
© 2021 by the authors; licensee RonPub, Lübeck, Germany. This article is an open access article distributed under the terms and conditions of
the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).

Open Access

Open Journal of Internet of Things (OJIOT)
Volume 7, Issue 1, 2021

http://www.ronpub.com/ojiot
ISSN 2364-7108

Network Metrics Detection to Support Internet
of Things Application Orchestration

Thamires C. LuzA, Cı́ntia B. MargiA, Fábio L. VerdiB

AUniversidade de São Paulo, Av. Prof. Luciano Gualberto, tv 3, 158, São Paulo, Brazil,
{thamires.luz, cintia}@usp.br

BUniversidade Federal de São Carlos, Rodovia João Leme dos Santos, Sorocaba, Brazil, verdi@ufscar.br

ABSTRACT

Software Defined Wireless Sensor Networks (SDWSN) play an important role to serve as an infrastructure to Internet
of Things (IoT) applications. In order to improve coverage, reduce costs, and make better use of the available
resources, sharing the infrastructure among multiple applications is necessary. Works in the literature aim to
enable resource sharing by allocating applications dynamically according to the resources available on the node.
However, these works do not monitor if a node stops complying with application requirements once the application
is allocated. Thus, network metrics detection is essential to identify nodes that are not able to comply with the
application requirements. In this paper, we present the IT-SDN Manager architecture which is composed of a
monitoring module and a resource orchestrator. The monitoring module monitors the network metrics, enabling the
orchestrator to identify nodes that reach a certain threshold for energy available and packet loss. This threshold
configuration depends on the metric characteristics. For packet loss, we present a study showing how it should be
defined according to the network size and applications executed in the network. In order to evaluate the orchestrator
detection rate, we set two application requirements to identify nodes that reach 90% of available energy and packet
loss greater than the obtained threshold for each scenario studied. Results from the simulations executed show that
the resource orchestrator detects all the nodes that reach the available energy threshold, and at least 85%, with an
average of 97%, of the nodes that reach the packet loss threshold.

TYPE OF PAPER AND KEYWORDS

Regular research paper: management, network metrics detection, software defined wireless sensor networks

1 INTRODUCTION

Internet of Things (IoT) applications come across
in different fields, such as Smart Industry, Mobility,
Healthcare and Smart Cities. Each application has
different characteristics and requirements, what makes

This paper is accepted at the International Workshop on Very
Large Internet of Things (VLIoT 2021) in conjunction with the
VLDB 2021 conference in Copenhagen, Denmark. The proceedings
of VLIoT@VLDB 2021 are published in the Open Journal of
Internet of Things (OJIOT) as special issue.

devices and communication patterns behave differently.
For instance, an application designed to detect an
emergency, requires nodes to detect the event and
transmit the information with low delay. On the other
hand, applications monitoring pedestrians in a certain
region require more throughput [8].

Consider a Smart Campus scenario. The sensor
devices should be placed in specific locations according
to each application goal. For instance, one application
could target human movement detection, while other
application would focus on environmental monitoring,

93

http://creativecommons.org/licenses/by/4.0/
http://www.ronpub.com/ojiot


Open Journal of Internet of Things (OJIOT), Volume 7, Issue 1, 2021

Figure 1: Smart campus illustration

and a third one on monitoring water usage and waste
capacity [8]. Figure 1 depicts a small area with a
couple of buildings and different sensor devices. We
noticed that, in several locations, movement sensors
and environmental sensors are close together. Often
times, the same device is able to provide data for
both the movement detection and the environmental
monitoring applications. The costs to implement the
sensing grid and monitoring a large area increases
if we consider that each application would run on
different hardware. Furthermore, there might be areas
where only a transit network is needed to connect
different campus area. Thus, sharing the sensing and
communication infrastructure could considerably reduce
the costs. However, to do so, it is necessary to
consider the applications requirements and the hardware
resources.

Software Defined Wireless Sensor Networks
(SDWSN) are part of the infrastructure used to
sense data for IoT applications [14]. With the
increasing number of IoT applications, sharing
the sensor nodes among multiple applications is
necessary to reduce the investment in the infrastructure,
and improve coverage and resource utilization [1].
However, sharing the devices could lead to inefficient
resource utilization and network overload, given the
Wireless Sensor Networks (WSN) resource constrained
nature [11]. Moreover, without resource orchestration,
the application requirements could not be provided
by all nodes. Therefore, the use of efficient resource
allocation and management techniques is of pivotal
importance [13].

Virtualization is one way to accomplish IoT resource
sharing. In this approach the virtual devices are
implemented in the physical device according to its
resource availability. SD-IoT controller [11] aims to
enable resource sharing by orchestrating the sensor

nodes with dynamic application allocation. While SD-
IoT [11] relies on a controller behaving as an orchestrator
and their own protocol, Li and Zong [6] use the controller
to verify the energy available in the nodes to determine if
multiple applications could run in the same sensor nodes.

However, despite the fact that a sensor node is capable
of handling multiple application on its deployment, one
can not guarantee that the node will still comply with the
application requirements later on. For instance, available
energy decreases, noise might compromise a certain
region of the network, forwarding queues might become
full, network dynamics might change. To the best of
our knowledge, current works do not monitor and act
when a device allocated with multiple applications stops
complying with predetermined application requirements.
Thus, detecting nodes that do not comply with
application requirements becomes of critical importance
to orchestrate resource utilization, even after application
allocation.

In order to fill this gap, we propose a resource
orchestrator that periodically monitors the network and
detects when a node stops complying with application
requirements. Unlike previous works that use the control
plane to manage the network metrics, we propose and
evaluate an architecture whereby the management plane
is decoupled from the control plane. Therefore another
entity handles the management information, the IT-SDN
Manager. This manager has a REST API that enables the
applications to configure their requirements.

The orchestrator detects non-compliant nodes based
on a given threshold configured through the REST
API. In this work, we study application requirements
related to the energy level and packet loss in the nodes.
However, it is difficult to determine what threshold to use
for packet loss, since this depends on the network load
and behavior. Hence, we evaluate how applications and
network size impact the packet loss in order to identify
the threshold that the orchestrator should use to monitor.

The contributions of our work are:

1. The design, implementation, and evaluation of
an architecture whereby the management plane is
decoupled from the control plane. Therefore, the
manager entity in our architecture is responsible for
all metric monitoring and management information
unlike previous works that use the control plane to
manage the network metrics;

2. The design and implementation of the resource
orchestrator module to detect nodes on the network
that do not comply with application requirements.
The proposed resource orchestrator periodically
monitors the network to analyze if the nodes
comply with the application requirements; and

94



Thamires C. Luz et al.: Network Metrics Detection to Support Internet of Things Application Orchestration

3. A study about how applications and network size
impact the packet loss, in order to determine the
most suitable packet loss threshold for the resource
orchestrator detection.

To validate our proposal, we evaluate the impact of
the manager overhead (in terms of delivery rate, delay
and energy consumption) and the orchestrator module
detection performance. We use the IT-SDN [2] [3]
framework to enable SDWSN and the monitoring
module [7] in the management plane to obtain node
metrics for the resource orchestrator. The monitoring
module monitors energy level and packet loss metrics
to enable the orchestrator to identify nodes that reach
90% of available energy, and nodes that lose more than
the given threshold for application and network size.
Our results show that the resource orchestrator detects
the nodes that reach the available energy threshold, and
at least 97% of the nodes that reach the packet loss
threshold.

The paper is organized as follows. Section 2 presents
related work for management and orchestration. The
IT-SDN Manager and resource orchestrator module
are presented in Section 3. Section 4 describes the
methodology and experiments designed. Section 5
presents the study for packet loss behavior, while the
results are discussed in Section 6. Lastly, Section 7
presents conclusions and future works.

2 RELATED WORK

SDWSN benefits from the Software-Defined
Networking (SDN) paradigm to improve network
management and network configuration. The first
works [10] with the SDWSN paradigm focused on
achieving network management to improve energy
consumption. After that, research focus shifted to
resource sharing and application requirements [1]. Thus
one must understand how to share the same sensor nodes
between multiple applications without compromising
network performance.

SDNMM [9] is a modular management system for
SDWSN. It is implemented using IT-SDN framework
and a management service interface (MSI). MSI obtains
the application configuration, be it either tasks or
policies, and configures the nodes to execute it.
The controller is responsible for routing and cluster
management, as well. The SDNMM resource allocation
module is capable of adapting the packet rate based on
resource availability and improving task allocation based
on node capability.

Besides SDWSN, some works use sensor
virtualization to virtualize multiple sensors in the
physical node and then enable resource sharing. The

SD-IoT [11] controller is part of an architecture
that enables resource allocation dynamically by
virtualization. This controller acts both for routing
rules and application requirements orchestration. S-
MANAGE protocol transfers the application tasks to
virtual nodes that translate the commands to physical
devices. This architecture enables the same sensor
nodes to be used by multiple applications considering
the application requirements and the available node
capacity. However, this architecture does not detect
when a node stops complying with the application
requirements, which could lead to network overload.

Li and Zong [6] propose a resource allocation
strategy to meet the requirements of multiple concurrent
applications in the same node. This architecture
uses a central controller to schedule the tasks in
the virtualized node. According to the application
request, the central controller provides a service for
the specific application based on the given resource
allocation strategy. Therefore, the node can serve
multiple applications at the same time considering the
application requirements.

SensOrch [4] is a resource orchestration scheme that
aims to enable resource sharing for multiple applications
considering the Quality of Service requirements. To
ensure efficient resource utilization, SensOrch assigns
the physical sensor nodes to serve virtual sensor nodes
taking into account the application requirements and the
limited capacity to serve them.

These works present an architecture to enable
resource sharing through task allocation considering the
application requirements. However, after the task is
allocated, neither of them detect when a node stops
complying with application requirement. In addition
to ensuring that the node has resources available at
the application deployment, it is important to monitor
if the node continues to comply with application
requirements after the application allocation. Our
work periodically monitors the sensor nodes to fill this
gap. Therefore, our work differs from the previous
in three main aspects. First, we periodically monitor
node metrics to orchestrate the resources, and check if
the nodes comply with the predetermined application
requirements. Second, the controller is only responsible
for routing and topology, and the manager entity is
responsible for the management plane that could be
active or not. Third, we do not allocate applications
dynamically, but we detect when a node stops complying
with the application requirements.

95



Open Journal of Internet of Things (OJIOT), Volume 7, Issue 1, 2021

3 IT-SDN MANAGER

In general, the SDN approach separates the control and
data planes, enabling the devices to be programmed
with forwarding information. In the control plane, the
SDN controller obtains information about the network
topology, calculates routes, and sets all the flows used
to forward data and control messages. When a node
does not have information to forward a given packet, it
requests to the SDN controller.

We used the IT-SDN framework [2] [3] to control the
network topology, routing and enable SDWSN nodes.
IT-SDN has a clear separation of protocols to achieve
southbound communication (SB), neighbor discovery
(ND) and controller discovery (CD). The SB protocol is
used for the communication between the SDN controller
and the network devices. The ND protocol is used
to maintain node neighborhood information. And, CD
protocol is responsible for finding the next hop to reach
the controller. The IT-SDN monitoring module [7] is
responsible for collecting node information, and was
implemented as part of the controller.

RFC-7426 [12] recalls that “that the role of the
management plane has been earlier largely ignored
or specified as out-of-scope for the SDN ecosystem”.
The main characteristics used to differentiate the
control and management planes concerns the mechanics,
capabilities, and needs of each respective interface. They
are as follows: timescale, persistence and locality. Also,
as discussed in the RFC-7426 [12], “in the context of
the CAP theorem, if one considers partition tolerance
of paramount importance, traditional control-plane
operations are usually local and fast (available), while
management-plane operations are usually centralized
(consistent) and may be slow.” Thus, we propose the IT-
SDN Manager architecture to separate the management
functions from the SDN controller, and implement
improvements in the management plane.

The IT-SDN Manager architecture is based on the
RFC-7426 [12] which is illustrated in Figure 2.

The sensor nodes, depicted at the bottom, sense and
transmit data to the sink according to the application
characteristics. This communication is implemented
in the IT-SDN framework using the SB, ND and CD
protocols, as described before.

In the new architecture proposed in this paper,
we design and implement a manager entity that is
responsible for the management plane. The manager is
responsible for configuring the nodes and monitoring the
node metrics. Thus, the IT-SDN monitoring module that
was originally implemented in the controller was moved
to the manager entity. The node sends a management
packet with metric values to the manager every minute
and these values are stored in the manager database.

Figure 2: Architecture for IT-SDN Manager with the
Resource Orchestrator module

Each node maintains the following metric types:

• accumulated queue delay: the node maintains the
information about how long a packet waits in the
output queue before it is sent;

• number of data packets the node sent;

• energy available in the node;

• number of lost packets: packets that were dropped
in the receiving queue or in the transmission to
the wireless medium. It is accumulated during a
two-minute window and it considers both data and
control packets.

Moreover, we designed and implemented the
resource orchestrator within the IT-SDN Manager to
enable the application requirements configuration and
node management. The applications configure the
requirements through a REST API available in the
Northbound (NB) interface on the manager.

The resource orchestrator is a module that detects
when the nodes do not comply with application
requirements. The application configures a threshold
for each metric type available in the monitoring
module. The orchestrator uses this threshold to
detect non-compliant nodes. The manager receives the
node information and the orchestrator is responsible
for verifying if the metric value complies with the
application requirement.

As depicted in Figure 3, the orchestrator works
together with the monitoring module to obtain the node
metrics. However, they have different functionalities.
The monitoring module maintains and obtains the node
information from the network, while the orchestrator
uses the node metrics to detect nodes that do not comply
with the application requirements.

96



Thamires C. Luz et al.: Network Metrics Detection to Support Internet of Things Application Orchestration

Figure 3: Detection flow: the node sends the
management packets and the orchestrator detects
when the metric values do not comply with the
application requirement

3.1 Implementation

The IT-SDN framework [2] implemented the SDN-
controller and provided the software along with the
node code1. The SDN-controller is composed of
two components: (1) a Contiki node that receives
packets from the IEEE 802.15.4 network and transmits
them to the (2) controller software executed on a
PC. The communication between PC and Contiki node
is achieved through a serial (USB) connection (or a
TCP connection for COOJA simulations). The SDN-
controller software executed in a PC uses the neighbor
information to maintain the network topology view, and
then calculate routes to set up flow entries in the SDN-
enabled nodes.

The IT-SDN Manager entity follows the same
structure, and its structured is depicted in Figure 4. Thus,
we implemented a manager-PC that uses a Contiki node
as a bridge between the IEEE 802.15.4 wireless network
and the PC. This communication is achieved through the
serial connection.

The manager-PC contains two components: (1) the
monitoring module and (2) the orchestrator which
provides a REST API to enable configurations by the
applications. As explained before, the monitoring
module receives node metrics that are periodically sent
and stores them in a SQLite database. The orchestrator
then verifies the nodes that were configured by the
applications, comparing the stored metrics with the given

1 Available at http://www.larc.usp.br/users/cbmargi/
www/it-sdn/.

Figure 4: IT-SDN Manager implementation

threshold. Therefore, the orchestrator will be able to
detect if a node does not comply with the requirements,
and raise an alarm.

4 EXPERIMENTAL METHOD

We performed the experiments using Cooja, a network
simulator and emulator available in Contiki OS [5]
emulating Sky Mote devices. We considered a network
grid topology with the following sizes: 36, 49, 64, 81
and 100 nodes. Node 1 is the controller in the center
grid, node 2 is the data sink and node 3 is the manager.
The sink is on the right hand side and the manager is on
the left side of the controller. All the other nodes send
data packets to the sink. Notice that a node in the middle
of the grid has 4 neighbors.

We positioned the controller in the center of the grid,
since the IT-SDN performance study [3] showed that
it yields better results in terms of delivery rate, delay
and energy consumption when compared to the corner
position. As we do not aim to study the position impact
on this paper, we consider the position with less impact
on the mentioned metrics.

Nodes use IEEE 802.15.4 standard as MAC layer and
ContikiMAC for radio duty-cycling with the channel
check rate set to 16Hz. The IT-SDN [2] [3] framework
uses the Dijkstra algorithm for route calculation, ETX
as a link metric and a flow table size with 15 entries.
All the experiments were executed 10 times with a
60-minute duration each. Results depict the mean
value calculated considering a 95% confidence interval.
Table 1 summarizes the configuration parameters related
to IT-SDN.

Nodes start to send data packets and management
packets at a random time of up 3 minutes after the
network initialization. The data packet payload has 10
bytes. The data transmission frequency is different for
each scenario and application.

We defined five scenarios with different application.

97

http://www.larc.usp.br/users/cbmargi/www/it-sdn/.
http://www.larc.usp.br/users/cbmargi/www/it-sdn/.


Open Journal of Internet of Things (OJIOT), Volume 7, Issue 1, 2021

Table 1: Simulation parameters

IT-SDN parameters

Version Manager module

Controller retransmission timeout 60 s

ND protocol Collect-based

Link metric ETX

Neighbor report max frequency 1 packer per minute

CD protocol none

Route calculation algorithm Dijkstra

Route recalculation threshold 20%

Flow table size 15 entries

These scenarios aim to simulate real applications such as
monitoring on Smart Cities or Smart Campus [15]. The
data frequency depends on the application requirements
and tasks. As depicted in Figure 1, suppose that there is
a low data frequency application, such as environmental
monitoring. Also, there is a high data frequency
application, such as the movement detector to identify
and count pedestrians. Assume that, instead of having a
set of sensing devices for each application, devices will
be shared by these different applications, i.e., the same
hardware will run, collect and transmit data for different
applications. The scenarios are:

• Scenario 1: this is our baseline (BL). The
application base (AB) sends 1 data packet every 2
minutes. The manager is not active.

• Scenario 2: the application base (AB) runs along
with the manager and orchestrator active. Since the
orchestrator is active, it monitors the energy level
and packet loss threshold.

• Scenario 3: two applications running - AB and
Application 1 (A1). A1 sends 1 data packet per
minute, and starts to send data 10 minutes after
AB starts. The manager and orchestrator are
active, monitoring the energy level and packet loss
threshold.

• Scenario 4: two applications running - AB and
Application 2 (A2), which sends data every 30
seconds and starts 15 minutes after AB. The
manager and orchestrator are active, monitoring the
energy level and packet loss threshold.

• Scenario 5: three applications running - AB, A1 and
A2, i.e., all the applications run concurrently. The
manager and orchestrator are active, monitoring the
energy level and packet loss threshold.

Table 2 summarizes the scenarios used in these
experiments.

5 THRESHOLD SELECTION

The orchestrator detection depends on the metric
monitoring and on the threshold configured by the
application. During the application deployment, the
threshold is defined through the API manager. The
energy level threshold should be related to the expected
node lifetime. Nodes begin the simulation with full
batteries, thus having 100% available energy. If a new
application is deployed when nodes have 20% available
energy, the network will have little time to serve the
application. On the other hand, if it is deployed when
nodes have 90% available energy, the application will
last longer.

However, packet loss depends on the network
conditions, i.e., application data being transmitted,
control overhead, network size, buffer size, and so on.
Thus, it is not trivial to determine such threshold.

In order to understand the packet loss threshold that
best suits the scenario, we analyze the packet loss
behavior according to the application tasks and network
sizes. To do so, we executed simulations for scenarios
2, 3, 4 and 5 and several network sizes, as described in
Section 4. Then we analyzed the simulation trace files in
order to understand the packet loss behavior.

We calculated the mean packet loss for each node in
the 10 simulations. For each node we count how many
packets were lost and calculate the mean value in each
scenario and network size. We depict the results as the
heat-map of the grid topology to explore how the node
position related to sink, manager or controller, relates to
the packet loss. Table 3 shows the heat-map of the mean
packet loss for each node according to the scenario and
network size.

Each point on the heat-map is one node in its position
in the grid topology. Red squares are Sink, Controller
and Manager. A black square indicates that no packet is
lost, while light gray and/or white squares means more
packets are lost.

Note that nodes 1-hop from the controller, manager or
sink lose more packets when compared to nodes that are
far away. We hence use one 1-hop node as the baseline
to determine the threshold. We calculate the mean value
for this node for each scenario in a two-minute sliding
window (SW). Table 4 presents the mean of the SW and
also the mean of the total packet loss for each scenario
and network size.

In scenario 2, where there is a low data frequency,
the packet loss is less than 1 for all the network
sizes. Concerning the 36-node network size, packet

98



Thamires C. Luz et al.: Network Metrics Detection to Support Internet of Things Application Orchestration

Table 2: Scenarios and applications with different data frequency

Scenario Application Manager Active Data packet frequency
1 AB No 1 every 2 minutes
2 AB Yes 1 every 2 minutes
3 AB + A1 Yes 1 every 2 minutes (AB) + 1 every minute (A1)
4 AB + A2 Yes 1 every 2 minutes (AB) + 1 every 30 seconds (A2)
5 AB + A1 + A2 Yes 1 every 2 minutes (AB) + 1 every minute (A1) + 1 every 30 seconds (A2)

Table 3: Heat-map for mean packet loss for each node in its grid position in the scenarios and network sizes.
Red squares are sink, controller and manager. Black square indicates no packet loss.

Scenarios / Size 36 49 64 81 100

2

3

4

5

loss is greater than one only in scenario 5, where
all applications are running. When observing 49 and
64 network sizes, packet loss is less than one for
scenarios 2 and 3, as well. For larger network sizes and
scenarios with more applications running (i.e., higher
data frequency), Table 4 shows that the packet loss
increases, as expected.

The orchestrator threshold is used to detect when a
node does not comply with the application requirements
configured. Therefore, we refer to Table 4 and use the
rounded mean as the orchestrator threshold to packet

loss. Thus, the threshold is set as 1 for the values smaller
than 1 in the table. This approach enables a realistic
detection, since it considers the difference in scenarios
and network sizes.

6 RESULTS AND DISCUSSION

We evaluate the impact of the manager overhead and
the orchestrator detection performance. The overhead
considers the impact caused by management packets.
The performance regards event detection concerning the

99



Open Journal of Internet of Things (OJIOT), Volume 7, Issue 1, 2021

Table 4: Mean for two-minute window and total
mean loss for 1-hop node (Scenarios x Network size)

36 49 64 81 100
Window 0.04 0.16 0.2 0.5 0.9
Total 4 6 25 30 24
Window 0.08 0.5 0.7 2.3 3.4
Total 25 24 48 94 113
Window 0.5 1.5 2.3 5.4 5.9
Total 35 107 144 322 545
Window 2.4 4.2. 7.4 6.8 6.8
Total 76 213 387 480 520

application requirements.

6.1 Manager Overhead

Concerning the manager overhead, we evaluate the
following network metrics: data delivery rate, data delay,
energy spent and control overhead.

Figure 5 shows the mean data delivery rate (DR).
When comparing scenarios 1 and 2, which have the same
application running but the manager is active only in
scenario 2. The difference is less than 2%.

Comparing scenarios 2 and 3, where there is one more
application running, the difference is at most 3% for 100-
node size. In scenario 4, the DR is greater than 95% for
network sizes up to 64 nodes, while being about 85%
with 100 nodes. The data delivery rate difference in
scenario 4 occurs because there is an application sending
one data packet every 30 seconds, increasing the number
of packets in the network. Since nodes have a limited
queue buffer size, more packets in the network would fill
the space faster.

For network sizes of up to 64 nodes, the DR is greater
than 90%. However, for network sizes with 81 and 100
nodes, the DR is about 82% and 70%, respectively. Note
that in scenario 5, all the applications run at the same
time with a high data frequency. The DR is expected to
drop for the 100-node network size, because there are
more nodes sending packets for multiple applications.

We calculated the energy consumption for all the
nodes in each scenario to verify the manager impact,
which is depicted in Figure 6. Energy consumption
in scenario 2 is about 10% greater than our baseline
(scenario 1). Since there are more packets in the
network, more energy is consumed. As expected, the
energy consumption increases with the data frequency
and network size for all the scenarios.

Data delay is presented in Figure 7. Scenario 2
presents about 2% of difference when compared to the
baseline (scenario 1). For network size of up to 49 nodes,
for all the scenarios, the delay increases about 2%. Thus,

Figure 5: Mean data delivery rate (%) for the
scenarios and network size

Figure 6: Mean energy consumption (mJ) for each
scenario

for small networks even with more applications running
at the same time, there is no significant impact on data
delay. When the network size increases, for 64, 81 and
100 nodes, in scenario 5, where all the applications are
running, the delay is more than doubles when compared
to scenario 2. However, note that there are more hops
until the packet reaches the controller, manager and sink.

Figure 8 presents the control overhead. The
control overhead has a similar behavior to the energy
consumption. It increases with the data frequency
and network size. However, there is almost twice
the number of packets in scenario 2 for network size
with 100 nodes when compared to scenario 1. This is
expected since the orchestrator and manager are active in
scenario 2 and therefore there are management packets.

100



Thamires C. Luz et al.: Network Metrics Detection to Support Internet of Things Application Orchestration

Figure 7: Mean data delay (milliseconds) for each
scenario

Figure 8: Mean control overhead for each scenario

Although the overhead increases with the network size
and application, it does not significantly affect the DR.

In summary, results showed that energy consumption,
delay and control overhead increase with applications
and network size. The worst scenario is scenario 5,
where all the applications run and there are more data
packets. However, when we compare scenarios 1 and 2,
we notice that the difference in DR is about 2%. Thus,
the manager activation does not significantly affect the
network metrics here presented.

6.2 Orchestrator Detection Performance

We analyzed the energy and packet loss detection in the
orchestrator and compared it with the trace file from
Cooja. Scenario 1 is not depicted in the graphs, since

Figure 9: Detection rate for energy level by the
Orchestrator

Figure 10: Orchestrator detection rate for packet loss

the manager and the orchestrator are disabled.
Figure 9 shows the detection for energy level. The

orchestrator detected 100% of the cases. So, every
node that spent 10% of the energy is detected. The
orchestrator detects all the cases because the energy
variation has no significant changes in the period of
one minute. Hence, the node sends the same energy
information in multiple packets. Even if one of
these packets is lost, the manager receives the energy
information and the orchestrator detects it.

Figure 10 shows the mean detection rate for packet
loss. If the same node is detected more than once, only
the first one is considered. Besides, we only consider
the lost packets after the node starts to send management
packet.

The detection rate is greater than 97% for all the cases,
except for scenario 2, where we have the worst detection

101



Open Journal of Internet of Things (OJIOT), Volume 7, Issue 1, 2021

for the 36 and 49 network sizes. We analyzed the
simulations for these network sizes to better understand
why they presented such an error. For the 36-node
network size, one simulation (out of ten) detected about
75% and the other simulation did not detect any of the
nodes. For the 49-node network size, two simulations
(out of ten) detected 66% and the remaining simulations
detected 90% of the nodes.

However, Table 4 allows observing that for scenario
2, the networks with 36 and 49 nodes have a mean
packet loss of 4 and 6 packets. The error increases when
few packets are lost and only one node is not detected.
Yet, these network sizes have just a few cases of packet
loss, which did not significantly impact the network.
Moreover, the detection rate increases with network size
and data frequency, because more events are present and
the node could be detected more than once.

The results showed that the orchestrator is able to
detect when a node reaches the configured threshold.
The threshold is configured according to the application
requirements, but it must also take into account the
network size and load.

7 CONCLUSIONS

In order to improve the coverage, reduce costs, and
make better use of the available resources, sharing the
infrastructure among multiple applications is necessary
in very large IoTs. However, multiple applications
running simultaneously on the same WSN/IoT could
lead to network overload or failure to meet application
requirements. Therefore, management and orchestration
are of critical importance to share the resources without
overloading the sensor nodes and network capacity.
Related works include approaches that verify the node
and network state before admitting new applications,
but these works do not continuously monitor nodes and
network in order to detect changes that could negatively
impact the performance.

To address such a gap, we designed and evaluated the
IT-SDN Manager, a resource orchestrator that monitors
network metrics and detects when nodes that do not
comply with predefined application requirements. It
monitors the network metrics to identify nodes that reach
a certain threshold of energy available and packet loss.
The threshold is defined according to the network size
and applications executed on the network.

Results show that the manager does not introduce
a significant overhead, since it does not considerably
change the data delivery rate, the node energy or
the data delay. Concerning the orchestrator detection
performance, it detects all the nodes that reach the
available energy threshold, and at least 85% of the nodes

that reach the packet loss threshold with an average of
97%. Packet loss detection increases with the network
size and data frequency.

As future work, we aim to use the orchestrator
detection to trigger routing changes and/or task
relocation to improve resource utilization and resource
sharing. Furthermore, we aim increase the network
size for the simulation topology in order to improve the
scalability study.

ACKNOWLEDGEMENTS

This study was financed in part by the Coordenação de
Aperfeiçoamento de Pessoal de Nı́vel Superior - Brasil
(CAPES) - Finance Code 001, and by the ELIOT ANR-
18-CE40-0030 and FAPESP 2018/12579-7 project.

REFERENCES

[1] S. Akkermans, W. Daniels, G. Sankar R., B. Crispo,
and D. Hughes, “CerberOS: A Resource-Secure
OS for Sharing IoT Devices,” in Proceedings of
the 2017 International Conference on Embedded
Wireless Systems and Networks, ser. EWSN ’17.
USA: Junction Publishing, 2017, p. 96–107.

[2] R. C. A. Alves, D. Oliveira, G. Núñez, and
C. B. Margi, “IT-SDN: Improved architecture for
SDWSN,” in XXXV Simpósio Brasileiro de Redes
de Computadores - SBRC 2017, 2017.

[3] R. C. A. Alves, D. A. G. Oliveira, G. A. Nunez
Segura, and C. B. Margi, “The Cost of Software-
Defining Things: A Scalability Study of Software-
Defined Sensor Networks,” IEEE Access, vol. 7,
pp. 115 093–115 108, 2019.

[4] A. Chakraborty, S. Misra, A. Mondal, and M. S.
Obaidat, “SensOrch: QoS-Aware Resource
Orchestration for Provisioning Sensors-as-a-
Service,” in ICC 2020 - 2020 IEEE International
Conference on Communications (ICC), 2020, pp.
1–6.

[5] A. Dunkels, B. Gronvall, and T. Voigt, “Contiki
- a lightweight and flexible operating system
for tiny networked sensors,” in 29th Annual
IEEE International Conference on Local Computer
Networks, Nov 2004, pp. 455–462.

[6] Z. Li and A. Zhong, “Resource allocation in
wireless powered virtualized sensor networks,”
IEEE Access, vol. 8, pp. 40 327–40 336, 2020.

[7] T. C. Luz, G. A. Nunez, C. B. Margi, and F. L.
Verdi, “In-network performance measurements for
software defined wireless sensor networks,” in
2019 IEEE 16th International Conference on

102



Thamires C. Luz et al.: Network Metrics Detection to Support Internet of Things Application Orchestration

Networking, Sensing and Control (ICNSC), 2019,
pp. 206–211.

[8] W. Muhamad, N. B. Kurniawan, Suhardi, and
S. Yazid, “Smart campus features, technologies,
and applications: A systematic literature review,”
in 2017 International Conference on Information
Technology Systems and Innovation (ICITSI),
2017, pp. 384–391.

[9] M. Ndiaye, A. M. Abu-Mahfouz, and G. P.
Hancke, “SDNMM—A Generic SDN-Based
Modular Management System for Wireless Sensor
Networks,” IEEE Systems Journal, vol. 14, no. 2,
pp. 2347–2357, 2020.

[10] M. Ndiaye, G. P. Hancke, and A. M. Abu-
Mahfouz, “Software Defined Networking for
Improved Wireless Sensor Network Management:
A Survey,” Sensors, vol. 17, no. 5, 2017.

[11] T. M. C. Nguyen, D. B. Hoang, and T. Dat
Dang, “Toward a programmable software-
defined IoT architecture for sensor service
provision on demand,” in 2017 27th International
Telecommunication Networks and Applications
Conference (ITNAC), 2017, pp. 1–6.

[12] RFC. (2015) Software-Defined Networking
(SDN): Layers and Architecture Terminology.
[Online]. Available: https://tools.ietf.org/html/
rfc7426--Accessed12-2020.

[13] P. Semasinghe, S. Maghsudi, and E. Hossain,
“Game Theoretic Mechanisms for Resource
Management in Massive Wireless IoT Systems,”
IEEE Communications Magazine, vol. 55, no. 2,
pp. 121–127, February 2017.

[14] R. Thupae, B. Isong, N. Gasela, and A. M.
Abu-Mahfouz, “Software defined wireless sensor
networks mangement and security challenges: A
review,” in IECON 2018 - 44th Annual Conference
of the IEEE Industrial Electronics Society, 2018,
pp. 4736–4741.

[15] H. Zemrane, Y. Baddi, and A. Hasbi, “SDN-Based
Solutions to Improve IOT: Survey,” in 2018 IEEE
5th International Congress on Information Science
and Technology (CiSt), 2018, pp. 588–593.

AUTHOR BIOGRAPHIES

Thamires de Campos Luz
is a Ph.D. student at the
Universidade de Sao Paulo.
She received her MSc. degree
(2015) in Computer Science
from the Universidade Federal
de São Carlos and the B.Sc in
Data Processing from Faculdade
de Tecnologia de Sorocaba.
Her research interests include
network management and
orchestration in software-

defined networking.

Cintia Borges Margi obtained
her Ph.D. in Computer
Engineering at the University of
California Santa Cruz (2006),
and her Habilitation (Livre
Docência) (2015) in Computer
Networks from the Universidade
de São Paulo. She has been
an Associate Professor in the

Computer and Digital Systems Engineering department
at Escola Politecnica – Universidade de São Paulo
(EPUSP) since 2015, where she started as an Assistant
Professor in 2010. In 2007-2010 she was an Assistant
Professor at Escola de Artes, Ciencias e Humanidades
da Universidade de São Paulo (EACH-USP). Her
research interests include: wireless sensor networks and
software-defined networking.

Fábio Luciano Verdi is an
Associate Professor at the
Computing Department in the
Federal University of São Carlos
(UFSCar), campus Sorocaba.
He received his Master degree
in Computer Science and Ph.D.

degree in Electrical Engineering both from the State
University of Campinas (UNICAMP). Fábio has been
working with data centers, cloud computing and SDN.
He is the coordinator of the LERIS Research Group and
has been leading projects in the area of monitoring of
virtual resources and cloud infrastructures.

103

https://tools.ietf.org/html/rfc7426 -- Accessed 12-2020.
https://tools.ietf.org/html/rfc7426 -- Accessed 12-2020.

	Introduction
	Related Work
	IT-SDN Manager
	Implementation

	Experimental Method
	Threshold Selection
	Results and Discussion
	Manager Overhead
	Orchestrator Detection Performance

	Conclusions

