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ABSTRACT

The Internet of Things (IoT) comprises an increasing number of low-power and low-cost devices that autonomously
interact with the surrounding environment. As a consequence of their popularity, future IoT deployments will be
massive, which demands energy-efficient systems to extend their lifetime and improve the user experience. Radio
frequency wireless energy transfer has the potential of powering massive IoT networks, thus eliminating the need for
frequent battery replacement by using the so-called power beacons (PBs). In this paper, we provide a framework for
minimizing the sum transmit power of the PBs using devices’ positions information and their current battery state.
Our strategy aims to reduce the PBs’ power consumption and to mitigate the possible impact of the electromagnetic
radiation on human health. We also present analytical insights for the case of very distant clusters and evaluate their
applicability. Numerical results show that our proposed framework reduces the outage probability as the number of
PBs and/or the energy demands increase.
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1 INTRODUCTION

The recent advances in wireless communications
technologies have brought a plethora of new
opportunities for developing the so-called Internet
of Things (IoT). In short, IoT defines a network of

This paper is accepted at the International Workshop on Very
Large Internet of Things (VLIoT 2021) in conjunction with the
VLDB 2021 conference in Copenhagen, Denmark. The proceedings
of VLIoT@VLDB 2021 are published in the Open Journal of
Internet of Things (OJIOT) as special issue.

uniquely identified physical objects that autonomously
sense, actuate, compute and exchange information
throughout the Internet [33]. In general, “an object” can
be anything from a smart ring, electronic appliances,
or sensors that feedback environmental measurements.
Currently, this paradigm has taken over in many spheres
of our daily life and society such as in industrial
automation, smart healthcare, supply chain, smart
infrastructure, and social & business applications [13].
Not surprisingly, the number of connected devices is
constantly growing, and by 2030 the estimations target
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massive deployments of 71 billion IoT devices [15].
One of the big challenges of such applications is

extending their lifetime as IoT devices are generally
powered by tiny batteries. Besides, regular maintenance
becomes impractical or too costly in most cases due
to the massive number of devices or the hard-to-reach
installation conditions, such as in medical implants,
waste management, and civil infrastructure monitoring
applications [29]. This issue can cause service
interruptions due to power outages in the network, which
degrades the end-user experience and hence lowers the
profits of the networks’ operators [34]. In multi-hop IoT
applications, for instance, power outages in few devices
can affect the network’s performance, as some of them
have the role of forwarding the packets of the far away
devices to the central receiver [17].

To extend the lifetime of IoT applications, radio-
frequency (RF) wireless energy transfer (WET)
envisions a network where the so-called power beacons
(PBs) wirelessly replenish devices’ batteries or even
sustain the operation of batteryless devices by means
of electromagnetic waves [26]. Moreover, RF-WET
exhibits other desirable features such as energy
broadcast to power multiple users simultaneously,
service provisioning under non-line-of-sight conditions,
and the potential to charge moving IoT devices [22, 35].
By making RF-WET a ubiquitous service, one can
deal with the high heterogeneity of IoT networks and
guarantee different levels of quality-of-service (QoS) in
terms of energy demands. Hence, as RF-WET reduces
frequent maintenance, it could considerably diminish
water and air pollution caused by toxic chemicals that
are released into the environment after inadequate
battery recycling [20].

A key component in RF energy harvesting (EH)
systems is the rectenna, which comprises [6]: i)
receiving antenna(s); ii) a matching network; iii) a
rectifier circuit; and iv) a low-pass filter. At the
receiver, the rectenna turns the microwave energy into
a direct current (DC) used in most of the circuits
of IoT devices. Compared with traditional wireless
information decoders, rectennas require a significant
amount of incident RF power to provide a non-zero
DC output, typically in the order of −10 dBm [3].
However, the channel impairments such as distant-
dependent loss, large- and small- scale fading processes
cannot be often overcome to deliver such incident power
levels by deliberately increasing the transmit power. In
this direction, energy beamforming algorithms offer a
promising solution as the intention is to steer sharp
energy beams directly to the intended devices avoiding
spreading the energy where there is no device [2].
However, realizing efficient energy beamforming may be
challenging in practical RF-WET systems. The reasons

are:

• On one hand, accurate CSI is required, which is
difficult/costly to acquire, and its benefits vanish, in
massive deployments [22]. For this reason, some
initiatives have been proposed to prescind from
instantaneous CSI at the price of transmitting with
suboptimal beamforming strategies, e.g., [24, 32],
using statistical CSI and received energy feedback,
respectively. It is worth noticing, that although
both are sub-optimal strategies, their performance
becomes asymptotically optimal in the presence of
strong line-of-sight components and large channel
training periods, respectively.

• On the other hand, energy beamforming at high
transmit power increases the RF electromagnetic
field radiation (RF-EMF) in relatively small
incident areas whose risk on human health has
concerned the research community [11, 36, 37]. To
evaluate the impact of the RF signals on the human
health, the most frequently used metrics are: the
specific absorption rate (SAR) and the plane-wave
equivalent power density (PD) [27].

Hence, the transmission schemes for enabling massive
WET can be designed instead, over the basis of side-
information such as devices’ positions, statistical CSI,
or even received energy feedback from the IoT devices
[25]. At the same time, these methods must ensure
sufficient energy to meet stringent QoS requirements
while guaranteeing the human safety against high RF-
EMF levels exposure. Last, but not less important,
the algorithms for efficiently deploying the PBs also
play a key role to eliminate blind spots in the network,
and to distribute the energy according to the specific
requirements.

1.1 Related Work

The research community has put effort into the design
of PBs’ deployment algorithms to meet stringent QoS
requirements in the coming IoT use cases, e.g., [9,
10, 12, 30, 31]. The authors in [12] proposed a PBs’
deployment algorithm that guarantees a network-wide
energy availability at the devices while considering the
installation/maintenance costs of PBs. They conducted
experiments to show that: i) the complexity of proposed
algorithms decreases as the network densifies since
each PB charges more devices simultaneously; ii) PBs
installation cost gets more expensive as the per-device
minimum energy requirements increase; and iii) when
using directional antennas at the PBs, the deployment
cost reduces as the beamwidth of the antennas slim
down at the price of reducing the incident RF power
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in the network. In [10], the authors considered the
scenario where a mobile PB charges the service area
while moving along the area perimeter to minimize
the charging time. Therein, the authors divided the
service area into smaller sub-partitions and focused on
the instantaneous worst position, which changes as the
PB moves. In [9], the authors studied the PBs’ placement
problem aimed to maximize the overall harvested
energy. They proposed an algorithm for optimizing
the positions and orientations of PBs using a piecewise
linear EH model, and evaluated its performance using
both numerical simulations and field experiments. In
addition, [31] proposed an algorithm for finding the
positions and orientation of a set of PBs with different
hardware capabilities to maximize the overall harvested
energy. Finally, the optimal deployment of PBs for
charging a massive IoT network was studied in [30].
Therein, the authors optimized the PBs’ positions to
maximize the foreseen minimum average RF energy
available in the area, since neither instantaneous CSI
nor devices’ locations information was available. Based
on simulation results, the authors promoted distributed
deployments of PBs over the installation of a centred
PB radiating with the same total power to overcome the
dominant impact of the distance-dependent loss.

Moreover, other works have also considered safety
metrics in the WET optimization. For instance, in
[37] the authors studied a smart healthcare application
where PBs charge wearable devices. Therein, they
minimize the maximum incident power while providing
sufficient energy for the wearables. In [36], the authors
proposed a framework for optimizing the position and
height of a distributed antenna system, where each
antenna is connected via underground lines to a central
PB, considering a safe radiation level. In [11], it is
maximized the network-wide harvested energy such that
the probability of exceeding a certain RF-EMF is met
[27].

It is worth noticing that none of these works
exploits simultaneously sensors’ position and battery
state information. Hence, their performance has limited
capabilities to act proactively to face the imminent
“death” of one of its IoT devices after the total discharge
of its battery.

1.2 Contributions

Different from previous works, herein we aim to
minimize the sum transmit power of the PBs such
that the energy available at devices’ batteries suffices
for proper operation. We exploit sensors’ position
information to divide the IoT network into clusters
each headed by a PB; and the current battery state to
proactively optimize the power allocation strategy.

Our main contributions are summarized below.

• We propose a framework for optimizing PBs’
positions and power allocation based on the
devices’ positions and their current battery state;

• We provide analytical approximations to the power
allocation problem that holds when the contribution
of the head PBs dominates the incident RF power
within their corresponding cluster;

• Our optimization strategy has two main
implications: i) to reduce the energy consumption
at the PBs, possibly powered by a limited source,
and ii) mitigate the possible impact of the EMF
radiation on human health;

• Our results show that the outage probability
decreases as the number of deployed PBs increases
and/or the energy demands grow with respect to the
minimum battery level for proper operation.

1.3 Organization of the Paper

Next, Section 2 introduces the system model, and
Section 3 presents the problem formulation. We discuss
the methods for finding the optimal PBs’ positions and
computing the power allocation in Section 4, while in
Section 5 we discuss some practical considerations for
implementing our strategy. In Section 6, we show
and analyze numerical results, and finally, Section 7
concludes the paper.

Notation: Herein, we use boldface lowercase letters
to denote column vectors, e.g., x = {xi}. The operator
| · | can represent either the absolute value for scalars or
the cardinality of a set, while ‖x‖p= (

∑
∀i≥1 |x

p
i |)1/p

denotes the `p-norm [18, eq. (1)]. Moreover, P[A] is the
probability of event A and E[x] denotes the expectation
of the randon variable x, whereas O(·) is the big-O
notation, which specifies worst-case complexity. Table 1
lists the symbols used throughout the paper.

2 SYSTEM MODEL

Let us consider that a set B = {PBi|i = 1, 2, . . . , |B|} of
PBs wirelessly powers a set S = {Sj |j = 1, 2, . . . , |S|}
of IoT devices deployed in a certain area A as shown in
Figure 1. Each PBi is equipped with an omnidirectional
antenna and transmits an energy-carrying signal xi that
satisfies E[|xixi′ |] = 0 with i 6= i′, and E[|xi|2] = pi,
∀PBi,PBi′ ∈ B, where pi denotes the transmit power.
We assume that the positions of the IoT devices are
known1 and denoted by uj ∈ R2, while PBs locations
1 In many massive IoT applications, devices tend to have fixed

positions or limited mobility, therefore position knowledge can be
acquired at deployment or estimated via previous transmissions [23].
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Table 1: List of symbols

Parameter Definition
Sj jth IoT device in the set S
PBi ith PB in the set B
%j,i path-loss function of the PBi → EHj link
dj,i distance of the PBi → EHj link
{pi} transmit power of PBi

pmax PBs’ maximum transmit power
xi energy-carrying signal transmitted from PBi

τ duration of a charging time slot
t time slot index
{uj} IoT devices’ locations
{ui} PBs’ positions
E

(t)
j battery level of Sj in the time slot t

α
(t)
j activation state of Sj in the time slot t

∆E
(t)
j energy consumed by Sj during the time slot t

ξ
(t)
j harvested energy of Sj during the time slot t
ξ̃
(t)
j estimated ξ(t)j for the time slot t
G,G−1 EH function and its inverse respectively
Gi antenna gain of PBi

Gj antenna gain of Sj

Eth target energy level at the batteries
Emax devices’ battery capacity
Pactive devices’ power consumption in active mode
Psleep devices’ power consumption in sleep mode

Figure 1: System model

have coordinates ui ∈ R2, both in the Cartesian system.
The distance of the link PBi → Sj is denoted by dj,i =
‖uj − ui‖2, while its path loss is given by

ρj,i = F(dj,i). (1)

Each IoT device Sj carries a rechargeable battery and
harvests

ξ
(t)
j = τG

 |S|∑
i=1

p
(t)
i ρj,i

 , (2)

energy units in a time slot t of duration τ . Herein,
we consider that each charging time slot is sufficiently
long so channel fluctuations may approximately average
out, thus, impacting little the performance. The function
G : R+ → R+ characterizes the non-linear energy

harvesting model of the IoT devices and distinguishes
three regions [7]: i) zero-output power, in which the
incident RF power is below the sensitivity of the EH
circuit; ii) input power-dependent region, where the
output DC power is an increasing non-linear function of
the input RF power; iii) saturation region, in which the
output DC power becomes constant and independent of
the input signal.

Finally, the residual battery energy of device Sj is
denoted by Ej , and its current activation state by αj ∈
{0, 1}. In idle/sleep mode (αj = 0), the power
consumption of IoT devices is Psleep, whereas in active
mode (αj = 1), it is Pactive. Hence, at the beginning of
the charging time slot t + 1, the battery level is updated
according to

E
(t+1)
j ← min(E

(t)
j + ξ

(t)
j −∆E

(t)
j , Emax), (3)

where

∆E
(t)
j =τ

[
(1− α(t)

j )Psleep + α
(t)
j Pactive

]
, (4)

corresponds to the consumed energy during the time slot
t, and Emax is the battery capacity.

Moreover, we consider that the devices feedback
their current battery state over reliable channels. This
information is used by the PBs to optimize their power
allocation strategy.

3 PROBLEM FORMULATION

Our main goal is to minimize the sum PBs’ transmit
power such that the actual energy in the batteries
Ej ,∀Sj ∈ S, is above an energy threshold Eth at the
end of the charging time slot. The optimization problem
can be formulated as follows

P1 : min.
{p(t)

i },{ui}

B∑
b=1

p
(t)
i (5a)

s.t. E
(t−1)
j + ξ̃

(t)
j ≥ Eth, ∀Sj ∈ S, (5b)

p
(t)
i ≤ pmax, ∀PBi ∈ B. (5c)

Notice that the constraint (5b) considers an estimate
harvested energy ξ̃

(t)
j given by (2), that should suffice

to replenish devices’ batteries above the threshold Eth,
during the next time slot. Herein, we consider F(·) to
be known in advance via prior measurement campaigns
[5] and using machine learning/artificial intelligence [1]
methods, but in practice this will never be exact, and
estimation errors will affect somewhat the performance.
Moreover, the constraint (5c) guarantees that the transmit
power doesn’t violate PBs’ hardware specifications or
EMF regulations.
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This problem is non-convex and highly non-linear
in general due to the relationship between the distance
and the path-loss function and the non-linearity of the
function G(·), and to the best of the authors’ knowledge
it cannot be written in convex form. Therefore, a global
optimum solution is not guaranteed by any solver.

4 OPTIMIZATION FRAMEWORK

To solve P1, we propose a two-step method: i) first
optimize PBs’ positions by taking advantage of the
knowledge about devices’ positions while keeping the
transmit power constant; and then ii) solve the optimal
power allocation problem.

4.1 PBs Deployment Optimization Based on
Clustering

Herein, we utilize the well-known K-Means clustering
algorithm [21] to place the PBs as head clusters.
Note that since the path-loss function depends on the
Euclidean distance between PBs and IoT devices, the K-
Means approach seems an appealing choice for solving
our problem. However, we propose a slight modification
of the original algorithm. Our approach aims to
minimize the distance from each PB to the farthest
sensor in its cluster, which impacts the ultimate incident
power. Thus, the proposed algorithm re-computes the
PBs’ positions as Chebyshev centres.

Let Si ⊂ S denotes the subset of IoT devices
associated with PBi after running the K-Means
algorithm, and given by

Si = {uj : ‖uj − ui‖2 ≤ ‖uj − ui′‖2}, (6)

with i′ 6= i, ∀PBi,PBi′ ∈ B. Then, each K-Chebyshev
PBs positions is updated according to

ui = argmin
u∈R2

max
Sj∈Si

‖uj − u‖2, (7)

which can be found by solving the following equivalent
convex problem

P2 : min.
ui,ri

ri (8a)

s.t. ‖uj − ui‖2 − ri ≤ 0, ∀Sj ∈ Si, (8b)

where
√
ri is the radius of the minimal-radius

circumference enclosing all the devices in Si. Since P2
is now convex, we can solve it using standard solvers
packages such as CVX [8, 14].

Algorithm 1 details the steps for determining the PBs’
positioning based on clustering. Notice that the step 5
determines the cluster each device belongs to, while and
step 6 updates the clusters’ centroids according to the

Algorithm 1: Clustering-based PBs deployment

1: Input: {uj}, µ
2: Set k = 0
3: Initialize {u0

i }
4: repeat
5: Compute S(k)i according to (6)
6: u

(k+1)
i = 1

|S(k)
i |

∑
uj∈Sk

i
uj

7: k ← k + 1
8: until ‖u(k+1)

i − u
(k)
i ‖2 ≤ µ

9: Solve P2
10: Output: {u(k+1)

i }

mean of each cluster. The loop ends when the centroids’
positions do not change significantly, according to the
error parameter µ. Finally, once the cluster assignment
is done, the algorithm re-computes the clusters’ centroids
with the solutions of problem P2.

4.2 PBs’ Power Optimization

Once we find the PBs’ positions, P1 becomes a linear
programming (LP) problem in {pi} since (5b) is turned
into a linear system in the form

|B|∑
i=1

p
(t)
i ρj,i ≥ G−1

(
Eth − E(t−1)

j

τ

)
, ∀Sj ∈ S, (9)

where G−1(·) denotes the inverse of the EH function.
Then, the resulting LP with |B| variables and |S| +
|B| inequality constraints can be efficiently solved
using interior-point methods with an accuracy ε in
O(
√
|S|+ |B| log (1/ε)) iterations, where each iteration

demands O((|S|+ |B|)3) arithmetic operations [28].

4.2.1 Approximate Power Allocation Strategy

It is worth noticing that as the clusters are more
separated, the contribution of the head PB dominates
the incident RF power in its corresponding cluster. This
might be the case when the IoT network has a highly
sparse deployment of EH IoT devices arranged in very
separated clusters, or when the distance-dependent loss
is sufficiently strong to neglect the power contribution
from neighbour clusters. In both cases, we can neglect
the contribution of the neighbour PBs, and the linear
system (9) reduces to

p
(t)
i ρj,i ≥ G−1

(
Eth − E(t−1)

j

τ

)
, ∀Sj ∈ Si, (10)

p
(t)
i

(a)
= max

j

[
ρ−1j,i G

−1

(
Eth−E(t−1)

j

τ

)]
, (11)
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where (a) comes from considering the device with
the higher product of path loss and energy demands.
Observe that if pi, computed as in (11), is not greater
than pmax, it constitutes a low-complexity solution to
the power allocation problem. Otherwise, the resulting
power allocation is not feasible in the sense that PBi is
just allowed to transmit with a maximum power pmax,
which in this case does not suffice the devices’ energy
requirements. In any case, the power allocation can be
set as

p
∗(t)
i = min(p

(t)
i , pmax) (12)

to allow satisfying, at least partially, the devices’ energy
requirements. Notice that, to obtain the optimal solution
{p∗(t)i } we just require at most O(|S|+ 2|B|) arithmetic
operations.

5 PRACTICAL CONSIDERATIONS

Herein, we discuss the practicalities for implementing
the proposed strategy. First, notice that clustering
requires devices’ location information, which can
be provided during the network planning in static
deployments. However, in quasi-static or mobile
scenarios, clustering as a positioning strategy may
require that also the PBs can move/fly to update their
position as the network changes.

Another detail to consider is that battery state
feedback is subject to the channel impairments and
hence, not all PBs could reliably receive it all the
time. In this direction, we propose that PBs collect
devices’ battery state and validate this information in
a distributed way based on previous updates, statistics
of devices’ activation probabilities, and devices’ power
consumption. For instance, the PBs can have a highly
reliable link between them, over which they can run a
blockchain-based lightweight algorithm to validate all
energy transactions [16].

Finally, due to the inherent characteristics of the EH
circuit the charging period may take more than one time
slot. That is, if the energy requirements of an IoT device
surpass the amount it can harvest during the time τ ,
then the optimization problem will be infeasible and the
system will have to schedule additional time slots, until
the device finally meets the energy requirements.

6 NUMERICAL RESULTS

In this section, we present numerical results on how to
address P1. The default parameters for simulations are
listed in Table 2 unless we establish the contrary.

For the EH circuit of the IoT devices we adopt the

Table 2: Default simulation parameters

Parameter Value Parameter Value
A 30× 15 m2 τ 120 s

Emax 1 J Psleep 10 µW
αj ∼ Beta(0.5, 0.5) Pactive 1 mW
f 2.4 GHz GiGj 24
S 64 pmax 4 W

Figure 2: Clustering-based PBs’ positioning
approach, where the circumferences represents the
clusters’ limits and the numbers their corresponding
index.

sigmoidal-based model in [4]

G(x) =
$(1− e−c1x)

(1 + e−c1(x−c0))
, (13)

whose inverse is

G−1(y) = − 1

c1
ln

(
$ − y

yec0c1 +$

)
, (14)

where $ = 10.73 mW is the saturation level, x is the
incident RF power, y the harvested energy, and c0 =
5.365, c1 = 0.2308 are unitless constant obtained by
standard curve fitting using the measurement data in
[19].

As a metric of QoS, we consider the energy outage
probability. That is, an IoT device is in outage if the
actual battery state at the beginning of the charging slot
is insufficient for it to operate for τ time units. That is,

Pj = P[E
(t)
j < ∆E

(t)
j ], (15)

and the average outage probability, i.e., the average
probability of having one device in outage, is

Pout = E[Pj ]. (16)

Finally, we adopt the log-distance path-loss model

ρj,i = GiGj

(
λ

4π

)2

d−2.7j,i , (17)

88



O. M. Rosabal et al.: Massive Wireless Energy Transfer with Multiple Power Beacons for Very Large Internet of Things

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

12

13

14

15

16

17

18

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

10
-2

10
-1

Figure 3: Network performance vs Eth, for |B| = 15,
in terms of: i) sum transmit power (top) and ii) outage
probability (bottom).

where Gi and Gj denote the antenna gains of PBi and
Sj , respectively, and λ is the wavelength of the energy-
carrying signals.

Figure 2 depicts the clustering strategy for positioning
the PBs using both the original K-Means algorithm and
the clustering with K-Chebyshev centroids.

The reader can notice that both strategies lead to
different PBs deployments. Indeed, taking the seventh
cluster as an example, we can see that the K-Chebyshev
centroid has a lower maximum intra-cluster distance
with respect to the K-Means solution.

Figure 3 illustrates the impact of the energy threshold
Eth on the optimal sum transmit power and the
outage probability for |B| = 15. As the devices’
energy demands are tightened, the PBs’ transmit power
increases and the outage probability decreases. In
particular, K-Chebyshev centering achieves better results
in almost all cases, as it maximizes the minimum
incident RF power within each cluster. Moreover,
the approximation (11) achieves lower values of sum
transmit power at the cost of a poorer performance in
terms of energy outage probability since it considers
each cluster as an independent network. From these
plots, we can define the optimal energy threshold E∗th
as the value from which the outage probability doesn’t
improve significantly. For this particular deployment, we
have E∗th = 0.4 J approximately.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

6
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18

20

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
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10
-2

10
-1

10
0

Figure 4: Network performance vs |B|, for Eth =
0.25 J , in terms of: i) sum transmit power (top) and
ii) outage probability (bottom).

Although the approximation (11) performs poorly for
a relatively large number of PBs, we can observe in
Figure 4 that when |B| ≤ 6 it holds accurate due to
the very low contribution of neighbor clusters. The
curve |B|pmax delimits the feasible region over which the
PBs can transmit their energy-carrying signals without
violating the constraint (5c).

7 SUMMARY AND CONCLUSIONS

In this paper, we studied the sum power minimization
problem of PBs for powering an IoT deployment. For
solving this problem, we first used the devices’ positions
information to arrange clusters in the network, each
headed by a PB, and then optimize the power allocation
strategy based on the current devices’ battery states. In
order to obtain fairer results for the worst-positioned
device within each cluster, we proposed a modification
of the traditional K-Means algorithm for re-computing
the clusters’ centroids called K-Chebyshev centering.
Numerical results show that this approach achieves
better results in terms of outage probability with less sum
transmit power when there is a large number of PBs.
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