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ABSTRACT 
 

Datacubes form an accepted cornerstone for analysis- and visualization-ready spatio-temporal data offerings. 

The increase in user friendliness is achieved by abstracting away from the zillions of files in provider-specific 

organization. Datacube query languages additionally establish actionable datacubes, enabling users to ask "any 

query, any time" with zero coding. However, typically datacube deployments are aiming at large scale, data 

center environments accommodating Big Data and massive parallel processing capabilities for achieving decent 

performance. In this contribution, we conversely report about a downscaling experiment. In the ORBiDANSE 

project a datacube engine, rasdaman, has been ported to a cubesat, ESA OPS-SAT, and is operational in space. 

Effectively, the satellite thereby becomes a datacube service offering the standards-based query capabilities of 

the OGC Web Coverage Processing (WCPS) geo datacube analytics language. We believe this will pave the way 

for on-board ad-hoc processing and filtering on Big EO Data, thereby unleashing them to a larger audience and 

in substantially shorter time. 

 

TYPE OF PAPER AND KEYWORDS 
 

Short Communication: Datacubes, cubesat, satellite, array databases, rasdaman, SQL/MDA 

 

 

1 INTRODUCTION 
 

Never before has it been so inexpensive to obtain large 

amounts of Earth observation satellite imagery, 

helping to monitor and understand our planet and its 

evolution in time. At the same time this brings many 

challenges [19]. 

Increases in spatial sensor resolution result in more 

detailed but also larger data acquisitions, and data 

download during ground station overpasses becomes a 

bottleneck [11] requiring complex scheduling 

techniques [7][14]. 

Further, data providers still tend to think in 

“archives” akin to Web file systems, which offer at 

most download of individual scenes as acquired by the 

satellite sensors. Such data organization tends to 

perform badly in timeseries processing and leaves it to 

the end user to deal with the data filtering, alignment, 

and indexing tasks required for any serious data 

mining and analytics. 

Finally, data download, processing, and ingestion 

into archives takes significant time, so it is rarely 

viable for real-time applications. 

These and further impediments call for shifting 

processing on board the satellites so that not raw data, 

but answers to user questions can be provided in near-

real time. With increasingly more computing power 
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and more standardized software architectures available 

on-board [10][16] this vision appears feasible today. 

This begs the question what high-level access and 

“answering user questions” could mean. Our under-

standing is driven by the notion of Analysis-Ready 

Data (ARD) [19] on the one hand and the concept of 

coverages as per the OGC and ISO standards 

[6][17][4] on the other hand. In combining both 

concepts the OGC Coverage Implementation Schema 

(CIS) [6] allows representing, among others, multi-

dimensional spatio-temporal datacubes. The standard 

defines requirements such data need to fulfill to be 

ready for analysis – be homogeneous in that one single 

coordinate reference system governs the whole extent 

of it, for example. On this data model both a low-level 

access service called Web Coverage Service (WCS) 

[1] is defined, and a high-level datacube analytics 

language named OGC Web Coverage Processing 

Service (WCPS) standard [4][3], which is paralleled 

by the ISO SQL/MDA standard [13], an extension of 

standard SQL for management and querying of 

multidimensional arrays, just without space/time 

semantics to be domain agnostic. Both WCPS and 

SQL/MDA are suitable candidates for the high-level 

interfaces a satellite should provide to enable direct 

on-demand access and analytics. 

Besides the elevated quality of service there is also 

a gain in performance suggested by the observation 

that the more concretely user requests can be directly 

answered on the server, the less data need to be 

delivered to the client, thereby minimizing download 

costs. One demonstration of this is available in the 

Earth Datacube Playground “race” between an Apache 

Web server and a rasdaman database service [17]. 

Based on these considerations we have proposed 

with the ORBiDANSe project, back in 2016, to 

conduct a proof of concept by equipping forthcoming 

ESA OPS-SAT [10] with the rasdaman datacube 

engine. The main goal was to allow WCPS and 

SQL/MDA queries to be sent to the satellite, receiving 

back the query evaluation results.  

In this paper we report about the first experiments 

now that the satellite has become operational. The 

main contributions are (i) porting an existing, 

datacenter-proven datacube engine to a cubesat, (ii) 

optimizing this orbital data service by minimizing its 

resource footprint so as to run in the limited 

environment, and (iii) demonstrating feasibility in 

space. 

The remainder of this paper is organized as 

follows. In Section 2 we inspect related work in the 

field. In Section 3 we present the on-board experiment 

of the datacube engine on the cubesat, followed by a 

discussion of the results in Section 4. Finally, Section 

5 concludes the plot. 

2 RELATED WORK 
 

NASA SpaceCube is a hardware platform optimized 

for efficient on-board processing of any code [16]. As 

such, it supports neither datacubes nor datacube 

queries. In fact, rasdaman potentially could be ported 

to SpaceCube. 

ESA Phi-Sat-1 is a recently launched cubesat 

where emphasis is put on bringing standard software 

architectures to space. Phi-Sat-1 concentrates on AI 

processing on board with a fixed functionality (such as 

cloud detection) determined by the pre-flight training 

[12], as opposed to the ORBiDANSe flexibility of 

“any question, any time”. A combination of both 

approaches would be an interesting future project. 

On the more theoretical side, the work on iSat 

explores how satellites can be transformed from fixed 

relay nodes into dynamic edge computing nodes 

capable of loading apps on board, essentially forming 

an IoT cloud in space, and interfacing with standard 

cloud services on the ground [20]. This idea is very 

similar in spirit to OPS-SAT, but goes a step further 

by considering satellite constellations. Simulated 

experiments on the iSat model demonstrated signific-

ant improvements to time and power consumption 

when executing tasks on board. 

In summary, we are not aware of any activity to 

perform on-board processing (i) using a datacube 

approach and (ii) providing flexible query access from 

ground. 

 

3 RASDAMAN @ OPS-SAT 
 

In this section we give an overview of the OPS-SAT 

cubesat and the rasdaman Array DBMS aka datacube 

engine. After that, we report on our challenges en-

countered while porting rasdaman to the OPS-SAT 

environment. 

 

3.1 The OPS-SAT Cubesat 
 

OPS-SAT is a 3-unit cubesat of size 10 x 10 x 30 cm 

with deployable solar panels on each side [10] (Figure 

1). The nano-satellite has been launched by ESA as an 

experimental platform for novel hardware and 

software concepts. It offers a range of resources on-

board, including standard CPU / storage / memory, 

field-programmable gate arrays (FPGAs), camera, 

GPS, and an attitude determination and control system 

(ADCS). The Satellite Experimenter Processing Plat-

form (SEPP) features a 925 MHz dual-core ARM Cor-

tex A9 Hard Processor System (HPS), 16 GB of flash 

storage, 1 GB of DDR3 CPU RAM with ECC, and an 

integrated Cyclone 5 FPGA with 1 GB of dedicated 

DDR3 FPGA RAM, creating a high-bandwidth system 
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for embedded applications with parallel processing. 

The images acquired with the on-board camera are 

2048x1944 pixels with standard visible RGB 

channels; an example is shown on Figure 2. 

OPS-SAT supports deployment of external soft-

ware on-board in the form of standardized application 

packages, which is a novel development in the satellite 

world. The NanoSat Mission Operations Framework 

software development kit (NMF SDK) helps experi-

menters in on-board software development by provid-

ing an API for utilizing the satellite’s resources, such 

as camera, GPS, ADCS, etc. This system runs an em-

bedded Linux operating system with support for exec-

uting Java 1.8 applications, native C/C++ executables 

compiled for the armhf architecture, Python 2.7 

scripts, and a standard Posix shell with the busybox 

utilities. 

A service called Space Shell is also provided to 

experimenters on ground for submitting Linux 

commands as unprivileged user in the on-board shell 

in real-time. Any output generated during command 

execution will be downlinked via S-Band. Further, an 

interactive ground application is available for the 

experimenter. 

For our experiment setup, we developed a Java 

application that allows executing several actions 

remotely via the NMF SDK, including: start and stop 

rasdaman; take a picture and insert into rasdaman 

either as a 2D array or updating a 3D time-series 

datacube; and adjust the camera exposure to an 

automatically determined value. 

 

3.2 The rasdaman Datacube Engine 

 
The rasdaman (“raster data manager”) datacube 

engine has pioneered Array Database Management 

Systems (DBMS) as a new class of NoSQL DBMSs 

[1][5][2]. Like a conventional DBMS rasdaman offers 

a query language, rasql, with specific operators on 

multi-dimensional datacubes, rather than conventional 

tables. Among others, rasdaman supports spatio-

temporal queries in a genuinely multi-dimensional 

way, with all functionality available on every axis, 

including time.  

In 2019, this high-level, declarative query lang-

uage has been adopted as a further component of the 

ISO SQL standard under the name SQL / MDA 

(Multi-Dimensional Arrays) [13]. 

Architecturally, rasdaman resembles a fully-

fledged DBMS with its array engine crafted as a full-

stack implementation in fast C++. The multi-parallel 

worker processes operate on arbitrarily tiled arrays; 

the administrator can override the default tiling by 

specifying individual size and shape for storage; this 

resembles a tuning factor which, however, remains 

completely invisible to the query writer. Further 

tuning parameters include compression, indexing, 

cache sizing, etc. A number of highly effective 

optimizations are applied to each incoming query 

individually, such as query rewriting into a more 

efficient form, cost-based optimization, intelligent 

cache utilization, compilation into machine code, 

multi-core parallelization, distributed processing, etc. 

On top of this domain-agnostic engine a geo 

semantics layer adds handling of space and time 

coordinates on regular and irregular grids. A rasdaman 

server offers its geo datacube functionality via the 

OGC datacube standards, in particular the OGC Web 

Coverage Processing Service (WCPS) datacube 

analytics language. Internally, WCPS queries are 

translated into SQL/MDA and executed in the multi-

parallel, distributed evaluation engine. 

 

Figure 1: ESA OPS-SAT (source: [10]) 

 

 

Figure 2: OPS-SAT camera capturing frosty fjord 

(source: [8]) 
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The rasdaman technology is in operational, 

industrial use since many years forming, among 

others, the backbone of the first location-transparent 

datacube federation, EarthServer [2][8]. 

 

3.3 Challenges Encountered 

 

Deploying rasdaman on OPS-SAT raised several 

challenges: a new architecture (ARM Cortex A9 as 

opposed to Intel-based architecture); constrained 

environment in terms of computing resources on board 

(only 1 GB of RAM, less than 16 GB disk space); a 

slow uplink bandwidth which limited the size of 

packages that could be uploaded on board in 

reasonable time; and more. Below we discuss some of 

the core issues encountered. 

Compiling rasdaman for the precise CPU archi-

tecture of the satellite proved difficult without access 

to the actual board. Efforts to do it on a BeagleBone 

Black board were not successful due to compatibility 

issues and instabilities. In the end the only solution 

that worked was cross-compiling in a QEMU virtual 

machine with the same target processor architecture 

and 2 GB RAM. 

To accommodate for the minimal environment it 

was necessary to strip away many features that 

otherwise are a fairly essential part of rasdaman: the 

OGC Web services frontend that deploys on top of 

rasdaman as a Java Web Application, support for 

importing and exporting data in many formats via the 

GDAL library, as well as special support for NetCDF 

and GRIB data format, etc. In the end the result was a 

10 MB package containing only the core rasdaman 

engine (written in C++), with support for import / 

export of data in PNG, JPEG, and BMP formats. 

In orbit the OPS-SAT GPS was malfunctioning so 

it was not possible to demonstrate geo-referencing; 

however, we consider this not a relevant drawback as 

the main point of the experiment is the on-board 

processing of dynamic queries on images acquired; for 

map production on a commercial-grade satellite GPS 

would be available with no doubt. 

Further, the OPS-SAT downlink did not support 

TCP/IP initially; surprisingly it became available 

experimentally about a week before our experiment 

was scheduled for running on board. Therefore, the 

workaround implemented earlier had to be used. In 

future, communication is expected to be more 

straightforward with some standard TCP/IP stack. 

Altogether, a large part of the issues encountered 

were due to (i) the highly experimental setup and (ii) a 

general tendency in the on-board IT infrastructure to 

be rather specific and by far not compliant with IT 

common industry standards. 

4 EVALUATION 

 
4.1 Experiments 
 

Our experiments aimed at demonstrating the value of 

running rasdaman on a satellite in orbit. The main 

hypotheses are: 

(1) Edge computing is more efficient - we ship com-

puting queries to the data (very low bandwidth 

needed), instead of data to the computing (high 

bandwidth needs and expensive for satellites). 

(2) Edge nodes, such as satellites, are power and re-

source constrained, in contrast to large datacenters. 

Rasdaman is a database engine for multidimen-

sional array data, such as satellite images, written 

in C++ and heavily optimized for minimal re-

source usage. Therefore, a datacube engine like 

rasdaman fits well for deployment on a tiny com-

puter aboard a satellite. 

(3) As a database engine, rasdaman allows continu-

ously acquiring and storing large amounts of im-

agery. This enables much more autonomous opera-

tion, as well as flexibility for running ad-hoc que-

ries as needed during the infrequent and short win-

dows for communication with a ground station. Ef-

fectively, a satellite becomes a dynamic and agile 

edge computing node, in contrast to the traditional 

pre-programmed mode of operation. 

(4) At the same time, rasdaman is capable of scaling to 

make efficient use of powerful computing re-

sources on cloud or supercomputer infrastructure. 

Through federation it is possible to connect ser-

vices running on satellites with services running on 

ground, for a seamless experience when perform-

ing data science tasks. 

To illustrate (1) we devised several queries on the 

imagery inserted into rasdaman. As is typical, they 

reduce the original size, e.g. aggregating results to one 

or (with a timeseries) a list of scalars; scaling down 

for quick visual inspection on ground; spatial or 

channel subsetting; threshold or classification queries 

resulting in binary images; encoding to lossy JPEG. 

The queries that demonstrate (2) perform heavier 

image processing and analysis, such as edge detection, 

histogram calculation, timeseries aggregation. The 

goal is to show that rasdaman is capable of answering 

queries that take longer, or a lot of data to evaluate. 

Query (3) involves continuously acquiring and 

storing images in a 2D mosaic placed in a 3D time-

series datacube. This should work in a rolling archive 

fashion to accommodate for the limited disk space so 

that older data is removed from the datacube when the 
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disk is filled up. Space usage would be further reduced 

through support for filtering image acquisition only 

over areas of interest given as polygon boundaries.  

Finally, federating rasdaman nodes (point 4) 

requires TCP/IP support for communication between 

the federated machines. OPS-SAT did not have 

TCP/IP which prevented (4) from being evaluated. An 

experimental TCP/IP capability got added to OPS-

SAT late in the project, about a week before our 

experiment was scheduled for running on board. 

Therefore, the proprietary stack had to be kept. 

The experiment steps undertaken are presented 

below. The first five steps were implemented as 

actions in our NMF app, executed from ground 

through the Consumer Test Tool (CTT): 

 
1. A "Start rasdaman" command executes the 

startup routines of the rasdaman engine. 

2. A daily collection (table in SQL-speak) is creat-
ed named Images_YYYYMMDD holding the set 
of 2D images acquired today. This is done by ex-
ecuting the rasql query 

create collection Images_20211027 RGBSet 

3. Similar to the previous action, an "Initialize 
timeseries" action creates a collection for build-
ing a 3D timeseries datacube of RGB pixels, and 
initializes it with a 3D array of one dummy point 
(updated later on in step 5): 

create collection C RGBSet3 

insert into ImageTimeseries  

values marray m in [0:0,0:0,0:0] 

           values {0c,0c,0c} 

4. Take a PNG picture with the camera and insert 
into the daily collection with a query as below: 

insert into Images_20211027  

values decode( $1, "png" ) 

 where the $1 variable is a placeholder for the 
image acquired, such as 
snaps/20211022_073847_myPicture.png. The 
full command invocation (which we generally 
suppress in this paper for brevity) is: 

rasql -q "insert into Images_20211027  

               values decode( $1, \"png\" )” 

          -f snaps/20211022_073847_myPicture.png 

5. Take a PNG picture with the camera and extend 
the 3D timeseries with this timeslice: 

update ImageTimeseries as c  

set c[sdom(c)[0].hi + 1, *:*, *:*] 

assign decode($1, "png") 

 where the $1 variable again gets replaced by the 
is a placeholder for an image required, such as 
snaps/20211022_073847_myPicture.png . 

 This action is repeated several times one after 
another to build several slices into the timeseries. 
Due to the lack of working GPS on board, the 
datacube is not a real timeseries of imagery se-
quentially taken over the same spot on Earth. 
That said, for the purpose of our experiments we 
can disregard the image contents as the goal was 
to demonstrate queries over 3D timeseries, which 
was successful. 

The next set of actions contains rasql queries 

executed via SpaceShell on the imagery acquired 

previously, rather than being hard-coded into the NMF 

application. This allows us to modify them on-the-fly 

if necessary, in response to the results we get. The 

rasql commands are executed in the shell via the rasql 

command-line utility, therefore whenever shell 

commands appear below then quotes are escaped and 

further necessary rasql parameters are present which 

have been omitted before. Further, the code has been 

reformatted to fit the paper layout. Table 1 gives a 

synopsis of averaged runtimes observed. 

 
6. Download downscaled images extracted from the 

timeseries for inspection: 

for i in {1..5}; do 

    rasql  -q 

 “select encode(scale(c[$i,*:*,*:*], 0.1), \"jpeg\") 

   from ImageTimeseries as c” 

done 

 The shell loop executes the command five times 
to allow averaging of results for better accuracy. 
This loop is performed on all subsequent queries, 
too, but left out for an easier read of the code. 

7. Download a full-size image from the 2D collec-
tion (we list only the query as such and omit the 
shell commands around it): 

select encode(c,"jpeg")  

from Images_20211027 as c 

8. Download a random slice from the 3D timeseries 
in original resolution (likewise omitting the shell 
commands): 

select encode(c[1,*:*,*:*],"jpeg") 

 from ImageTimeseries as c 

9. Rudimentary cloud cover assessment on the slic-
es of the 3D timeseries, which is saved as a 
comma-separated values (CSV) file of cloud 
cover percentages for each slice: 
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select encode( 

    marray i in [1:sdom(c)[0].hi] 

    values ( (float) count_cells( 

                                c[i[0],*:*,*:*].red     > 250 

                         and c[i[0],*:*,*:*].green > 250 

                         and c[i[0],*:*,*:*].blue   > 250 

                            ) 

                        / 3981312f ), 

     "csv" )  

from ImageTimeseries as c 

Sample output might look like this: 

12.53,99.312,34.88 

10. Average of the values of each slice, similarly 
saved as a CSV file of one value per slice: 

select encode( 

    marray i in [1:sdom(c)[0].hi] 

    values avg_cells(c[i[0],*:*,*:*], 

    "csv")  

from ImageTimeseries as c 

11. Histogram of each channel, saved as a CSV file; 
an extra shell loop iterates over the RGB bands: 

for band in red green blue; 

do { 

    rasql –q 

  "select 

       encode( 

          marray i in [0:255] 

          values count_cells( 

                         c[1:300,1:300].${band} = i[0] ), 

          \"csv\" ) 

  from Images_20211027 as c" \ 

  --user XXXX --passwd XXXX 

  --out file --outfile histogram_${band}; 

} 2> histogram_${band}_time.txt; 

done 

12. Apply white-balance correction and contrast 
stretching on each image $i: in the 3D cube: 

select 

     encode( 

         (char) 

         ( 

             ((c[$i,*:*,*:*]*{1.8, 1, 1}) - 30.0) / 

215.0) * 255 

         ), 

       "jpeg" ) 

from ImageTimeseries as c 

 On a side note, this slicing is only done for the 
purpose of extracting and downloading 2D imag-
es (see later); on the whole datacube this correc-
tion and stretching could be done in a single step 
(note that the delivery format is changed to 
NetCDF to accommodate 3D):  

select 

  encode( ( c*{1.8, 1, 1} - 30.0) / 215.0 * 255, 

"netcdf" ) 

from ImageTimeseries as c 

13. Edge detection with a Sobel kernel over a 2D 
image (the Sobel kernel is indicated verbatim 
while alternatively it could be conveniently 
stored as an object in the database itself, which 
would simplify the query): 

select 

    avg_cells( 

        sqrt( 

            pow( 

                marray p1 in [1:100,1:100] 

                values 

                   (  condense + 

                      over k1 in [-1:1,-1:1] 

                      using ( <[-1:1,-1:1] 

                                    1,0,-1; 2,0,-2; 1,0,-1> 

                                      [k1[0], k1[1]]*c[p1[0] 

                               + k1[0], p1[1] + k1[1]].red 

                               ) 

                    ), 

                   2.0 

             ) 

            + 

            pow( 

                marray p2 in [1:100,1:100] 

                values 

                    ( condense + 

                      over k2 in [-1:1,-1:1] 

                      using ( <[-1:1,-1:1] 

                                     1,0,-1; 2,0,-2; 1,0,-1> 

                                        [k2[0], k2[1]]*c[p2[0] 

                                  + k2[0], p2[1] + k2[1]].red 

                                ) 

                   ), 

                  2.0 

             ) 

         ) 

    )  

from Images_20211027 as c 
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14. Derive a cloud mask from each slice $i in the 
timeseries (the loop again is omitted): 

select 

    encode( 

        (char) 

        ( 

            ( c[$i,*:*,*:*].red >200 and  

              c[$i,*:*,*:*].green > 220 and 

              c[$i,*:*,*:*].blue > 220 

            ) * {255c,0c,0c} 

        ), 

       "png" )  

from ImageTimeseries as c 

 

4.2 Results 

 

The above experiments have been conducted in-orbit 

in December 2022. We discuss the extraction and 

download cases (queries 6 through 14 above) in turn. 

Query 6: Five timeseries slices downscaled to 10% 

of the original size are shown in Figure 3. Extracting 

and saving each image on the on-board disk took 1.77, 

2.07, 2.03, 1.73, and 1.78 seconds. 

Query 9: Calculating cloud cover percentage for 

each slice was performed in 28.31 seconds. The output 

was delivered in CSV format as it consists of a single 

number. Results delivered were: 2.361031e-05%, 0%, 

9.544592e-06%, 0%, and 0%. 

Query 10: The query that calculates average values 

for each band of the images took 14.9 seconds to exec-

ute. The resulting CSV data are visualized as a stacked 

bar chart in Figure 4 and 5. Images with higher aver-

ages are brighter, and vice versa. Scaling the band av-

erages for each image to 100%, corresponding to an 

intensity of 255, reveals that the on-board camera has 

a bias on the blue and green channels. Indeed, all 

images show a significant bluish tint (Figure 4). 

Query 11: Instead of an average we can obtain the 

detail distribution in the form of channel histograms. 

Executing the histogram query for the red, green, and 

blue band took 11.48, 8.25, and 8.11 seconds respect-

ively. Figure 7 shows a chart of the query result. 

Query 7 and 8: Based on the small image previews 

inspected we decided to download four image slices in 

original resolution. The times for extracting each and 

saving on disk were 4.98, 1.86, 1.82, and 1.80 

seconds. The first full slice is shown in Figure 6 

(scaled down to paper column width). 

Query 12: This query was executed in an attempt 

to correct the sensor color bias and improve the 

brightness and contrast of the images. It was executed 

for the first four images of the timeseries in 16.17, 

15.84, 28.35, and 23.27 seconds. The results are 

shown on Figure 7 and 8, a significant improvement to 

the original imagery as acquired by the camera as 

shown in Figure 3. 

Query 13: The edge detection query took 17.37 

seconds to evaluate on board, which is understandable 

as it is a computationally expensive operation and 

only one single, slow CPU core was available (which 

additionally is shared with the operating system and 

potentially other processes). 

 

 
Figure 3: Downscaled images for quick inspection 

on ground 

 

 
Figure 4: Average value of the images bands (Y 

axis) for each of the 5 images (X axis) 

 
Figure 5: Band averages scaled to 100% (Y axis) 

for each of the 5 images (X axis) 
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Figure 6: First slice in full resolution  

(downscaled for printing) 

 
Figure 7: Channel histograms showing the count 

(Y axis) of each pixel value (X axis) in one image. 

 

 
Figure 8: White-balance and contrast correction 

 
Figure 9: Cloud detection 

 
Query 14: In contrast to getting a cloud-cover per-

centage, this query derived a cloud mask that high-

lights the areas covered by clouds in red (Figure 9). 

Cloud-cover calculation is based on a rudimentary 

threshold method, and occasionally mistakes snow for 

clouds as well. As the images are largely cloud-free, 

the resulting cloud masks are almost completely 

empty and not shown here. Execution times were 12.4, 

11.2, 10.83, and 11.98 seconds for each of the first 

four slices respectively. 

The identical queries, as run on the satellite, were 

repeated on ground on a standard desktop PC with 2x 

Intel Xeon with a total of 12 virtual cores running at 

1.90 GHz, 64 GB RAM, as well as a 512 GB SSD root 

partition and a 6TB 7200 RPM SATA data partition. 

Data downloaded have been imported in the local 

database to resemble the exact same data situation. In 

Table 1 below we compare performance results ob-

tained; recall that on-board a single-core ARM pro-

cessor is in use. Both computers were running rasda-

man community 9. 

As can be expected, the more powerful hardware 

improves performance significantly. Obviously, hav-

ing hardware on board that is only comparable to 

common office standards can lead to interactive real-

time query processing on datacubes in space. We ex-

pect significant gains once hardware and software 

components in space start following common IT 

industry standards. 

 

 

Table 1: Query runtimes (secs, averaged) 

query# 6 7 8 9 10 

satellite 2.34 2.61 2.61 28.31 14.9 

desktop 0.1 0.32 0.32 3.45 1.43 

query# 11 12 13 14 

satellite 9.28 20.90 17.37 11.6 

desktop 1.05 1.79 0.94 1.48 
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5 CONCLUSION 

 

We have presented the ORBiDANSe project which is 

aiming to bridge the gap between two technologies 

hitherto far apart from each other: 

• user-oriented datacube technology easing access, 

analytics, and fusion of massive spatio-temporal 

Earth data; 

• nano-satellites which, in the spirit of IoT, can be 

considered edge devices with specific charact-

eristics, such as a high data delivery rate stretching 

downlink bandwidth to its limits. 

Innovative contributions made are in particular: 

• A datacube engine usually scaled up to run in 

supercomputing centers has been scaled down to 

run in an extremely limited hardware setup; 

• Controlling satellite image acquisition, processing, 

and data download could be accomplished through 

common APIs; 

• Query interfaces are based on adopted standards, 

so no special tools are needed for gaining insight 

from the satellite observations. In fact, any stand-

ards compliant client ought to be able to connect. 

As we have learnt, on-board processing environ-

ments are far away from IT standards common else-

where. Lots of workarounds had to be found, and 

interaction was not as seamless and user-friendly as 

one is used to on Earth. We hope, therefore, to make a 

case for satellite payload operators to move towards 

standard components and interfaces that are easy to 

use for common developers relying on industry-

established, stable solutions on board, too. NASA 

SpaceCube appears a step in the right direction. 

We frequently hear from space experts (and 

agencies) that all pixels invariably must be brought to 

ground and archived as no data should get lost. While 

we do not object to this position on principle we cont-

end that today there is already a good basic supply of 

complete spatial and temporal coverage; we see 

satellites with on-board datacube query processing as 

a complementary service adding fast and flexible ad-

hoc insight to the basic supply. We believe, therefore, 

that in future datacube services will contribute an 

important facet towards “any insight, any time”. Ult-

imately, such an approach has a potential for demo-

cratizing satellite data access as common tools – in 

case of rasdaman, ranging from OpenLayers over 

NASA WorldWind and QGIS to python and R – 

become a means to talk to satellites directly, without 

the need to wait for data becoming published through 

the ground segment. Obviously, proper access control 

to the satellite needs to be established in parallel. 

As a next step we plan operational service deploy-

ments, first in single-instance scenarios and subsequ-

ently federated. In such a federated scenario, a client 

may submit some complex decision support query to a 

data center; the rasdaman instance there finds out that 

data are missing and spawns a sub-request to the 

cubesat, and merges its locally computed results with 

the cubesat response into the final result sent back to 

the user. As rasdaman is already cloud-parallelized, 

queries can be distributed automatically between 

ground and space instances. Technically, this fog 

computing scenario ties the satellites into the mashup 

as edge devices; particularly interesting will be to 

observe – and if necessary improve – distributed query 

processing optimization in presence of highly 

asymmetric processing and bandwidth capabilities 

within such a federation. 
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