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ABSTRACT

The emergence of the Internet of Things (IoT) and the increasing number of cheap medical devices enable
geographically distributed healthcare ecosystems of various stakeholders. Such ecosystems contain different
application scenarios, e.g., (mobile) patient monitoring using various vital parameters such as heart rate signals.
The increasing number of data producers and the transfer of data between medical stakeholders introduce several
challenges to the data processing environment, e.g., heterogeneity and distribution of computing and data, low-
latency processing, as well as data security and privacy. Current approaches propose cloud-based solutions
introducing latency bottlenecks and high risks for companies dealing with sensitive patient data. In this paper, we
address the challenges of medical IoT applications by proposing an end-to-end patient monitoring application that
includes NebulaStream as the data processing system, an easy-to-use UI that provides ad-hoc views on the available
vital parameters, and the integration of ML models to enable predictions on the patients’ health state. Using our
end-to-end solution, we implement a real-world patient monitoring scenario for hemodynamic and pulmonary
decompensations, which are dynamic and life-threatening deteriorations of lung and cardiovascular functions.
Our application provides ad-hoc views of the vital parameters and derived decompensation severity scores with
continuous updates on the latest data readings to support timely decision-making by physicians. Furthermore, we
envision the infrastructure of an IoT ecosystem for a multi-hospital scenario that enables geo-distributed medical
participants to contribute data to the application in a secure, private, and timely manner.
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1 INTRODUCTION

The Internet of Things presents a novel computing

This paper is accepted at the International Workshop on Very
Large Internet of Things (VLIoT 2022) in conjunction with the
VLDB 2022 conference in Sydney, Australia. The proceedings of
VLIoT@VLDB 2022 are published in the Open Journal of Internet
of Things (OJIOT) as special issue.

architecture for data processing systems: a distributed,
highly dynamic, and heterogeneous environment of
massive scale [27]. The healthcare sector is one
emerging IoT application area with a high potential for
economic and social impact [4, 14]. Future IoT scenarios
must cope with a dynamic and geographically distributed
infrastructure where patients wearing medical sensors
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are monitored inside and outside hospitals, and data
exchange between hospitals and various stakeholders
is required [22, 8]. KI-SIGS (AI space for intelligent
health systems) [22] investigates such a geographically
distributed healthcare ecosystem with several application
scenarios. In these scenarios, IoT devices drive
healthcare systems of massive scale, e.g., medical
devices improve monitoring in the medical domain by
continuously measuring various vital parameters such as
heart rate signals. These potentially mobile IoT devices
introduce several challenges to the data processing
environment, e.g., heterogeneity and distribution of
computing and data, low-latency processing, as well
as data security and privacy. The current cloud-based
solutions are not suitable for such scenarios: (1) cloud-
based solutions collect data centrally before processing
which introduces a high risk for companies that deal
with sensitive patient data, and (2) the huge number and
geo-distributed locations of connected data producers
significantly affect the average processing latency [27]
and thus violate the critical low-latency requirements of
patient monitoring scenarios.

In earlier work, we proposed NebulaStream [27],
a novel general-purpose, end-to-end data processing
system for IoT applications. NebulaStream addresses the
heterogeneity, unreliability, and scalability challenges
of the IoT by leveraging an architecture that unifies
the advantages of fog and cloud environments.
Thus, NebulaStream tackles (1) security and privacy
challenges by allowing healthcare organizations to
leverage the ownership benefits of private fogs within
the ecosystem. In order to overcome (2) the latency
challenge, the unified architecture of NebulaStream
enables data processing close to the source. It
provides in-network processing to scale for an increasing
number of data producers and queries. To support a
rich set of application scenarios from different fields,
NebulaStream provides a user interface (NebulaStream-
UI) [20] with various functionalities, such as adding
streams or queries and several visualization types
for query results. In summary, NebulaStream is a
promising solution for both universal patient monitoring
applications and the emerging large-scale IoT ecosystem
that contains healthcare organizations.

From an application perspective, patient monitoring
requires ad-hoc and continuous views on many
vital parameters either measured continuously by
medical devices, e.g., heart rate signals, or generated
in asynchronous processes, e.g., laboratory values.
Furthermore, mathematical models, such as scoring
systems, exist that define patients’ health state indicators
on a subset of relevant vital parameters. Several
models, e.g., APACHE [28] or TISS [16], have been
established for health economics and quality assurance

in daily hospital routines. However, there are no
standards for unifying the available vital parameters
or the indicators of mathematical models, focusing
on ease of use and ad-hoc views on data to support
physicians [1]. As a result, physicians manually analyze
various data for monitoring, diagnosing, and treating
patients. The vast number of vital parameters and their
complex dependencies increase the risk of overlooking
or misjudging the early stages of critical events, which
leads to life-threatening situations. By estimation,
hospital errors are the third-leading cause of patient
death in the USA, after heart diseases and cancer [11].
Monitoring applications can help reduce hospital errors
by supporting physicians in their analysis tasks and
providing ad-hoc and continuous views on this valuable
information.

In this paper, we propose IoT-PMA, an end-to-
end solution for patient monitoring that includes
NebulaStream as data processing system, an easy-to-
use UI that provides ad-hoc views on the available vital
parameters, and the integration of ML models to enable
predictions on the patients’ health state. In particular,
we leverage NebulaStream’s features for the timely and
accurate acquisition of relevant health indicators and
its rich set of streaming operators to define monitoring
queries. We extend the NebulaStream-UI with a patient
overview page as entry point for a clinic and a detail
page for each patient. The overview page contains
general information about the patients combined with a
traffic light system to reflect the patients’ health state.
For each patient on the overview page, we provide a
detailed page that visualizes the readings of the patient’s
vital parameters (time-series data streams) and static
demographic information. To evaluate our solution,
we implement the RIDIMP scenario from the KI-
SIGS project to enable a continuous patient monitoring
application based on two novel scoring systems, i.e., for
hemodynamic and pulmonary decompensation. To this
end, we leverage machine learning (ML) techniques to
predict the patients’ health state, i.e., the score value.
Beyond that, NebulaStream’s scalability and unique
features will allow us to extend our solutions in the
future with further monitoring tasks for other diseases
and vital parameters to support universal end-to-end
patient monitoring applications. The remainder of this
paper is structured as follows: We introduce a real-world
patient monitoring scenario in Sec. 2. In Sec. 3, we
present our end-to-end patient monitoring solution IoT-
PMA. In Sec. 4, we outline our vision of an emerging
IoT ecosystem focusing on healthcare. We discuss
challenges of clinical studies and our lessons learned
to verify patient monitoring applications for usage in
hospitals in Sec. 5. We present related work in Sec. 6.
Finally, we conclude our findings in Sec. 7.
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2 PATIENT MONITORING SCENARIO

In this section, we describe the real-world patient
monitoring task introduced by the KI-SIGS [22] project
Risk Indicators for cardiopulmonary Decompensation
in Intensive care units by Monitoring vital Parameters
(RIDIMP), its clinical relevance, and the data used.

Clinical Relevance: The project RIDIMP
focuses on detecting hemodynamic and pulmonary
decompensations by monitoring patients’ vital
parameters. These decompensations are progressive,
dynamic lung and cardiovascular function deteriorations.
With increasing failure of physiological counter-
regulation or delayed medical intervention, organ
failure and death are the medical endpoints of these
life-threatening events. Intensive care physicians have
to deal with a large number of parameters like vital
signs, laboratory values, ventilator settings, and applied
medication. Additionally, patients in intensive care
units are in critically ill conditions, and hemodynamic
and pulmonary decompensations can occur suddenly
and at any time during intensive care treatment. The
etiology and cause of these incidents can be very
different and diverse, which introduces an additional
challenge for intensive care physicians to detect early
decompensation stages in the vast number of parameters.
Furthermore, this overwhelming amount of information
and its dependencies increases the potential risk that
beginning decompensation stages are misjudged, which
can cause life-threatening health situations for the
patient. Early detection of these events is essential for
physicians to intervene therapeutically and improve
survival. Common surveillance systems raise alarms
if one or more parameters exceed a critical value.
However, they neither support the differentiation of
vital parameter value ranges nor ad-hoc views on the
entire relevant data. A robust monitoring and warning
system that visualizes vital parameters and computation
results of the developed methods to detect, classify
and predict the severity class of decompensation can
support the physicians. A suitable user interface would
visualize the computed results to everyone involved
in the patient’s treatment. The bedside physician
can be informed directly about a potential risk of
hemodynamic or pulmonary decompensation, may
intervene therapeutically, and arrange a prolonged
observation episode or invasive monitoring and
diagnostics.

Patient Data Management System: The data used
for developing the scoring systems and training the
neural network is stored in the IntelliSpace Critical Care

and Anesthesia Data management system, developed
by Philips [21]. An excerpt of the data containing
more than 10.000 cases recorded between 2013 and
2021 had been anonymized. The responsible ethical
committee approved the retrospective observational
study. Each case, i.e., a patient data record, contains
the following data groups: assessment, medication, lab
result, treatment, and demographic information.

Data groups provide data entries, such as time
series of observations made during the patient’s hospital
stay. Data are recorded with different sampling rates,
e.g., high frequent and regular measurements of vital
parameters, e.g., heart rate and arterial pressure. At
the same time, the asynchronous data recording process,
e.g., laboratory values, depends on the patient’s therapy
and clinical condition. After the patient is discharged,
the data are compressed to a maximal sample frequency
of one tuple per hour (per data entry). All methods
introduced in Section 3 are developed based on the
compressed anonymized historical patient data.

3 IOT-PMA: PATIENT MONITORING
APPLICATION IN THE IOT

Patient monitoring is one major emerging IoT
application [3]. In order to enable such an application,
we propose our end-to-end solution IoT-PMA that
includes NebulaStream as data processing system, an
easy-to-use UI with ad-hoc views on the available vital
parameters, and the integration of ML models to enable
predictions on the patients’ health state. NebulaStream
addresses the challenges of the IoT by leveraging an
architecture that unifies the advantages of fog and cloud
environments. In particular, NebulaStream tackles
security and privacy challenges by allowing healthcare
organizations to leverage the exclusive resource usage
for private fog owners in contrast to the shared usage
of cloud resources. In order to overcome the challenge
of low-latency requirements, the unified architecture
of NebulaStream enables data processing close to its
source. Furthermore, it supports diverse data and
programming models to support various monitoring
queries and provides flexible scalability for increasing
numbers of data producers and queries.

In the remainder of this section, we summarize the
major methods used to implement IoT-PMA, i.e., the
scoring systems to classify decompositions (Section 3.1)
and their prediction model (Section 3.2). Furthermore,
we explain the integration of the scoring systems and
the prediction model into NebulaStream in Section 3.3,
the monitoring extension on the NebualStream-UI in
Section 3.4, and the application deployment for the
retrospective observational study in Section 3.5.
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Figure 1: Monitoring Parameters by Data Groups.

Table 1: Severity Class of Decompensation and Score
Intervals.

severity class of
decompensation

hemodynamic
score interval

pulmonary
score interval

none 0 - 3 0 - 4
moderate 4 - 5 5 - 20
severe >5 >20

3.1 Scoring Systems for Hemodynamic and
Pulmonary Decompensation

The fundamental first step to overcoming the medical
challenge of identifying vital parameters and parameter
dependencies requires defining new scoring systems
for hemodynamic and pulmonary decompensation. In
order to capture the early stages of decompensation,
avoid focusing on special etiology, and minimize data
gaps, we chose routinely and frequently used parameters
and severity thresholds and had to renounce special,
invasive laboratory results, vital signs, and procedures.
In total, 20 relevant parameters have been identified as
vital risk parameters for the two decompensation types.
Figure 1 [13] summarizes all parameters by their data
group and provides their measurement unit.

The final medical definition is described in two novel
scoring systems proposed by Stich et al. [24]. These
systems define various value ranges for the patient’s
monitoring parameters which are punished with different
point values, i.e., 0 points (pts) for normal conditions
and up to 3 pts (4 pts) for pulmonary (hemodynamic)
decompensation for massively deviant behavior. The
hemodynamic decompensation score is based on six
identified monitoring parameters, including the two
vital parameters, mean arterial pressure and heart rate,
combined with circulatory drug support. The pulmonary
decompensation score takes 14 monitoring parameters
into account, inter alia, it includes the vital parameters

Table 2: Pulmonary Decompensation Scores for
Identified Parameter and their Value Ranges.

parameter:
score: 0 1 2 3

spontaneous respiratory rate 10-25 26-30 31-35 >35
O2 saturation 96-100 95-90 85-89 <85
expiratory CO2 partial pressure 35-45 30-34|46-49 25-29|50-58 <25| >59
arterial O2 partial pressure 70-100 69-65 64-60 <60
arterial CO2 partial pressure 35-45 30-34|46-49 25-29|50-58 <29| >59
pH 7.35-7.45 7.46-7.49 7.5-7.55 >7.55

7.26-7.34 7.16-7.25 <7.15
inspiratory O2 concentration 30-35 36-49 50-60 61-100
O2 insufflation 0 2-5 6-8 >8
Horowitz quotient 400-600 399-200 199-100 <100
mandatory respiration rate 10-20 21-23 24-26 >26
peak inspiratory pressure 10-25 26-28 29-30 >31
positive end-expiratory pressure 5-8 9-11 12-15 16-25
inspiratory tidal volume 401-500 301-400 201-300 <200
ventilation mode spontaneous oxygen assisted bivent

breathing insufflation spontaneous
breathing

Table 3: Hemodynamic Decompensation Scores for
Identified Parameter and their Value Ranges.

parameter:
score: 0 1 2 3 4

heart rate 50-90 45-49 40-44 40-44 <40| >110
91-100 101-110 101-110

mean arterial pressure 65-80 64-60 59-50 59-50 <50
catecholamine therapy none singular singular combined singular/combined

in high dose
norepinephrine 0 0.01-0.09 0.1-0.39 0.1-0.39 >0.4
epinephrine 0 0.01-0.09 0.1-0.39 0.1-0.39 >0.4
dobutamine 0 1-3 3.1-5 3.1-5 >5
vasopressin 0 0 0 0 >0.01

spontaneous respiratory rate and peripheral oxygen
saturation, as well as different laboratory values taken
from blood gas analysis and oxygenation or support by
a ventilator. Tables 2 and 3 provide the complete list of
identified parameters, their value ranges, and assigned
scores for the two decompensation types [13].

The final score is the sum of all points from one
patient’s information at a specific point in time and
indicates the patient’s severity class of decompensation,
as given in Table 1.

3.2 Prediction Model for Severity Classes

In order to enable not only monitoring but also warnings
for evolving decompensations, a gated recurrent unit-
based (GRU) neural network has been developed by
Mandel et al. [13]. The TensorFlow [25] network has
been trained to predict the maximal severity class of the
decompensation within a 24-hour prediction timeframe
with 0.85 AUROC for hemodynamic decompensation
and 0.9 AUROC for pulmonary decompensation. The
network can estimate the underlying decompensation
score for prediction times of up to 24 hours with mean
errors of 6.3% of the maximal possible pulmonary,
and 9.6% of the hemodynamic score based on 60h
observation period.
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Figure 2: Overview of NebulaStream-UI.

3.3 NebulaStream Extensions

In order to specify the monitoring queries to derive
the patients’ current score continuously, we use
NebulaStream’s rich set of streaming operators. This
operator set includes all traditional streaming ETL
operators, temporal aggregations, window joins in event-
time, and Complex Event Processing operators, such
as the temporal sequence operator and conjunctions.
To derive a prediction of the severity class of
decompensation, the trained TensorFlow model needs
to be integrated into NebulaStream. Ongoing work
integrates a new operator, including a placement strategy
for inferring ML models. This feature enables the usage
of TensorFlow models inside NebulaStream and allows
users to add trained ML models to a query. The specified
data stream in the query sends its tuples as input to the
model. The resulting stream contains the models’ output,
i.e., the estimated maximal decompensation score. The
predicated score can then be visualized for the physicians
in the NebulaStream-UI.

3.4 NebulaStream-UI Extensions

The NebulaStream-UI provides an intuitive and visual
way to interact with data from NebulaStream and is
publicly available [19, 20]. Figure 2 introduces the
standard features of the NebulaStream-UI. The Query
Catalog allows the user to submit new queries and
provides an overview of all queries and their current
status. The Topology page visualizes the current tree-
like network topology containing all connected workers
and the coordinator, including node-specific details
such as resources or IP addresses of the nodes. The
Source Catalog allows registering new logical streams
by providing a stream name and schema. A logical
stream represents a logical view over a set of IoT
devices, e.g., a logical stream HeartRate combines
all heart rate readings from physical devices into one
consistent stream. Furthermore, it provides an overview
of all registered streams and their schemata. The Result
Visualization page enables the user to select a graph type,

1

2

3

Figure 3: Patient Overview Page.

e.g., a line chart, to visualize results. Finally, on the
Setting page, the user defines the IP address and port to
connect to a running NebulaStream instance.

In IoT-PMA, physicians interact with NebulaStream
through the NebulaStream-UI that has been extended
by the following three components for our health care
scenario, in accordance with the physicians of GeNo:
(1) the patient overview page, (2) the patient detail page,
and (3) the TensorFlow model page.

Patient Overview Page: We extend the navigation
bar with a hospital symbol (white cross) that helps the
physicians navigate to the patients’ overview page. The
overview page shows each patient in the clinic on a
card grid. Figure 3 shows the overview page of one
clinic with two patients 1 . The card grid component
constantly listens to the assigned request (query) and
updates the page every time it receives a message, i.e.,
adding a new patient or updating a patient’s information
on its card. Each patient card includes the patient’s
name and room number. Furthermore, the heart color
in the right upper corner of each patient card 2

represents the currently more critical decompensation
severity class (either pulmonary or hemodynamic) given
the introduced scoring model in Section 2. We display
the severity class as a traffic light system, i.e., green for
no decompensation, yellow for moderate, and red for
severe decompensation. As an additional feature, the
page provides a search field 3 that allows medical staff
to filter for specific patient details, e.g., room number or
name. The physicians will be redirected to (2) the patient
detail page by clicking on a patient.

Patient Detail Page: The patient detail page (see
Figure 4) provides comprehensive information about the
patient, particularly the patient’s biosignals, all available
demographic information, and health history. The page
is divided into three components: Patient Details 1 ,
Patient BioSignals 2 , and BioSignal Time Series 3 .
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1
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3

Figure 4: Patient Detail Page.

Patient Details 1 : This component provides a grid
structure, resulting in a two-column layout for the
patient detail page, containing all patient demographic
information. Additionally, by pressing the Show Patient
History bottom, the physician can view the patient’s
medical history and add further details. Finally, the
Back-bottom navigates the physician to the patient
overview page.

Patient BioSignals 2 : This component follows
the two-column grid layout of the Patient Detail
component 1 and presents the latest values of the
patient’s biosignals. A separate view of concrete values
is required to support documentation processes in the
daily clinical routine.

BioSignal Time Series 3 : This component displays
each patient biosignal in a line chart. Each graph
represents the time on the x-axis and the biosignal value
on the y-axis. Furthermore, the physicians can remove
and add new graphs using the Add Graph button. Note
that the NebulaStream-UI provides several graph types
besides line charts. Both features enable physicians
to flexibly create ad-hoc views on the required vital
parameters and support their fast decision-making.

TensorFlow Model: An additional menu point is
added for the TensorFlow Model page (see Figure 5).
The component contains the graphical representation of
the trained TensorFlow neuronal network (see Section 2).
The image was generated with netron [23] and added to

Figure 5: TensorFlow Page.

the NebulaStream-UI to explain the forecasting process
and present the insides of the model layers. Furthermore,
model updates outside of NebulaStream are considered
after observing significant variance in more recent data.
The page will be updated in case of updates on the
TensorFlow model. In the future, this page can also
contain further insides on the monitoring task and its
model, e.g., feature detection results.

3.5 Application Deployment

As our target scenario is a retrospective observational
study, the data access of our application is limited to the
patients’ historical data (see Section 2). Furthermore,
given the ethical restrictions, we can only use an
anonymized view of the data from ten patients. The
data contain the required vital parameters (parameter
identifier and value), relative timestamps (hours in the
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Figure 6: IoT Health Care Scenario.

hospital), and a surrogate key per patient. The data
excerpts have file sizes ranging from 100 kB to 1 MB,
depending on the time the patient spends in the clinic.
Additionally, we can use demographic information and
anonymized patient histories of archetype cases provided
by the medical project team members.

We use a Raspberry Pi cluster and install our data
generator on each Raspberry Pi to represent a patient.
The generated data are converted into a JSON format and
delivered to the message broker Mosquitto [18], which
implements the MQTT protocol. The NebulaStream-UI
allows for reading data from this lightweight broker as
it fits the heterogeneous hardware requirements of the
IoT and can be used for low-end devices as well as
servers. The NebulaStream workers listen to the topic of
the broker defined in the running query and receive the
generated data. The data are displayed using respective
IDs, e.g., patientID, and subsequently supplied to the
visual components of the UI.

4 IOT ECOSYSTEM FOR HEALTH
MONITORING

For our vision of a future IoT health monitoring
ecosystem, we extend the introduced intensive
care monitoring scenario (see Section 2) to several
monitoring tasks running in parallel inside one clinic
and other clinics inside a clinic network. In Figure 6,
we present such a large-scale IoT scenario focusing
on healthcare monitoring with the clinic network
Gesundheit Nord (GeNo) [6] as a representative in the
German city of Bremen. The network consists of four
hospitals in Bremen and 62 specialist clinics. Each
hospital with several clinics 1 has a private fog. A
private fog is owned by an organization, e.g., GeNo or
a third-party provider, and its resources are exclusively

used. Thus, the patient data are only available to the
clinics of the fog owner, which mitigates issues of
privacy and security [1]. The number of clinics depends
on the hospital size. In the case of the GeNo, the number
of clinics per hospital ranges from 12 to 24. Each clinic
cares about up to 16 patients and measures different vital
parameters. NebulaStream can handle the collection
and low-latency processing of the generated data within
the private fog. It leverages the available computation
resources of connected devices in the private fog and
collects data in a local data center. We add monitoring
queries in NebulaStream when the task maps to the
appropriate streaming operator set inside NebulaStream.
The NebulaStream-UI visualizes the query results of
each clinic and allows the specialist to add specific
graphs or adjusted queries for individual patients.
Furthermore, additional resources can be provided in the
private fog to include ML tasks, e.g., for predictions that
indicate the patients’ health development and enable
proactive treatment. Such an IoT health monitoring
system also allows fast information transfer, e.g., if a
patient moves to another clinic or laboratory values can
be added to the patient and are immediately accessible.

In the fog layer 2 , outside the private clinic network,
remotely monitored patients moving around in the city
and sent their data only to the private fog clinic network.
In the private fog, their data is analyzed and stored.
Both patients and physicians are informed in case of
critical events. In order to keep ML models for the
prediction of critical cases updated, federated learning
among different hospitals is required. Federated learning
on sensitive patient data is supported by leveraging the
ownership rights of private fogs instead cloud-based AI
solution where sensitive data is collected on a central
server. Moreover, various other IoT devices, processing
nodes, or private fogs are distributed within the city to
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gather, (pre-)process, and store data of the surroundings
en-route to the cloud. The cloud layer 3 is the endpoint
for the data of an entire geographical area and allows
for a centralized, global view of the data, e.g., for smart
city applications 4 . The applications outside the clinic
network also require aggregated and up-to-date hospital
information, e.g., bed coverage or COVID cases. The
clinic network can share that coarse granular information
with the public cloud by defining new streams that
provide the requested information using NebulaStream,
while the detailed patient data stay in the private fog.

Using NebulaStream as the backbone for IoT data
processing, we can enable universal low-latency patient
monitoring in the private fog of a clinic network.
Our scalable approach focuses on ad-hoc views on
the relevant data and its analysis results to support
physicians. To this end, it enables the flexible
addition of new medical devices and monitoring tasks
without affecting the latency performance of the UI
client. Furthermore, the private fog can be part of the
NebulaStream fog layer of a more general IoT ecosystem
of various stakeholders, technologies, and companies,
e.g., as proposed by KI-SIGS or a smart city. Hospitals
can contribute essential statistics and information for
such an application and leverage the private fog to secure
sensitive patient data.

In order to enable our large-scale and geo-distributed
IoT health monitoring vision, NebulaStream is under
heavy development by an active team of researchers at
TU Berlin and DFKI GmbH, led by Prof. Volker Markl.
A closed-beta release (NebulaStream 0.2.0.) is available
under the Apache License v2.0.

5 CHALLENGES OF CLINICAL STUDIES FOR
PATIENT MONITORING

A prospective observational clinical study is currently
under preparation to perform validation on real-time
data using the developed methods and our proposed
application (see Section 3). Moving the setting from
retrospective to prospective introduces challenges not
limited to our solution. In the remainder of this section,
we describe relevant challenges of verifying the usage
of patient monitoring applications in smart hospitals and
discuss our lessons learned.

Ethical Challenges: Healthcare scenarios introduce
a broad range of ethical challenges. Therefore, KI-
SIGS offers workshops to present rules and discuss the
resulting challenges. In the following, we describe two
significant ethical challenges.

Privacy and Security: To obey data protection rules
and ensure the privacy of patient data, we had to ensure

that only involved medical team members could re-
identify patients and have access to non-anonymized
data. Therefore, personal data and parameters of the
patient that could lead to the identification of patients
were partially manually excluded. Furthermore, the
patient data are not allowed to leave the clinic network.
Thus, an access-protected research server accessible via
VPN containing the selected, cleaned, and anonymized
patient cases were set up.

Method Evaluation: During the Clinical Study, the
responsible physicians are not allowed to consider the
support of the system and the developed methods
for patients’ treatments. In particular, allowing the
bedside physician to access the results of the developed
methods, i.e., the potential risk of decompensation,
would directly influence the physician’s decisions
and medical actions. For example, the physician
could intervene therapeutically, arrange a prolonged
observation episode, or arrange invasive monitoring and
diagnostics. However, a non-validated warning system
implies risks of unnecessary or potentially harmful
intervention and prolonged stay in the intensive care
unit. We consider avoiding these issues by only
allowing members of the research team to access the
results and reports of the system. Bedside physicians
will not get notifications about a possible upcoming
decompensation, and thus the warnings system will not
influence the course of treatment.

Sample Rates of Patient Data: The retrospective
study and its developed methods are based on hourly
compressed historical data. In particular, no aggregation
of detailed patient information is applied, and only
a specific data entry at a single timestamp is stored.
Live data will appear in different and more granular
frequencies and must be processed to match the hourly
frequency of the developed methods to guarantee similar
results and accuracy. A retraining of the neural network
on raw data is not considered as the training sample
is too small. This challenge demonstrates that current
patient data management systems require updates on
their storing procedures to train ML models on the
available data and apply them to real-time streams.
Advanced solutions to compress vital signals (time-
series) and enable their reconstruction exists. Allowing
for the reconstruction of the data can help the training of
accurate ML and other prediction models usable in real-
world health monitoring applications.

Device Integration: The usage of medical monitoring
devices increased with the IoT. However, their
integration into a unified application to support
physicians and provide a central view of all taken
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measurements is still challenging. Communication
standards for the healthcare sector are under
heavy development to enable smart hospitals and
data migration in healthcare ecosystems. Fast
Healthcare Interoperability Resources (FHIR) [5]
is the latest standard of the Health Level Seven
International (HL7) [9] invented to enable data exchange
between healthcare institutions and device integration.
Adopting standard technologies widely used by other
industries is essential for universal health applications.
Integrating FHIR in NebulaStream is crucial for future
work since it enables the envisioned patient monitoring
application and the participation of health organizations
in general IoT scenarios such as smart cities. The
devices that gather the different pieces of information
will help medical practitioners to make better-informed
and timely decisions while reducing human-made errors
in the field of medical science.

6 RELATED WORK

IoT Healthcare Monitoring System: Mamdiwar et
al. [12] discuss different architectures, data processing,
and transfer methods, as well as several computing
paradigms suitable for the IoT and healthcare
monitoring. They introduce an overview of applications
that use IoT devices for healthcare monitoring. Most
of these applications run on personal mobile phones
and use wearable sensors to monitor, e.g., activity or
glucose monitoring. For the monitoring of illnesses,
e.g., diabetes, applications envision push-based
communication with physicians, e.g., when a critical
event is detected or infectious diseases, e.g., COVID, are
remotely diagnosed [2, 8, 15]. More critical illnesses,
e.g., cardiac patients [7], are continuously monitored
inside the hospital using various vital parameters. In
contrast to our solution, these monitoring scenarios
propose cloud solutions for processing and storing the
data. Hospital applications introduce scientific methods
to detect a specific disease pattern but do not provide a
visual presentation or the possibility for the physicians
to interact with the application [10].

Scoring Systems: Medical scoring systems are
used for medical research and education but are also
essential in health economics and quality assurance.
They assess clinical conditions and procedures at
particular, mostly retrospective points in time. There
are already established and important, non-AI-based
scoring systems applied in the field of intensive care
medicine: The Acute Physiology and Chronic Health
Evaluation (APACHE) [28] is a complex scoring model
for evaluating disease severity and forecasting the

probability of survival. The commonly used Simplified
Acute Physiology Score (SAPS) [17] describes patients’
physical condition and permits comparison of disease
severity, while the Sequential Organ Failure Assessment
(SOFA) [26] focuses on particular diseases and organ
failure. The Therapeutic Intervention Scoring System
Score (TISS) [16] depicts therapy and care efforts.
In contrast to these scoring systems, we developed
two AI-based systems that focus on pulmonary and
hemodynamic decompensation events and allow the
prediction of these incidents in a timely manner.

7 CONCLUSION

We propose IoT-PMA implemented on top of the IoT
data processing system NebulaStream for a real-world
scenario. Our application implements two scoring
systems defined by the medical project members to
indicate hemodynamic and pulmonary decompensation
severity classes. Furthermore, we designed extensions of
the NebulaStream-UI with the medical project members
that visualize all relevant information with continuous
updates on new data. Thus, our application supports
intensive care physicians in their decision-making
using ad-hoc views on relevant vital parameters and
monitoring the patients’ severity class. Work in progress
integrates the trained neural network for predicting the
severity class of decomposition in time. We present
the current challenges of our solution for a prospective
clinical study, which indicates hurdles of emerging
patient monitoring applications. Finally, we envision
the infrastructure of larger, geographically distributed
IoT application scenarios such as the intelligent health
ecosystem proposed by healthcare ecosystems or smart
cities using NebulaStream. Those applications require
the latest statistics or capacity information from hospitals
and other stakeholders for their users. NebulaStreams’
architecture enables stakeholders to participate in such
application scenarios without exposing sensitive data to
the public.
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