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ABSTRACT

Time series anonymization is an important problem. One prominent example of time series are energy consumption
records, which might reveal details of the daily routine of a household. Existing privacy approaches for time series,
e.g., from the field of trajectory anonymization, assume that every single value of a time series contains sensitive
information and reduce the data quality very much. In contrast, we consider time series where it is combinations of
tuples that represent personal information. We propose (n, l, k)-anonymity, geared to anonymization of time-series
data with minimal information loss, assuming that an adversary may learn a few data points. We propose several
heuristics to obtain (n, l, k)-anonymity, and we evaluate our approach both with synthetic and real data. Our
experiments confirm that it is sufficient to modify time series only moderately in order to fulfill meaningful privacy
requirements.
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1 INTRODUCTION

The anonymization of time series is an important con-
cern. Time series such as GPS trajectories, energy con-
sumption data or records of physical activities reveal
many personal details about an individual. In many sit-
uations, such data should be published, e.g., to give way
to scientific insights or to foster innovations. For exam-
ple, effective regulation of energy production and con-
sumption will only be possible if energy-consumption
time series of households are available to the parties in-
volved [32]. Thus, there is an antagonism between pri-
vacy concerns on the one hand and the need to publish
time series data on the other hand.

In a nutshell, time-series data tends to be either
what we call point-sensitive or pattern-sensitive. In

point-sensitive time series, every single (time, data)-
point might reveal sensitive information. For example,
each (time, position)-tuple in a GPS track may reveal
where an individual lives, works, etc. Existing privacy
measures [30, 10, 23] and privacy-enhancing technolog
-ies [27] typically try to make sets of point-sensitive time
series indistinguishable as a whole, e.g., by computing
their averages. This causes a severe loss of information,
e.g., when the values averaged are dissimilar.

This paper studies pattern-sensitive time series where
combinations of (time, data)-tuples represent personal
information. An example is energy-consumption data.
Figure 1 indicates that the daily routine and the appli-
ances used in the household can be inferred from pat-
terns contained in such data. It requires several values
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Figure 1: Example of Smart Meter data, reprinted
from [26] with author permission

to detect a certain pattern, e.g., the switching period of
the thermostat of a water heater. However, knowing the
consumption value at one specific point of time typically
is not informative and does not violate the privacy. For
pattern-sensitive time series, a sufficient degree of pri-
vacy might be obtainable without making time series en-
tirely indistinguishable. In particular, it might be accept-
able to expose a few data points if the information loss
caused by the anonymization is much smaller. The dis-
tinction between point-sensitive and pattern-sensitive is
not always clear-cut. For example, GPS trajectories of
commuters might be pattern-sensitive and point-sensitive
at the same time. This is because trajectories reveal the
commuting route (pattern) as well as the places of work
and living (points). Still, there usually is a tendency to-
wards one category, and studying the implications of this
differentiation on information exposure is worthwhile.

Given a set of time series with patterns containing per-
sonal information, an adversary having certain limited
amount of (time, value)-tuples as external knowledge of
an individual may find out the values at other points of
time. We refer to this as inference. This paper stud-
ies the relationship between the degree of anonymiza-
tion and the number of data points that can be inferred
for time series with patterns as personal details. Ap-
proaches for trajectory anonymization, e.g., [1] and [27],
provide privacy guarantees under the worst case assump-
tion of exhaustive external knowledge, i.e., an adversary
knows entire time series. This is a theoretical limit – an
adversary with such knowledge does not need to break
any anonymization, since he already knows everything.
Guarantees for this theoretical extreme case require to
reduce the data quality very much.

In this paper, we investigate how to anonymize a
database of time series with minimal information loss,
assuming that an adversary knowing a limited number of
(time, data)-tuples from a time series is allowed to learn a
few tuples from the same time series that were unknown
to her so far. However, an adversary must not learn the
entire time series. This is challenging, for two reasons:

(1) Anonymity is hard to obtain without making many
households indistinguishable, e.g., by generalization, so
that the data quality is low. Otherwise, a stakeholder
with access to time series and external knowledge about
a few tuples of a certain individual could single out can-
didate time series belonging to this individual. (2) Be-
ing anonymous does not necessarily prevent an adver-
sary from gaining information about an individual. For
example, it is sufficient to know that an individual is the
originator of one element of a set of similar time series
to learn further information. Since time series data are
identifying and sensitive at the same time, it is not possi-
ble to use approaches for micro databases, e.g., [23].

In this paper, we use time series of smart meter
data [11] as a prominent example of data containing sen-
sitive patterns to motivate and evaluate our approach. We
make the following contributions:

• We introduce (n, l, k)-anonymity, a privacy mea-
sure that allows to specify a degree of anonymity
and an upper bound of the information exposed,
given the extent of external knowledge of an adver-
sary. To our knowledge, the idea of having such an
upper bound for information exposure has not been
investigated for time-series anonymization yet.

• We propose several heuristics that transform a set
of time series so that it is (n, l, k)-anonymous. Our
heuristics strives to minimize the information loss
caused by the transformation. We propose and test
three heuristics that differ regarding the way the
data is modified.

• We evaluate our approach by extensive experiments
both with real-world smart meter data and with syn-
thetic data. Our evaluation with the real-world data
shows that it is sufficient to modify each value by
less than 10% on average to ensure that each time
series is indistinguishable to a high degree. In other
words, even though the indistinguishability is many
times higher compared to the original data set, only
slight modifications suffice.

Paper structure: Section 2 discusses the technical back-
ground and related work. Section 3 introduces (n, l, k)-
anonymity, followed by our anonymization method in
Section 4. Section 5 is our evaluation, and Section 6
concludes.

2 BACKGROUND

In this section, we briefly describe the smart grid and
explain how it threatens the privacy of households. Fur-
thermore, we review related privacy approaches.

4



Stephan Kessler et al.: Pattern-sensitive Time-series Anonymization and its Application to Energy-Consumption Data

2.1 The Smart Grid

The smart grid is an initiative to save energy, based
on consumption forecasts, the optimization of energy
consumption, fine-grained resource planning and seam-
less integration of decentralized energy sources. On the
consumer side, the smart grid strives for flexible tar-
iff models which motivate consumers to reduce peak
loads and shift consumption to periods when more en-
ergy is available, e.g., from fluctuating renewable en-
ergy sources [14, 25]. Smart meters are an important
part of the smart grid. They record energy consumption
with a high resolution and transfer the readings automat-
ically to a measuring point operator. Advanced smart
meters measure energy consumption, active power, reac-
tive power and other parameters [13] in small time inter-
vals and are able to collect other data of the household
in addition, e.g., water, gas or heat consumption. Fur-
thermore, smart meters can communicate with other ap-
pliances as part of the ”smart home” vision [11]. Nu-
merous initiatives support the smart grid deployment:
e.g. ”European Smart Grid Technology Platform” [12]
or the NIST Framework/Roadmap for smart grids [28].
In some countries (e.g., in Germany), the installation of
smart meters is required by law for new or reconstructed
buildings [4]. Thus, smart meters are relevant for large
parts of society.

Example 1 (Smart meter data set): Let Alice (a),
Bob (b) and Carol (c) be three persons/households with
smart meters installed. Figure 2b contains the consump-
tion data, the corresponding chart is in Fig. 2a. There
are three time series (a, b and c) consisting of four tu-
ples each. (09:00, 0.7kwh) is a tuple that is part of two
time series a and b. �

2.2 Privacy Threats

Since smart meters collect data with a high level of de-
tail, the data measured allows to infer a lot of personal
information, as follows.
Usage of electrical appliances: There are several
proposals for the non-intrusive detection of electri-
cal appliances present in a household and their usage
periods [17, 26]. Figure 1 shows an example: It dis-
plays the power consumption of a household annotated
with the detected appliances in use. Depending on the
temporal resolution of the data, it is possible to iden-
tify the appliances used, e.g., oven, microwave or televi-
sion [29]. With advanced smart meters, it is even possi-
ble to distinguish individual devices, e.g., different game
consoles [19].
Personal details: Information on the usage times of ap-
pliances allows deep insight into the household’s habits.
Based on the amount of energy used during a spe-
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Figure 2: example data

cific time, it is possible to determine the daily routine,
e.g., when residents take their breakfast, leave or return
home [6]. An adversary can draw conclusions, e.g., if in-
dividuals are shift workers or go to church on Sundays.
The daily power usage also gives evidence regarding the
lifestyle, i.e., how many people live in a household, how
long the individuals are at home, or if the households
prepare meals in the oven or in the microwave.

Re-identification: Since energy consumption reflects
many personal details of the households, smart meter
data can be assumed to be inherently identifying. In par-
ticular, a set of values from a time series of smart meter
data can be a quasi-identifier [30]. These values allow
to assign the time series to an individual household. The
process of linking anonymous data to an individual is
called re-identification. Re-identification needs external
knowledge on the power consumption of the household,
as we will explain in section 3.2.

Note that the privacy threats described are a result
of inferring information from several values of energy-
consumption data, i.e., one consumption value at a spe-
cific time is neither sufficient to identify devices nor
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habits. In other words, smart meter produce pattern-
sensitive time series.

2.3 Privacy Approaches

In this section we discuss some recent privacy ap-
proaches for different use cases.
Relational anonymity criteria: k-anonymity [30] de-
fines anonymity as being indistinguishable amongst k−1
other records, with respect to a quasi-identifier, in a re-
lational data set. This principle and its improvements (l-
diversity [23] and t-closeness [20]) usually discern the
attributes as quasi-identifying and sensitive. Since this
distinction is impossible for time series where the val-
ues are identifying and contain sensitive information at
the same time, k-anonymity and its successors cannot be
directly applied to time series.
Differential privacy: Differential privacy [10] is an ap-
proach for anonymizing query results, e.g., on trajectory
data [7] or smart meter data [2]. The approach guaran-
tees that a query result does not change much, if a record
about a particular person is appended to the database.
However, such strict privacy guarantees require total ex-
ante knowledge about all queries that are executed on the
database. Furthermore, the approach perturbs the data
set very much [22]. In contrast, we strive for an approach
that reduces the amount of perturbation by taking sensi-
tive patterns into account. Furthermore, we want to pub-
lish data without restricting the queries that are allowed
on the data set.
Anonymity approaches for transaction data: Time se-
ries of transactions, e.g., from Internet shops or work-
flow systems, contain private information. A recent
approach for anonymization of transaction data is ρ-
uncertainty [5], which divides transaction data into sen-
sitive and non-sensitive one and exploits the hierarchi-
cal structure of transactional data to generalize informa-
tion, e.g., in a shopping cart scenario “diapers”→ “baby
goods”. [33] extends this concept by considering an
upper bound for the external knowledge for transaction
data, but still distinguishes between sensitive and non-
sensitive items. [31] does not depend on such a distinc-
tion. However, those approaches cannot be applied to
our case, because time series do not have a hierarchical
structure that can be exploited for anonymization.
Anonymity for moving object data: Moving object
databases store trajectories, i.e., sequences of (time,
position)-tuples. Privacy approaches for this kind of
data, e.g., [9, 15, 18, 34, 27, 8], assume parts of the tra-
jectory to be quasi-identifiers [35]. A popular approach
is to transform trajectory sets into equivalence classes
of at least k members [34]. [8] extends this concept
by considering an upper bound for external knowledge.
All approaches assume that parts of the trajectory can

be clearly identified as quasi-identifiers for each individ-
ual, and this does not change over time, e.g., the path
between the workplace and home. However, time series
of smart meter data do not contain such “ideal” identi-
fiers. Instead, identifying parts may be repeated at dif-
ferent points of time. [27] renders sets of trajectories
indistinguishable to at least k others by using cluster-
ing, i.e., the approach assumes that each time series is
a quasi-identifier as a whole covering the theoretical ex-
treme case of an adversary having the complete time se-
ries as external knowledge. Since this assumption is un-
due for pattern-sensitive time series, the approach modi-
fies such time series too much.
Anonymity for smart meter data: A recent ap-
proach [11] for smart meter privacy assumes that only
consumption values measured with a high temporal res-
olution contain private information. This is motivated
by the fact that it requires a high metering frequency
to clearly identify electrical appliances (cf. Figure 1).
The approach proposes an architecture where high res-
olution data is assigned to pseudonyms, while low reso-
lution data is assigned to identifiers for, say, accounting.
However, it is possible to map energy consumption data
identified by pseudonyms to households, i.e., to break
the anonymization. This is called re-identification [3]. It
makes use of patterns in the energy consumption that are
characteristic for a single household. Such patterns may
appear in consumption data metered with any frequency.
For example, vacation weeks can be as characteristic for
a household as the morning routine. Thus, a separation
in high- and low-resolution data is not general enough
for our purpose.
Adversaries and external knowledge: Finally, the im-
pact of aggregated external knowledge like “the average
age of the individuals in a database is 48” on anonymiza-
tion has been studied, e.g., in [21, 24]. However, none of
the approaches we are aware of considers exact knowl-
edge of some parts of the database or allows to specify
an upper bound on information exposure suitable for a
set of pattern-sensitive time series.

3 (n, l, k)-ANONYMITY

In this section, we introduce our terms and assump-
tions, we formalize our adversary model and we de-
scribe (n, l, k)-anonymity, our privacy measure for sets
of pattern-sensitive time series. Intuitively, (n, l, k)-
anonymity allows to specify a degree of anonymity, a
limit on the information an adversary can learn about a
household, and an upper bound on the external knowl-
edge the adversary might possess. First, we state the fol-
lowing assumptions:
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• The database contains a number of time series
that is sufficient for anonymization. Intuitively,
the (n, l, k)-anonymity parameters must not require
each time series to be indistinguishable from more
time series than contained in the database, and an
adversary cannot know more values of a time series
than the database actually contains.

• We assume that all values of the time series are
equally sensitive. In other words, we consider the
most general case where each value poses the same
potential privacy threat.

• All smart meters measure the energy consumption
at the same points of time and with fixed time in-
tervals. While our approach can be extended for
flexible points of time, we do not address this issue
here.

3.1 Terms and Definitions

Let T be a set of points of time, e.g., from time series
of power consumption values measured by a smart me-
ter. M is the range of values measured. Thus, we model
a time series as a set of (t,m) tuples where t ∈ T is a
timestamp, and m ∈ M is the consumption value mea-
sured. Such a set contains exactly one tuple for each
t ∈ T. Thus, a time series implies a function f : T→M.
For a given T and M, a database DB = {f1, · · · , fn} is
a set of such functions. Each time series f ∈ DB is as-
signed a random identifier, i.e., there is no direct relation
between the time series and the households H that have
produced the time series.
VDB

t refers to the existing values in a data set at t:
m ∈ VDB

t ⇔ ∃f ∈ DB : f(t) = m. Table 1 shows all
symbols used. Our approach can be extended to multi-
dimensional time series, e.g., smart meters measuring
power, water and gas consumption. However, to ease
presentation, we use a one-dimensional numerical range
in this paper, i.e., M = R.

3.2 Adversary model

In our scenario, an adverary has access to the
anonymized database DB′, which is a copy of DB that
has been modified using (n, l, k)-anonymity. Further-
more, the adversary knows a limited number of (t,m)
tuples from a certain household h ∈ H, which he knows
as well (external knowledge K). The objective of the ad-
versary is to learn more tuples from the same household
in order to observe patterns that reveal personal infor-
mation. In the following, we formalize the notions of
external knowledge and of an attack.

Definition 1 (external knowledge K): External knowl-
edge K is a set of tuples (t,m) (with all t pairwise dif-
ferent). �

Intuitively, K contains a limited number of tuples an
adversary knows about a specific household h ∈ H. It
depends on the anonymization scheme if those tuples
match tuples from none, one or multiple time series in
the anonymized database DB′.

Example 2 (External knowledge): Suppose that an
adversary has access to the data illustrated in Figure 2.
His aim is to get additional information on a specific in-
dividual. The adversary only knows the content of the
table. In particular, he does not know the mapping from
random identifiers in DB′ to households H .Without ad-
ditional information, he cannot decide whether time se-
ries a,b or c belong to the household he is interested
in. In the following we call these time series candidates,
and an adversary cannot determine which one belongs
to the household in question. Given the candidates a, b
and c, he is uncertain regarding the consumption values
at 11:00. On the other hand, if he knows that a specific
household consumes 0.7 at 09:00 and 10:00, he can ex-
clude household c. Uncertainty at 11:00 now only is
between a and b. Finally, if an adversary knows the
consumption value of c at 09:00, he learns the one from
10:00 as well. �

In the following, we assume that all tuples in K relate
to the same household. Note that this is the most spe-
cific knowledge an adversary might have. Examples of
less specific knowledge include cases where time series
depend on each other, e.g., if an adversary possesses con-
sumption values from several households and knows that
these households have breakfast and lunch roughly at the
same time. The objective of an adversary is to know at
least l tuples from h in total to observe patterns in the
time series, e.g., to identify breakfast time or the usage
frequency of the microwave oven. We assume that it is
sufficient for the adversary to learn that tuples belong to
a specific household with a probability P > 1/k, i.e.,
exact knowledge is not required. Thus, we specify our
adversary as follows:

Definition 2 (Adversary AK): The adversary AK pos-
sesses n = ‖K‖ tuples (with n < l) from a specific
household h ∈ H, and he has access to the anonymized
database DB′. The adversary wants to assign a set of at
least l − n tuples in addition to those n ones to h with
probability P > 1/k. Formally, the adversary is suc-
cessful if he learns a data set S:
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Symbol Description
DB Data set of time series (DB = {f1, · · · , fn} )
DB′ Anonymized data set of time series
H Set of households the smart meter data originates from
K External knowledge
n Anonymization parameter for external knowledge
l Upper bound for information exposure (includes knowledge)
k Anonymity parameter for the size of indistinguishable sets
IKDB(t) Set of indistinguishable time-series at t with external knowledge K
M Set containing possible (power consumption) values, mostly range
(t,m) referred as tuple if a time series f for which f(t) = m applies exists
T Set containing points of time, mostly used as domain of time series
VDB

t Set containing actual (power consumption) values at t

Table 1: List of frequently used abbreviations

∃S ⊆ {(t,m)|f ∈ DB′ : f(t) = m} :
‖S‖ ≥ (l − n) ∧ S ∩K = ∅

And for S it holds that:

∀(t,m) ∈ S : P ((t,m) was generated by h) >
1

k

�

Note that we do not make any assumptions regard-
ing the frequency or the appearance of sensitive patterns.
Thus, we use a set of (t,m) tuples containing timestamps
t and values m as a generalization of a pattern. Accord-
ing to our definition an attack is successful as soon as an
attacker has uncovered a total of l − n tuples different
from the ones already known to him.

3.3 Anonymity in a data set of time series

For (n, l, k)-anonymity, we adapt the principle of k-
anonymity for time series, i.e., we define anonymity as
being indistinguishable amongst k individuals. Thus, we
must prevent a tuple from being assigned to a specific
household with a probability of more than 1/k (cf. Def-
inition 2). External knowledge (see Def. 1) restricts the
set of time series that may belong to the individual. For
example, if K = {(t1, y1), (t2, y2)}, the time series be-
longing to the individual must include both (t1, y1) and
(t2, y2).

Definition 3 (candidate time series for K in data set
DB: CTSDB(K)): A candidate time series f for
a given K is a time series with the following charac-
teristic: For every tuple (t,m) ∈ K, f(t) = m holds.
CTSDB(K) is the set of all candidate time series for K
in a data set DB. �

Suppose that an adversary can constrain the time se-
ries to CTSDB(K). The fewer time series are in this set,
the more delimiting is K. We now determine the degree
of indistinguishability/anonymity at points of time for
which an attacker does not have any external knowledge.
In Figure 3, the callout box points to the (time, data)-
tuple contained in the time series listed. The figure illus-
trates that the set of candidate time series CTSDB(K)
might or might not violate anonymity. In Figures 3a and
3b, the sets of candidates are different. But in both cases,
an individual described by K1 or K2 respectively can-
not be distinguished from 19 others. So the degree of
anonymity is the same. In Figure 3c, the candidates have
different values at the point of time in question. How-
ever, it is still impossible to distinguish the individual
from 19 others. Thus, all three figures are equivalent in
terms of anonymity. Based on this intuition, indistin-
guishability is the size of a set of time series at a specific
point of time.

Definition 4 (Set of indistinguishable time series at
point of time t for data set DB and external knowl-
edge K: IKDB(t)): IKDB(t) includes all candi-
date time series as well as time series with the same
value as a candidate at t. Formally, IKDB(t) =
{f ∈ DB|∃f ′ ∈ CTSDB(K) : f(t) = f ′(t)}. �

The idea behind IKDB(t) is that an adversary has an un-
certainty between all time series assigned to tuples that
also are assigned to a candidate time series. If time series
have the same value at a point of time, one cannot dis-
tinguish them there. The following example illustrates
this:

Example 3 (Indistinguishability example): Suppose an
adversary knows the data set without personal identifiers
from Figure 2b. Furthermore, he knows that the follow-
ing tuple belongs to an individual: K = {(11:00, 0.6)}.
Since only for the time series a a value of 0.6 exists at
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(a) CTSDB(K1) = {c1, c2} (b) CTSDB(K2) = {c1, c2, c3} (c) CTSDB(K3) = {c1, c11}

Figure 3: Indistinguishability with different CTSDB(Ki)

11:00, the candidate time series is CTSDB(K) = {a}.
Even if the adversary knows that a is the only possi-
ble pseudo-identifier, the number of indistinguishable
time series at 10:00 and 12:00 is two:

∥∥IKDB(10:00)
∥∥ =

‖{a, b}‖ = 2 respectively
∥∥IKDB(12:00)

∥∥ = ‖{a, c}‖ =
2. �

The two principles behind that definition are as fol-
lows:

1. Privacy of an individual is better protected if several
tuples may belong to the individual an adversary is
interested in at a point of time.

2. The more time series are assigned to a tuple, the
better the protection of privacy, since the less addi-
tional information is revealed to the adversary.

In the smart meter scenario, this can be illustrated as
follows: Between 2am and 3am, many time series have
the same, low power-consumption value. This value is
relatively ”uninteresting” for an adversary because it is
frequent at this point of time. Indistinguishability, which
is related to the frequency of the value, is a characteristic
of one certain point of time and is independent of other
points. Thus, it is feasible to look at the indistinguisha-
bility of each point of time in isolation.

On the other hand, if the set of indistinguishable time
series is small, one single point of time may reveal infor-
mation to the adversary.

Definition 5 (Inferring point of time t): We say that t
is inferred if the number of indistinguishable time series
at t is below the user-defined k, i.e.,

∥∥IKDB(t)
∥∥ < k. �

Depending on the other user-defined parameters n and
l, the adversary may infer certain values without breach-
ing (n, l, k)-anonymity, as follows:

Definition 6 ((n, l, k)-anonymity): Let a data set
DB and a number of n tuples of external knowledge K
be given. DB is (n, l, k)-anonymous if there does not
exist a set S′ of at least l − n points of time t where
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Figure 4: Example for a (2, 3, 6)-anonymous data set

∥∥IKDB(t)
∥∥ < k. Therefore, a data set DB is (n, l, k)-

anonymous if the following holds for an arbitrary set
K of n tuples:

@S′ ⊆ T : ||S′‖ ≥ l − n ∧ ∀t ∈ S′ :
∥∥IKDB(t)

∥∥ < k

�

Thus, an adversary AK cannot infer a set of at least
l − n tuples if he has access to the (n, l, k)-anonymous
database DB′ and n tuples of external knowledge K.
This is because the probability that the adversary can as-
sign tuples from DB′ to a household is greater than 1

k
for less than l − n tuples.

Example 4 ((2, 3, 6)-anonymity): Figure 4 shows a
(2, 3, 6)-anonymous data set. For instance, let K =
{(09:00, 10), (10:00, 8)}. Thus, CTSDB(K) = {e, f}.
The number of indistinguishable households at 11:00
is six. This is because both tuples ((11:00, 5) and
(11:00, 10)) are possible. Thus, the probability to assign
the tuples to a specific household is 1

6 . Since it is im-
possible for an adversaryAK with external knowledge of
any two tuples to infer a third one, the data set is (2, 3, 6)-
anonymous. �

We will propose techniques for ensuring (n, l, k)-
anonymity in Section 4.

3.4 Data quality in anonymized time series

First of all, we define the function anon(DB,DB′)(f) to
ease our presentation later on.
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Definition 7 (anon(DB,DB′)(f)): Let DB be the
original data set of time series and DB′ the correspond-
ing anonymized version of the data set. The function
anon(DB,DB′)(f) maps the original time series to the
anonymized one. �

Generally speaking, anonymizing a set of time series
means modifying their values, e.g., if f(t) = m is the
non-anonymized value, the value of the modified time
series might be anon(DB,DB′)(f) = m′. Thus, DB′

contains the modified time series anon(DB,DB′)(f) ∈
DB′ for each time series f ∈ DB. In line with other
researchers, we assume that, the larger the difference
between the original values and the anonymized ones,
the more information is lost. For instance, modifying
each time series f ∈ DB to a time series of zeros
(anon(DB,DB′)(f)(t) = 0,∀t ∈ T) suffices (n, l, k)-
anonymity, but leads to a loss of any information. How-
ever, to keep the utility of the anonymized data, we need
a measure as feedback for the anonymization method
that quantifies the loss of information.

The Euclidean information loss is appropriate to this
end. Intuitively, it is the sum of all differences between
the original and the anonymized time series at each point
of time. However, our approach does not depend on this
particular measure.

Definition 8 (Euclidian information loss): LetDB be
the original data set and DB′ the modified set. The loss
of information at point of time t is: ILt(DB,DB

′) =∑
f∈DB

∣∣f(t)− anon(DB,DB′)(f)(t)
∣∣ This means

for the information loss of a complete data set:
IL(DB,DB′) =

∑
∀t∈T ILt(DB,DB

′) �

3.5 Privacy Protection in an (n, l, k)-Ano-
nymous Data-Set

After having explained (n, l, k)-anonymity, in this sec-
tion we describe its impact on the privacy protection of
individuals in more detail. Consider again the threats de-
scribed in Section 2.2. They all have in common that
an adversary needs several values of consumption data
to extract information. For example, detecting the usage
of a specific electrical appliance requires a specific se-
quence of time-value tuples. Suppose that it is necessary
to know s exact power consumption tuples to detect a
given appliance. In an (n, l, k)-anonymous data set with
l − n ≤ s, an adversary can infer at most l − n tuples.
For the remaining s − (l − n) tuples that would be nec-
essary for the detection there is an uncertainty of 1

k (k
time series are indistinguishable). This also holds for the
re-identification threat and the extraction of information
on personal habits.

The choice of the values of n,l and k is a tradeoff be-
tween data quality and privacy. A better privacy protec-

tion is achieved, the higher the n, the lower l−n and the
higher k.

Usually, it is assumed that an adversary has a small
number of tuples as external knowledge, compared to
the total number of points of time. Although this is a
realistic assumption, it also eases the privacy protection.
To investigate privacy protection in more detail, we dis-
cuss a worst-case scenario assuming unlimited external
knowledge of an adversary in the following.

3.5.1 Worst-Case Scenario

Suppose that an adversary has unlimited external knowl-
edge. In our scenario this means that n = ‖T‖ − 1, thus
l is set to l = ‖T‖. This is an extreme case: First, an
adversary having almost the actual data set as external
knowledge usually does not need to extract any informa-
tion from an anonymized version of the data. Second,
since we have limited the complete knowledge of an ad-
versary in the assumptions to the size of the data set this
is the largest possible set of external knowledge. The ad-
versary achieves complete knowledge inferring the value
of a single point of time. The results are clusters of size
k, since arbitrary external knowledge is possible. This
means that each household is indistinguishable amongst
k − 1 others at each point of time.

The example shows that the indistinguishability re-
quired for privacy protection is independent of the exter-
nal knowledge, and this differs from other approaches.
For example, even in the worst case k = 2 is applica-
ble. For other scenarios where n << ‖T|, the number of
values actually exposed (l − n) is also independent of k.

4 AN APPROACH FOR (n, l, k)-
ANONYMIZATION

In what follows, a cluster Ct is a set of time series such
that all elements of the cluster have the same value at t.
We refer to t as the point of time of cluster Ct.

In this section, we propose heuristics for the compu-
tationally efficient transformation of a set of time series
so that the result is (n, l, k)-anonymous. Our heuristic
is structured according to three observations, which we
will explain subsequently: (1) If an algorithm modifies
the data set for each point of time so that it contains only
clusters of at least k time series, the data set is (n, l, k)-
anonymous already (Lemma 1). (2) In some cases, even
clusters of less than k time series do not allow an adver-
sary to infer values (Example 4). Furthermore, (n, l, k)-
anonymity allows to infer l−n points of time. (3) Build-
ing clusters of less than k time series at one point of time
might influence other clusters at a different point of time
(Example 5).
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To obtain anonymization, our heuristic modifies val-
ues of a set of time series. The modified set of time series
consists of clusters where all members of a cluster have
the same value, the mean of the original values. We use
this as the cluster representative.

It is sufficient that all clusters at all points of time
consist of at least k time series to guarantee (n, l, k)-
anonymity. Lemma 1 acknowledges this by defining a
lower bound on the number of indistinguishable time se-
ries.

Lemma 1: For any point of time t, the set of
indistinguishable time series IKDB(t) contains at least
as many time series as the number of time series as-
signed to any v ∈ VDB

t . Formally, let count(t,m) =
‖{f ∈ DB|f(t) = m}‖ be the number of time series
having value m at t. For f ∈ DB,

∥∥IKDB(t)
∥∥ ≥

minf∈DB(count(t, f(t)) holds.

Proof of Lemma 1: Suppose that K gives way to
one candidate time series f . Having only one candi-
date left is the minimal possible uncertainty an adversary
can have. (In contrast, having zero candidates left would
be the maximum uncertainty, since the adversary would
not even know if the individual is in the data set.) To
calculate the indistinguishability at point of time t we
have to count the time series assigned to (t,m), with
f(t) = m. Let kt = minm∈VDB

t
(count(t,m)) be the

minimal number of time series assigned to a value at t.
Thus, the indistinguishability at a specific point of time
will always be greater than or equal to kt, irrespective of
the candidate time series. �

The more time series have to be modified in order
to create a cluster, the more the data set is perturbed.
While creating clusters of at least k time series guaran-
tees (n, l, k)-anonymity, it may also be feasible to cre-
ate smaller clusters and still have (n, l, k)-anonymity, as
seen in Example 4.
(n, l, k)-anonymity does not allow many clusters hav-

ing fewer than k time series. Because the anonymization
at a point of time t1 depends on the anonymization at an-
other point t2 if it is possible to infer point of time t2.
The following example shows that creating clusters with
less than k time series may require to create clusters with
k or more elements at other points of time.

Example 5 (Requiring clusters of k time series): Re-
consider the data in Fig. 4: A cluster consisting of e and
f at 11:00 would break the (2, 3, 6)-anonymity: An ad-
versary knowing (09:00, 10) can infer the cluster {e, f}
at 11:00. �

Generally speaking, in order to (n, l, k)-anonymize a
data set, we have to generate clusters of time series. For
this purpose, we come up with a heuristic consisting of
two stages: Clustering and Splitting. Clustering creates

clusters with size ≥ k for each point of time in isolation.
Splitting generates clusters of size < k, but has to con-
sider that clusters from different points of time depend
on each other. The order of these two stages is not fixed;
in principle it could be either way. However, unless the
(n, l, k)-anonymity parameters allow the adversary to in-
fer large parts of the database, clusters of fewer than k
time series will occur infrequently. Thus, our heuristic
does “divide and conquer” and solves the coarse prob-
lem of computing clusters of k time series first, before
creating clusters with less than k time series by splitting
larger ones.

4.1 Stage 1: Clustering

The objective of this stage is to come up with clusters
of at least k similar time series at each point of time. In
order to identify similar time series, our heuristic clus-
ters the values of all time series for each point of time in
isolation (see. Def. 4). Recall that our approach can be
used for time series of multi-dimensional values. If M
is one-dimensional, other approaches to create clusters
of k time series, e.g., discretization, are feasible and are
simpler than clustering.

For each point of time, this stage starts with a single
cluster consisting of all tuples. We use an approach sim-
ilar to hierarchical divisive clustering [16] to split this
cluster successively into smaller clusters of at least k tu-
ples. In order to limit the loss of information, we split
between the two original values with the highest differ-
ence. 6.1 shows our algorithm in pseudocode. In this
stage, more data may be changed than necessary to ful-
fill (n, l, k)-anonymity, cf. Example 4.

4.2 Stage 2: Splitting

This stage splits the clusters from Stage 1 into clusters
smaller than k. Splitting means dividing a cluster into
two. The stage has to ensure that an adversary knowing
n tuples of a time series cannot infer more than l − n
further data points. Thus, in this stage we consider time
series at different points of time. The goal is to minimize
the Euclidean information loss as a whole.

Intuitively, if a cluster is smaller than k, the number
of inferable values from all time series might exceed the
limit l − n. Thus, if a certain cluster at point of time t
is split, another one at t′ might be prohibited to split in
order to not violate (n, l, k)-anonymity. The following
example illustrates the difficulties of splitting.

Example 6 (Alternative for (2, 3, 6)-anonymity): Re-
consider Example 4: This (2, 3, 6)-anonymous data set
contains two clusters of three time-series at 09:00. If the
same clusters were present at 10:00, the data set would
not be (2, 3, 6)-anonymous anymore. However, Figure 5
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Figure 5: Alternative splitting example for a (2, 3, 6)-
anonymous data set

shows another (2, 3, 6) anonymous cluster configuration
with two clusters at 10:00 and one single cluster at 09:00.
If the clustering stage creates two clusters with all time-
series at 09:00 and 10:00, the splitting stage can decide
to split the clusters at 09:00 or 10:00 but not both. �

Definition 9 (Splitting of a cluster Ct between f and
f ′): Cluster Ct contains the neighbors f and f ′, with
f(t) > f ′(t) in the original data set. ”Neighbor” means
that there is no time series between f and f ′: @h: f(t) >
h(t) > f ′(t). Then, the split between f(t) and f ′(t)
creates clusters Ct

1 and Ct
2. Ct

1 contains f and all time
series g ∈ Ct with g(t) ≥ f(t), while Ct

2 contains all g
with g(t) ≤ f ′(t). Since f and f ′ are neighbors, Ct

1 and
Ct

2 partition Ct. �

In the following, we present two heuristics for this op-
timization problem, MostInformationLoss and Member-
sTimesHeight. Both try to split as many clusters as pos-
sible.

4.2.1 MostInformationLoss (MIL)

The intuition behind MIL is to split clusters in the order
of information loss, starting with the highest. Let DB′

be the data set after Stage 1 has processed the original
database DB. Therefore, DB′ contains only clusters of
at least k time series. MIL computes the information loss
between the original database DB and the anonymized
database DB′ for each cluster Ct at each point of time t.
However, a cluster is split only if the result still satisfies
(n, l, k)-anonymity. 6.2.1 shows MIL in pseudocode.

4.2.2 MembersTimesHeight (MTH)

MTH uses two criteria to determine the order of cluster
splits: The difference between the largest (mCt

max) and
the smallest (mCt

min) value in the original data set of time
series within a cluster Ct, and the number of time series
‖Ct‖ assigned to that cluster. Thus, for each cluster Ct,
MTH computes Score(Ct) = (mCt

max −mCt

min) · ‖Ct‖.
The intuition is as follows: The more time series are as-
signed to a cluster, the more time series will probably be
assigned to the splitted clusters, and the fewer time se-
ries have to be indistinguishable at other points of time.

For instance, reconsider Figure 3c. If one of the clus-
ters was smaller, more time series would have to be in
CTSDB(K3) in order to prevent inference. The more
time series the resulting clusters contain, the more candi-
date sets exist that keep the number of indistinguishable
time series higher than k, giving way to further splits.
This heuristic takes successive the clusters with the high-
est score and tries to perform as much splits as possible
in the single clusters. The larger the distance between
the highest and the lowest value (in the original data set)
of the cluster members, the higher has been the infor-
mation loss in Stage 1. For the multidimensional case,
the difference between the minimum and the maximum
has to be defined slightly differently, e.g., as the sum of
the difference in each dimension. 6.2.2 shows MTH in
pseudocode.

4.2.3 Validation

Splitting clusters of size greater than or equal to k results
in new clusters of size less than k. Thus it may be pos-
sible that values at certain points of time can be inferred.
Before conducting a split, the optimization heuristics
in Stage 2 must validate that the data set is (n, l, k)-
anonymous afterwards (see Algorithms 2 and 3).

A canonical solution would be to inspect all external
knowledge that is possible and to compute what an ad-
versary can infer. If there is no potential external knowl-
edge based on which an attacker can infer at least l − n
tuples, the data set is (n, l, k)-anonymous. However, this
solution is infeasible in practice. This is because for each
individual

(‖T‖
n

)
possible sets of external knowledge ex-

ist. We approach the problem from the opposite direction
with the so-called fast validation, see Algorithm 5 and
Section 6.3: Only points of time where clusters with less
than k time series exist are inferrable. We can compute
candidate sets of time series an adversary must be able
to single out in order to infer those points of time:

• The candidate set creation considers only points of
time with at least one cluster containing less than k
time series. For such a point of time t candidates
ct are combinations of clusters at t with less than k
time series in total. If the set of indistinguishable
time series is a subset of such a combination, the
point of time t is inferred.

• Candidate sets of different points of time (ct1 and
ct2) are combined by calculating the intersection of
the two sets (ct1∩ct2). If the set of indistinguishable
households is a subset of ct1 ∩ ct2, t1 as well as t2
are inferred.

• Candidates for l − n points of time are created by
intersecting all candidates of l − n different points
of time.
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Figure 6: Example of a validation for a non (2, 3, 6)-
anonymous data set

Algorithm 4 is the candidate creation. Example 7 il-
lustrates this generation for a single point of time.

Example 7 (Candidate time series): Assume that
there are three clusters at t: {a, b} , {c, d} , {e, f}.
For k = 5 there exist three candidates: {a, b, c, d},
{a, b, e, f} , {c, d, e, f} �

In order to test if this is possible we have to inspect
clusters containing time series of these candidates in
DB′ and check if they single out one of these candidates.
The following example illustrates the fast validation.

Example 8 (Example for the fast validation): Assume
that we want to validate if the data set in Figure 6 is
(2, 3, 6)-anonymous. In this case it is not. One candi-
date is the set {e, f} at 10:00. The fast validation algo-
rithm can choose up to two points of time, to find a set
of indistinguishable time series that is a subset of {e, f}.
Choosing the upper cluster at 09:00 already shows that
the data set is not (2, 3, 6) anonymous. �

4.3 Complexity Analysis

To keep the presentation simple, we define the variable
p = ‖DB‖ · ‖T‖, i.e., the product of the number of time
series and the number of points of time.

4.3.1 Clustering

The Clustering Stage (see Algorithm 1) has complexity
O(p2): Adding a time-value tuple to a cluster has con-
stant complexity. Building the initial clusters has com-
plexity O(‖DB| · ‖T‖). In the worst case, for k = 2,
the algorithm has to split the initial clusters at each point
of time ‖DB‖

2 times to result in clusters of two elements.
This leads to the following total complexity:

O(‖DB| · ‖T‖ · ‖DB‖
2
· ‖T‖) = O(p · p

2
) = O(p2)

4.3.2 Validation

The validation if a data-set is (n, l, k)-anonymous is in
the complexity class O(p3).

In the worst case, the validation algorithm has to check
every combination of n tuples for every time-series at ev-

ery point of time ‖DB‖ ·
(‖T‖

n

)
. This results in a com-

plexity of O(‖DB‖ ·
(‖T‖

n

)
) = O(p2). Given a com-

bination of n tuples, the complexity for the validation
of a single point of time is the number of clusters, with
O(p) as an upper bound. This results in the overall com-
plexity O(p3). The same complexity also holds for the
algorithm described in 6.3 that reduces the candidate set.

4.3.3 Optimization Heuristics

The complexity of MIL is O(p2 · p3) = O(p5), as well
as the complexity of MTH. Validation (O(p3)) has the
highest complexity of the optimization steps.

MIL (see Algorithm 2) behaves like the clustering in
Stage 1 without the limit of a cluster size and with the
validation of the (n, l, k)-anonymity. This leads to a
complexity of O(p2 · p3). With MTH (see Algorithm 3),
each cluster Ct is split at most ‖Ct‖ times. The upper
bound on the number of splits for all clusters is p. There
are p clusters containing at most one time series. Thus,
the upper bound for the complexity of MTH isO(p2 ·p3).

5 EVALUATION

5.1 Experimental setup

We perform experiments both with real-world data and
synthetic data. Experiments with synthetic data are nec-
essary to investigate dependencies on exogenous param-
eters systematically.

Real-world setup For real-world experiments, 180
households have measured their power consumption ev-
ery hour for two weeks. A metering point reflects the
power consumption in the last 60 minutes. We have
anonymized this data set to become (n, l, k)-anonymous,
with different parameters. In the following we will
present the most interesting results of these experiments.
k = 10 means that any individual is indistinguishable

to nine others, there is only a 10% chance for an attacker
to guess the original time series. The value of n reflects
how hard it is for an attacker to get actual values. l de-
pends on how sensitive a single value is in the specific
scenario. We evaluate a broad range of parameters: n
ranges from n = 3 to n = 10, and l − n varies be-
tween 1 and 12. This is reasonable in terms of privacy: It
means that an attacker has observed the consumption of
a household for 3 to 10 hours, and he is allowed to have
a total of 12 values at most in order to identify sensitive
patterns that might have an impact on the privacy of the
households.

Synthetic setup We generate time series in two differ-
ent ways: randomly and sinus curves (a+ b · sin(x · c))
with randomly chosen and equally distributed values for
a, b, c. For each run, we set the number of households
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to 1000 and the number of points of time to 168 (this
equates to one week of hourly measurements). For split-
ting we have used MTH since it has performed better
in preliminary experiments with the real-world setup.
We report on the evaluation of two scenarios: (1) Ran-
domly generated values in the [10 . . . 30] range. (2) Si-
nus curves, with a ∈ [30 . . . 50], b ∈ [1 . . . 5] and
c ∈ [0.2 . . . 2].

5.2 Quality of anonymized data

5.2.1 Normalized divergence

To study how strongly anonymization changes the data,
we define the normalized divergence as the ratio of the
average value of the data points in the original data set
and the Euclidean information loss for each data point:

NormDiv =

IL(DB,DB′)
|T|·|DB|∑

t∈T,f∈DB f(t)

|T|·|DB|

=
IL(DB,DB′)∑
t∈T,f∈DB f(t)

,

where DB is the original and DB′ the anonymized ver-
sion of the database.

A high normalized divergence means a high relative
distance between the anonymized values and the original
ones. Figures 7a and 7b graph the results of the cluster-
ing (Stage 1) and of the splitting (Stage 2). Since dif-
ferent n and l parameters affect only Stage 2, there is
a separate curve for these configurations. Both graphs
show that the resulting normalized divergence of a tuple
is, even for k = 20, between 15% and 18%. Setting k to
20 means that Stage 1 reduces the number of tuples per
point of time from 180 (the number of households/smart
meters) to 180/20 = 9. In other words, the number of
distinct data points is reduced by 95%, and the normal-
ized divergence is only 15 - 18%. If an indistinguishabil-
ity of only k = 10 is required, and the number of distinct
values is reduced by 90%, the divergence will only be
around 10%. Our results on synthetic data in Figure 8a
show an even smaller divergence, implying that compa-
rable results can be achieved even with a higher k and
many more households.

5.2.2 Standard deviation

The absolute difference between the standard deviation
of values of the original data set and of the anonymized
one tells us how strong the influence of the anonymiza-
tion on the distribution of data points of the anonymized
time series is. This is in contrast to the normalized diver-
gence, which only reflects the change of single points.
The standard deviation of a data set DB is as follows:

S(DB) =
√

1
‖T‖·‖DB‖

∑
∀f∈DB,∀t∈T (f(t)−DB)2,
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Figure 7: Real-world scenario: normalized diver-
gence of a data point

where DB is the mean of all values. Figure 9a and 9b
show the shift of the standard deviation for different pa-
rameter values, it never exceeds 11%. For k = 10, it
is only around 3%. This is rather low if we take into
account that, for k = 10, a reduction of the number of
distinct values in the original data set of 90% is necessary
to create mostly clusters of 10 time series. Again, for the
synthetic scenarios (Figure 8b), the results are similar.

5.2.3 Fraction of diverging points

Figure 10 shows the distribution of the divergence for
different parameter settings. We choose n = 7 and l =
10 as average values of the previous experiments. For
each setting, we have computed the divergence between
each anonymized value and the original value, and we
have categorized them into five classes, ranging from 0−
2% divergence to 30 − 50%. For instance, the figure
shows that approximately 35% of the data points have a
divergence of less than 2 % for (7, 10, 10). Further, for a
higher k, the fraction of points with a higher divergence
increases. However, even for k = 15, more than 60% of
the points have a divergence of less than 20%. Recall that
executing Stage 1 with k = 15 and 180 data points (one
for each household) results into 180

15 = 12 distinct data
points/clusters. In a nutshell, Figure 10 shows that a high
percentage of data points has a low pointwise divergence.
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Figure 8: Synthetic scenario

Even if the number of distinct data points in the var-
ious time series has been reduced very much, the diver-
gence of the data points and the standard deviation are
low. Thus, (n, l, k)-anonymity gives way to high qual-
ity data. The higher the difference between l and n, the
better splitting works.

5.2.4 Comparison of MTH and MIL

Finally, we have evaluated MTH and MIL with (n, l, k)-
anonymity parameters ranging from k = 3 to k = 8,
from n = 3 to 10 and from l − n = 1 to 12. Fig-
ure 11 summarizes our results. For each different k, we
have calculated the average information loss. The fig-
ure shows that on average MTH reduces the information
loss roughly twice as much as MIL. On the other hand,
since MIL splits clusters with the highest information
loss first, it tends to preserve outliers (c.f. 4.2). Thus,
if the anonymized data set will be used for tasks like out-
lier mining, one should choose MIL.

5.3 Computation Time

We have measured the computation time on an AMD
Athlon 64 X2 Dual Core 4800+ Processor with Java
1.6 and heap space of 2GB and on the real-world data
set. Figure 12 features the computation time for Stage 1
Clustering, and Figure 13 contains the run times for
Stage 2. The clustering itself is much faster than the
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Figure 9: Real-world scenario: shift of standard de-
viation
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Figure 10: Fraction of data points with specific diver-
gence

optimization because the validation is complex. The
higher the difference between l and n, the more time
takes the optimization: First, the heuristics can split
more clusters the higher l − n is. This is because more
points of time can be inferred without violating (n, l, k)-
anonymity. Second, if more clusters are split, the valida-
tion requires more computation time. This is because a
larger number of candidate sets for inference exists (see
Section 4.2.3). The MTH module is usually faster, since
it results in fewer cluster splits.

Even with large differences between n and l, the total
run time in our setup never has exceeded 12 minutes.
This shows that our proposed method is applicable with
acceptable runtime.
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Figure 11: Average reduction of euclidean informa-
tion loss depending on the optimization heuristic
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Figure 12: Execution time for stage 1 Clustering

6 CONCLUSIONS

From one perspective, personal data should be widely
available to facilitate scientific insights. In the smart
grid scenario, this would mean that consumption data of
households should be published. However, the data is
personal and sensitive, and privacy of the individuals has
to be protected.

Time series such as the energy consumption of house-
holds contain patterns of sensitive information. This
means that several values are necessary to extract use-
ful information. A definition of privacy taking those pat-
terns into account has been missing so far. However, an
important objective regarding anonymization is to keep
the data quality as high as possible.

This paper has proposed (n, l, k)-anonymity, allow-
ing a limited number of values to be inferred by an ad-
versary. In addition, we have proposed various heuris-
tics to anonymize time series into a (n, l, k)-anonymous
version. Our evaluation has shown that the quality of
(n, l, k)-anonymized data is high. Our evaluation has
used domain-independent measures, indicating that our
results might be applicable to a broad range of scenarios.
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APPENDICES

6.1 (n, l, k)-Anonymization: Clustering

We use the following data structures: A ClusterSet is
the set of time series belonging to a specific Cluster.
We describe a Cluster as a tuple consisting of a
ClusterSet and the mean value as center of the cluster.
ClusterConfiguration is a set containing all clusters
(represented by a Cluster tuple) of the currently pro-
cessed point of time t.

Listing 1 shows our clustering approach. First, we put
all time series into the same cluster (Line 5). The mean
value of all tuples represents the data point for this clus-
ter (Line 7). Let m1, ...,mn be the sorted metering val-
ues of the original time series at point of time t. The

17



Open Journal of Information Systems (OJIS), Volume 1, Issue 1, 2014

order implies that mi is the neighbor of mi−1 and mi+1

(if existent) at t (Line 12). Regarding the loss of infor-
mation, a good split would be between the two metering
values with the highest distance and result in two clusters
with more than k members (Line 12-24). A split leads to
two new clusters represented by the mean value of the
original data points.

6.2 Optimization Heuristics
6.2.1 MostInformationLoss (MIL)

Algorithm 2 contains the pseudo code of MIL. First,
MIL computes the information loss between the origi-
nal database DB and the anonymized database DB′ for
each cluster Ct at each point of time t (sort function in
Line 6). MIL then iterates over each point of time, start-
ing with the highest information loss (Line 8). For each
point of time, it tries to split the clusters that incur the
highest information loss (Line 11 - 18). Since the result-
ing clusters are smaller than k, this is not always pos-
sible. Thus, before a cluster is split into f(t) and f ′(t),
function isNlkAnonymous(DB′, t, f, f ′) checks if the
resulting database of times series DB′ still satisfies
(n, l, k)-anonymity (Line 14).

6.2.2 MembersTimesHeight (MTH)

In contrast to the MIL algorithm, the MTH heuristic or-
ders all clusters (regardless of their point of time) instead
of iterating over the points of time and processing the
clusters in that order. Thus, there are only two nested
loops in the MTH algorithm on algorithm 3 in Line 6
and 8. The check if the split does not violate the (n, l, k)-
anonymity remains the same (Line 9).

6.3 Validation Algorithm

Algorithm 5 contains pseudo code of the fast valida-
tion algorithm. It returns true if the data set is (n, l, k)-
anonymous and false otherwise. First of all, it requires
the building of candidate sets in Line 11. As we have
explained in Section 4.2.3, we build a candidate set from
points of time with combinations of clusters smaller than
k and from their intersections with other points of time.
Algorithm 4 is an implementation of this step.

After the creation of the candidates, the algorithm tries
to build a set of indistinguishable households (that are a
subset of one candidate) with at most n points of time
as external knowledge. If this is possible, exactly l − n
points of time are inferred. In order to build such exter-
nal knowledge, the algorithm takes a cluster as a starting
point of possible time series (Line 17) and searches for
other points of time that reduce this set (Line 23). If the
algorithm finds external knowledge with at most n points
of time that is a subset of a candidate set, it returns false
since this violates the (n, l, k)-anonymity property.
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Algorithm 1: Top Down Clustering
1 DB : O r i g i n a l d a t a s e t
DB′ = DB : Mod i f i ed d a t a s e t , i n i t i a l i z e d wi th copy

3

f o r each t ∈ T{ / / Cluster point of time t
5 C l u s t e r S e t C =

⋃
f∈DB {f}

/ / Define Cluster as tuple: (representing Value, set of time series)
7 C l u s t e r c = ( c a l c C e n t e r (C , t ) , C)

C l u s t e r C o n f i g u r a t i o n CF = {c}
9 / / f and g are neighbors if no point is between (t, f(t)) and (t, g(t))

L i s t ln = L i s t o f n e i g h b o r s (f, g)
11

f o r a l l ( (f, f ′) ∈ ln i n a s c o r d e r o f d i s t . be tween n e i g h b o r s ) {
13 i f c l u s t e r i n c l u d i n g f, f ′ e x i s t s {

C l u s t e r S e t C1 = {f}
15 C l u s t e r S e t C2 = {f ′}

add a l l g ∈ C t o C1 or C2 depend ing on g(t)
17

i f ( |C1| ≥ k and |C2| ≥ k ) {
19 CF = CF\ ( c e n t e r , C)

CF = CF ∪(calcCenter(C1, t), C1)
21 CF = CF ∪(calcCenter(C2, t), C2)

}
23 }
}}

25

/ / Helper function: Calcs the average value of a set of time series at t
27 f l o a t c a l c C e n t e r ( S e t o f t ime s e r i e s F , p o i n t o f t ime t )

re turn
∑

∀f∈F f(t)

‖F‖

Algorithm 2: MostInformationLoss
DB : O r i g i n a l d a t a s e t

2 DB′ : Data s e t a f t e r c l u s t e r i n g i n s t a g e 1
sort(S, desc/asc, f) : r e t u r n s a s o r t e d l i s t o f e l e m e n t s i n s e t S , s o r t e d d e s c e n d i n g /

a s c e n d i n g by t h e e x p r e s s i o n f
4 getClusterConfig(DB, t) : r e t u r n s a s e t o f c l u s t e r s ( r e p r e s e n t e d as a s e t o f t ime s e r i e s )

a t p o i n t o f t ime t

6 Tsorted = sort(T,desc , ILt(DB,DB′)

8 f o r e a c h (d ∈ Tsorted ) {
L i s t lneighbors = [(f, t), (f ′, t)), ...] , f, f ′ a r e n e i g h b o r s i n DB

10

f o r e a c h ( c ∈ s o r t ( g e t C l u s t e r C o n f i g (DB’ , t ) , desc , ILc
t(DB,DB′) ) ) {

12 L i s t lneighbors = [((f, t), (f ′, t)), ...] , f, f ′ ∈ c n e i g h b o r s i n DB
f o r e a c h ( ((f, t), (f ′, t)) ∈ s o r t ( lneighbors , desc , |f(d), f ′(d)| ) ) {

14 i f ( isNlkAnonymous (DB’ , d , f , f ’ , (n,l,k) ) ) {
s p l i t (DB’ , d , f , f ’ )

16 }
}

18 } } }

19



Open Journal of Information Systems (OJIS), Volume 1, Issue 1, 2014

Algorithm 3: MembersTimesHeight
DB : O r i g i n a l d a t a s e t

2 DB′ : Data s e t a f t e r c l u s t e r i n g i n s t a g e 1
sort(S, desc/asc, f) : r e t u r n s a s o r t e d l i s t o f e l e m e n t s i n s e t S , s o r t e d d e s c e n d i n g /

a s c e n d i n g by t h e e x p r e s s i o n f
4 getClusterConfig(DB) : R e t u r n s a m u l t i s e t o f a l l c l u s t e r s o f t h e d a t a s e t

6 f o r e a c h ( c ∈ s o r t ( g e t C l u s t e r C o n f i g (DB’ ) , desc , Score(c) ) {
L i s t lneighbors = [((f, t), (f ′, t)), ...] , f, f ′ ∈ c n e i g h b o r s i n DB

8 f o r e a c h ( ((f, t), (f ′, t)) ∈ s o r t ( lneighbors , desc , |f(t)− f ′(t)| ) ) {
i f ( isNlkAnonymous (DB’ , t , f , f ’ , (n,l,k) ) ) {

10 s p l i t (DB’ , t , f , f ’ )
}

12 } }
}

Algorithm 4: calculateCandidateSets(): Creation of candidate sets for the fast validation
1 DB : Data s e t

(n,l,k) : P r i v a c y p a r a m e t e r s
3

/ / set containing set of candidates of single points of time
5 clusterCandidates = {} ;

7 f o r e a c h ( t ∈ T ) {
f o r e a c h ( Combina t ion o f c l u s t e r s a t t Ci

t wi th
∑∣∣Ci

t

∣∣ ≤ k ) {
9 CC =

{⋃
∀i C

i
t

}
clusterCandidates = clusterCandidates ∪ CC ;

11 }
}

13

candidates = {} ;
15 f o r e a c h ( Combina t ion o f l − n Ct ∈ clusterCandidates wi th d i f f e r e n t t ) {

candidate =
{
Ct1 ∩ . . . ∩ Ct(l−n)

}
;

17 candidates = candidates ∪ candidate ;
}

19

re turn candidates ;
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Algorithm 5: isNlkAnonymous(): Algorithm for the (fast) validation
1 DB′ : Data s e t r e q u i r i n g v a l i d a t i o n

(n,l,k) : P r i v a c y p a r a m e t e r s
3 t, f, f ′ : P o i n t o f t ime and t ime s e r i e s , t h a t d e f i n e t h e p o s s i b l e s p l i t

5 / / copy and split in order to test if DB is still (n,l,k)-anonymous
DB = copy (DB’ ) ;

7 DB = s p l i t (DB, t , f , f ’ ) ;

9 f o r each f ∈ DB{ / / take every time-series of DB
/ / creates candidate sets that infer l − n points of time

11 C a n d i d a t e S e t s candidateSets = calculateCandidateSets(DB,n, l, k) ;

13 f o r e a c h ( t ∈ T ) {
C l u s t e r Ct

f = C l u s t e r a t t c o n t a i n i n g f ;
15 f o r e a c h ( C a n d i d a t e S e t s ∈ candidateSets ) {

/ / pTS is the current knowledge of possible time series of an adversary
17 S e t pTS = Ct

f ;
/ / try to break the candidate set s

19 S e t diff = pTS\s ;

21 K = {t} ;
whi le (‖K‖ ≤ n ) {

23 f o r e a c h ( t2 ∈ T\t ) {
i f ∃ C l u s t e r Ct2 c o n t a i n i n g an e l e m e n t o f diff and e x c l u d i n g ( a t l e a s t )

one o f pTS{
25 / / add it to the knowledge

K = K ∪ {t2} ;
27 / / reduce the possible time series

pTS = pTS\Ct2 ;
29 }

/ / is the candidate set already singled out
31 i f (pTS ⊆ s ) {

/ / not valid
33 re turn f a l s e ;

}
35 }

}
37 }

}
39 }

/ / valid
41 re turn true ;
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