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ABSTRACT

Emerging Internet of Things (IoT) applications demand data stream processing with low latency and high processing
power. Although the cloud naturally provides huge processing capacity, high latency to move data to the datacenter
is prohibitive. Edge computing is a recent paradigm where part of computing and storage resources are pushed
from the cloud to the edge of the network. In edge computing, edge providers manage their resources near to IoT
devices to meet low latency application requirements and reduce the network core bandwidth. To reach the maximum
potential of edge computing, a big challenge is to promote the cooperation between edge providers. Currently, edge
computing architectures are severely limited for providing cooperation mechanisms between distinct edge providers.
In this paper, we propose a edge federation to leverage the cooperation between different edge providers. The edge
federation uses interest information propagated in data streams that travel between edge providers to allow an
stakeholder to react to inefficient resource allocation and service provision. The main objective of the federation
is to create a consortium of edge providers to provide cooperation mechanisms and define and standardize the
application interests. The proposed edge federation is (i) data-centric, since edge providers can share common
interests and data and, thus, establish cooperation to increase the capacity to provide services for applications;
(ii) distributed, since no assumption is made concerning the geo-location of the edge providers and their logical
connections; (iii) opportunistic, because an edge provider can react dynamically to the environment change ; (iv)
scalable, since the edge provider has the ability to analyze a data flow passing by its infrastructure and make
decisions to increase network performance locally, which impacts the global performance
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1 INTRODUCTION

Internet of Things (IoT) is the paradigm that empowers
physical devices to provide data collected from the

This paper is accepted at the International Workshop on Very
Large Internet of Things (VLIoT 2021) in conjunction with the
VLDB 2021 conference in Copenhagen, Denmark. The proceedings
of VLIoT@VLDB 2021 are published in the Open Journal of
Internet of Things (OJIOT) as special issue.

real world to users, through the Internet, creating a
dense integration of the virtual and the real worlds,
where the communication between people and things
takes place [9]. To meet the huge computational
requirements of billions of IoT devices generating
data, the cloud computing has been explored as the
main backend platform for IoT since it can provide
flexible and potentially unlimited storage and processing
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resources [3].
Data centers are the physical infrastructure where

cloud data processing happens and are interconnected to
cloud users by wide area networks. They are usually
far away from end-users and not able to provide low
latency and high bandwidth connectivity to emerging
IoT applications [15]. Such applications are challenging
traditional cloud architectures leading to the arising of
the new edge computing paradigm.

Edge computing takes advantage of the computational
capabilities distributed in the continuum that
encompasses from data-producing devices to the
cloud. In the edge computing paradigm, an edge
provider is a stakeholder that keeps a small data center
near to a data source with processing power to process
application requests. Edge providers are usually private
entities close to end-user and data sources, which
provide services with low latency.

Being mostly private entities, edge providers have
their own and conflicting commercial interests and
establish private edge-computing environments to
meet specific requirements of users from their own
viewpoint [4]. An edge provider does have not the view
of other edge providers’ resources and its cooperation
capacity is low.

The number of clients which an edge provider can
serve is limited to the resources managed by it. To
augment the service coverage, the edge provider needs
to deploy a huge number of services, which requires
acquiring and maintaining more computing capacity, i.e.
edge nodes.

To execute resource-intensive and low latency
applications, the edge provider needs great computing
and communication capabilities. Such a stringent
requirement increases the cost of processing data in the
edge [16]. The cost to move and process data in the
infrastructure of an edge provider also increases due to
its typical low scale.

The building of an edge infrastructure in an
independent way along with the lack of cooperation with
other stakeholders cause unbalanced and under-utilized
edge resources globally. A standalone edge provider has
limited information about the global environment since
it manages only its own set of edge nodes and resources.
Thus, it cannot optimize or share the resources with
other providers and the chance of collaboration among
multiple stakeholders is limited [12].

To leverage the potential of edge computing, isolated
edge providers should interact and cooperate with other
edge providers. Cooperation allows to augment service
coverage and distributed processing capacity, besides
reducing the number of requests forwarded to the cloud.
Therefore, there is a need of an approach based on the
collaborative edge where edge providers connect to the

edges of multiple stakeholders that are geographically
distributed [12].

The current proposal consists of a interest-centric edge
federation that aims to be an opportunistic, dynamic,
distributed, open and data-centric solution for integrating
edge providers and leverage the cooperation in the
edge tier. The edge federation is a consortium where
edge providers establish agreements and standardize
the communication. The fundamental premise of our
solution is that applications that generate data streams
have interests in certain data. Based on this premise, we
consider that edge providers can share common interests
and data and, thus, establish cooperation to increase
the capacity to provide better quality of service for
applications.

In our proposal, the edge provider detects data
stream flows passing by its infrastructure and uses the
interest information associated with the application that
generated the data stream. From the interest, the edge
provider obtains information about the required services
for processing the data stream. This information allows
the edge provider to decide whether it is worth using
its infrastructure resources to process such data stream.
Our architecture is data-centric because the services are
provisioned according the application interest, which is
directly associated with the required data by application.
The main key benefits of the proposed edge federation
are to allow cooperation between multiple stakeholders
and dynamic reaction to the interest of the data stream
application. By promoting cooperation, workload
balancing occurs between multiple edge providers and
not only inside a unique edge provider. The dynamic
reaction gives flexibility for edge providers changing
quickly their resource allocation decisions and adapting
to environment changes.

Edge providers that are not part of the consortium can
join it at any time. When an edge provider does not
wish to cooperate with another edge provider belonging
to the Edge Federation, our solution allows them not to
authorize cooperation.

The remainder of this paper is organized as follows.
Section 2 presents challenges for Edge Federation.
Section 3 discusses related work. Section 4 describes
the system architecture. Section 5 presents the detailed
architecture and their components . Section 6 shows the
main operation of the system. Section 7 concludes this
work and draws future research directions.

2 CHALLENGES FOR EDGE FEDERATION
SYSTEMS

The need for cooperation between multiple stakeholders
leads to edge federation architectures, where different
edge providers share physical resources and workloads
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in a peer-to-peer fashion [2]. In a multiple domain
environment of federated edge nodes, the edge provider
can forward computation tasks to nodes in external edge
providers with more available resources, meeting service
level agreement requirements of applications [2].

The cooperation between different edge providers
is natural for edge computing since the premise of
a centralized computing location in the cloud is not
mandatory anymore. The cooperation based on edge
federation enables the horizontal expansion of resources
over dispersed locations [11]. However, in federated
edge environments, the challenges for designing and
deploying traditional edge computing systems increase.
In following, we discuss the main challenges related to
edge cooperation and data stream processing.

2.1 Edge Cooperation

Edge computing systems impose challenges that are
exacerbated in edge cooperation environments. Some
of the main challenges consist of service discovery for
meeting IoT applications, partitioning and distribution
of tasks for optimizing the resource utilization, and the
mobility of IoT devices [10].

The challenge of service discovery occurs because
not all edge nodes have all the services and algorithms
available. Therefore, IoT devices need to discover,
through some protocol, edge nodes that have required
capabilities to perform a task or request. In the Edge
Federation, this problem is exacerbated since edge
providers must discover edge nodes of third-party able
to provide the required service.

Partitioning and distributing computing models are
also more difficult in edge cooperation environments.
It is more laborious to distribute and process data in
an edge node located in another domain since the node
resources are weakly managed. In addition, there is the
challenge of aggregating the data generated by the data
analysis of the different stakeholders and returning the
results to the application with the lowest possible latency.
Both task distribution and result aggregation in the edge
are tasks that become more critical when required by
time-sensitive applications.

Regarding edge mobility, the main challenge is to
consider that devices can enter the system through an
edge provider and exit from the system by another edge
provider. The federation should provide connectivity in
a transparent way while the user keeps accessing the
system.

2.2 Data Stream Processing

One of the most challenging problems in edge computing
systems is the analysis of the large number, large-

scale and high-speed data streams generated by the
IoT devices. Three factors make processing data
streams challenging on edge computing: rate variability,
dynamism and data quality.

The first factor is related to data stream arrival, which
occurs at different rates and varies over time. For
example, the frequency of a GPS sensor can be updated
over a period of seconds, while a temperature sensor can
be updated every hour [8]. Even a single IoT device can
operate at different rates, such as a vehicle traffic control
camera, which can provide both periodic static images or
continuous road environment video , depending on the
user’s requirement. The main problem with the variation
in the rate of data streams is the risk of information loss
[8]. If the system is not prepared to receive the data at
the time it is generated, the data may be lost.

In an Edge Federation, an edge provider does not
handle the infrastructure of another edge provider.
In this scenario, the management of multiple data
streams arriving from different domains, with high rate
variability, demands precise synchronization between
federation participants to avoid data loss.

The property of changing the data stream according
to the place in the space or time that it was generated
is related to edge computing dynamism and also a
challenging issue for Edge Federation systems. In
smart cities, for example, autonomous car data change
depending on where the vehicle is, or the time when the
data was collected. An architecture that promotes the
edge providers’ cooperation should decouple the data
location from the data processing location for tackling
the data dynamism problem. For example, data creation
and processing can occur in multiple edge providers.

Finally, data quality is one of the most important
factors for the data stream processing of IoT
applications. As Karkouch et. al. [6] pointed,
data quality is the suitability of data gathered from IoT
devices to provide services to users. In federated edge
computing, data quality is more difficult to achieve, as
the various heterogeneous sources generate different
data qualities which will be processed by different
infrastructures.

3 RELATED WORK

Authors in [14] proposed to stream video from central
cloud to end users as a solution to increase the quality
of experience (QoE). The authors’ proposal is an
Edge-Cloud federation, called Federated-Fog Delivery
Network (F-FDN), which is composed of several Fog
Delivery Networks (FDN) collaborating to stream videos
in order to reduce the latency. Video Streaming
Providers cache a base version, which is a type of
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raw video that allows the generation of all required
versions. The base version arrives from cloud and
modified versions from base version are processed in
the edge (fog) on-demand to users. An important
feature of such a proposal is that F-FDN can achieve
location-aware caching of video streams. Different of
authors’ strategy, our approach is data-centric since the
edge provider decides to provide the service according
application interest, increasing the dynamism of the
service provision. Besides, our architecture assumes data
stream from different application domains, not limited to
video stream.

Authors in [7] proposed a federated file system called
iStore. The solution provides a global namespace for
unifying geo-distributed edge servers and optimal data
placement and analysis in the federation by considering
the resource configurations of federated geo-distributed
edge servers. The authors’ goal is to reduce the time
for storing the data and increase the resource utilization
across the federated geo-distributed edge servers. Thus,
job completion and data migration is completed in more
than one edge server. Authors’ architecture was designed
for solving the problem of the federated file system,
while our architecture is more generic since it deals the
provision of federated services.

In [13] the authors investigated the business relations
between multiple infrastructure providers in a 5G
environment. The work considers the creation and
upkeep cost of business connections and the price
mediation between providers. The model of business
relation is based on network formation games where
users can use resources located out of the direct reach
of their provider. Main goal of authors’ work is model
the business relations between edge providers, while we
propose an architecture where edge providers analyze
data stream flow to decide to provide required services,
which make the decision taking process dynamic and
adaptable to environment changes.

In [5], authors proposed an model for 6G-aware
edge federation whose objectives were maximize fog
resources and revenue of edge providers, and provide
services across the network. Authors formulated a
optimization problem of costs and user demands, which
was solved by a Stackelberg game algorithm executed
in a resource controller in the fog tier. In the proposed
architecture, each edge provider decides independently
to provision a application service which avoids the need
of a central location for resource allocation decision
making.

In [2], authors formulated a problem for optimizing
the consumed energy and resource provisioning of edge
providers. To solve the problem, authors proposed
a federated multidimensional fractional knapsack-based
method. The proposed method make decision about

sharing resource between participating edge nodes in
horizontal edge federation system. In the architecture
proposed by authors, the horizontal cooperation occurs
between edge nodes, which can be located in multiple
domains. In our architecture, we assume that edge
cooperation occurs between edge providers.

4 SYSTEM ARCHITECTURE

In this section, we present the general view of the
proposed Edge Federation system architecture. The
proposed architecture is composed of four tiers, as shown
in Figure 1, namely the Things Tier, Edge Tier, Fog Tier
and Cloud. The Edge Provider (EP) is the main element
in both the Edge and Fog Tiers. EP corresponds to a
set of edge devices or fog devices handled by a unique
private edge provider. Two EPs in the Fog Tier can
communicate through peering interconnection [13].

The Things Tier is composed of IoT devices that act as
data sources or run user applications. The Edge Tier is
composed of edge devices which has direct connection
with devices from Things Tier. Nodes from Edge Tier
has computing capacity to process data stream generated
by applications, but it is limited. The Fog Tier is
composed of fog devices, similar to edge devices, but
the nodes from Fog Tier does not communicate directly
with Things Tier. A Fog Tier EP is a network operator
as an Internet Service Provider (ISP) which provides
access to the Internet to Edge Tier EP and perform the
intermediation between different stakeholders. Finally,
Cloud Tier is connected to fog nodes and has abundant
resources and huge processing capacity. As the cloud
is accessible by all participants, global structures of the
federation are public in the cloud.

The Data Stream Flow (DSF) is a sequence of network
packets that have the same source and destination
network addresses. The DSF is generated in an IoT
device called Data Source IoT Device. DSFs can
pass through the EPs infrastructure even if the EP is
neither origin nor destination of the given DSF. The
DSF is generated in a Data Source IoT device which is
connected to a Edge Tier EP. This Edge Tier EP, which
is directly connected to an Data Source IoT device, is
called origin EP. The destination EP is the Edge Tier
EP connected to the IoT device running the application
that required the DFS. The Edge Tier EP or Fog Tier
EP are called middleman EP when the DSF only passes
through its infrastructure, but is not neither an origin EP
nor destination EP. In Figure 1a, EP3 and EP4 are Edge
Tier EP while EP1 and EP2 are Fog Tier EP.

In Figure1a, we observe that DSF generated by the
Data Source 1 (black arrow), before processing, passes
into the origin EP, which is EP3. The DSF is processed
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(a) Traditional Edge-Cloud Deployment

(b) Edge Federation Deployment

Figure 1: Traditional and Federation Edge Architectures
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Figure 2: Main Subsystems of the Architecture

in a edge node from EP3 and the data stream is forwarded
(blue arrow) to other edge nodes. Only when necessary,
the data stream is forwarded to be processed by cloud
(black dashed arrow) and the processed data stream is
returned to edge tier (blue dashed arrow).

A similar scenario occurs in EP4, where the Data
Source 2 generates the DFS which is processed by
a node from EP4 or cloud. The edge computing
scenario is advantageous compared to a only cloud
approach, but its potential is not entirely explored. For
example, scenarios where EP3 is sub-utilized and EP4
is overloaded, EP4 cannot use resources from EP3 for
processing application services. EP4 cannot share their
applications with EP3 as it has no information about
other EPs, thus there is no choice for providing the
service in other EP.

Our architecture proposal considers a system based
on the federation of EPs. In our system, a Fog Tier
EP receiving a DSF can communicate with the cloud or
other EP for providing the service in its infrastructure.
In Figure 1b, EP1 detects the DSF and communicates to
the cloud or EP4 for processing the DSF. EP1 deploys
the required services in its infrastructure and the DSF
does not pass by cloud anymore. To make the Edge
Federation possible, we assume that each EP needs
to participate in a federation and implement a set of
software components, which are presented in the Section
5.

4.1 Architecture Subsystems

Our Edge Federation Architecture consists of five
subsystems: Infrastructure Management, Service
Management, Communication Management, Interest
Management and Cloud Management. Subsystems are
defined by Edge Federation, i.e. by the consortium of all
edge providers pertaining to Edge Federation. Figure 2
shows the Edge Federation subsystems.

Infrastructure Management is a subsystem whose
function is to monitor the network and other physical
resources, besides allocating and deallocating resources.

This subsystem continuously analyzes all data streams
passing by EP. When a new data stream is detected, this
subsystem triggers the service provision of EP.

Service Management subsystem decides to initiate
the service provision when either a user request a
service or a new data stream is detected. The service
provision for a data stream occurs when there is low
utilization of edge provider resources. The Service
Management communicates to the origin edge provider
that is generating the data stream. From the origin
network address, Service Management knows the origin
edge provider, allowing to establish the connection with
the origin edge provider.

The Service Management subsystem also is
responsible to provide services to applications. It
is fed by the Infrastructure Management subsystem
with important information about the state of the edge
provider infrastructure. Descriptions of services stored
in edge provider local cache or global database are
accessed by this subsystem.

The Communication Management subsystem is
responsible to establish the communication between
two distinct edge providers. Client and server brokers
compose this subsystem and an edge provider runs both
client and server. An edge provider that is the end
destination of the data stream or a middleman edge
provider can trigger a client broker to communicate to
the server of the origin edge provider to require the
authorization for providing services of the application
generating that data stream. An origin edge provider runs
a server broker to meet requests from client brokers of
external edge providers.

The Interest Management is a subsystem whose goal
is to map interests to services, making interests available
to the edge provider. This subsystem interacts with
the Service Management subsystem to obtain a set of
services from an interest. A service set description is
retrieved from either an interest local cache of the edge
provider or a global database of interests. The Edge
Federation is responsible to define the global database
of interests and the service set description.

The Cloud Management subsystem stores public and
global storage of the federation. Besides, this subsystem
provisions a component to delivery data stream for
users.

5 DETAILED ARCHITECTURE

In this section, we describe the detailed architecture and
subsystem components (see Figure 3).
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Figure 3: Detailed Architecture
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5.1 Infrastructure Management Subsystem

Infrastructure Management is the subsystem responsible
to analyze uninterruptedly the traffic passing by the
network, manage the infrastructure resources and receive
or process the data stream generated by the application.

5.1.1 NetworkMonitor

The NetworkMonitor (NM) is the component that
continuously monitors the DSF that passes through
EP. The EP can be either a DSF destination or a
middleman actor of DSF, i.e. an EP who has direct
links to other providers but is not directly interconnected
with a business link generating that data stream [13].
In the latter case, DSF is traffic passing through
the network, which augments the required bandwidth
for EP. NM has a interface INetMetrics, which
provides network metrics to InfrastructureManager
component, and IStreamEvent which notifies the
StreamProcessingManager component that a new data
stream event was detected.

5.1.2 InfrastructureManager

The InfrastructureManager (IM) component has the
global view of the EP infrastructure. IM stores
updated information about resource usage of processing
node resources and communication links: CPU,
memory, storage and link bandwidth. The resource
usage information is obtained through IGetNodeMetrics
interface. IM also obtains from IGetAlloc interface
information about the allocation of virtualized resources,
i.e. containers. The IInfraData interface provides entire
information about the resources.

5.1.3 ResourceAllocationManager

The ResourceAllocationManager (RAM) component
monitors, handles, allocates and deallocates resources
of the EP infrastructure for executing services. RAM
is responsible to handle the containerization system and
provide information about allocated resources. IAlloc
and IDealloc interfaces allow RAM allocating and
deallocating resources of a node.

5.1.4 NodeManager

The NodeManager component handles the CPU,
memory and bandwidth resources of the node. It
provides node metrics through IGetNodeMetrics and
receives commands for allocating and deallocating
resources through IAlloc and IDealloc interfaces.

5.2 Service Management Subsystem

Service Management Subsystem has the objectives of
deciding to process services associated with a data
stream of a external EP and managing services assigned
to EP.

5.2.1 StreamProcessingManager

StreamProcessingManager (SPM) is the component
that receives a new data stream notification from
NetworkMonitor, through IStreamEvent interface,
and has the responsibility to get the data stream
information. This component discovers the demand,
i.e. interest and services, associated with the data
stream and forwards to IntelligenceDecisionMaker the
demand. SPM component obtains the interest from the
IGetInterest interface. Interest and associated services
are obtained from the origin EP, via BrokerClient
communication. The IGetInterest interface returns to
SPM the interest associated to the data stream obtained
from IStreamEvent. The IGetServices interface provides
the service description from InterestMappingManager.
The InterestMappingManager has the view of all
databases of interests made available by the Edge
Federation. The obtained service descriptions are
forwarded to IntelligenceDecisionMaker through
INewStream interface.

5.2.2 Intelligence Decision Maker

The IntelligenceDecisionMaker is the main component
of the architecture since it decides if EP will provide
the services required for processing a new detected
data stream. IntelligenceDecisionMaker is notified
by StreamProcessingManager component, through
INewStream interface, about a new data stream detection.

When a new stream is detected,
IntelligenceDecisionMaker needs to decide if it
is worthwhile to provide the services and process
the detected stream. The problem solved by
IntelligenceDecisionMaker is to minimize the network
traffic passing by its infrastructure while ensuring
that provided services keep respecting the application
requirements.

To take the decision, initially
IntelligenceDecisionMaker obtains the application
model description (AMD) from IAppModel interface.
From AMD, IntelligenceDecisionMaker gets
the stored services from ServiceRepoManager
component accessing the IServices interface. On
following, IntelligenceDecisionMaker orders the
ServiceOrchestrator component, via IOrchestration
interface, to choose the resources for allocating and
deploying the services.
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5.2.3 ServiceOrchestrator

The service orchestration is responsibility of
the ServiceOrchestrator (SO) component, which
chooses processing nodes for executing services.
This component obtains infrastructure metrics and
information about running services for determining
where executing services. IInfraMetrics and
IRunServices interfaces provide infrastructure metrics
and running service information to SO, respectively. The
SO component also is required to orchestrate services
arriving from user end. IServProc and IServDeliv
interfaces notify SO component when new data stream
of a user requires service processing.

5.2.4 ServiceExecutionManager

The ServiceExecutionManager (SEM) component
receives the order from ServiceOrchestor and processes
the required services. While ServiceOrchestrator
chooses processing nodes for executing services, SEM
gets stored services for executing them. SEM receives
the service processing request from IExec interface with
the service information and their configurations. Stored
services are obtained through IGetImage and IProcess
interface is called to run the service. The IRunServices
is a interface for making available the information about
running services.

5.2.5 ServiceRepoManager

EP has a database abstraction handled by the
ServiceRepoManager component. This component
provides the IGetImage interface to make available
stored service images to ServiceExecutionManager.
Service images can be stored either locally or remotely
in the cloud. Images stored locally are handled by
ServiceCacheComponent, while images stored in the
cloud are handle through IGlobalService interface.
Services are locally stored to avoid obtaining it from
the ServiceGlobalManager, which is a component
implemented in the cloud.

5.2.6 ServiceProcessingManager

The ServiceProcessingManager component receives
a DFS from IoT devices connected to edge
nodes of EP. This component obtains the stream
from IStream interface and forwards it to the
IntelligenceDecisionMaker through IServProc interface.

5.3 Communication Management Subsystem

Conventionally, system architectures employ
intermediate brokers that orchestrate the communication

with external entities [1]. The Communication
Management subsystem promotes the communication
between two different EPs and consists of components:
BrokerClient and BrokerServer. Upon receiving a
DSF, the BrokerClient of a middleman EP requires
authorization from the BrokerServer of an origin EP
for providing the services associated with the DSF.
When the EP origin authorizes the middleman EP to
meet the service set , the origin EP BrokerServer sends
to BrokerClient the interest associated with the data
stream. Thus, BrokerClient receives the interest and the
middleman EP can provide the required services.

5.3.1 BrokerClient

The BrokerClient (BC) component is responsible to
initiate the communication between a middleman EP and
a origin EP. Upon receiving a DSF from the origin EP,
the middleman EP needs to communicate to the origin
EP for getting the interest associated with the DFS.
The BC component makes the communication possible,
offering the IGetInterest interface which returns the
interest obtained from the origin EP.

5.3.2 BrokerServer

The BrokerServer (BS) is a component that meets
the requests from some BC from an external EP for
the service provision. When a request arrives in the
BrokerServer, it queries the InteresMappingManager
component, through IGetInterest interface, to obtain
the interest and the application description related to
the generated data stream. The interest information
and application description for a data stream are then
provided in response to the BrokerClient.

5.4 Interest Management Subsystem

The Interest Management Subsystem has the function
of creating, storing and mapping interest and an
Application Model Description (AMD). The AMD is
the representation of the required services and their
relationships. The EP needs an AMD to know if it can
process the DSF arriving into EP.

Interest creation consists of defining a unique
interest name to an AMD. The interest storing
consists of the maintenance of a interest repository,
which is stored locally in EP or made available
globally in the cloud. Finally, the main function of
InterestManagementSubsystem is to map, when required,
interests to an AMD.
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5.4.1 InterestMappingManager

The InterestMappingManager component is the
responsible component to search for the interest and
their associated services. The main objective of
InterestMappingManager is to translate an interest to an
AMD.

The InterestMappingManager interacts with the
InterestRepoManager, through IGetInterest interface,
for obtaining the required interest. The required
interest is stored in either the EP, locally, or the cloud,
externally. The InterestMappingManager also interacts
with components responsible for managing the services
of the EP from the Service Management subsystem.

5.4.2 InterestRepoManager

The InterestRepoManager stores or searches for
interests. An interest is stored locally, through the
InterestCacheManager component, or acessed remotely.
For searching for a interest, firstly, InterestRepoManager
searches for the interest locally, when the interest has
already been requested previously. When the interest has
never been requested by EP, then InterestRepoManager
communicates with a global database of interest through
the IGlobalInterest interface.

The InterestCacheManager is a component that
abstracts the local interest database and provides a
standard protocol to obtain a AMD from an interest.. The
local interest database is a permanent storage memory,
maintained locally by the EP, which contains all interests
and their respective AMD. The local interest database
is intended to provide quick access to an interest that
has already been previously requested, and therefore is
already known by the EP.

5.4.3 InterestNamingManager

The main objective of the InterestNamingManager
component is to provide interest naming for an
application stream. When the user requests to initiate a
stream processing, the application requests EP to create
a new interest providing an AMD. The main function
of InterestNamingManager is to map an interest to an
AMD. The interest-AMD mapping is stored through
INaming interface. The InterestNamingManager
registers the application interest in a global database of
interests, enabling external EP to provide the services
required by his application.

5.5 Cloud Management Subsystem

The Cloud Management Subsystem has two components
to store services and interest in a global database of
interests on the cloud. Besides, it has a component

Figure 4: Overview of Intelligence Decision Maker
operation process

whose function is to delivery content to the user called
ServiceDeliveryManager.

Regarding the service and interest storage,
the components are InterestGlobalManager and
ServiceGlobalManager. The main function of the
InterestGlobalManager component is to search for
an interest in the global database of interests, which
is a cloud storage that maintains interests. It is
a Software as a Service (SaaS) maintained by the
Federation or a third-party. Members of the Edge
Federation define their specifications and definitions.
The InterestGlobalManager is an abstraction for the
interest database.

ServiceGlobalManager is a database that contains
services provided by all EPs that make up the Edge
Federation. When an EP has never served a given
service, it needs to get it from ServiceGlobalManager
to provide the service for the first time.

6 INTELLIGENCE DECISION MAKER

In this section, we described the operation of the main
component of the architecture. After detecting a DSF, the
IntelligenceDecisionMaker component should decide if
it is worth providing services for processing the DSF.
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To make the decision, the resources and costs associated
with data stream processing are analyzed.

Figure 4 depicts the operation process of the
IntelligenceDecisionMaker component. Initially, the
component receives a new DSF and communicates
with the origin EP to obtain the interest associated
with such a DSF. Services associated with the interest
are locally searched and if all services are found,
then the ServiceOrchestator component is required for
distributing services in the edge nodes of the EP. In the
case some service is not found locally, it is obtained from
the interest global database in the cloud.

After obtaining all services, the
IntelligenceDecisionMaker component evaluates the
infrastructure resources to know if available resources
are sufficient to meet all service requirements. The
resource evaluation consists of computing the following
resources: number of processing cores, number of
instructions, available memory, and bandwidth. If there
are not enough available resources, then the data stream
continues to be propagated into the EP infrastructure,
but no service is provided.

When the EP has sufficient resources to provide the
service, the cost associated with the service provisioning
is computed. This cost corresponds to the price
offered by the origin EP to accept the service to be
provided by the middleman EP. The price of service
provision is dynamically hired between EPs during the
communication between client and server brokers. If the
offered price covers the service provisioning costs, then
the EP can provide the service.

When the price does not cover the
middleman EP cost, services are not provided.
Otherwise, IntelligenceDecisionMaker calls the
ServiceOrchestrator to orchestrate the services in edge
nodes of the infrastructure.

7 FINAL REMARKS AND ONGOING WORK

The Edge Federation architecture was developed to
distribute the processing of large-scale data streams
across multiple edge providers. It is intended
to promote collaboration and distribute the service
provision between different edge providers.

In our data-centric architecture, the service
provisioning is guided by required data by the
application. In the proposed architecture, the application
requires data as a service, and the service is executed
in edge nodes with the same interest as the application.
The interest representation allows mapping application
service to edge nodes located in multiple edge domains.

In future work, we intend to evaluate the performance
of the Intelligence Decision Maker in terms of cost,

resource utilization, and application requirements. The
cost and resource utilization investigation aims to
provide relevant information from infrastructure for the
edge provider. With this information, the edge provider
can decide when provisioning an application service is
more beneficial than merely use the infrastructure to
forward network traffic.
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