covers a particular segment or a level of a parking lot,
wherein each section may have tens of parking spaces.
Formally, we can represent sections as S. Within each
lot, li, there can be n sections, which can be represented
as s1, s2, ..., sn.

Within each section, si, there could be multiple
individual parking spots. For example, the parking spot
12 in section 2 (denotes level 2 or floor 2) of Lot 6
within LAX airport area or the parking spot 28 in section
5 (denotes level 5 or floor 5) of City Center Parking
6 https://www.allianceforparkingdatastandards.org/

110

G. S. Ramachandran et al.:ParkingJSON: An Open Standard Format for Parking Data in Smart Cities

Figure 3: Hierarchical Layers followed by
ParkingJSON, Our Parking Data Standard

in Downtown Los Angeles area. In our parking data
standard, a spot refers to the individual parking spot,
which is the lowest granularity level. Formally, we can
represent spots as P . Within each section, si, there
can be n individual spots, which can be represented as
p1, p2, ..., pn.

How does ParkingJSON cover the areas with
only street-side parking or a single-level parking
structure? Although our hierarchical parking
data standard covers different types of parking
establishments, not all areas in a city may have
multi-level parking lots with multiple sections. Some
areas may only have street-side parking or a single-
level parking structure. In our proposed parking data
standard, each higher level of the hierarchy could either
be stand-alone or be itself a collection of lower levels.
The following variations are valid data formats in our
standard:

• An Area can be a collection of lots (e.g., LAX) or
collection of spots (Downtown LA), or it may be
just a stand-alone unit (no further subdivision).

• A lot can be a collection of sections, or collection
of spots, or stand-alone.

• A section can be a collection of spots or stand-
alone.

• A spot is always stand-alone.

We further explain the above variations with a practical
example in Section 5, and more examples are available at
the following GitHub repository: https://github.
com/ANRGUSC/ParkingJSON.

4.2 Attributes

In this section, we present the data attributes of our
parking data standard, ParkingJSON:

Area-specific Attributes: Table 2 presents the area-
specific attributes used in ParkingJSON standard. The
key represents the fields that should be included in the
area segment of the data, and the attribute values and the
data types for each attribute are also presented to help
the parking application developers. Most of the fields
are self-explanatory, except for AreaGeometry, which
captures the shape of the area. For each area, we could
draw a polygon or other geometric shapes by tracing a set
of GPS coordinates. For example, a square-shaped area
can be represented with four GPS coordinates, which is
shown in Figure 5.

Lot-specific Attributes: The lot-specific attributes
are similar to the area-specific attributes, in terms
of the keys and values. It contains the following
fields: Type: Lot, OwnerInfo, LotID, LotName,
LotLatLong, LotGeometry, TimeStamp, TotalSpots, and
OccupiedSpots. A table is not created for lot-specific
attributes to avoid redundancy. Except for the Type field,
all the other items are similar to area-specific attributes.

Section-specific Attributes: The section-specific
attributes also follow a similar pattern. It contains the
following fields: Type: Section, OwnerInfo, SectionID,
SectionName SectionLatLong, SectionGeometry,
TimeStamp, TotalSpots, and OccupiedSpots. Here, the
Type field should contain the value “Lot”.

Spot-specific Attributes: The spot-specific attributes
have the following fields: Type: Spot, OwnerInfo,
SpotID, SpotName, SpotLatLong, SpotGeometry,
TimeStamp IsOccupied (True or False), SpotPolicy.
Unlike other segments in the data format, the
spot segment maintains a Boolean attribute called
“IsOccupied”, which is used to identify the status of
a single parking spot. Additionally, there is also an
attribute called “SpotPolicy”, which is introduced to
specify options such as Unrestricted, HandicapOnly or
PermitOnly, and it could be extended further if needed.

111

https://github.com/ANRGUSC/ParkingJSON
https://github.com/ANRGUSC/ParkingJSON

Open Journal of Internet of Things (OJIOT), Volume 6, Issue 1, 2020

Table 2: Area-specific Attributes

Attribute
Key

Attribute
Value

Data Type
for Attribute

Value
Area-specific Attributes

Type Area String

OwnerInfo
Parking

provider info String

AreaID
Alphanumeric

identifier String

AreaName
Name of the

area String

AreaLatLong
Latitude and
Longitude

Key-value
Store

AreaGeometry
Spatial

coordinates
Key-value

Store

Timestamp
Last update
timestamp

String
(YYYY-MM-
DDTHH:MM:

SS.SSS)

TotalSpots
Total number

of spots in
the area

Integer

OccupiedSpots
Total number
of occupied

spots
Integer

All these attributes are maintained in a JSON
document [5]. We chose JSON because it is easy
to handle JSON documents in popular programming
languages such as Python, Java, and JavaScript. Figure 4
provides a high-level overview of ParkingJSON schema.

4.3 Specifications for Geometry Attribute

Figure 5 shows the difference between Point and Polygon
shapes. This attribute follows the GeoJSON data
format [6]. We will show an example of Geometry
attribute in Section 5.

4.4 Parking Payment Policies

An optional attribute is introduced to represent the
parking payment policies, which is shown in Table 3. A
“PolicyType” field is added to identify the pricing model
for a given parking segment (area, lot, section, or spot).
And, the timing field is used to represent the timing
limitations, while the support for prepaid payment is
expressed through a Boolean value. Both the PolicyType
and Timing fields can be extended with custom attributes
based on the payment modalities supported by the
parking providers.

Figure 4: The High-level JSON Schema of
ParkingJSON

4.5 Parking Reservation Policies

Some parking vendors may also provide support for
reservation of parking spaces. We include an optional
attribute in ParkingJSON to handle such circumstances,
which is shown in Table 4. Note that the details of future
parking availability and how to make reservations are
relegated to the URL and not specified in this standard.

4.6 Security and Integrity of Parking Data

To gain a guarantee that the data comes from a
valid source (source authentication) and has not been
tampered with (integrity), a digital signature could be
included in the JSON. The whole ParkingJSON file
could be sent as the payload of a JWT [11] (Java Web
Token), which adds a header and signature field (using
JWS (Java Web Signature)). The header can include
the certificate and cryptographic algorithms used for the
signature.

4.7 Requirements Evaluation

Section 3.2 elicited the design requirements for a parking
data standard. Here, we show how our proposed
parking data standard, ParkingJSON, satisfies those
requirements:

• R1 is satisfied through the use of hierarchical
layering schema, which covers from an entire area
to an individual parking spot.

• Our parking data standard includes name, identifier,
GPS coordinates, geometry, and a timestamp for
the area, lots, sections, and spots. Therefore,
an application developer can process the parking
information using a single data feed, which fulfills
R2.

• When visualizing parking data on a map, it
is important to process information about the

112

G. S. Ramachandran et al.:ParkingJSON: An Open Standard Format for Parking Data in Smart Cities

Figure 5: Geometry Attribute: Point vs Polygon

geometrical shape. Our parking data standard
includes geometry for the area, lots, sections, and
spots, which satisfies R3.

• Through the use of the JSON document, we satisfy
requirement R4.

• ParkingJSON files could be secured through the use
of JWT tokens, which meets R5.

4.8 Expanding this Standard to Other
Applications beyond Parking

We understand that the proposed ParkingJSON standard
is heavily tailored for parking applications. However,
we believe that this standard can be used for other
applications, including environmental monitoring (e.g.,
temperature, humidity, and wind speed), air quality
sensing, and traffic management, by replacing the
parking specific segments with new segments particular
to each application, building on the hierarchical
geospatial nature of this data standard. We plan to
explore this in our future work.

Table 3: Optional Attribute for Payment Policies

Attribute
Key

Attribute
Value

Data Type
for Attribute

Value
Key: PaymentPolicy, Values are as follows:

PolicyType

Free, FlatRate,
UnitRate,

TwoPhaseFlat
(i.e. initially

free for some time,
then flat fee),

TwoPhaseUnitRate
(i.e. initially free
for some time,
then charged

by the minute/hour)

String

Timing

MaxTime,
TimeUnit

(for UnitRate),
FlatRatePrice

or RatePerTime,
InitialTime

(for TwoPhase)

String

IsPrepaid True or False Boolean

Table 4: Optional Attribute for Reservation Policies

Attribute
Key

Attribute
Value

Data Type
for Attribute

Value
Key: ReservationPolicy, Values are as follows:
IsReservable True or False Boolean

Max
Reservation

Time

Time in
Minutes

(How far in
advance it can
be reserved?)

Integer

ReservationURL URL String

5 A PRACTICAL EXAMPLE

Appendix A shows an example of the ParkingJSON
document for one of the USC campuses. Due to
the space limitation, we represent partial data for two
parking lots. But, a complete JSON document for this
location would have multiple parking lots with tens of
sections and hundreds of individual spots. Besides, it is
important to note how the Geometry attribute is used to
carry the spatial coordinates that are associated with the
parking data. In this case, the areaGeometry attribute can
be used to draw a polygon on the map to denote the area.
To avoid redundancy, we have not included Geometry for

113

Open Journal of Internet of Things (OJIOT), Volume 6, Issue 1, 2020

all the data segments. We refer the reader to our GitHub
repository for more real-world examples: https://
github.com/ANRGUSC/ParkingJSON.

6 EVALUATION

In this section, we evaluate how our parking data
standard, ParkingJSON, influences the size. Table 5
shows the storage and communication costs.

To understand the storage cost, we measured the
file sizes using Linux’s ls -lhS command. This metric
can be used to identify the storage requirements at
the data provider’s and the application developer’s
infrastructures. Although the storage overhead is in the
order of kilobytes, the applications employing resource-
constrained embedded devices may have to provide
sufficient memory for storage based on the number of
lots, sections, and spots handled by their application.

The serialization overhead is another essential metric
since this determines the number of bytes that gets
transmitted from the data provider to the marketplace
middleware and from marketplace middleware to the
application developer. From the data provider’s
perspective, this metric can be used to identify the
bandwidth requirement for his/her deployment. Note
that the file size is not the direct indicator of the bytes
transmitted on the network. Contemporary programming
languages such as Python, Java, and JavaScript provide a
serialization library to encode the data into a transferable
format. To understand the payload size after the
serialization, we have used Python’s built-in serializer,
which is part of the Json package. Besides, we have
used the SDK (https://github.com/ANRGUSC/
I3-SDK) provided by the I3 data marketplace to publish
data to an I3 marketplace instance and measured the
payload sizes at the MQTT broker that is part of
I3-v1 [17] middleware. Our evaluation shows that
serialization reduces the payload size by approximately
50% when compared against the storage sizes, which
is because of both some redundancy in the base format
and the efficient “base64” encoding scheme employed by
Python’s JSON serializer.

The data for Downtown Los Angeles in their current
custom parking format requires two data streams for
processing the data; one stream provides the current
parking status, while the other flow informs the metadata
associated with each parking spot in the Downtown area.
Unlike this, our parking data standard, ParkingJSON,
uses a single stream to provide all the necessary details.

It is important to note that the benefits of
interoperability provided by ParkingJSON come at a
slight cost. Each parking segment for a lot, section,
or spot adds approximately 1.2 kilobytes to the storage

Table 5: The Storage and Communication costs
of ParkingJSON compared against the Custom
Standards followed by Downtown Los Angeles and
LAX Airport Deployments

Scenario
Size
in

KB

Serialized
Payload

Size in KB
ParkingJSONwith

1Area 1.2 0.5

ParkingJSONwith
1area1lot 2.3 1.0

ParkingJSONwith
1area1lot
1section

3.5 1.5

ParkingJSONwith
1area1lot

1section1spot
4.6 2.0

ParkingJSONfor
DowntownLA

with1area
3spots

4.2 1.9

ParkingJSONforLAX
with1area

7lots
9.2 3.9

Parking Data Without Our Standard
LAX

currentdata
standard

2.0 2.1

Downtown
currentdata

standard
0.26 0.27

Downtown
inventoryfor
currentdata

standard

1.3 1.3

and 500 bytes to the serialized payload. We believe
that this is an acceptable trade-off for improving the
interoperability using such a standard.

All the ParkingJSON files that were used for the
evaluation are made available at the following GitHub
repository: https://github.com/ANRGUSC/
ParkingJSON.

7 CONCLUSION AND FUTURE WORK

In this work, we have presented our experiences from
developing a city-wide real-time parking application for
the City of Los Angeles, involving I3, which is an open-
source data marketplace developed at the University of
Southern California. In particular, we have highlighted

114

https://github.com/ANRGUSC/ParkingJSON
https://github.com/ANRGUSC/ParkingJSON
https://github.com/ANRGUSC/I3-SDK
https://github.com/ANRGUSC/I3-SDK
https://github.com/ANRGUSC/ParkingJSON
https://github.com/ANRGUSC/ParkingJSON

G. S. Ramachandran et al.:ParkingJSON: An Open Standard Format for Parking Data in Smart Cities

how the interoperability challenges could prevent the
parking data providers and the application developers
from adopting a marketplace-based application model.
To enhance adoption, we have proposed a new parking
data standard, ParkingJSON, which covers the many
different types of parking infrastructures encountered
in a city. We have provided an example parking data
along with evaluation results highlighting the storage and
communication costs of our parking data standard. To
the best of our knowledge, this is the first parking data
standard proposed that a) covers a wide range of parking
spaces and structures, b) integrates spatial information,
and c) provide support for data integrity and authenticity.

In our future work, we will work with the local
parking data providers in the city of Los Angeles to
convert their parking data format to ParkingJSON data
standard. Subsequently, we plan to work with the
City of Los Angeles to enhance their findmeaspot7

parking application and identify the effectiveness of our
proposed data standard in realistic settings. Lastly,
we plan to investigate approaches to optimize the data
format to reduce the payload size.

ACKNOWLEDGEMENTS

This work is supported by the USC Viterbi Center
for Cyber-Physical Systems and the Internet of Things
(CCI).

REFERENCES

[1] B. Ahlgren, M. Hidell, and E. H. Ngai, “Internet
of things for smart cities: Interoperability and open
data,” IEEE Internet Computing, vol. 20, no. 06,
pp. 52–56, nov 2016.

[2] G. Aloi, G. Caliciuri, G. Fortino, R. Gravina,
P. Pace, W. Russo, and C. Savaglio, “A
mobile multi-technology gateway to enable iot
interoperability,” in 2016 IEEE First International
Conference on Internet-of-Things Design and
Implementation (IoTDI), 2016, pp. 259–264.

[3] A. Banks and R. Gupta, “MQTT version 3.1.1,”
2014.

[4] R. E. Barone, T. Giuffrè, S. M. Siniscalchi,
M. A. Morgano, and G. Tesoriere, “Architecture
for parking management in smart cities,” IET
Intelligent Transport Systems, vol. 8, no. 5, pp.
445–452, 2013.

[5] P. Bryan and M. Nottingham, “JavaScript object
notation (JSON) patch,” Internet Requests for

7 https://findmeaspot.lacity.org/

Comments, April 2013. [Online]. Available: https:
//tools.ietf.org/html/rfc6902

[6] H. Butler, M. Daly, A. Doyle, S. Gillies, S. Hagen,
and T. Schaub, “The GeoJSON format,” Internet
Requests for Comments, August 2016. [Online].
Available: https://tools.ietf.org/html/rfc7946

[7] P. Desai, A. Sheth, and P. Anantharam, “Semantic
gateway as a service architecture for iot
interoperability,” in 2015 IEEE International
Conference on Mobile Services, 2015, pp. 313–
319.

[8] N. Fulman and I. Benenson, “Establishing
heterogeneous parking prices for uniform parking
availability for autonomous and human-driven
vehicles,” IEEE Intelligent Transportation Systems
Magazine, vol. 11, no. 1, pp. 15–28, 2019.

[9] M. Ganzha, M. Paprzycki, W. Pawłowski,
P. Szmeja, and K. Wasielewska, “Semantic
interoperability in the internet of things: An
overview from the inter-iot perspective,” Journal
of Network and Computer Applications, vol. 81,
pp. 111 – 124, 2017.

[10] G. M. Honti and J. Abonyi, “A review of
semantic sensor technologies in internet of things
architectures,” Complexity, vol. 2019, 2019.

[11] M. Jones, J. Bradley, N. Sakimura, and
Token, “JSON web token,” Internet Requests
for Comments, May 2015. [Online]. Available:
https://tools.ietf.org/html/rfc7519

[12] B. Krishnamachari, J. Power, S. H. Kim, and
C. Shahabi, “I3: an IoT marketplace for smart
communities,” in Proceedings of the 16th Annual
International Conference on Mobile Systems,
Applications, and Services. ACM, 2018, pp. 498–
499.

[13] M. Noura, M. Atiquzzaman, and M. Gaedke,
“Interoperability in internet of things: Taxonomies
and open challenges,” Mobile Networks and
Applications, vol. 24, no. 3, pp. 796–809, 2019.

[14] P. R. Pietzuch and J. M. Bacon, “Hermes: a
distributed event-based middleware architecture,”
in Proceedings 22nd International Conference on
Distributed Computing Systems Workshops, 2002,
pp. 611–618.

[15] G. S. Ramachandran and B. Krishnamachari,
“Towards a large scale iot through partnership,
incentive, and services: A vision, architecture, and
future directions,” Open Journal of Internet Of
Things (OJIOT), vol. 5, no. 1, pp. 80–92, 2019.
[Online]. Available: http://nbn-resolving.de/urn:
nbn:de:101:1-2019092919345869785889

115

https://tools.ietf.org/html/rfc6902
https://tools.ietf.org/html/rfc6902
https://tools.ietf.org/html/rfc7946
https://tools.ietf.org/html/rfc7519
http://nbn-resolving.de/urn:nbn:de:101:1-2019092919345869785889
http://nbn-resolving.de/urn:nbn:de:101:1-2019092919345869785889

Open Journal of Internet of Things (OJIOT), Volume 6, Issue 1, 2020

[16] M. M. Rathore, A. Ahmad, A. Paul, and S. Rho,
“Urban planning and building smart cities based
on the internet of things using big data analytics,”
Computer Networks, vol. 101, pp. 63–80, 2016.

[17] X. Zhao, K. Karyakulam Sajan, G. Ramachandran,
and B. Krishnamachari, “Demo abstract: The
intelligent iot integrator data marketplace —
version 1,” in Proceedings of the 5th ACM/IEEE
Conference on Internet of Things Design and
Implementation, ser. IoTDI ’20, 2020.

APPENDIX A

An example ParkingJSON document for one of the USC
campuses with two parking lots is presented below.

{
"Type": "Area",
"Attributes":[
{"OwnerInfo":"USC"},
{"AreaID":"usc5428"},
{"AreaName":"USC UPC Campus"},
{"AreaLatLong":[-118.39,33.94]},
{"AreaGeometry":{

"type": "Polygon",
"coordinates": [

[
[

-118.39,
33.94

],
[

-118.40,
33.94

],
[

-118.40,
33.94

],
[

-118.39,
33.94

],
[

-118.39,
33.94

]
]

]
}
},
{"Timestamp":"2019-12-07T21:22:48.1

20"},
{"TotalSpots":2023},

{"OccupiedSpots":1949}
],
"Lots":[
{
"Type":"Lot",
"OwnerInfo":"USC",
"LotID":"Lot1",
"LotName":"LotDowney",
"LotLatLong":[-118.39,33.94],
"LotGeometry":{
"Notes": "Not shown in this

example due to space
restrictions. But it will
follow the format presented
in previous area, lot, and
section segments"
},

"Timestamp":"2019-12-07T21:22:48.
120",

"TotalSpots":455,
"OccupiedSpots":"324",
"Sections":[
{
"Type":"Section",
"OwnerInfo":"USC",
"SectionID":"usclot1floor1",
"SectionName":"698floor1",
"SectionLatLong":[-118.39,33.94

],
"SectionGeometry":{

"Notes": "Not shown
in this example
due to space
restrictions. But
it will follow the
format presented

in previous area,
lot, and section
segments"

},
"Timestamp":"2019-12-07T21:22:48.

120",
"TotalSpots":102,
"OccupiedSpots":78
}
]
},
{
"Type":"Lot",
"OwnerInfo":"USC",
"LotID":"Lot2",
"LotName":"LotShrine",
"LotLatLong":[-118.39,33.94],
"LotGeometry":{

116

G. S. Ramachandran et al.:ParkingJSON: An Open Standard Format for Parking Data in Smart Cities

"Notes": "Not shown
in this example
due to space
restrictions. But
it will follow the
format presented
in previous area,
lot, and section
segments"

},
"Timestamp":"2019-12-07T21:22:48.

120",
"TotalSpots":655,
"OccupiedSpots":"344",
"Sections":[
{
"Type":"Section",
"OwnerInfo":"USC",
"SectionID":"usclot2floor1",
"SectionName":"438floor1",
"SectionLatLong":[-118.39,33.94

],
"SectionGeometry":{

"Notes": "Not shown
in this example
due to space
restrictions. But
it will follow the
format presented
in previous area,
lot, and section
segments"

},
"Timestamp":"2019-12-07T21:22:48.

120",
"TotalSpots":148,
"OccupiedSpots":78,
"Spots":[

{
"Type":"Spot",
"OwnerInfo":"LADOT",
"SpotID":"defgh456",
"SpotName":"DT124",
"SpotLatLong":[-118.39,33.94],
"SpotGeometry":{

"Notes": "Not shown
in this example
due to space
restrictions. But
it will follow the
format presented

in previous area,
lot, and section
segments"

},
"Timestamp":"2019-12-07T21:22:48.

120",
"IsOccupied":"True",
"SpotPolicy":"HandcicapOnly"
}
]
}
]
}
]

}

Example 1: A ParkingJSON Document for USC Campus
with two parking lots. Each parking lot has one section,
wherein one of the parking lots include a single spot-
specific data. This example is created to show how
the area, lots, sections, and spots would be represented
following our parking format.

We encourage the readers to review the other examples
provided in the following GitHub repository: https:
//github.com/ANRGUSC/ParkingJSON.

117

https://github.com/ANRGUSC/ParkingJSON
https://github.com/ANRGUSC/ParkingJSON

Open Journal of Internet of Things (OJIOT), Volume 6, Issue 1, 2020

AUTHOR BIOGRAPHIES

Gowri Ramachandran is a
senior postdoctoral research
associate at the Center for
Cyber Physical Systems and
the Internet-of Things (CCI)
at the University of Southern
California. He received his
Ph.D. from imec-DistriNet,

KU Leuven, Belgium. His research interests include
Internet-of-Things (IoT), smart cities, and blockchain.

Jeremy Stout is currently a
Programmer/Analyst with the
City of Los Angeles Information
Technology Agency (ITA). He
develops and maintains/supports
applications used by City
Departments and the general
public. His interests include

learning, tinkering, and applying new/emerging
technology to cultivate in a digital age.

Joyce Edson is currently
the Executive Officer and
Deputy CIO with the City of
L.A.’s Information Technology
Agency (ITA). She provides City
Departments with Application
development and consultation
for digital solutions. Her
interest is in the application of

new/emerging technology to effectively, efficiently and
sustainably improve the government operations, and
improve the quality of life for the public government
serves.

Bhaskar Krishnamachari
received his Ph.D. degree from
Cornell University, Ithaca, NY,
USA, in 2002. He is currently
a Professor with the Department
of Electrical and Computer
Engineering, and Director of
the Center for Cyber-Physical
Systems and the Internet of

Things. His research interests include the design and
analysis of algorithms and protocols for the Internet of
Things, Wireless Networks, and Distributed Systems.

118

	Introduction
	Motivation
	Parking Application
	The role of a Smart City Data Platform

	A Real-time Parking Application Using an IoT Data Platform
	Architecture of Data-driven Parking Application
	Parking Data Providers
	I3 Data Marketplace
	Parking Application Developers
	Interoperability Challenges

	Design Requirements

	ParkingJSON: An Open Standard Format for Parking Data in Smart Cities
	Capturing Spatial Relationships through a Hierarchical Layering Schema
	Attributes
	Specifications for Geometry Attribute
	Parking Payment Policies
	Parking Reservation Policies
	Security and Integrity of Parking Data
	Requirements Evaluation
	Expanding this Standard to Other Applications beyond Parking

	A Practical Example
	Evaluation
	Conclusion and Future Work

