

Open Journal of Internet of Things (OJIOT), Volume 8, Issue 1, 2022

44

Space Cubes: Satellite On-Board Processing

of Datacube Queries

Dimitar Misev, Peter Baumann

Jacobs University, Campus Ring 12, 28759 Bremen, Germany, {d.misev, p.baumann}@jacobs-university.de

ABSTRACT

Datacubes form an accepted cornerstone for analysis- and visualization-ready spatio-temporal data offerings.

The increase in user friendliness is achieved by abstracting away from the zillions of files in provider-specific

organization. Datacube query languages additionally establish actionable datacubes, enabling users to ask "any

query, any time" with zero coding. However, typically datacube deployments are aiming at large scale, data

center environments accommodating Big Data and massive parallel processing capabilities for achieving decent

performance. In this contribution, we conversely report about a downscaling experiment. In the ORBiDANSE

project a datacube engine, rasdaman, has been ported to a cubesat, ESA OPS-SAT, and is operational in space.

Effectively, the satellite thereby becomes a datacube service offering the standards-based query capabilities of

the OGC Web Coverage Processing (WCPS) geo datacube analytics language. We believe this will pave the way

for on-board ad-hoc processing and filtering on Big EO Data, thereby unleashing them to a larger audience and

in substantially shorter time.

TYPE OF PAPER AND KEYWORDS

Short Communication: Datacubes, cubesat, satellite, array databases, rasdaman, SQL/MDA

1 INTRODUCTION

Never before has it been so inexpensive to obtain large

amounts of Earth observation satellite imagery,

helping to monitor and understand our planet and its

evolution in time. At the same time this brings many

challenges [19].

Increases in spatial sensor resolution result in more

detailed but also larger data acquisitions, and data

download during ground station overpasses becomes a

bottleneck [11] requiring complex scheduling

techniques [7][14].

Further, data providers still tend to think in

“archives” akin to Web file systems, which offer at

most download of individual scenes as acquired by the

satellite sensors. Such data organization tends to

perform badly in timeseries processing and leaves it to

the end user to deal with the data filtering, alignment,

and indexing tasks required for any serious data

mining and analytics.

Finally, data download, processing, and ingestion

into archives takes significant time, so it is rarely

viable for real-time applications.

These and further impediments call for shifting

processing on board the satellites so that not raw data,

but answers to user questions can be provided in near-

real time. With increasingly more computing power

 Open Access

Open Journal of Internet of Things (OJIOT)

Volume 8, Issue 1, 2022

www.ronpub.com/ojiot

ISSN 2364-7108

© 2022 by the authors; licensee RonPub, Lübeck, Germany. This article is an open access article distributed under the terms and conditions

of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).

This paper is accepted at the International Workshop on Very

Large Internet of Things (VLIoT 2022) in conjunction with the

2022 VLDB Conference in Sydney, Australia. The proceedings

of VLIoT@VLDB 2022 are published in the Open Journal of

Internet of Things (OJIOT) as special issue.

D. Misev, P. Baumann: Space Cubes: Satellite On-Board Processing of Datacube Queries

45

and more standardized software architectures available

on-board [10][16] this vision appears feasible today.

This begs the question what high-level access and

“answering user questions” could mean. Our under-

standing is driven by the notion of Analysis-Ready

Data (ARD) [19] on the one hand and the concept of

coverages as per the OGC and ISO standards

[6][17][4] on the other hand. In combining both

concepts the OGC Coverage Implementation Schema

(CIS) [6] allows representing, among others, multi-

dimensional spatio-temporal datacubes. The standard

defines requirements such data need to fulfill to be

ready for analysis – be homogeneous in that one single

coordinate reference system governs the whole extent

of it, for example. On this data model both a low-level

access service called Web Coverage Service (WCS)

[1] is defined, and a high-level datacube analytics

language named OGC Web Coverage Processing

Service (WCPS) standard [4][3], which is paralleled

by the ISO SQL/MDA standard [13], an extension of

standard SQL for management and querying of

multidimensional arrays, just without space/time

semantics to be domain agnostic. Both WCPS and

SQL/MDA are suitable candidates for the high-level

interfaces a satellite should provide to enable direct

on-demand access and analytics.

Besides the elevated quality of service there is also

a gain in performance suggested by the observation

that the more concretely user requests can be directly

answered on the server, the less data need to be

delivered to the client, thereby minimizing download

costs. One demonstration of this is available in the

Earth Datacube Playground “race” between an Apache

Web server and a rasdaman database service [17].

Based on these considerations we have proposed

with the ORBiDANSe project, back in 2016, to

conduct a proof of concept by equipping forthcoming

ESA OPS-SAT [10] with the rasdaman datacube

engine. The main goal was to allow WCPS and

SQL/MDA queries to be sent to the satellite, receiving

back the query evaluation results.

In this paper we report about the first experiments

now that the satellite has become operational. The

main contributions are (i) porting an existing,

datacenter-proven datacube engine to a cubesat, (ii)

optimizing this orbital data service by minimizing its

resource footprint so as to run in the limited

environment, and (iii) demonstrating feasibility in

space.

The remainder of this paper is organized as

follows. In Section 2 we inspect related work in the

field. In Section 3 we present the on-board experiment

of the datacube engine on the cubesat, followed by a

discussion of the results in Section 4. Finally, Section

5 concludes the plot.

2 RELATED WORK

NASA SpaceCube is a hardware platform optimized

for efficient on-board processing of any code [16]. As

such, it supports neither datacubes nor datacube

queries. In fact, rasdaman potentially could be ported

to SpaceCube.

ESA Phi-Sat-1 is a recently launched cubesat

where emphasis is put on bringing standard software

architectures to space. Phi-Sat-1 concentrates on AI

processing on board with a fixed functionality (such as

cloud detection) determined by the pre-flight training

[12], as opposed to the ORBiDANSe flexibility of

“any question, any time”. A combination of both

approaches would be an interesting future project.

On the more theoretical side, the work on iSat

explores how satellites can be transformed from fixed

relay nodes into dynamic edge computing nodes

capable of loading apps on board, essentially forming

an IoT cloud in space, and interfacing with standard

cloud services on the ground [20]. This idea is very

similar in spirit to OPS-SAT, but goes a step further

by considering satellite constellations. Simulated

experiments on the iSat model demonstrated signific-

ant improvements to time and power consumption

when executing tasks on board.

In summary, we are not aware of any activity to

perform on-board processing (i) using a datacube

approach and (ii) providing flexible query access from

ground.

3 RASDAMAN @ OPS-SAT

In this section we give an overview of the OPS-SAT

cubesat and the rasdaman Array DBMS aka datacube

engine. After that, we report on our challenges en-

countered while porting rasdaman to the OPS-SAT

environment.

3.1 The OPS-SAT Cubesat

OPS-SAT is a 3-unit cubesat of size 10 x 10 x 30 cm

with deployable solar panels on each side [10] (Figure

1). The nano-satellite has been launched by ESA as an

experimental platform for novel hardware and

software concepts. It offers a range of resources on-

board, including standard CPU / storage / memory,

field-programmable gate arrays (FPGAs), camera,

GPS, and an attitude determination and control system

(ADCS). The Satellite Experimenter Processing Plat-

form (SEPP) features a 925 MHz dual-core ARM Cor-

tex A9 Hard Processor System (HPS), 16 GB of flash

storage, 1 GB of DDR3 CPU RAM with ECC, and an

integrated Cyclone 5 FPGA with 1 GB of dedicated

DDR3 FPGA RAM, creating a high-bandwidth system

Open Journal of Internet of Things (OJIOT), Volume 8, Issue 1, 2022

46

for embedded applications with parallel processing.

The images acquired with the on-board camera are

2048x1944 pixels with standard visible RGB

channels; an example is shown on Figure 2.

OPS-SAT supports deployment of external soft-

ware on-board in the form of standardized application

packages, which is a novel development in the satellite

world. The NanoSat Mission Operations Framework

software development kit (NMF SDK) helps experi-

menters in on-board software development by provid-

ing an API for utilizing the satellite’s resources, such

as camera, GPS, ADCS, etc. This system runs an em-

bedded Linux operating system with support for exec-

uting Java 1.8 applications, native C/C++ executables

compiled for the armhf architecture, Python 2.7

scripts, and a standard Posix shell with the busybox

utilities.

A service called Space Shell is also provided to

experimenters on ground for submitting Linux

commands as unprivileged user in the on-board shell

in real-time. Any output generated during command

execution will be downlinked via S-Band. Further, an

interactive ground application is available for the

experimenter.

For our experiment setup, we developed a Java

application that allows executing several actions

remotely via the NMF SDK, including: start and stop

rasdaman; take a picture and insert into rasdaman

either as a 2D array or updating a 3D time-series

datacube; and adjust the camera exposure to an

automatically determined value.

3.2 The rasdaman Datacube Engine

The rasdaman (“raster data manager”) datacube

engine has pioneered Array Database Management

Systems (DBMS) as a new class of NoSQL DBMSs

[1][5][2]. Like a conventional DBMS rasdaman offers

a query language, rasql, with specific operators on

multi-dimensional datacubes, rather than conventional

tables. Among others, rasdaman supports spatio-

temporal queries in a genuinely multi-dimensional

way, with all functionality available on every axis,

including time.

In 2019, this high-level, declarative query lang-

uage has been adopted as a further component of the

ISO SQL standard under the name SQL / MDA

(Multi-Dimensional Arrays) [13].

Architecturally, rasdaman resembles a fully-

fledged DBMS with its array engine crafted as a full-

stack implementation in fast C++. The multi-parallel

worker processes operate on arbitrarily tiled arrays;

the administrator can override the default tiling by

specifying individual size and shape for storage; this

resembles a tuning factor which, however, remains

completely invisible to the query writer. Further

tuning parameters include compression, indexing,

cache sizing, etc. A number of highly effective

optimizations are applied to each incoming query

individually, such as query rewriting into a more

efficient form, cost-based optimization, intelligent

cache utilization, compilation into machine code,

multi-core parallelization, distributed processing, etc.

On top of this domain-agnostic engine a geo

semantics layer adds handling of space and time

coordinates on regular and irregular grids. A rasdaman

server offers its geo datacube functionality via the

OGC datacube standards, in particular the OGC Web

Coverage Processing Service (WCPS) datacube

analytics language. Internally, WCPS queries are

translated into SQL/MDA and executed in the multi-

parallel, distributed evaluation engine.

Figure 1: ESA OPS-SAT (source: [10])

Figure 2: OPS-SAT camera capturing frosty fjord

(source: [8])

D. Misev, P. Baumann: Space Cubes: Satellite On-Board Processing of Datacube Queries

47

The rasdaman technology is in operational,

industrial use since many years forming, among

others, the backbone of the first location-transparent

datacube federation, EarthServer [2][8].

3.3 Challenges Encountered

Deploying rasdaman on OPS-SAT raised several

challenges: a new architecture (ARM Cortex A9 as

opposed to Intel-based architecture); constrained

environment in terms of computing resources on board

(only 1 GB of RAM, less than 16 GB disk space); a

slow uplink bandwidth which limited the size of

packages that could be uploaded on board in

reasonable time; and more. Below we discuss some of

the core issues encountered.

Compiling rasdaman for the precise CPU archi-

tecture of the satellite proved difficult without access

to the actual board. Efforts to do it on a BeagleBone

Black board were not successful due to compatibility

issues and instabilities. In the end the only solution

that worked was cross-compiling in a QEMU virtual

machine with the same target processor architecture

and 2 GB RAM.

To accommodate for the minimal environment it

was necessary to strip away many features that

otherwise are a fairly essential part of rasdaman: the

OGC Web services frontend that deploys on top of

rasdaman as a Java Web Application, support for

importing and exporting data in many formats via the

GDAL library, as well as special support for NetCDF

and GRIB data format, etc. In the end the result was a

10 MB package containing only the core rasdaman

engine (written in C++), with support for import /

export of data in PNG, JPEG, and BMP formats.

In orbit the OPS-SAT GPS was malfunctioning so

it was not possible to demonstrate geo-referencing;

however, we consider this not a relevant drawback as

the main point of the experiment is the on-board

processing of dynamic queries on images acquired; for

map production on a commercial-grade satellite GPS

would be available with no doubt.

Further, the OPS-SAT downlink did not support

TCP/IP initially; surprisingly it became available

experimentally about a week before our experiment

was scheduled for running on board. Therefore, the

workaround implemented earlier had to be used. In

future, communication is expected to be more

straightforward with some standard TCP/IP stack.

Altogether, a large part of the issues encountered

were due to (i) the highly experimental setup and (ii) a

general tendency in the on-board IT infrastructure to

be rather specific and by far not compliant with IT

common industry standards.

4 EVALUATION

4.1 Experiments

Our experiments aimed at demonstrating the value of

running rasdaman on a satellite in orbit. The main

hypotheses are:

(1) Edge computing is more efficient - we ship com-

puting queries to the data (very low bandwidth

needed), instead of data to the computing (high

bandwidth needs and expensive for satellites).

(2) Edge nodes, such as satellites, are power and re-

source constrained, in contrast to large datacenters.

Rasdaman is a database engine for multidimen-

sional array data, such as satellite images, written

in C++ and heavily optimized for minimal re-

source usage. Therefore, a datacube engine like

rasdaman fits well for deployment on a tiny com-

puter aboard a satellite.

(3) As a database engine, rasdaman allows continu-

ously acquiring and storing large amounts of im-

agery. This enables much more autonomous opera-

tion, as well as flexibility for running ad-hoc que-

ries as needed during the infrequent and short win-

dows for communication with a ground station. Ef-

fectively, a satellite becomes a dynamic and agile

edge computing node, in contrast to the traditional

pre-programmed mode of operation.

(4) At the same time, rasdaman is capable of scaling to

make efficient use of powerful computing re-

sources on cloud or supercomputer infrastructure.

Through federation it is possible to connect ser-

vices running on satellites with services running on

ground, for a seamless experience when perform-

ing data science tasks.

To illustrate (1) we devised several queries on the

imagery inserted into rasdaman. As is typical, they

reduce the original size, e.g. aggregating results to one

or (with a timeseries) a list of scalars; scaling down

for quick visual inspection on ground; spatial or

channel subsetting; threshold or classification queries

resulting in binary images; encoding to lossy JPEG.

The queries that demonstrate (2) perform heavier

image processing and analysis, such as edge detection,

histogram calculation, timeseries aggregation. The

goal is to show that rasdaman is capable of answering

queries that take longer, or a lot of data to evaluate.

Query (3) involves continuously acquiring and

storing images in a 2D mosaic placed in a 3D time-

series datacube. This should work in a rolling archive

fashion to accommodate for the limited disk space so

that older data is removed from the datacube when the

Open Journal of Internet of Things (OJIOT), Volume 8, Issue 1, 2022

48

disk is filled up. Space usage would be further reduced

through support for filtering image acquisition only

over areas of interest given as polygon boundaries.

Finally, federating rasdaman nodes (point 4)

requires TCP/IP support for communication between

the federated machines. OPS-SAT did not have

TCP/IP which prevented (4) from being evaluated. An

experimental TCP/IP capability got added to OPS-

SAT late in the project, about a week before our

experiment was scheduled for running on board.

Therefore, the proprietary stack had to be kept.

The experiment steps undertaken are presented

below. The first five steps were implemented as

actions in our NMF app, executed from ground

through the Consumer Test Tool (CTT):

1. A "Start rasdaman" command executes the

startup routines of the rasdaman engine.

2. A daily collection (table in SQL-speak) is creat-
ed named Images_YYYYMMDD holding the set
of 2D images acquired today. This is done by ex-
ecuting the rasql query

create collection Images_20211027 RGBSet

3. Similar to the previous action, an "Initialize
timeseries" action creates a collection for build-
ing a 3D timeseries datacube of RGB pixels, and
initializes it with a 3D array of one dummy point
(updated later on in step 5):

create collection C RGBSet3

insert into ImageTimeseries

values marray m in [0:0,0:0,0:0]

 values {0c,0c,0c}

4. Take a PNG picture with the camera and insert
into the daily collection with a query as below:

insert into Images_20211027

values decode($1, "png")

 where the $1 variable is a placeholder for the
image acquired, such as
snaps/20211022_073847_myPicture.png. The
full command invocation (which we generally
suppress in this paper for brevity) is:

rasql -q "insert into Images_20211027

 values decode($1, \"png\")”

 -f snaps/20211022_073847_myPicture.png

5. Take a PNG picture with the camera and extend
the 3D timeseries with this timeslice:

update ImageTimeseries as c

set c[sdom(c)[0].hi + 1, *:*, *:*]

assign decode($1, "png")

 where the $1 variable again gets replaced by the
is a placeholder for an image required, such as
snaps/20211022_073847_myPicture.png .

 This action is repeated several times one after
another to build several slices into the timeseries.
Due to the lack of working GPS on board, the
datacube is not a real timeseries of imagery se-
quentially taken over the same spot on Earth.
That said, for the purpose of our experiments we
can disregard the image contents as the goal was
to demonstrate queries over 3D timeseries, which
was successful.

The next set of actions contains rasql queries

executed via SpaceShell on the imagery acquired

previously, rather than being hard-coded into the NMF

application. This allows us to modify them on-the-fly

if necessary, in response to the results we get. The

rasql commands are executed in the shell via the rasql

command-line utility, therefore whenever shell

commands appear below then quotes are escaped and

further necessary rasql parameters are present which

have been omitted before. Further, the code has been

reformatted to fit the paper layout. Table 1 gives a

synopsis of averaged runtimes observed.

6. Download downscaled images extracted from the

timeseries for inspection:

for i in {1..5}; do

 rasql -q

 “select encode(scale(c[$i,*:*,*:*], 0.1), \"jpeg\")

 from ImageTimeseries as c”

done

 The shell loop executes the command five times
to allow averaging of results for better accuracy.
This loop is performed on all subsequent queries,
too, but left out for an easier read of the code.

7. Download a full-size image from the 2D collec-
tion (we list only the query as such and omit the
shell commands around it):

select encode(c,"jpeg")

from Images_20211027 as c

8. Download a random slice from the 3D timeseries
in original resolution (likewise omitting the shell
commands):

select encode(c[1,*:*,*:*],"jpeg")

 from ImageTimeseries as c

9. Rudimentary cloud cover assessment on the slic-
es of the 3D timeseries, which is saved as a
comma-separated values (CSV) file of cloud
cover percentages for each slice:

D. Misev, P. Baumann: Space Cubes: Satellite On-Board Processing of Datacube Queries

49

select encode(

 marray i in [1:sdom(c)[0].hi]

 values ((float) count_cells(

 c[i[0],*:*,*:*].red > 250

 and c[i[0],*:*,*:*].green > 250

 and c[i[0],*:*,*:*].blue > 250

)

 / 3981312f),

 "csv")

from ImageTimeseries as c

Sample output might look like this:

12.53,99.312,34.88

10. Average of the values of each slice, similarly
saved as a CSV file of one value per slice:

select encode(

 marray i in [1:sdom(c)[0].hi]

 values avg_cells(c[i[0],*:*,*:*],

 "csv")

from ImageTimeseries as c

11. Histogram of each channel, saved as a CSV file;
an extra shell loop iterates over the RGB bands:

for band in red green blue;

do {

 rasql –q

 "select

 encode(

 marray i in [0:255]

 values count_cells(

 c[1:300,1:300].${band} = i[0]),

 \"csv\")

 from Images_20211027 as c" \

 --user XXXX --passwd XXXX

 --out file --outfile histogram_${band};

} 2> histogram_${band}_time.txt;

done

12. Apply white-balance correction and contrast
stretching on each image $i: in the 3D cube:

select

 encode(

 (char)

 (

 ((c[$i,*:*,*:*]*{1.8, 1, 1}) - 30.0) /

215.0) * 255

),

 "jpeg")

from ImageTimeseries as c

 On a side note, this slicing is only done for the
purpose of extracting and downloading 2D imag-
es (see later); on the whole datacube this correc-
tion and stretching could be done in a single step
(note that the delivery format is changed to
NetCDF to accommodate 3D):

select

 encode((c*{1.8, 1, 1} - 30.0) / 215.0 * 255,

"netcdf")

from ImageTimeseries as c

13. Edge detection with a Sobel kernel over a 2D
image (the Sobel kernel is indicated verbatim
while alternatively it could be conveniently
stored as an object in the database itself, which
would simplify the query):

select

 avg_cells(

 sqrt(

 pow(

 marray p1 in [1:100,1:100]

 values

 (condense +

 over k1 in [-1:1,-1:1]

 using (<[-1:1,-1:1]

 1,0,-1; 2,0,-2; 1,0,-1>

 [k1[0], k1[1]]*c[p1[0]

 + k1[0], p1[1] + k1[1]].red

)

),

 2.0

)

 +

 pow(

 marray p2 in [1:100,1:100]

 values

 (condense +

 over k2 in [-1:1,-1:1]

 using (<[-1:1,-1:1]

 1,0,-1; 2,0,-2; 1,0,-1>

 [k2[0], k2[1]]*c[p2[0]

 + k2[0], p2[1] + k2[1]].red

)

),

 2.0

)

)

)

from Images_20211027 as c

Open Journal of Internet of Things (OJIOT), Volume 8, Issue 1, 2022

50

14. Derive a cloud mask from each slice $i in the
timeseries (the loop again is omitted):

select

 encode(

 (char)

 (

 (c[$i,*:*,*:*].red >200 and

 c[$i,*:*,*:*].green > 220 and

 c[$i,*:*,*:*].blue > 220

) * {255c,0c,0c}

),

 "png")

from ImageTimeseries as c

4.2 Results

The above experiments have been conducted in-orbit

in December 2022. We discuss the extraction and

download cases (queries 6 through 14 above) in turn.

Query 6: Five timeseries slices downscaled to 10%

of the original size are shown in Figure 3. Extracting

and saving each image on the on-board disk took 1.77,

2.07, 2.03, 1.73, and 1.78 seconds.

Query 9: Calculating cloud cover percentage for

each slice was performed in 28.31 seconds. The output

was delivered in CSV format as it consists of a single

number. Results delivered were: 2.361031e-05%, 0%,

9.544592e-06%, 0%, and 0%.

Query 10: The query that calculates average values

for each band of the images took 14.9 seconds to exec-

ute. The resulting CSV data are visualized as a stacked

bar chart in Figure 4 and 5. Images with higher aver-

ages are brighter, and vice versa. Scaling the band av-

erages for each image to 100%, corresponding to an

intensity of 255, reveals that the on-board camera has

a bias on the blue and green channels. Indeed, all

images show a significant bluish tint (Figure 4).

Query 11: Instead of an average we can obtain the

detail distribution in the form of channel histograms.

Executing the histogram query for the red, green, and

blue band took 11.48, 8.25, and 8.11 seconds respect-

ively. Figure 7 shows a chart of the query result.

Query 7 and 8: Based on the small image previews

inspected we decided to download four image slices in

original resolution. The times for extracting each and

saving on disk were 4.98, 1.86, 1.82, and 1.80

seconds. The first full slice is shown in Figure 6

(scaled down to paper column width).

Query 12: This query was executed in an attempt

to correct the sensor color bias and improve the

brightness and contrast of the images. It was executed

for the first four images of the timeseries in 16.17,

15.84, 28.35, and 23.27 seconds. The results are

shown on Figure 7 and 8, a significant improvement to

the original imagery as acquired by the camera as

shown in Figure 3.

Query 13: The edge detection query took 17.37

seconds to evaluate on board, which is understandable

as it is a computationally expensive operation and

only one single, slow CPU core was available (which

additionally is shared with the operating system and

potentially other processes).

Figure 3: Downscaled images for quick inspection

on ground

Figure 4: Average value of the images bands (Y

axis) for each of the 5 images (X axis)

Figure 5: Band averages scaled to 100% (Y axis)

for each of the 5 images (X axis)

D. Misev, P. Baumann: Space Cubes: Satellite On-Board Processing of Datacube Queries

51

Figure 6: First slice in full resolution

(downscaled for printing)

Figure 7: Channel histograms showing the count

(Y axis) of each pixel value (X axis) in one image.

Figure 8: White-balance and contrast correction

Figure 9: Cloud detection

Query 14: In contrast to getting a cloud-cover per-

centage, this query derived a cloud mask that high-

lights the areas covered by clouds in red (Figure 9).

Cloud-cover calculation is based on a rudimentary

threshold method, and occasionally mistakes snow for

clouds as well. As the images are largely cloud-free,

the resulting cloud masks are almost completely

empty and not shown here. Execution times were 12.4,

11.2, 10.83, and 11.98 seconds for each of the first

four slices respectively.

The identical queries, as run on the satellite, were

repeated on ground on a standard desktop PC with 2x

Intel Xeon with a total of 12 virtual cores running at

1.90 GHz, 64 GB RAM, as well as a 512 GB SSD root

partition and a 6TB 7200 RPM SATA data partition.

Data downloaded have been imported in the local

database to resemble the exact same data situation. In

Table 1 below we compare performance results ob-

tained; recall that on-board a single-core ARM pro-

cessor is in use. Both computers were running rasda-

man community 9.

As can be expected, the more powerful hardware

improves performance significantly. Obviously, hav-

ing hardware on board that is only comparable to

common office standards can lead to interactive real-

time query processing on datacubes in space. We ex-

pect significant gains once hardware and software

components in space start following common IT

industry standards.

Table 1: Query runtimes (secs, averaged)

query# 6 7 8 9 10

satellite 2.34 2.61 2.61 28.31 14.9

desktop 0.1 0.32 0.32 3.45 1.43

query# 11 12 13 14

satellite 9.28 20.90 17.37 11.6

desktop 1.05 1.79 0.94 1.48

Open Journal of Internet of Things (OJIOT), Volume 8, Issue 1, 2022

52

5 CONCLUSION

We have presented the ORBiDANSe project which is

aiming to bridge the gap between two technologies

hitherto far apart from each other:

• user-oriented datacube technology easing access,

analytics, and fusion of massive spatio-temporal

Earth data;

• nano-satellites which, in the spirit of IoT, can be

considered edge devices with specific charact-

eristics, such as a high data delivery rate stretching

downlink bandwidth to its limits.

Innovative contributions made are in particular:

• A datacube engine usually scaled up to run in

supercomputing centers has been scaled down to

run in an extremely limited hardware setup;

• Controlling satellite image acquisition, processing,

and data download could be accomplished through

common APIs;

• Query interfaces are based on adopted standards,

so no special tools are needed for gaining insight

from the satellite observations. In fact, any stand-

ards compliant client ought to be able to connect.

As we have learnt, on-board processing environ-

ments are far away from IT standards common else-

where. Lots of workarounds had to be found, and

interaction was not as seamless and user-friendly as

one is used to on Earth. We hope, therefore, to make a

case for satellite payload operators to move towards

standard components and interfaces that are easy to

use for common developers relying on industry-

established, stable solutions on board, too. NASA

SpaceCube appears a step in the right direction.

We frequently hear from space experts (and

agencies) that all pixels invariably must be brought to

ground and archived as no data should get lost. While

we do not object to this position on principle we cont-

end that today there is already a good basic supply of

complete spatial and temporal coverage; we see

satellites with on-board datacube query processing as

a complementary service adding fast and flexible ad-

hoc insight to the basic supply. We believe, therefore,

that in future datacube services will contribute an

important facet towards “any insight, any time”. Ult-

imately, such an approach has a potential for demo-

cratizing satellite data access as common tools – in

case of rasdaman, ranging from OpenLayers over

NASA WorldWind and QGIS to python and R –

become a means to talk to satellites directly, without

the need to wait for data becoming published through

the ground segment. Obviously, proper access control

to the satellite needs to be established in parallel.

As a next step we plan operational service deploy-

ments, first in single-instance scenarios and subsequ-

ently federated. In such a federated scenario, a client

may submit some complex decision support query to a

data center; the rasdaman instance there finds out that

data are missing and spawns a sub-request to the

cubesat, and merges its locally computed results with

the cubesat response into the final result sent back to

the user. As rasdaman is already cloud-parallelized,

queries can be distributed automatically between

ground and space instances. Technically, this fog

computing scenario ties the satellites into the mashup

as edge devices; particularly interesting will be to

observe – and if necessary improve – distributed query

processing optimization in presence of highly

asymmetric processing and bandwidth capabilities

within such a federation.

ACKNOWLEDGMENT

This work has been supported by the German Ministry

of Economics and Energy under grant ORBiDANSe.

REFERENCES

[1] P. Baumann, “On the Management of

Multidimensional Discrete Data”, VLDB Journal

4(3)1994, Special Issue on Spatial Database

Systems, pp. 401 – 444.

[2] P. Baumann, P. Mazzetti, J. Ungar, R. Barbera, D.

Barboni, A. Beccati, L. Bigagli, E. Boldrini, R.

Bruno, A. Calanducci, P. Campalani, O. Clement,

A. Dumitru, M. Grant, P. Herzig, G. Kakaletris, J.

Laxton, P. Koltsida, K. Lipskoch, A.R. Mahdiraji,

S. Mantovani, V. Merticariu, A. Messina, D.

Misev, S. Natali, S. Nativi, J. Oosthoek, J.

Passmore, M. Pappalardo, A.P. Rossi, F. Rundo,

M. Sen, V. Sorbera, D. Sullivan, M. Torrisi, L.

Trovato, M.G. Veratelli, S. Wagner, “Big Data

Analytics for Earth Sciences: the EarthServer

Approach”, International Journal of Digital Earth

0(0)2015.

[3] P. Baumann, “OGC Web Coverage Processing

Service (WCPS) Language Interface Standard”,

OGC document 08-068r3, https://www.ogc.org/

standards/wcps, seen 2022-07-27.

[4] P. Baumann, “The OGC Web Coverage Pro-

cessing Service (WCPS) Standard”, Geo-

informatica, 14(4)2010, pp 447-479.

[5] P. Baumann, “Language Support for Raster Image

Manipulation in Databases”, Int. Workshop on

D. Misev, P. Baumann: Space Cubes: Satellite On-Board Processing of Datacube Queries

53

Graphics Modeling, Visualization in Science &

Technology, Darmstadt, Germany 1992, pp. 236 –

245, DOI 10.1007/978-3-642-77811-7_19 .

[6] P. Baumann, E. Hirschorn, and J. Masó, “OGC

Coverage Implementation Schema with

Corrigendum”, OGC 09-146r8, 2019-10-28.

[7] H. Chen, L. Li, Z. Zhong and J. Li, "Approach for

earth observation satellite real-time and playback

data transmission scheduling", in Journal of

Systems Engineering and Electronics, 26(5)2015,

pp. 982-992, DOI 10.1109/JSEE.2015.00107.

[8] EarthServer, “EarthServer Datacube Federation”,

https://earthserver.eu, seen 2022-07-27.

[9] ESA, “First OPS-SAT photos capture frosty

fjord”, https://www.esa.int/ESA_Multimedia/

Images/2020/08/First_OPS-SAT_photos_capture

_frosty_fjord, seen 2022-07-27

[10] ESA, “OPS-SAT: your flying laboratory”,

https://www.esa.int/ops-sat, seen 2022-07-27.

[11] D. Giggenbach, J. Horwath, and M. Knapek,

"Optical data downlinks from Earth observation

platforms", SPIE 7199, Free-Space Laser Comm-

unication Technologies XXI, 719903, February

2009, DOI 10.1117/12.811152.

[12] G. Giuffrida et al., "The Φ-Sat-1 Mission: The

First On-Board Deep Neural Network Demon-

strator for Satellite Earth Observation", IEEE

Transactions on Geoscience and Remote Sensing,

vol. 60, 2022, pp. 1-14, DOI

10.1109/TGRS.2021.3125567.

[13] ISO, “9075-15:2019 SQL/MDA (Multi-

Dimensional Arrays)”, https://www.iso.org/

standard/67382.html, seen 2022-07-27.

[14] L. Jun, H. Chen, and J. Ning, “A Data Trans-

mission Scheduling Algorithm for Rapid-

Response Earth-Observing Operations”, Chinese

Journal of Aeronautics 27 (2014): 349-364.

[15] G. Labrèche, D. Evans, D. Marszk, T. Mladenov,

V. Shiradhonkar, and V. Zelenevskiy, "Agile

Development and Rapid Prototyping in a Flying

Mission with Open Source Software Reuse On-

Board the OPS-SAT Spacecraft", AIAA 2022-

0648, AIAA SCITECH Forum, January 2022.

[16] NASA, “SpaceCube: a Family of Reconfigurable

Hybrid On-Board Science Data Processors”,

https://spacecube.nasa.gov, seen 2022-07-27 .

[17] OGC, “OGC Web Coverage Service (WCS) 2.1

Interface Standard – Core”. OGC document 17-

089r1, http://docs.opengeospatial.org/is/17-

089r1/17-089r1.html, seen 2022-07-27.

[18] rasdaman, “WCPS: Power and Speed Demo”,

https://standards.rasdaman.com/demo_power.html,

seen 2022-07-27 .

[19] M. Sudmanns et al. “Big Earth Data: Disruptive

Changes in Earth Observation Data Management

and Analysis?”, International Journal of Digital

Earth, Vol. 13,7 832-850. 14 March 2019,

DOI10.1080/17538947.2019.1585976.

[20] USGS, “U.S. Landsat Analysis Ready Data”,

USGS Report 2018-3053, Index ID fs20183053,

September 2018, DOI 10.3133/fs20183053, seen

2022-07-27.

[21] Y. Wang et al. “Satellite Edge Computing for the

Internet of Things in Aerospace”, Sensors vol. 19,

20, 4375. October 2019, DOI 10.3390/s19204375.

AUTHOR BIOGRAPHIES

Dimitar MISEV is a Postdoc

researcher in Computer Science

at Jacobs University Bremen,

and Director of Product Devel-

opment at rasdaman GmbH.

His research focuses on the

management and processing of

large multidimensional array

data within database systems,

building large-scale datacube services holding

Petabytes of data, and contributing to ISO SQL

standardization efforts as main author of the SQL

datacube extension.

Peter BAUMANN is Professor

of Computer Science and ent-

repreneur. At Jacobs University

he researches on flexible, scal-

able datacube services and their

application in science and eng-

ineering. With the rasdaman

engine he and his team have

pioneered datacubes and Array Databases, and have

set the de-facto standard for datacube services, docu-

mented by 160+ scientific publications, international

patents and numerous high-ranking innovation

awards. As founder and CEO he leads the successful

international commercialization of rasdaman. Since

many years, Baumann is leading datacube standard-

ization in ISO, OGC, and EU INSPIRE. Baumann is

chair, IEEE GRSS Earth Science Informatics Tech-

nical Committee; co-chair, OGC Coverages.SWG and

Coverages.DWG and BigData.DWG; editor, ISO

19123 suite.

https://doi.org/10.1007/978-3-642-77811-7_19
https://earthserver.eu/
https://www.esa.int/ESA_Multimedia/Images/2020/08/First_OPS-SAT_photos_capture_frosty_fjord
https://www.esa.int/ESA_Multimedia/Images/2020/08/First_OPS-SAT_photos_capture_frosty_fjord
https://www.esa.int/ESA_Multimedia/Images/2020/08/First_OPS-SAT_photos_capture_frosty_fjord
https://www.esa.int/ops-sat
https://doi.org/10.1117/12.811152
https://www.iso.org/standard/67382.html
https://www.iso.org/standard/67382.html
https://spacecube.nasa.gov/
http://docs.opengeospatial.org/is/17-089r1/17-089r1.html
http://docs.opengeospatial.org/is/17-089r1/17-089r1.html
https://standards.rasdaman.com/demo_power.html

