
c© 2021 by the authors; licensee RonPub, Lübeck, Germany. This article is an open access article distributed under the terms and conditions of the
Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).

Open Access

Open Journal of Internet of Things (OJIOT)
Volume 7, Issue 1, 2021

http://www.ronpub.com/ojiot
ISSN 2364-7108

Streaming Data through the IoT via
Actor-Based Semantic Routing Trees

Dimitrios GiouroukisA Johannes JestramA,B Steffen ZeuchA,C Volker MarklA,C

ATechnische Universität Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany
CDFKI GmbH, Trippstadter Str. 122, 67663 Kaiserslautern, Germany

A{firstname.lastname}@tu-berlin.de B{firstname.lastname}@alumni.tu-berlin.de C{firstname.lastname}@dfki.de

ABSTRACT

The Internet of Things (IoT) enables the usage of resources at the edge of the network for various data management
tasks that are traditionally executed in the cloud. However, the heterogeneity of devices and communication methods in a
multi-tiered IoT environment (cloud/fog/edge) exacerbates the problem of deciding which nodes to use for processing and
how to route data. In addition, both decisions cannot be made only statically for the entire lifetime of an application, as an
IoT environment is highly dynamic and nodes in the same topology can be both stationary and mobile as well as reliable
and volatile. As a result of these different characteristics, an IoT data management system that spans across all tiers of an
IoT network cannot meet the same availability assumptions for all its nodes. To address the problem of choosing ad-hoc
which nodes to use and include in a processing workload, we propose a networking component that uses a-priori as well as
ad-hoc routing information from the network. Our approach, called Rime, relies on keeping track of nodes at the gateway
level and exchanging routing information with other nodes in the network. By tracking nodes while the topology evolves in a
geo-distributed manner, we enable efficient communication even in the case of frequent node failures. Our evaluation shows
that Rime keeps in check communication costs and message transmissions by reducing unnecessary message exchange by
up to 82.65%.

TYPE OF PAPER AND KEYWORDS

Regular research paper: Edge Networking, Topology Management

1 INTRODUCTION

The Internet of Things (IoT) with billions of sensors brought
forward the need to redesign existing data management
systems. The main game changer is the massive data
production at the edge, in particular from mobile devices
that are located outside the cloud [23]. Gartner predicts that
cloud providers will manage 20% of all edge and mobile

This paper is accepted at the International Workshop on Very
Large Internet of Things (VLIoT 2021) in conjunction with the
VLDB 2021 conference in Copenhagen, Denmark. The proceedings of
VLIoT@VLDB 2021 are published in the Open Journal of Internet of
Things (OJIOT) as special issue.

computing platforms by 2023, from the current 1% [13].
Recent extensions to the cloud computing paradigm, such as
Fog-Cloud [4], Edge Computing [19], Sensor-Clouds [22],
and Cloudlets [18] consider mobile nodes as an integral
part of data management systems. Fundamentally, these
extensions propose the unification of centralized and
immobile nodes in the cloud together with distributed and
mobile wireless sensor networks (WSNs). At the same time,
intermediate gateway nodes that connect the edge to the
cloud are also capable of processing information [9, 26].
However, current approaches assume uninterrupted
connectivity to mobile devices, which is seldom the case in
today’s dynamic and volatile environments such as smart

59

http://creativecommons.org/licenses/by/4.0/
http://www.ronpub.com/ojiot


Open Journal of Internet of Things (OJIOT), Volume 7, Issue 1, 2021

cities [4]. Thus, systems need to incorporate the notion of
mobility for data sources and infrastructures into their core
design to really enable future IoT applications.

IoT data management concerns the management and
processing of data streams, potentially in combination with
data at rest, in a heterogeneous distributed environment of
cloud and mobile edge devices. One of the main challenges
for IoT data management systems is to timely answer user
queries that span across cloud and mobile WSN nodes.
To this end, a system requires real-time knowledge of the
underlying topology to keep track of volatile nodes in a
scalable manner. In particular, maintaining a topology that
unifies mobile as well as stationary nodes is challenging
as nodes connect or disconnect from the system anytime
and anywhere in the network. At the same time, mobile
nodes induce fluctuations in bandwidth, unstable latency,
and increased communication overhead [11]. The inherent
volatility in the topology complicates the deployment and
routing decisions within an IoT data management system.
As a result, one major challenge for an IoT data management
system is to determine which nodes and paths provide
answers to queries and which of these options induce
minimal communication overhead.

Motivating Example Figure 1 shows a simplified view
of an IoT installation in a smart city, containing a sink ,
gateways , and edge devices with sensors . The edge
devices are attached to mobile phones to keep track of
their environment. Multiple gateways, installed at the sides
of streets, offer connectivity to the edge devices with one
gateway per street. The sink is located at the offices of the
data analysis department of the municipality, using their own
municipal cloud. The dotted ring indicates the boundary
between the edge level (before the gateways) and the
municipal infrastructure (gateways and cloud). The ring also
indicates the difference in communication methods between
nodes. Gateways request information from an edge device,
hence they utilize pull-based approaches. After gateways
acquire values from the edge, they forward it to the municipal
cloud by utilizing a push-based communication scheme.

Suppose a data analyst wants to send a push notification
to edge devices on three different streets. If the device user
accepts the notification, the edge device sends sensor data
in real time to the cloud. At the same time, the analyst wants
to avoid notifying edge devices with low battery. The data
analyst thus would issue the following query: SELECT

* FROM edge nodes WHERE battery level
>= battery threshold AND street name IN
(s 1,s 2,s 3). To answer the query, an IoT data
management system has to ask all edge devices in s 1,
s 2, and s 3 about their current battery level, using
the closest gateway to the edge device. In Figure 1, red
routes indicate edge devices that do not have enough
battery. Even though these edge devices should not report
back, some systems would still ask them for reporting,

Edge device Sink Fog node

Route for answering the query Probed nodes

Node with relevant data Outer Edge

Figure 1: An IoT topology showing edge devices
participating in a query. Red indicates edge devices that
are not relevant but are still probed for values. Green
indicates vehicles that contain data relevant to the query
and have to report their values back.

even in subsequent queries [1, 21]. In contrast, the green
route contains a edge device with enough battery and thus
information has to move from the yellow edge device to the
sink in . In this scenario, a system needs to communicate
and keep track of the yellow edge device as it moves
potentially to streets outside of the original query. At the
same time, a system has to reduce communication costs with
edge devices that do not have enough battery. As a result, the
system has to unify a pull-based approach (edge level) with
a push-based approach (gateways and upstream) in order to
answer queries in different physical partitions of the network.

Contributions To enable query processing within
a mobile environment, we address the challenges of
heterogeneous communication schemes with Rime. Our
solution is a geo-distributed approach for propagating
routing information efficiently in an IoT environment. Rime
organizes a topology into parent nodes with multiple children
nodes, thus forming a hierarchical tree structure over the
topology. Rime bridges the gap between centralized and
mobile approaches by extending the concept of Semantic
Routing Trees (SRTs) [12] from WSNs to the IoT. In this
paper, we make the following contributions:

• We propose Rime, our approach for efficiently building
and maintaining an overview of an IoT topology.

• We introduce a novel parent node selection scheme
that introduces new nodes to the network with minimal
overhead.

60



D. Giouroukis, J. Jestram, S. Zeuch, V. Markl: Streaming Data through the IoT via Actor-Based Semantic Routing Trees

• We redesign SRTs to use instant communication
between parent nodes within an IoT topology.

• We evaluate Rime in an emulated IoT network and
show that it reduces communication overhead for
queries with high index selectivity significantly.

We organize the remainder of the paper as follows. In
Section 2, we provide the necessary background for our
work. Then, we propose the core design decisions of Rime
in Section 3 and evaluate them in Section 4. After that, we
discuss related work in Section 5 and provide an outlook
into future work together with our conclusion in Section 6.

2 BACKGROUND

In this section, we detail the foundational concepts behind
our approach. We introduce the basic networking models
in Section 2.1. Then, we discuss the concept of SRTs in
detail in Section 2.2 as well as the common parent selection
scheme in Section 2.3. Finally, we introduce the actor
networking model that Rime employs in Section 2.4.

2.1 Networking Model

Edge deployments combine two main networking models: 1)
flood-like [10] and 2) index-based [17] networks. Flood-like
networks are highly distributed and peer-to-peer (P2P) or
P2P-like and assume that nodes are capable of moving. In
contrast, index-based networks use meta-information about
the physical topology for making routing decisions on the
application level.

Nodes in a flood-like network broadcast (flood) messages
across the network in order to propagate information and
processing. To this end, flood-like networks usually employ
a multi-hop design for messages [1]. As a result, nodes can
not rely on the topology to be the same during the entire
broadcast duration. One example of a flood-like network
is a WSN, where processing and communication are fully
decentralized. Sensor nodes gather and process data in-situ
to reduce transmission costs and later forward results to a
sink through multi-hop communication.

Index-based approaches utilize centralized indexes for
book-keeping of metadata, which supports decision making.
Applications can access the index and make routing decisions
timely, as the index is in main memory. Depending on the
application, the index can be centralized or decentralized [14].
The nodes can utilize the index for making any decision
and can assume that the topology is reliable. An example
of such an application is an overlay network of data-centers,
where a data structure keeps track of link-qualities between
nodes and later categorizes them based on that attribute. An
external application (e.g.: a stream processor) can later utilize
that meta-information for performing operator placement.

0

1

3 4

2

5 6

Asubtree ∈ (45, 71)

Asubtree ∈ (45, 48)

Alocal = 48 Alocal = 45

Asubtree ∈ (68, 71)

Alocal = 71 Alocal = 68

Figure 2: Exemplary topology with an SRT over
Attribute A. Parents only know the attribute range
within their subtree.

2.2 Semantic Routing Trees

TinyDB [12] introduces the concept of SRTs to bridge the gap
between a flood-like and index-based approach. SRTs are
data structures that stem from work on WSNs and they store
information for each node, e.g., the value range that the node
produces. In an SRT, nodes fall into the categories of parents,
children, or both. A parent keeps track of its children and
their attribute values. The attribute values determine what
data is produced by the node, e.g.: CO2 emission readings
or temperature data between 2 and 8 degree centigrade.
In contrast, a child node produces values from sensed
phenomena but might also acts as an intermediate parent,
for multi-hop communication. The main task of a parent
is to decide if its children need to participate in a query and
if required, it will route any necessary information to them.

In Figure 2, an SRT acts as a distributed index over an
attribute A. N0 is the root of the tree with an index over A
that contains values in range (45,71). N0 is the parent of N1

and N2, with ranges of (45,48) and (68,71). The range of
N1 stems from the values of N3 (48) and N4 (45). If a query
requires values in the range (45,47), then only the subtree
of N1 replies to the query and the other whole subtree of N2

is ignored. This process allows SRTs to avoid unnecessary
communication because a parent node knows the range of all
values of its children. The parent node is also responsible for
disseminating only relevant queries to its children. The main
implication is that the choice of a parent strongly affects
future maintenance costs and query latency [12]; thus, parent
selection is an important performance factor.

2.3 Parent Selection

When a new node enters the network, choosing a parent from
a set of candidates or choosing to become a parent impacts
query performance as well as future maintenance overhead.
Ideally, a parent has children that produce values with small
variation, such that the range of attribute A is small, e.g.,
temperature values only differ by several degree. A small
attribute range affects the number of children that a parent
will adopt as well as the number of topology updates. In the
presence of multiple candidate children nodes, parents prefer
children that produce similar values to their attribute range.

In order to stay updated with minimal performance

61



Open Journal of Internet of Things (OJIOT), Volume 7, Issue 1, 2021

impact, the SRT uses a neighbor tracking policy. This
policy is responsible for parent assignment and determines
how to propagate updates in the network. The original
multi-hop, broadcast-based SRT design does not consider
information exchange across nodes that are multiple hops
away from each other. This communication limitation stems
from the energy preserving design of WSNs, as antenna
communication is the main culprit of energy expenditure.
Thus, parents in WSNs only have partial knowledge of the
network, which exacerbates the effects of a bad assignment
and increases communication overhead for SRT updates. In
the IoT, we can augment the tracking policy with different
networking schemes in order to propagate SRT updates
further than just the antenna range of a node.

2.4 Actor Networking

Rime employs the actor model for its networking stack.
Here, the smallest unit of computation is an actor. Actors
receive messages from other actors and respond to them by
making local decisions, spawning other actors, or sending
more messages. Basically, actors are software entities that
tie together data- and control-flow as messages. Actors
encapsulate state, behavior, and communication, translate
state to messages and send them to other actor inboxes [7].
Actors enable sophisticated fault tolerance strategies through
their messaging system [6]. Recent approaches introduce
virtual actors, which are location transparent. As a result,
the system does not know if and where a specific actor
is currently materialized [3]. We do not use the virtual
actor model in this paper because location-awareness is an
important characteristic for an IoT data management system.

3 RIME

In this section we introduce Rime, a networking component
that maintains highly volatile topologies efficiently. Our
solution reduces communication costs by exchanging
topology information over different gateway nodes and
heterogeneous communication schemes. Rime extends
the concept of SRTs by introducing an improved parent
selection algorithm and a new node tracking policy. At
the same time, Rime allows the exchange of topology
metadata over different physical areas. The advantages of
Rime are three-fold. First, by introducing a more efficient
parent selection process that reduces the communication and
integration overhead, Rime integrates new nodes faster into
query processing. Second, to further reduce the amount of
exchanged messages, Rime employs a novel tracking policy
between nodes. The main goal of the tracking policy is to
allow nodes to build an index from their “known” nodes.
This information is the basis for building and maintaining
the extended SRT locally. Finally, Rime propagates local
topology updates within the network, e.g., in the case of node

Actor System on a Rime-Node

Local Actors

Network-Connected Actor

Attribute
Tree (AT)
over A

Network Manager (NM)

Query Processor (QP)

Sensor Sensor

Measurements

Local Updates

Remote
UpdatesLocal Updates, Query Results

Parent

Children

Figure 3: Overview of the architecture of Rime
and the most important message exchanges between
components

Edge device Sink Fog node

Rime parent candidate TinyDB parent candidate

Rime parent TinyDB parent

Node searching a parent

Figure 4: Distance between nodes corresponds to their
physical distance. In TinyDB, only nodes in spatial
proximity are parent candidates. Rime offers a broader
parent pool than TinyDB with its new parent selection.

movement. Thus, nodes exchange topology updates with
other nodes but do not broadcast them, which reduces the
number of messages sent for operations like relocations. We
will present the overall architecture of Rime in Section 3.1,
our parent selection algorithm and its details in Section 3.2,
and the tracking policy in Section 3.3.

62



D. Giouroukis, J. Jestram, S. Zeuch, V. Markl: Streaming Data through the IoT via Actor-Based Semantic Routing Trees

3.1 Architecture

Figure 3 outlines the architecture of Rime. The main goal of
Rime is to keep up with a volatile topology and to minimize
communication overhead. Our implementation utilizes the
C++ Actor Framework (CAF) [6]. Rime encapsulates state,
e.g., location updates, as part of the actor and models updates
as actor messages. Each Rime node within the network is
a distinct actor system, which consists of several local actors
and a network-connected actor for communication. Each
node contains a Query Processor (QP), multiple sensors,
and an Attribute Tree (AT). A QP is responsible for gathering
readings from sensors, perform processing on the readings,
and finally update its local AT. The AT holds necessary state,
i.e., the current and backup parent, handles to all its children,
the local attribute value, and the range of values from the
children. In sum, the AT is a superset to the SRT that holds
more than just an attribute range. This is to keep the actor
implementation simple and spawn as little actors as possible.
The Network Manager (NM) serves as the networking
gateway that listens for updates and propagates them to other
nodes. During runtime, each AT propagates local updates
through the NM to other ATs in other nodes. The NM is
a stateful actor that is responsible for remote communication
and maintaining a key-value store of attributes and handles
to the AT. Furthermore, the NM can react to failures by
monitoring its children and parents.

3.2 Parent Selection in Rime

Parent selection is a crucial step in SRTs as it impacts the
attribute clustering in a specific sub-tree [12]. By clustering,
we refer to the value range variance of the attributes stored
in an AT. An AT helps pinpoint nodes that are relevant for
a query and avoid unnecessary communication with nodes
that do not contain relevant values. Thus, a small value
range in an AT is the main goal when choosing a parent,
as it reduces the amount of children when reporting which
children are relevant to a query.

Rime uses an enhanced closest-parent selection policy,
where the best parent candidate has the closest attribute
value, e.g. location, to the requesting node. This is an
extension to the closest-parent selection policy of TinyDB,
where updates do not propagate between nodes. Essentially
Rime exploits the fast network backhaul between gateways
to share SRT updates between nodes. TinyDB does not
offer this possibility due to the cost of constant broadcast
communications, which decreases the life cycle of a
battery-powered sensor node. Figure 4 shows the effects of
the different parent selection schemes between Rime and the
original SRT. The golden node is searching for a new parent
as it just enters the network. Rime provides a larger pool of
parents (green) compared to TinyDB (light blue) as it does
not rely only on nodes that are in physical proximity. Rime

Algorithm 1: Parent selection at the grandparent of
the requesting node

Input: find-better-parent request
Data: curr dist = distance to current parent

att = requesting node tree attribute
Output: new parent for requester

1 begin
2 best dist = INTEGER MAX;
3 best idx = -1;
4 for child : self.allChildrenNodes do
5 dist = calcEuclideanDist(self.att, child.att);
6 if dist < best dist then
7 best dist = dist;
8 best idx = children.current idx;

9 request random sibling from self.parent;
10 receive best rand, best rand dist;

11 if best rand dist < best dist then
12 return best rand, best rand dist;
13 else
14 return children[best idx], best dist;

suggests two more potential parents due to the exchange of
routing information between nodes that are not in physical
proximity. This allows nodes to continuously update their
SRTs without having to perform costly multi-hop broadcast
transmissions to all neighboring nodes.

Candidate Parents An ideal parent candidate has a
narrow range of tree-attribute values and is closer to the
sink than its children. For example, in Figure 2, node N3

reports temperature value around (48) degrees. There are
two candidate parents N1 with value range (45,48) and
N2 with (68,71). In this case, N1 is a better candidate
as it has a narrower value range and its values are closer
to N3. Rime utilizes the parent selection algorithm in
Algorithm 1 to determine the best parent. Algorithm 1 starts
on a per-request basis from new nodes. The input data are:
the distance to an existing parent and the tree attribute (att)
of the new node. In Lines 2-8, the existing node checks
all its children and calculates the euclidean distance between
the tree attributes of the new node and the current child. To
this end, we assign the child with the smallest distance as
a starting point. Then, in Line 9, the existing node requests
a random sibling from its own parent. The random sibling
reply in Line 10 contains the best candidate child and its
distance from the new node to the original random sibling
of the existing node. The existing node returns the best child,
after comparing its own best child and the best child from
the sibling node, in Lines 11-14. This way, Rime returns a
larger and better pool of parent candidates for the new node.

63



Open Journal of Internet of Things (OJIOT), Volume 7, Issue 1, 2021

3.3 Tracking Policy

Because nodes keep track of several other nodes, the
question of which remote nodes to track arises. Tracking all
nodes in the network is infeasible due to scalability reasons,
e.g., high message overhead. The main goal of the tracking
policy is to decrease the maintenance overhead of ATs by
reducing the number of tracked nodes. In order to build an
AT within Rime, a node tracks the following: First, all nodes
require information about their children, i.e., subtree-ranges,
and thus track all children. Second, a node must know the
tree-attribute range of a parent in order to determine how
similar it is to its own. Third, there must be at least one
backup node that is required in case of a parent failure. Rime
picks the second best parent candidate from the selection
process as a backup parent. With the above information,
a node is able to perform routing on its own, without the
immediate need to share knowledge to/from others.

Even though Rime allows for routing decisions using
local information, it also enables specific nodes to gain
knowledge about other nodes in two ways. First, a child
that selects a new parent sends additional data to the parent,
e.g., its IP-address, port, and information about its sensors.
The new parent node tracks the child node by adding its
information into its own state. Second, specific nodes
exchange information about other nodes within the network.
Exchange only involves specific children, parents, and
backup parents and does not work in a broadcast fashion.
Nodes maintain local state and data about several other
nodes as they are able to share it with others on request. This
is possible due to the actor-based message exchange of Rime
through heterogeneous networks. Given that gateways and
intermediate nodes are able to immediately communicate,
they do not need to broadcast information to everyone. This
is in contrast to TinyDB, where nodes broadcast all messages
and only nodes within antenna range can receive messages.
TinyDB is designed for antenna transmissions, where
messages always assume a multi-hop scheme and it is not
certain if they will reach their target. This design decision
makes sense for a WSN but is not enough for a system
that is expected to run on top of volatile, heterogeneous
networks. Many core operations in TinyDB, e.g.: message
stealing over antennas, are not feasible in different network
configurations. This makes the benefits of the original
broadcast-only system unclear in a modern IoT deployment.

Rime extends the principles behind SRTs in order to
remove the inherent limitations that come with broadcast
transmissions. To this end, nodes in Rime are able to gain
topology information to help them to form a better AT and
reduce the number of exchanged messages. At the same
time, the parent selection and the tracking policy reduce
communication while propagating updates of the topology
to other locations. These locations are not reachable using
only antenna transmission, contrary to the original SRT

design. The design of Rime is made from the ground-up to
exploit the communication capabilities of IoT infrastructure
and bridge the gap between WSNs and the cloud.

4 EVALUATION

In this section, we evaluate the performance of Rime. First,
we describe our test environment in Section 4.1. Then, we
introduce our emulation setup in Section 4.2. After that,
we evaluate different aspects of Rime, i.e., failure recovery
in Section 4.3, efficient query dissemination in Section 4.4,
scalability and maintenance overhead in Section 4.5, and
the support of geo-spatial movement of nodes in Section 4.6.
For the sake of reproducibility, we release Rime as well as
experiment configurations in a public repository. 1

4.1 Test Environment

Our test environment consists of emulated nodes deployed
on a single server. All benchmarks were performed on a
server with Ubuntu 18.04 on an Intel Xeon E5620 (2.4GHz)
CPU with 47GiB memory. The hardware resources of
the server allows for emulating topologies with sizes up to
73 nodes. Table 1 lists all the topologies used throughout
our experiments. We found that topologies larger than
T73 degrade performance on the host due to hardware
limitations. We use a tree-like topology with configurable
height and degree across all experiments. For node
emulation, we use Containernet [16], a network emulator
that is an extension of Mininet [8] which is capable of
running Docker 2 containers. This setup allows for flexible
deployment of nodes or experiments and supports emulating
node failures in a reproducible manner. We utilize emulation
rather than network simulators since simulators use models
to represent the current environment, hence they abstract
details for the sake of accuracy. A network emulator on
the other hand leads to easier testing on a diverse set of
hardware and allows for faster and prototyping [20].

Assumptions In order to evaluate our approach, we make
some simplifications about our running environment. In all
our tests we assume that the root node does not fail. One
possible solution to root node failures would be a consensus
mechanism that can be utilized in order to elect a new root
between candidates. However, we argue that a root could
be hosted within a cloud and thus exclude this aspect from
the following considerations.

Baseline To the best of our knowledge, there exists no
open-sourced implementation of SRTs that is suitable as
a baseline for our evaluation. The closest is TinyDB [12]
that was part of TinyOS in a single release that is not
available anymore.3 TinyOS and its nesc compiler

1 https://github.com/jo-jstrm/rime-data-streaming-iot
2 https://docker.com
3 http://telegraph.cs.berkeley.edu/tinydb/software.html

64



D. Giouroukis, J. Jestram, S. Zeuch, V. Markl: Streaming Data through the IoT via Actor-Based Semantic Routing Trees

Table 1: Experiment configurations used for evaluation
ID # of Nodes Degree Height
T7 7 2 2
T13 13 3 2
T15 15 2 3
T21 21 4 2
T40 40 3 3
T73 73 8 2

are not further developed and have transitioned to getting
volunteer updates.4 Therefore, we compare Rime to a
baseline-system that connects nodes using an immutable
routing tree. We consider this to be a suitable baseline
with low maintenance-overhead at the cost of no failure
recovery and update propagation. To implement the baseline,
we compile Rime without any SRT-features, i.e., no
parent-selection algorithm, backup parent, and state-tracking
of remote nodes. This ensures that Rime and the baseline are
as similar as possible. We elaborate further on our baseline
assumptions and practicalities in Section 4.2.

Running Example Figure 2 shows the running example
topology that we use for our experiments. The tree resulting
from this topology has a height of three, which is the highest
number of hops on the path from root to leaf. Furthermore, it
has a degree of two, which is the number of children of each
node, including the root. The node IDs are allocated using
breadth-first search. For our experiments in Section 4.5, we
extend this basic topology by increasing height and degree,
as well as the number of nodes. We show the resulting
deployment configurations in Table 1. The geo-spatial
location for all nodes is randomly assigned within the interval
{latitude, longitude} ∈ (0.0,100.0) meters of a uniform
distribution created with an MT19937 random number
generator.5 In Section 4.3 and Section 4.4 experiments start
after location assignment and parent selection are complete.
This is necessary to let Rime propagate updates and create
an SRT. For all experiments, we set the sampling rate of
each sensor at every node to two tuples per second, which
is common in WSNs [12, 2].

4.2 Exploration of Emulation Boundaries

As a first step for our evaluation, we test the maximum
throughput and average latency of our setup with the baseline
system over a static topology. This provides a practical line
rate when the system only performs routing of tuples from
the edge to the cloud nodes, without applying processing.
Edge nodes do not move or change location and the keep
producing two tuples per second (t/s) uninterrupted. We
observe the average combined incoming throughput at the
sink of the query is 146 t/s. The average latency of a single
4 https://github.com/tinyos/tinyos-main
5 https://www.cplusplus.com/reference/random/mt19937/

Table 2: Baseline messaging-overhead compared Rime
for different selectivities. Rime significantly reduces
the number of messages needed to get a query to all
applying nodes.

Selectivity Baseline
Overhead

Rime
Overhead

Rime
Savings

10% 87.67% 5.02% 82.65%
25% 70.32% 1.83% 68.49%
80% 24.20% 2.74% 21.46%

packet traveling from an edge node to the base station is
96.5 milliseconds (ms). This is in line with the randomized
latency that we insert in the topology through the emulator,
where we use a random latency range of [60-150]ms for the
edge nodes and [10-30]ms for parents to base-station.

In a second experiment, we evaluate the cost of node
failure due to movement with the baseline. Recall that the
baseline has Rime features turned off, thus there is no way
for a disconnected node to recover. The impact of node
movement is directly proportional to the size of the sub-tree
of the failing nodes. As an example, on a tree with degree=
8 and height = 2, if a node at height = 1 fails, then the
whole sub-tree is disconnected from the network; thus the
network loses ≈ 1

8 of the nodes. We provide details about
the cost of recovering from failure using Rime in Section 4.3.

4.3 Failure Recovery

In this experiment, we explore how Rime performs recovery
from failure, even if the node is a parent. Failure of a parent
node disconnects all its children from the rest of the tree.
Therefore, no sensor readings from the affected subtree
can reach the sink. Rime offers a coping mechanism for
parent-failure through backup parents. The backup parent is
the second best candidate from the parent selection process.

To quantify the ability of Rime to recover from failures,
we measure the recovery latency. We define the recovery
latency as the time between the failure of one or several
nodes and the point in time when regular operation resumes,
i.e., the successful registration of all children of the failed
node to their backup parents. We use the same base topology
T7 as the running example in Section 4.1 and we measure
the recovery latencies of 10 runs when either node 1 or node
2 fails. In each run, we let the parent with most children fail,
such that a failure has the highest possible impact on Rime.
Throughout the experiment, the recovery latency varies
between 46ms and 366ms, with a median of 201.5ms.
We account the variations of the recovery latency to 1) the
varying number of queued messages at the receiver and
2) scheduling on the emulating host. Recovery from node
failure is not possible in the baseline-system, whereas Rime
timely reconnects the nodes. Thereby, Rime resumes routing
with insignificant tuple loss after a failure.

65



Open Journal of Internet of Things (OJIOT), Volume 7, Issue 1, 2021

0 5 10 15 20 25 30 35 40 45 50 55 60
[s] since startup

0

5

10

15

20

25

Ex
ch

an
ge

d 
m

es
sa

ge
s p

er
 [s

]

73 nodes, 3 runs, h=2, d=8

Figure 5: Message transmissions per node of T73.
The spikes starting after 31s shows the number of
transmissions during a stepwise tree-attribute change.

4.4 Efficient Query Dissemination

In this experiment, we quantify how efficiently Rime filters
out unnecessary nodes for a query. A key benefit of using
SRTs in Rime is its ability to discard whole subtrees of
a query if the nodes in a subtree do not contain relevant
values. To evaluate the benefit of this characteristic, we
measure the overhead of Rime as well as the baseline in
Table 2. The overhead is defined as the ratio of the number
of nodes that received the query and the number of nodes
that have relevant data for the query. Our query selects
values from all location sensors installed at the nodes, inside
a 2D area. We use topology T40 and vary query-selectivitiy,
i.e., number of nodes participating in the query, between
10%, 25%, and 80%. Table 2 presents the average overhead
for each selectivity. As shown, Rime reduces the average
overhead by up to 82.65%. This means that Rime performs
better for queries with a lower selectivity. The main reason
is that Rime is able to choose only relevant nodes for a
query, which is emphasized in queries with low selectivities.
The results indicate that the overhead of Rime is minimal
compared to the baseline.

4.5 Scalability and Maintenance Overhead

Building and maintenance of SRTs require message
exchange between nodes, which is the main cost of building
an SRT. To determine the required message transmissions,
we measure the number of exchanged messages per second
in Rime during the first minute after start-up. To determine
the scalability of Rime, we use data from all topologies
detailed in Table 1. We choose T73 as an example for
showing the behavior of Rime during and after startup.
We use the largest topology to fully show the effects of
scalability in Rime. Figure 5 shows the average number
of exchanged messages per second over three runs using

Table 3: Message statistics for all topologies, taken from
the first 20s after startup.

ID Total Messages Messages
Messages per node per second per node

T7 175 25.12 1.26
T13 454 34.90 1.74
T15 563 37.54 1.88
T21 841 40.04 2.00
T40 2292 57.29 2.86
T73 3721 50.97 2.55

T73. The communication peak during the first 10s stems
from the initial data exchange and the requests from children
for parent selection. The reoccurring local maximum
of message transmissions at 20s, 35s, and 50s originate
from the regular collection of the current tree topology.
Furthermore, we discuss the peaks at 31s, 34s, and 37s in
Section 4.6, as they are related to node movement.

Across all topologies, we identify spikes of message
transmissions until 15s after startup. Figure 6 shows the sum
of exchanged messages per node for all topologies during
the first 20s, such that we account for all startup spikes. This
way we account for the overhead of extra messages needed
to build and update the SRT in the same time-frame. We
observe that the messaging overhead increases with topology
size. As shown in Table 3, topology T73 induces the overall
maximum number of messages. However, topology T73
induces less messages per node than T40, even though T73
contains more nodes. This is due to the larger height of
T40, which leads to a larger pool of candidate parents. Thus,
T40 induces more parent selection messages. We observe
that the height of the tree is another important factor to
message overhead, which can dominate in topologies with
complex structure. Table 3 shows that the average increase
in transmissions per node is near to linear, under the same
height. Furthermore, the number of transmissions stays low,
with periodical spikes during topology collection. Comparing
the messaging overhead of 2.86 messages per node per
second with T40 with the throughput of modern SPEs, which
is magnitudes higher [24], we find the overhead negligible.

4.6 Geo-spatial Movement of Nodes

In this experiment, we measure the number of exchanged
messages in a dynamic environment, where nodes change
their positions. In this experiment we move a node step-wise,
where each step is an increase of latitude and longitude by
three meters within the space defined in the running example
in Section 4.1. Rime needs to account for movement in
order to maintain efficient query dissemination. Movement
might change which parent is the closest one for a node.
Therefore, each node initializes parent selection after its
movement has ended. The overhead induced by parent

66



D. Giouroukis, J. Jestram, S. Zeuch, V. Markl: Streaming Data through the IoT via Actor-Based Semantic Routing Trees

selection and metadata exchange for topology updates
immediately affects the scalability of Rime. Figure 5 shows
the number of message transmissions per node per second,
during runtime. The spike at 31s marks the beginning of
a continuous movement, where five random children nodes
move three times during nine seconds, ending at 38s. The
last spike at 40s is the parent selection after movement stops.
We start movement after 30s in order to give Rime enough
time to create and populate the tree. The creation process
induces a lot of concurrent updates and does not reflect the
state of the network during regular runtime. If no movement
occurs, Rime exchanges 233.3 messages (3.64 per node)
on average with the same topology during the same period.
During the interval (31s,41s), where nodes are moving,
1582.3 messages (24.7 per node) are transmitted on average.

In order to further quantify the impact of movement
within Rime, we run the same experiment with two
different configurations over the topology T73. The
configurations differ in the number of moving nodes. In
the first configuration, we let one node move, where in
the second one we increase this number to 10%, i.e., seven
nodes. During the movement period, the nodes in the first
configuration exchange on average 0.37 messages per node
per second. For the second configuration, this number rises
to 2.55. Our results show that the number of exchanged
messages per node per second scales linearly with the
number of moving nodes.

Overall, Rime drastically increases the efficiency of
query dissemination compared to the baseline, as shown in
Section 4.4. Rime can cope with failures in the topology,
something that the baseline is not capable of, as well as
recover timely. With the addition of the parent selection
algorithm, Rime keeps in check the overhead of maintaining
an SRT and allows it to scale up to the number of updates.
Finally, Rime exploits edge resources and multi-scheme
communication between physically distant nodes in order
to overcome the original limitations in the radio-based
transmission design of SRTs.

5 RELATED WORK

Rime combines ideas from multiple subfields. This section
covers the related work, as well as the differentiating factors,
towards envisioning and implementing Rime.

Wireless Sensor Networks TinyDB [12] coined the term
of Acquisitional Query Processing (ACQP) for WSNs. It
is one of the earliest attempts to utilize the inherent ability
of sensors of controlling where, when, and how frequently to
physically acquire values as part of TinyOS. In that context,
TinyDB uses SRTs to address the question of where to
sample data and discard areas that are not relevant to the
active query. In Rime, we extend SRTs by allowing the
exchange and update of routing trees between nodes in

7 13 15 21 40 73
Topology by number of nodes

0

10

20

30

40

50

60

Nu
m

be
r o

f m
es

sa
ge

 tr
an

sm
iss

io
ns

Total transmissions per node

Figure 6: Average number of message transmissions per
node during the first 20s of deployment

different physical locations.
In-Network Processing and Protocols The sensor-

cloud, an amalgamation of heterogeneous resources, utilizes
different communication models depending on the location.
On one hand, edge nodes tend to utilize a more relaxed
approach to connectivity, in order to handle movement
and transitivity. On the other hand, edge gateways and
cloud nodes assume robust interconnects. Existing work
on WSNs lead to the creation of power-sensitive protocols.
Trickle [10] aids synchronization of state in a distributed
WSN. It performs a “polite gossip” between nodes. The
protocol aims to quickly detect and resolve an inconsistent
state within the network while performing as few message
exchanges as possible. Trickle offers a trade-off between
quick adaption to changed state and maintaining a low
messaging- and processing-load. However, the protocol
assumes only a multi-hop communication style, which is
not the case in Rime. The protocol is not fit for an Edge
deployment as it cannot exploit the ability to target different
physical locations from a gateway node. Rime accounts for
non-broadcast communication in its core design. This way
a lot of multi-hop communication is reduced and nodes can
have better routing information available anytime.

Mobility-Aware Stream Processing Mobility-Aware
Stream Processing refers to Stream Processing Engines
(SPEs) that process tasks on mobile nodes first. This is
achieved by distributing workload among nodes or providing
a unified view on the available resources. Our work is
similar to systems that focus on maximizing routing and
path diversity. Frontier [15] is a stream processing engine
for the IoT. Frontier utilizes a modified back-pressure
routing algorithm for load balancing between nodes.
Frontier deploys query operators across multiple nodes,
thus replicating the dataflow graph. This enables parallel
processing of data by sending batches of data to replicated
operators on distinct nodes. This approach also helps in

67



Open Journal of Internet of Things (OJIOT), Volume 7, Issue 1, 2021

case of node failures, because the replication of operators
enables re-routing. However, if a query path in Frontier
becomes unavailable due to a node failure, the same path
is not available for the system to use, even if it recovers.
Therefore, Frontier addresses the challenge of failing nodes
in the IoT only partially compared to the always-updating
approach of Rime. In Rime, information propagate from the
nodes themselves, which are also responsible for updating
their list of connections. By propagating this list to other
nodes, based on the tracking policy, Rime ensures the path
will be available again after recovery.

Similarly to Frontier, R-MStorm [5] utilizes the notion of
path diversity for data flowing from the sources in the edge
to the sinks in the cloud. R-MStorm follows a weighted-link
strategy, where it gives higher weights to links that have been
known to be in “good” quality over time. R-MStorm does not
provide any guarantees at the level of the source, while Rime
allows for reconnection of nodes regardless of their type.

NebulaStream [23, 25] is an SPE whose goal is the
integration of the heterogeneous hardware in an IoT
deployment under the same runtime. NebulaStream exploits
any hardware capabilities in order to further optimize queries
and perform runtime re-optimizations. Rime can enhance
the networking stack of NebulaStream, as NebulaStream
does not contain the notion of SRTs. By doing so, Rime
can make NebulaStream more robust under heterogeneous
networking schemes and strengthen its mobile processing
capabilities even under frequent failures.

6 CONCLUSION AND FUTURE WORK

In this paper, we proposed Rime, a geo-distributed approach
to propagating routing information efficiently in an IoT
environment with heterogeneous communication schemes.
Rime copes with a volatile topology while also reducing
communication costs. Our work extends concepts from
distributed sensor networks to in-application routing while
accounting for the complex needs of an IoT environment.
We show that Rime reduces message overhead for queries
by up to 82.65% by controlling the parent selection. Rime
enables fast updates over a dynamic topology through its
efficient node tracking process and bridges the gap between
WSNs and post-cloud paradigms.

As future work, we plan to extend our node tracking policy
and re-design Rime as a drop-in networking component
for SPEs. This approach will allow for a tighter coupling
of an optimizer of the SPE with Rime when making routing
decisions. The optimizer will benefit from Rime by getting
timely topology updates and offload reconfigurations.

ACKNOWLEDGEMENTS

The authors would like to thank Moysis Symeonides
and Daniele Miorandi for their comments, feedback, and
constructive criticism during the writing of the paper.
This work is part of a project that has received funding
from the European Union’s Horizon 2020 researchand
innovation programme under the Marie Skłodowska-
Curiegrant agreement No 765452. The information and
views set out in this publication are those of the author(s) and
do not necessarily reflect the official opinion of the European
Union. Neither the European Union institutions and bodies
nor any person acting on their behalf may be held responsible
for the use which may be made of the information contained
therein. This work is supported by the German Ministry
for Education and Research as BIFOLD (01IS18025A,
01IS18037A) and the German Federal Ministry for
Economic Affairs and Energy as ExDra (01MD19002B).

REFERENCES

[1] C. C. Aggarwal, Managing and mining sensor data.
Springer Science & Business Media, 2013.

[2] I. F. Akyildiz, W. Su, Y. Sankarasubramaniam, and
E. Cayirci, “Wireless sensor networks: a survey,”
Computer Networks, 2002.

[3] P. Bernstein, S. Bykov, A. Geller, G. Kliot, and
J. Thelin, “Orleans: Distributed virtual actors for
programmability and scalability,” MSR-TR-2014-41,
2014.

[4] F. Bonomi, R. Milito, J. Zhu, and S. Addepalli, “Fog
computing and its role in the internet of things,” in
SIGCOMM MCC, 2012.

[5] M. Chao and R. Stoleru, “R-mstorm: A resilient
mobile stream processing system for dynamic edge
networks,” in ICFC, 2020.

[6] D. Charousset, T. C. Schmidt, R. Hiesgen, and
M. Wählisch, “Native actors – a scalable software
platform for distributed, heterogeneous environments,”
in SPLASH AGERE, 2013.

[7] C. Hewitt, P. Bishop, and R. Steiger, “A universal
modular actor formalism for artificial intelligence,” in
IJCAI.

[8] B. Lantz, B. Heller, and N. McKeown, “A network
in a laptop: Rapid prototyping for software-defined
networks,” in SIGCOMM HotNets, 2010.

[9] A. Lerner, R. Hussein, and P. Cudré-Mauroux, “The
case for network accelerated query processing,” in
CIDR, 2019.

[10] P. Levis, E. Brewer, D. Culler, D. Gay, S. Madden,
N. Patel, J. Polastre, S. Shenker, R. Szewczyk, and

68



D. Giouroukis, J. Jestram, S. Zeuch, V. Markl: Streaming Data through the IoT via Actor-Based Semantic Routing Trees

A. Woo, “The emergence of a networking primitive
in wireless sensor networks,” Communications of the
ACM, 2008.

[11] Y. Li, Q. Li, Z. Zhang, G. Baig, L. Qiu, and S. Lu,
“Beyond 5g: Reliable extreme mobility management,”
in SIGCOMM, 2020.

[12] S. R. Madden, M. J. Franklin, J. M. Hellerstein, and
W. Hong, “Tinydb: an acquisitional query processing
system for sensor networks,” TODS, 2005.

[13] J. McArthur, A. Chandrasekaran, and T. Bittman,
“Predicts 2021: Cloud and edge infrastructure,”
Accessed 2021-04-05. [Online]. Available:
https://www.gartner.com/en/documents/3994091/
predicts-2021-cloud-and-edge-infrastructure

[14] G. Mühl, L. Fiege, and P. Pietzuch, Distributed
event-based systems. Springer Science & Business
Media, 2006.

[15] D. O’Keeffe, T. Salonidis, and P. Pietzuch, “Frontier:
resilient edge processing for the internet of things,”
VLDB, 2018.

[16] M. Peuster, H. Karl, and S. v. Rossem, “MeDICINE:
Rapid prototyping of production-ready network
services in multi-PoP environments,” in IEEE
NFV-SDN, 2016.

[17] P. Pietzuch, J. Ledlie, J. Shneidman, M. Roussopoulos,
M. Welsh, and M. Seltzer, “Network-aware operator
placement for stream-processing systems,” in ICDE,
2006.

[18] M. Satyanarayanan, P. Bahl, R. Caceres, and N. Davies,
“The case for vm-based cloudlets in mobile computing,”
IEEE Pervasive Computing, 2009.

[19] W. Shi, J. Cao, Q. Zhang, Y. Li, and L. Xu, “Edge
computing: Vision and challenges,” IEEE Internet of
Things Journal, 2016.

[20] M. Symeonides, Z. Georgiou, D. Trihinas, G. Pallis,
and M. D. Dikaiakos, “Fogify: A fog computing
emulation framework,” in Symposium on Edge
Computing (SEC). IEEE/ACM, 2020.

[21] A. Woo and D. E. Culler, “A transmission control
scheme for media access in sensor networks,” in
MobiCom, 2001.

[22] M. Yuriyama and T. Kushida, “Sensor-cloud
infrastructure-physical sensor management with
virtualized sensors on cloud computing,” in NBiS, 2010.

[23] S. Zeuch, A. Chaudhary, B. Monte, H. Gavriilidis,
D. Giouroukis, P. Grulich, S. Breß, J. Traub, and
V. Markl, “The nebulastream platform: Data and
application management for the internet of things,” in
CIDR, 2020.

[24] S. Zeuch, B. D. Monte, J. Karimov, C. Lutz, M. Renz,
J. Traub, S. Breß, T. Rabl, and V. Markl, “Analyzing
efficient stream processing on modern hardware,”
VLDB, 2019.

[25] S. Zeuch, E. T. Zacharatou, S. Zhang, X. Chatziliadis,
A. Chaudhary, B. Del Monte, D. Giouroukis, P. M.
Grulich, A. Ziehn, and V. Mark, “Nebulastream:
Complex analytics beyond the cloud,” VLIoT, 2020.

[26] K. Zhang, D. Zhuo, and A. Krishnamurthy, “Gallium:
Automated software middlebox offloading to
programmable switches,” in SIGCOMM, 2020.

69

https://www.gartner.com/en/documents/3994091/predicts-2021-cloud-and-edge-infrastructure
https://www.gartner.com/en/documents/3994091/predicts-2021-cloud-and-edge-infrastructure


Open Journal of Internet of Things (OJIOT), Volume 7, Issue 1, 2021

AUTHOR BIOGRAPHIES

Dimitrios Giouroukis is a Ph.D.
candidate at the DIMA group (TU
Berlin). His research interests
include adaptive sensor data
management, stream processing,
and the IoT. He got his M.Sc. in
Computer Science from Aristotle
University of Thessaloniki.

Johannes Jestram studies
Information Systems Management
(ISM) in the Master programme at
Karlsruhe Institute of Technology.
His interests include distributed
data processing and computer
vision. He got his B.Sc. in ISM at
TU Berlin and wrote his Bachelor
thesis at the DIMA group.

Steffen Zeuch is a Senior
Researcher at the DIMA group
(TU Berlin) and IAM group
(DFKI). His research interests are
modern hardware and the IoT. He
published research papers on query
optimization and execution as well
as novel system architectures. He
did his Ph.D. in Computer Science

at Humboldt University Berlin.

Volker Markl is a Full Professor
and Chair of the Database Systems
and Information Management
(DIMA) Group at TU Berlin,
Chief Scientist and Head of the
Intelligent Analytics for Massive
Data Research in DFKI, and
Director of the Berlin Institute for
the Foundations of Learning and

Data (BIFOLD). He has published numerous research papers
on indexing, query optimization, lightweight information
integration, and scalable data processing. He is a Fellow of
the ACM as of 2021.

70


	Introduction
	Background
	Networking Model
	Semantic Routing Trees
	Parent Selection
	Actor Networking

	Rime
	Architecture
	Parent Selection in Rime
	Tracking Policy

	Evaluation
	Test Environment
	Exploration of Emulation Boundaries
	Failure Recovery
	Efficient Query Dissemination
	Scalability and Maintenance Overhead
	Geo-spatial Movement of Nodes

	Related Work
	Conclusion and Future Work

