
c© 2015 by the authors; licensee RonPub, Lübeck, Germany. This article is an open access article distributed under the terms and conditions of the
Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).

Open Access

Open Journal of Information Systems (OJIS)
Volume 2, Issue 2, 2015

http://www.ronpub.com/journals/ojis
ISSN 2198-9281

Achieving Business Practicability
of Model-Driven Cross-Platform Apps

Tim A. Majchrzak A, Jan Ernsting B and Herbert Kuchen B

A University of Agder, Gimlemoen 25, 4630 Kristiansand, Norway
B ERCIS, University of Münster, Leonardo-Campus 3, 48149 Münster, Germany

{tima, jan.ernsting, kuchen}@ercis.de

ABSTRACT

Due to the incompatibility of mobile device platforms such as Android and iOS, apps have to be developed separately
for each target platform. Cross-platform development approaches based on Web technology have significantly
improved over the last years. However, since they do not lead to native apps, these frameworks are not feasible for all
kinds of business apps. Moreover, the way apps are developed is cumbersome. Advanced cross-platform approaches
such as MD2, which is based on model-driven development (MDSD) techniques, are a much more powerful yet less
mature choice. We discuss business implications of MDSD for apps and introduce MD2 as our proposed solution to
fulfill typical requirements. Moreover, we highlight a business-oriented enhancement that further increases MD2’s
business practicability. We generalize our findings and sketch the path towards more versatile MDSD of apps.

TYPE OF PAPER AND KEYWORDS

Regular research paper: Cross-platform, MDSD, app, business app, mobile, MD2

1 INTRODUCTION

Businesses increasingly embrace mobile computing. Ap-
plications for mobile devices (apps) such as smartphones
and tablets are not only developed for sale or to directly
earn money (e.g. by placing advertisements in them).
Rather, enterprises have identified usage scenarios in in-
ternal utilization by employees, field service, sales, and
customer relationship management (CRM) [37]. Besides
some other topics such as security [13] and testing [48],
cross-platform development is a major concern when im-
plementing apps[23].

The need for cross-platform development approaches
arises from the incompatibility of today’s platforms for
mobile devices. With Apple’s iOS, Google’s Android,
Microsoft’s Windows Phone, and RIM’s Blackberry there
are at least four major platforms (cf. [20]) that need to

be supported in order to reach most potential users of
an app. Each platform has an ecosystem of its own and
differs with regard to development language, libraries,
and usage of device-specific hardware – to name just a
few factors. Developing separately for each platform cur-
rently is the choice. This is an error-prone and extremely
inefficient procedure that becomes particularly frustrating
when updating existing apps.

Based on the proliferation of adequate frameworks [28],
mobile Webapps have become very popular. They are
based on web technology, executed by a browser, and
hence usable on essentially every platform. Cross-
platform approaches based on Web technology such as
Apache Cordova [5] (a.k.a. PhoneGap [43]) are suitable
for many app projects. They are rather easy to learn, offer
good community support and rich literature, and – most
notably – can be deployed as real apps. This also allows

4

http://creativecommons.org/licenses/by/3.0/
http://www.ronpub.com/journals/ojis

Tim A. Majchrzak, Jan Ernsting and Herbert Kuchen: Model-Driven Cross-Platform Apps: Towards Business Practicability

offering them in app stores and to virtually use them in
any way native apps could be used. However, apps based
on Web technology are not feasible in all cases [10].

When working with Webapps, their origin in Web tech-
nology cannot be neglected. This has been called an
uncanny valley [17]: a typical Webapps’ look & feel is
almost “real” (i.e. native) but the app is slightly less
responsive. Moreover, even with HTML5 [29] not all
device-specific features are supported. Connecting to
server backends, as required for most business apps [27]
(cf. Section 2), is cumbersome and usually inefficient.
Finally, apps are developed with a very low level of ab-
straction. Domain-specific knowledge has to be commu-
nicated to developers instead of being built directly into
an app; existing models e.g. of business processes or
information systems cannot be used even if they would
be applicable to the scenario that an app is intended for.

To close the above sketched gap, we have compiled
requirements for typical apps used by businesses for pur-
poses different to sales of these apps. To enable effective
cross-platform development of business apps, our group
has developed a prototype for model-driven development
(MDSD [49]) of apps [24]. MD2 [25] is suitable for some
scenarios already but requires further enhancements. Us-
ing MDSD for apps differs greatly from current state-of-
the-art app development and is less mature. It, however,
offers great opportunities despite requiring refinements.

Our article makes a number of contributions. Firstly, it
compiles requirements for typical business apps, which
have been validated by practitioners. Secondly, it intro-
duces an approach for model-based cross-platform app
development that is based on these requirements. And
thirdly, it discusses the path towards business practicabil-
ity of sophisticated cross-platform development frame-
works.

This article is structured as follows. Section 2 sketches
the background of our work including a discussion of
what is a business app. In Section 3, our approach
to develop cross-platform apps – MD2 – is introduced.
Section 4 characterizes the particularities of a business-
oriented enhancement for MD2. In Section 5 we discuss
and generalize our findings before drawing a conclusion
in Section 6.

2 BACKGROUND

In the following, we first characterize business apps and
propose a set of requirements for them. Next, we in-
troduce model-driven development in general as well as
cross-platform approaches for apps. Finally, we discuss
related work.

2.1 Characterization of Business Apps

The first step to define requirements is to define what a
business app is. In our understanding, a business app is
used by enterprises for other means than to directly make
revenue with it. Consequently, a business app might be
used to

a) support business processes,

b) improve the work with suppliers and collaborators, or

c) offer value to customers and thereby become an instru-
ment of customer relationship management or market-
ing.

To get a first idea of typical business apps, we rely
on a study conducted with regional companies [27, 37]
augmented with knowledge from working with several
partners from industry. Business apps have two constitut-
ing and one supporting characteristic. Firstly, business
apps are form-based. This means that they are made up
of standardized elements (so called widgets [40]) such as
text fields, check boxes, drop-down fields, and buttons.
These are typically aligned on composites that can be
nested in each other and placed on windows, tabs, and
similar aggregating elements. Thereby, form-based apps
resemble text-based forms with the means of graphical
user interfaces. Forms typically can be built both with
native software development kits (SDKs) and with Web
technology. While forms are not limited to simple ele-
ments but could e.g. contain mashups [58], graphical user
interfaces not created with widgets are a rare occurrence.
While a game that uses real-time rendered graphics might
be used for advertisement purposes, it would not typically
be considered to be a business app.

Secondly, business apps are data-driven. The three
above sketched scenarios require some form of data input,
transformation, and output. Admittedly, all but the sim-
plest programs match this definition. However, business
apps are used to provide specific information in alignment
with their intended purpose, and most of them accept data
to select the kind of information provided or to feed a
server backend. To make an example, think again of a
game. It accepts input and shows the results (such as a
moving avatar) but its operation is not driven by data in
the same way as, say, an app to look up departure times
of trains.

Thirdly, not all but most business apps are linked to
one or several backend systems. Many apps are fully
functional without an active connection to the Internet.
They either have no sophisticated business logic at all, or
the logic is incorporated with the app. While this might
be desirable in many cases, typical business apps rely on
a server backend. There are good reasons for this. Com-
panies that develop apps commonly embed these apps

5

Open Journal of Information Systems (OJIS), Volume 2, Issue 2, 2015

in the (enterprise) information systems landscape. Apps
ought to fulfill services in alignment with the services of
the company. They can draw from the rich functional-
ity of backends and orchestrate services to their needs.
Merely developing an app as a frontend to such services
shortens development time. This approach is not only
convenient but also takes security concerns into account,
since no critical logic is put into apps that are run on
inherently insecure [32] devices. Think of an app to sup-
port business processes, say a tariff calculator supporting
insurance field staff. The way premiums are calculated
might be changed at times, but the data required to calcu-
late them basically stays the same. Hence, apps should
be data-driven but request premiums from the insurer’s
backend systems rather than calculating them. In addition,
how tariffs are calculated can be seen as a trade secret of
an insurer. Thus, keeping them in the secured company
backend and only requesting premiums via an addition-
ally secured, standardized Web service is reasonable.

2.2 Requirements of Business Apps

The three properties introduced above characterize busi-
ness apps. We have identified additional requirements.

In general, it is desirable to develop apps with a high
level of abstraction. Business apps are built based on
business knowledge. If possible a programmer should
describe what the app should do and not necessarily how,
as with object-oriented programming languages such as
Java and Objective-C. Moreover, it should be possible to
develop an app once and deploy it to any desirable mobile
platform.

Since business apps are typically data-oriented, it is
reasonable to enable the easy definition of entity types and
to provide corresponding create, read, update, and delete
(CRUD) operations automatically. Moreover, it is helpful
to connect certain input fields of the user interface (UI)
to certain local or remote entities (possibly stored in a
database on a server) via so-called data bindings (cf. [25]).
Changes to such input fields will then be automatically
propagated to the entity and vice versa. In addition, there
should be easy to use and at best declarative ways to
ensure that certain input fields are validated, i.e. illegal
input values are rejected. Such validators can for instance
ensure that a German zip code consists of exactly five
digits and that letters and special symbols are forbidden.
Checking is possible locally or remotely on a server.

For the user interface (UI), all typical widgets including
high-level composites such as tabs have to be supported.
The UI further needs to support common input methods
of mobile devices including gestures such as swiping.

Moreover, there needs to be control of the sequence
of showing UI elements, i.e. workflow control. The app
needs to be reactive to events such as incoming messages

and state changes such as tilting the device (orientation
change). Finally, business apps increasingly make use of
device-specific hardware such as GPS receivers, which
should hence be supported.

Business apps also have some non-functional require-
ments. Often, companies desire a native look & feel [37],
which rules out Web applications. The UI needs to be user
friendly. Intuitive usage without explanation should be
possible. Additionally, the performance of apps needs to
be at least acceptable and apps need to be robust in cases
of improper use. Considering network conditions, apps
should even be resilient, i.e. not only tolerate connectivity
problems but resume operation after a connection is re-
stored. Finally, apps should be secure, i.e. it should not be
possible to use them in a way that could be harmful to its
users or to the enterprise that they have been designed for.
An open interface should allow for extensions in case of
new sensors and device gadgets becoming standardized.

In general, requirements are neutral with regard to tech-
nology. However, not all of them can be fulfilled with an
arbitrary technology stack, in particular not solely with
HTML5 [45]. Specifically, some requirements can – at
least so far – only be addressed with native apps or devel-
opment methods yielding native source code. Examples
are apps that require background processing [45] and
advanced security concepts [55]. Moreover, reaching a
high-level of abstraction is impossible with most current
approaches (cf. Sections 2.4 and 2.5).

When working with the above sketched requirements,
it has to be kept in mind that they are generic. Specific
business apps might have stricter requirements (besides
the functional requirements for the very app) or be more
open. Nevertheless, our set of requirements can be used
as a reasonable starting point.

2.3 Model-Driven Software Development

The idea of model-driven software development
(MDSD) [49] is that software and other artifacts such
as configuration files or database schemas are not written
by hand but generated from a model. A typical way of
implementing a corresponding generator is to use a tem-
plate processor such as Xtend [14] and to fill gaps in a
template consisting of source code fragments with details
taken from the considered model. In order to support n
platforms, n different templates are needed. The model,
however, does not have to be changed and can be used for
all destination platforms.

A model can be formulated in a classical modelling lan-
guage such as UML [47]. For a specific area such as busi-
ness apps for mobile devices, more concise models can
often be obtained by using a dedicated domain-specific
language (DSL) [49].

A framework such as Xtext [57] can be used to specify

6

Tim A. Majchrzak, Jan Ernsting and Herbert Kuchen: Model-Driven Cross-Platform Apps: Towards Business Practicability

the syntax of a DSL in an enhanced Extended Backus-
Naur Form (EBNF) and to use the built-in parser genera-
tor to create a parser transforming a textual model written
in that DSL into an abstract syntax tree, which can then
be transformed by the mentioned generator. Xtext is part
of the Eclipse Modeling Framework (EMF) [15].

2.4 Cross-Platform Apps

There are several ways for developing apps for multiple
platforms. The currently available approaches are sum-
marized in Figure 1. The figure also shows a hierarchy
derived from the similarities of the approaches.

In general, cross-platform and native development can
be distinguished. Native development uses the platform-
specific software development kits (SDKs) along with
the applicable development tools. The programming lan-
guage is bound to the platform; for example, Java is used
for Android apps whereas Apple requires usage of Objec-
tive C (or, newly, Swift [30]). Consequently, development
is carried out for each platform separately. Development
effort increases almost linearly with each additional plat-
form – of the typical activities carried out in software
engineering, only requirements engineering is more or
less shared while design, implementation and testing are
carried out independently on each platform. In sharp con-
trast, cross-platform approaches follow an “implement
once – run everywhere” principle (at least in theory).

Cross-platform apps can be developed following one
of two main paradigms. A runtime environment abstracts
from the native interface of a platform. Generative ap-
proaches allow to develop an app once and then to gener-
ate native source code for each supported platform.

Generative approaches can be realized in two possi-
ble ways. Firstly, model-driven software development
(MDSD) can be employed. We follow this approach (see
Section 3): an app is described using a (typically textual
or graphical) modeling language, which is independent
of an actual platform. Such a model is transformed to
native, platform-specific code. Transformation is usually
done by using tools. Secondly, transpiling translates the
single used programming language to platform-specific
ones. Examples for both approaches including their cur-
rent shortcomings are discussed in [23].

Cross-platform approaches based on runtime environ-
ments use Web technologies such as HTML5, Cascad-
ing Style Sheets (CSS), and JavaScript for develpping
apps. Mobile Webapps are the simplest approach: an
app is solely built with Web technologies. It therefore
can be used on any device offering a Web browser but
is limited to elements known from Web sites. Moreover,
deployment to app stores typically is not possible. Hybrid
approaches go one step further by providing native pack-
aging. Apps still are Webapps by character but can be

deployed to native platforms. Despite the still Web-like
look & feel, hybrid approaches have become very popular
due to the ease of development. Finally, a self-contained
runtime allows development based on Web technology
but offers a bridge to native GUI elements. Thereby, apps
become closer to a native look & feel at the price of a
performance penalty.

For an extended introduction including an evaluation
of approaches and examples please refer to [23] and [41].
Web development vs. native development is discussed in
detail by Charland and Leroux [10].

2.5 Existing Approaches

Cross-platform app development approaches have been
mentioned as early as 2009. Miravet et al. present their
framework DIMAG, which is based on State Chart eX-
tensible Markup Language (SCXML) [38]. Even when
neglecting the different concept, their approach is hardly
comparable to ours due to the missing focus on business
apps. In terms of app development, 2009 is long ago
and, thus, native development versus Web development
was not yet a topic of interest, either. Nevertheless, the
approach is notable for the sketched ideas.

As outlined in Subsection 2.4, cross-platform ap-
proaches can take different forms. Even what is consid-
ered a cross-platform approach might vary – practitioners
sometimes employ looser definitions (cf. the comparison
by [11]). Besides HTML5 [29], Apache Cordova [5] is
a framework that utilizes Web technology but also sup-
ports accessing native device features, i.e. allowing the
development of hybrids. Yet, its Web foundations nega-
tively impact aspects such as app responsiveness. Other
approaches build upon a self-contained runtime such as Ti-
tanium [6]. These typically operate on a custom scripting
language that are interpreted by runtime environments.

Cabana [12], AXIOM [33], applause [7], and Xmob
[34] are representatives of generative approaches. Ca-
bana focuses on development of apps in the context of
higher education. It does so by providing a GUI to manip-
ulate graphic models of app representations. Furthermore,
it allows to implement customized code, if need be. How-
ever, interactions with backends are neglected and using
other platforms for achieving this is advised (cf. [12,
p. 533f.]). Cabana apparently has been discontinued [50].
AXIOM takes a technical stance as it features aspects of
UML and uses the programming language Groovy [21].
Moreover, it does not fully automate intermediate steps
of code generation [25]. applause and Xmob are most
similar to MD2: they provide DSLs, too. Yet, applause
is mostly restricted to displaying information and does
not provide a DSL tailored to describing business apps.
Xmob’s DSL features aspects alike those of MD2, but
does not provide the needed tools up to now.

7

Open Journal of Information Systems (OJIS), Volume 2, Issue 2, 2015

Mobile Webapps Hybrids Self-contained
runtime

MDSD Transpiling
Native, platform-

specific

Runtime
Environment

Generative
approaches

Cross-platform

App development

No native
elements

Native
packaging

Native
GUI

Compiled to
native SDK

Uses
native SDK

Figure 1: Categorization of Cross-Platform Approaches (adapted from [27, p. 63])

MDSD for app development is not only employed in
cross-platform contexts. Franzago, Muccini, and Mala-
volta present work on a modelling framework for data-
intensive apps [19]. Recent advancements like this could
go along MD2’s development and lead to future improve-
ments. Even though targeting the Web, approaches such
as WebDSL [3] and mobl [2] provide domain-specific
languages for Web development, in the latter case focus-
ing on HTML5 and app development. There is no direct
connection to our work, though.

Some interesting approaches come from industry.
Among others, IBM [1] and SAP [54] are working on
cross-platform technologies to complement their prod-
ucts. Specialised companies such as Mendix [22] and
WebRatio [4] also contribute to this movement. The latter
explicitly focusses on model-driven technologies.

3 CROSS-PLATFORM DEVELOPMENT WITH
MD2

In this section, we first motivate our approach with a
real-world example. We then successively introduce its
architecture, features, and domain specific language. Fi-
nally, we name current limitations.

3.1 Introductory Example

A corporation has a customer relationship management
(CRM) system. It wants to provide access to its sales staff,
allowing them to record prospective customers as part of
their acquisition process through their mobile devices.
However, the CRM does not support mobile devices but
offers an application programming interface (API) for
third party applications. In addition, the corporation has
no prior knowledge of mobile app development and wants
to use MD2 to integrate its CRM and the mobile apps that

MD2 backend

Android app iOS app

CRM system

MD2 model

Figure 2: Basic Architecture

are to be created. The scope of the example1 is limited
to keep it brief: it will exclusively focus on recording
prospective customers through mobile apps.

3.2 Architecture and Features of MD2

Using the textual MD2-DSL the corporation defines a
model. From that MD2 model the artifacts in the shaded
area of Figure 2 are generated. In fact, these generated
artifacts represent executable code for the mobile apps as
well as the backend and expose the following properties:

• Mobile apps are automatically linked to the backend.

• The generated MD2 backend already constitutes a
fully Java Enterprise Edition (JEE) compliant appli-
cation container including an entity model that can
be persisted through Java’s Persistence API (JPA).

• Developers only implement the “glue code” in the
generated MD2 backend to link it to the corpora-
tion’s CRM API (corresponds to the link from MD2

to the CRM in Figure 2). This typically is a straight-
forward task.

1Underlying sources can be obtained from http://git.
io/md2-multi-valued-elements and http://git.io/
md2-testApps-crmContactManager.

8

http://git.io/md2-multi-valued-elements
http://git.io/md2-multi-valued-elements
http://git.io/md2-testApps-crmContactManager
http://git.io/md2-testApps-crmContactManager

Tim A. Majchrzak, Jan Ernsting and Herbert Kuchen: Model-Driven Cross-Platform Apps: Towards Business Practicability

3.3 MD2-DSL

A MD2-DSL model is structured according to the well-
known model-view-controller pattern [9]. Thus, it con-
sists of three parts specifying the model, view, and con-
troller component of an app. In our example, the model
(see Listing 1) defines just a single entity type Contact
(with first name, surname, etc.) and an enumeration type
AcquisitionState.

Listing 1: MD2 model
1 e n t i t y CONTACT {
2 f i r s t n a m e : s t r i n g
3 surname : s t r i n g
4 phone : i n t e g e r (o p t i o n a l)
5 e m a i l : s t r i n g (o p t i o n a l)
6 s t a t e : AC Q U I S I T I O NST A T E

7 }
8

9 enum AC Q U I S I T I O NST A T E {
10 ” P r o s p e c t i v e ” , ” A c q u i r i n g ” , ” ←↩

A c q u i r e d ” , ” R e j e c t e d ”
11 }

As depicted in Listing 2, the corresponding view first
fixes a layout. Here, FlowLayout has been chosen,
which displays the different widgets from top to bottom
and from left to right on the screen. The view compo-
nent addContactView displays a contact and a button
Add. Here, the layout of a contact is automatically in-
ferred from the structure of the results provided by a con-
tent provider, namely contactContentProvider.
This content provider is defined in the controller part of
the model (see Listing 3 – package definitions in this
and all following listings have been stripped for brevity).
As can be guessed from its name, this content provider
will provide a contact. Thus, text fields for first name,
surname, and so on as well as corresponding labels will
be displayed. The semantics of the button Add will be
determined in the controller component explained below.

Listing 2: MD2 view definition
1 FlowLayoutPane ADDCONTACTVIEW (←↩

v e r t i c a l) {
2 AutoGenerator a u t o G e n e r a t o r {
3 c o n t e n t P r o v i d e r ←↩

c o n t a c t C o n t e n t P r o v i d e r
4 }
5 Button addBu t ton (”Add”)
6 }

The corresponding controller component (see List-
ing 3) first specifies some meta-information (such as
appVersion and modelVersion). Moreover, it
determines the initial view component of the app
(here: addContactView) and the action, which

should be executed when the app is started (here:
startUpAction). Then, it defines content providers
and actions, which are executed when certain events
are observed. A content provider can be e.g. located
on a server. In our example, the content provider
contactContentProvider is located on the server
with URI http://md2.crm.corp.com/. More-
over, the initial startUpAction binds addAction
to the onTouch event of the button addButton occur-
ring in the addContactView described above. Thus,
if this button on the screen is touched, the addAction
will be executed. As shown in Listing 3, the addAction
will cause the content of the text fields corresponding to
the displayed contact to be stored by the content provider
contactContentProvider. Thus, the inputs will
be synchronized with the contents of the corresponding
contact entity.

Listing 3: MD2 controller definition
1 main {
2 appName ”CRM c o n t a c t manager”
3 appVersion ” 1 . 0 ”
4 modelVersion ” 1 . 0 ”
5 s tar tView ADDCONTACTVIEW

6 o n I n i t i a l i z e d s t a r t U p A c t i o n
7 }
8

9 c o n t e n t P r o v i d e r CONTACT ←↩
c o n t a c t C o n t e n t P r o v i d e r {

10 providerType crmSystem
11 }
12

13 remoteConnection crmSystem {
14 u r i ” h t t p : / / md2 . crm . corp . com / ”
15 }
16

17 a c t i o n CustomAction s t a r t U p A c t i o n {
18 bind a c t i o n addAc t ion on ←↩

ADDCONTACTVIEW . addBu t ton . ←↩
onTouch

19 }
20

21 a c t i o n CustomAction addAc t ion {
22 c a l l DataAction (save ←↩

c o n t a c t C o n t e n t P r o v i d e r)
23 }

3.4 Underlying Technology

MD2-DSL is based on the Xtext language framework [57]
and is described in detail in [26]. MD2 utilizes Xtend [14]
for processing its models as well as generating code for
all target platforms.

Code generators transform the textual model to com-
pilable code. These outputs are embedded into precon-
figured projects, that are generated at the same time, and

9

Open Journal of Information Systems (OJIS), Volume 2, Issue 2, 2015

can be compiled using the specific target platform’s tools,
i.e. Eclipse for the JEE backend as well as the Android
app and Xcode for the iOS app.

As the generated apps communicate with the backend
through RESTful web services [46] exchanging JSON
messages, the backend can be substituted with arbitrary
web services that exhibit the same properties. Thus, it is
possible to integrate our approach with backends that are
for example based on LAMP [35] or .NET technology
stacks. Additionally, MD2 can be extended to generate
according backend code, if need be.

3.5 Current Limitations

MD2 is an academic prototype despite the cooperation
with practitioners and its application in first practical
projects. Thus, it poses some limitations. Some of these
are inherent to the approach of using MDSD. Most, how-
ever, can be considered as work-in-progress boundaries
that can be overcome in the future.

Firstly, a detailed evaluation of MD2 has not yet been
done. Our approach has been refined and internally evalu-
ated several times but no field study, detailed analysis, or
competitive analysis in comparison to other approaches
in a commercial context has been conducted.

MD2 is no “one-size-fits-all” approach. MDSD for
apps most likely will never be suitable in some scenarios
(e.g. apps that render their graphics on-the-fly). While
we have business apps in mind and theoretically fixed this
scope, refinement and acknowledgement of the very area
to use MD2 remains a future challenge. Nevertheless, you
could consider MD2 as “one-DSL-fits-most-cases”.

From a technological viewpoint, some additions to
MD2 are interesting. In particular, it currently is not pos-
sible to add custom code. While this might be undesirable
on the frontend (i.e. the app – the MDSD approach would
become blurred), it would be helpful to have better sup-
port for custom additions to a backend. It is designed
as a blueprint already but extension beyond simple con-
nections requires much manual work. Possibly suitable
approaches discussed in the literature are the generation
gap pattern [18, pp. 571ff.][52], protected regions [49,
p. 29][31], and dependency injection [44][16]. The lat-
ter appears to be the most elegant solution. However,
a discussion quickly becomes very technical (and little
business-related) and, thus, is out of scope of this article.

There are some minor limitations. In fact, they are
not limitations in a strict sense but topics not yet dealt
with. As already argued, testing of apps is cumbersome.
Testing (and checking) MD2 should be significantly easier
and at the same time very powerful since a model can be
used as the basis of testing (cf. [8, 51]). Nevertheless,
we have not yet addressed testing explicitly. Moreover,
energy efficiency has not been considered – it is an in-

creasingly important yet often neglected topic [39, 42].
Finally, a business-oriented framework might require to
support mobile device management (MDM). MD2 does
not provide an interface to MDM – as to our knowledge
no framework currently does.

As a final remark, there are no specific security fea-
tures built into MD2. On the one hand, there is no need
for much security. Due to the DSL, it is hardly possible
to use MD2 maliciously anyway. Much more important,
however, is the fact that business logic typically resides
(almost exclusively) on the backend. Therefore, proper
authorization and authentication is required – both are
possible with the means that MD2 offers. Security of
the business logic and the database(s) used is a task of
backend operations, which is extremely helpful. On the
other hand, with an extended evaluation by businesses,
scenarios might arise that require additional security fea-
tures that we did not yet consider. However, extending
MD2 in such cases should be hassle-free.

4 BUSINESS-ORIENTED ENHANCEMENT

While the core of MD2 has been described above, our
framework offers additional features. In the following,
support of multi-valued elements is described with special
focus on their business-orientation, i.e. the match with
the requirements described in Subsection 2.2.

When considering relationships between entities, two
maximum cardinalities come to mind: single and multiple.
Relationships with at most a single entity on the refer-
enced side can already be defined through MD2 models
(e.g. one customer→ one address). This did, so far, not
hold true for relationships with multiple entities on the
referenced side (e.g. one customer→ many addresses).
At first, multi-valued elements in MD2 were implemented
only to a certain degree. In fact, they were supported by
the content providers but not on the view or controller
level. Our recent work on MD2 tackled this shortcom-
ing and refined it to provide support for multi-valued
elements.

Listing 4: Augmented MD2 model
1 e n t i t y CONTACT {
2 . . .
3 i n t e r a c t i o n s : IN TER A CT IO N []
4 }
5

6 e n t i t y IN TER A CT IO N {
7 i n t e r a c t i o n d a t e : date
8 o c c a s i o n : s t r i n g
9 . . .

10 }

Regarding our previous example, sales representatives
need to get access to customer records as well as pre-

10

Tim A. Majchrzak, Jan Ernsting and Herbert Kuchen: Model-Driven Cross-Platform Apps: Towards Business Practicability

vious interactions. For that, the entity type Contact
in Listing 4 is augmented with a list of interactions as
denoted by the array-like syntax. In addition, the model
is extended with a new entity type Interaction (with
interaction date, occasion, etc.).

To display customer details and interactions, view and
controller definitions require changes, too. Within the
contactDetailView a List element is used to de-
fine a list view of customer interactions (see Listing 5). As
defined by the itemtext value, the list view displays
the occasion for each associated customer interaction.
The controller definition is omitted here but is augmented
to bind actions and data accordingly. Alternatively, the
view definition of lists can be automatically generated by
the AutoGenerator element (cf. Listing 2).

Listing 5: Augmented MD2 view definition
1 FlowLayoutPane CONTACTDETAILVIEW (←↩

v e r t i c a l) {
2 . . .
3 L i s t i n t e r a c t i o n s L i s t {
4 i t emtype IN TER A CT IO N

5 i t e m t e x t IN TER A CT IO N . ˆ o c c a s i o n
6 l i s t t y p e p l a i n
7 }
8 }

Summing up, multi-valued elements might be omitted
at first but are needed to address functional requirements
typically found in business apps. We have made a sugges-
tion how to cope with multi-valued elements in domain-
specific languages for app development such as the one
of MD2.

As an interesting remark, the implementation of multi-
valued elements in the generators for Android and iOS
showed significant differences. While details are not
within the scope of this article, it is a good example for
differences between the platforms that approaches, which
provide native code, must overcome. At the same time,
developers are relieved from understanding how (and
why) similar concepts are treated different on distinct
platforms.

5 DISCUSSION

The insights presented so far are heterogeneous on the
one hand, interconnected on the other hand. While the re-
quirements for increased usage of apps by enterprises are
clear, app development – in particular across platforms –
is no trivial task. With MD2 we have proposed a solution
to address the requirements of business apps by using
MDSD. The path towards business practicability of so-
phisticated cross-platform development is still steep (but
rewarding), though, as will be discussed in the following.

5.1 The Path towards Business Practicability

After describing requirements of business apps, intro-
ducing our approach including business-oriented details,
and discussing its merits and limitations, one question
remains: how could the path towards business practicabil-
ity of model-driven techniques for app development look
like? In particular, what will make approaches such as
MD2 feasible beyond its academic, prototypic state and
applicable for commercial use?

There is little doubt in the general feasibility of the
approach. As discussed earlier, MDSD allows to per-
fectly address requirements of business apps. Despite
differences between academia and industry [56], MDSD
is nowadays also embraced by practitioners. MD2 has
been developed in cooperation with practitioners and even
tested by them in real-world projects. However, several
factors hinder its wider usage, and in parts wide usage of
MDSD for app development in general:

• Scale: MD2 is hardly known by businesses. New
approaches, particularly if they propose a paradig-
matic shift, require a baseline of users to prosper.
The dynamics of achieving a critical mass of users
(as currently few approaches have) are complex.

• Performance: Even though the perceived perfor-
mance is fine, benchmarking of MD2 apps and com-
paring performance figures to that of natively devel-
oped apps would increase the trust in MD2’s feasi-
bility.

• Long-term support: Approaches require the promise
to be supported for at least a few years. Otherwise
the risk of using them in projects is too high for
corporate users. MD2 is open source, which is a first
step, but a community around an approach needs to
be established.

• User-friendliness: we have not yet assessed how
easy it is to work with MD2. Praises of technological
superiority are meaningless if other approaches win
the race due to their ease of use. Without the aim to
criticize Apache Cordova [5], there is little question
that it has inherent shortcomings. However, it is
easy to use and yields good results. Therefore, its
cost-effectiveness is high – its wide adoption is, thus,
unsurprising and justified.

• User feedback: we have already refined MD2 but
many more evaluation and refinement iterations are
required.

• Extension: Currently, it is possible to reach some
boundary of MD2 quite quickly. This particularly
applies to the number of supported platforms. Ex-
tending it to platforms such as Windows Phone or

11

Open Journal of Information Systems (OJIS), Volume 2, Issue 2, 2015

Blackberry is laborious and time-consuming, yet not
very challenging (but for platform-specific particu-
larities).2 Extended support remains an important
task of future work because it would make the ap-
proach much more attractive for businesses.

• Competition: Looking at related work (Section 2.5),
Web technology-based approaches are predominant.
Another convincing MDSD app development tool
would stimulate discussion and foster the path to-
wards better MDSD support in the field.

We deem particularly the last point to be very important.
It cannot be expected that MDSD for app development
will see a land-rush and impose a revolution for app devel-
opment. It is one idea among others for the much-desired
cross-platform capability of modern app development ap-
proaches. However, we believe that MDSD can facilitate
better development practices by being refined evolution-
ary and by contribution to the discussion about software
engineering practices for apps. Thus, experiences from
works such as ours can contribute to other cross-platform
approaches not using MDSD as well.

Without doubt, further enhancements of MD2 are
needed. These enhancement typically also foster con-
tributions to theory. Despite following a road towards
business practicability, MD2 remains a prototype and
we strive for discussing advancements with the scientific
community. Thus, evaluation of enhancements will al-
low improvements beyond MD2 – ideally, even beyond
MDSD for app development.

Finally, is has to be found out for which types of apps
MDSD is feasible. While MD2 is an approach for busi-
ness apps, MDSD is not conceptually limited to this do-
main. Due to the nature of domain-specific languages,
it makes sense to set conceptual boundaries for develop-
ment frameworks. Nevertheless, while MD2 will never
be the choice to develop games, there are no reasons to
believe that a model-based language for gaming apps
could not be feasible. However, which domains of app
development should be (and will be) addressed by MDSD
in the future is very hard to forecast. E-Health is a can-
didate [53], since form-based layouts and linking with
backend systems are typically requirements of healthcare
apps. Additionally, other design paradigms could be inte-
grated. For example, white labelling of apps (i.e. devel-
oping an app for corporate customers that is deployed to
end-users in corporate-specific styles) might be possible
in a model-based fashion and combined with MD2.

2While a high number of supported platforms is an important argu-
ment for practitioners, it will hardly earn scientific appreciation.

5.2 Future Work

MD2-DSL was developed using a prototype based ap-
proach (from reference prototypes to a DSL). Beginning
with a proof of concept, some design decisions regarding
the language were not carried out in a consistent fashion.
For example, we observed varying levels of abstraction
regarding UI widgets. Considering the development of a
DSL not as a serial but as a continuous process, these vari-
ations are to be aligned to offer more consistent DSL se-
mantics. Thus, the DSL is a main concern of future work.

Due to the complex nature of MDSD, extensive testing
of MD2’s components (pre-processors, generators, etc.)
was neglected so far. On a more user-centric level, testing
of MD2 apps could be relevant for companies but also
for a broader non-MD2 related audience, too. Improving
testability for MD2 also allows providing stable artifacts
(i.e. development tools, plug-ins, etc.) and thus improving
accessibility of the framework for novices. Given a test
suite, reproducible builds of the artifacts would further
improve accessibility to MD2. As a consequence, testing
is the second topic that we will address.

Despite generating native code for the two most com-
mon platforms, industry partners expressed interest in
generating code for other platforms, be it their own or
another one (also cf. with the preceding section). To
support custom generators, MD2 needs to be modified in
certain aspects. These modifications and the provision of
additional generators are the third topic of future work.

6 CONCLUSION

We have presented work on the cross-platform develop-
ment of business apps. In this article, we first described
requirements for business apps. They typically are form-
based, data-driven, and in most cases have a connection
to a company backend. The main non-functional require-
ment is a native look & feel, which should go along with
user friendliness. We then introduced MD2, an approach
for model-driven cross-platform development. Keeping in
mind the business implications of our work, we discussed
which path towards business practicability of MDSD has
to be taken.

Despite the merits of MDSD in app development, it is
impossible to forecast whether it will become a dominat-
ing technology and the base of future app development.
There is plenty of future work. Mobile computing and
app development in particular will remain a challenging
yet very exiting field of research.

ACKNOWLEDGMENTS

We would like to thank Andreas Doepker for his work
on the business-oriented enhancements of MD2. Addi-

12

Tim A. Majchrzak, Jan Ernsting and Herbert Kuchen: Model-Driven Cross-Platform Apps: Towards Business Practicability

tionally, we would like to thank Henning Heitkötter. The
figure in Section 2.4 has been inspired by the one he de-
veloped for a tutorial at WEBIST 2013, which he jointly
held with the first author of this article.

A much shorter and demonstration-oriented version of
this article [36] has been presented at the CAiSE 2015
forum in Stockholm.

REFERENCES

[1] “IBM MobileFirst Platform Foundation,” 2015,
http://www-03.ibm.com/software/products/en/
mobilefirstfoundation.

[2] “mobl,” 2015, http://www.mobl-lang.org/.

[3] “WebDSL,” 2015, http://webdsl.org.

[4] “Webratio,” 2015, www.webratio.com.

[5] “Apache Cordova,” 2015,
http://cordova.apache.org/.

[6] “Appcelerator,” 2015,
http://www.appcelerator.com/.

[7] “applause,” 2014, https://github.com/applause/.

[8] C. Baier and J.-P. Katoen, Principles of Model
Checking. The MIT Press, 2008.

[9] F. Buschmann, R. Meunier, H. Rohnert, P. Sommer-
lad, and M. Stal, Pattern-oriented Software Architec-
ture: A System of Patterns. New York, NY, USA:
Wiley, 1996.

[10] A. Charland and B. Leroux, “Mobile application de-
velopment: web vs. native,” Commun. ACM, vol. 54,
pp. 49–53, 2011.

[11] J. Cowart, “Pros and cons of the top 5 cross-platform
tools,” http://www.developereconomics.com/pros-
cons-top-5-cross-platform-tools/.

[12] P. E. Dickson, “Cabana: a cross-platform mobile de-
velopment system,” in Proc. 43rd SIGCSE. ACM,
2012, pp. 529–534.

[13] S. M. Dye and K. Scarfone, “A standard for devel-
oping secure mobile applications,” Comput. Stand.
Interfaces, vol. 36, no. 3, pp. 524–530, Mar. 2014.

[14] S. Efftinge, “Official Xtend homepage,” 2015,
http://www.eclipse.org/xtend.

[15] S. Efftinge, J. Köhnlein, and P. Friese,
“Build your own textual DSL with tools
from the Eclipse Modeling Project,”
http://eclipse.org/articles/article.php?file=Article-
BuildYourOwnDSL/index.html.

[16] M. Fowler, “Inversion of control containers
and the dependency injection pattern,” 2004,
http://martinfowler.com/articles/injection.html.

[17] M. Fowler, “CrossPlatformMobile,” 2011, http://
martinfowler.com/bliki/CrossPlatformMobile.html.

[18] M. Fowler, Domain-Specific Languages. Addison-
Wesley Pearson Education, 2011.

[19] M. Franzago, H. Muccini, and I. Malavolta, “To-
wards a collaborative framework for the design and
development of data-intensive mobile applications,”
in MOBILESoft. New York, NY, USA: ACM, 2014,
pp. 58–61.

[20] “Gartner Press Release,” 2012. [Online]. Available:
http://www.gartner.com/it/page.jsp?id=1924314

[21] “Groovy,” 2014, http://groovy.codehaus.org/.

[22] E. Hadley, “New Mendix release enables no-code
delivery of multi-device mobile apps for the en-
terprise,” 2014, http://www.mendix.com/press/no-
code-enterprise-mobile-app-development/.

[23] H. Heitkötter, S. Hanschke, and T. A. Majchrzak,
“Evaluating cross-platform development approaches
for mobile applications,” in Proc. 8th WEBIST, Re-
vised Selected Papers, ser. Lecture Notes in Busi-
ness Information Processing (LNBIP). Springer,
2013, vol. 140, pp. 120–138.

[24] H. Heitkötter and T. A. Majchrzak, “Cross-platform
development of business apps with MD2,” in
DESRIST, ser. Lecture Notes in Computer Science,
vol. 7939. Springer, 2013, pp. 405–411.

[25] H. Heitkötter, T. A. Majchrzak, and H. Kuchen,
“Cross-platform model-driven development of mo-
bile applications with MD2,” in Proc. SAC ’13.
ACM, 2013, pp. 526–533.

[26] H. Heitkötter, T. A. Majchrzak, and H. Kuchen,
“MD2-DSL – eine domänenspezifische Sprache zur
Beschreibung und Generierung mobiler Anwendun-
gen,” in ATPS ’13, ser. LNI, vol. 215. GI, 2013,
pp. 91–106.

[27] H. Heitkötter, T. A. Majchrzak, U. Wolffgang, and
H. Kuchen, Business Apps: Grundlagen und Status
quo, ser. Working Papers. Förderkreis der Ange-
wandten Informatik an der Westfälischen Wilhelms-
Ulong-ersität Münster e.V., 2012, no. 4.

[28] H. Heitkötter, T. A. Majchrzak, B. Ruland, and
T. Weber, “Evaluating frameworks for creating mo-
bile Web apps,” in Proc. 9th WEBIST. SciTePress,
2013, pp. 209–221.

[29] “HTML5,” 2014, http://www.w3.org/TR/html5/.

[30] “Introducing Swift,” 2015,
https://developer.apple.com/swift/.

[31] H. Irawan, “Generation gap pattern vs
protected regions in Xtext MDD,” 2011,

13

http://www.gartner.com/it/page.jsp?id=1924314

Open Journal of Information Systems (OJIS), Volume 2, Issue 2, 2015

http://eclipsedriven.blogspot.de/2011/10/generation-
gap-pattern-vs-protected.html.

[32] W. Jeon, J. Kim, Y. Lee, and D. Won, “A practical
analysis of smartphone security,” in Proc. Int. Conf.
on Human Interf. and the Mgt of Inf., ser. HI’11.
Berlin, Heidelberg: Springer, 2011, pp. 311–320.

[33] X. Jia and C. Jones, “AXIOM: A model-driven ap-
proach to cross-platform application development,”
in Proc. 7th ICSOFT, 2012.

[34] O. Le Goaer and S. Waltham, “Yet another dsl for
cross-platforms mobile development,” in Proc. of
the First Workshop on the Globalization of Domain
Specific Languages. ACM, 2013, pp. 28–33.

[35] Lee and B. Ware, Open Source Development with
LAMP: Using Linux, Apache, MySQL and PHP.
Boston, MA, USA: Addison-Wesley, 2002.

[36] T. A. Majchrzak, J. Ernsting, and H. Kuchen,
“Model-Driven Cross-Platform Apps: Towards Busi-
ness Practicability,” in Proc. of the 27th Confer-
ence on Advanced Information Systems Engineering
(CAiSE) Forum. CEUR, 2015.

[37] T. A. Majchrzak and H. Heitkötter, “Development
of mobile applications in regional companies: Sta-
tus quo and best practices,” in Proc. 9th WEBIST.
SciTePress, 2013, pp. 335–346.

[38] P. Miravet, I. Marı́n, F. Ortı́n, and A. Rionda,
“DIMAG: A framework for automatic generation
of mobile applications for multiple platforms,” in
Proc. of the 6th International Conference on Mo-
bile Technology, Application & Systems (Mobility).
New York, NY, USA: ACM, 2009, pp. 23:1–23:8.

[39] R. Mittal, A. Kansal, and R. Chandra, “Empowering
developers to estimate app energy consumption,”
in Proceedings of the 18th Annual International
Conference on Mobile Computing and Networking
(Mobicom). New York, NY, USA: ACM, 2012, pp.
317–328.

[40] B. Myers, S. E. Hudson, and R. Pausch, “Past,
present and future of user interface software tools,”
ACM T COMPUT-HUM INT, vol. 7, pp. 3–28, 2000.

[41] J. Ohrt and V. Turau, “Cross-platform development
tools for smartphone applications,” IEEE Computer,
vol. 45, no. 9, pp. 72–79, 2012.

[42] A. Pathak, Y. C. Hu, and M. Zhang, “Where is the
energy spent inside my app?: Fine grained energy
accounting on smartphones with eprof,” in Proceed-
ings of the 7th ACM European Conference on Com-
puter Systems (EuroSys). New York, NY, USA:
ACM, 2012, pp. 29–42.

[43] “PhoneGap,” 2015, http://phonegap.com/.

[44] D. Prasanna, Dependency Injection: Design Pat-
terns Using Spring and Guice. Manning Pub, 2009.

[45] A. Quilligan, “HTML5 Vs. Native Mobile
Apps: Myths and Misconceptions,” 2013,
http://www.forbes.com/sites/ciocentral/2013/01/23/
html5-vs-native-mobile-apps-myths-and-
misconceptions/.

[46] L. Richardson and S. Ruby, RESTful web services.
O’Reilly, 2008.

[47] J. Rumbaugh, I. Jacobson, and G. Booch, The Uni-
fied Modeling Language Reference Manual, 2nd ed.
Addison-Wesley, 2005.

[48] M. Schulte and T. A. Majchrzak, “Context-
dependent testing of apps,” Testing Experience, pp.
66–70, September 2012.

[49] T. Stahl and M. Völter, Model-driven software de-
velopment. Wiley, 2006.

[50] “Twitter acquires team behind vi-
sual app creation tool Cabana,”
http://thenextweb.com/twitter/2012/10/16/twitter-
acquires-mobile-visual-app-creation-tool-cabana/.

[51] M. Utting and B. Legeard, Practical Model-Based
Testing: A Tools Approach. San Francisco: Morgan
Kaufmann, 2007.

[52] J. Vlissides, Pattern Hatching: Design Patterns Ap-
plied. Addison Wesley, 1999.

[53] S. Walderhaug, M. Mikalsen, G. Hartvigsen, E. Stav,
and J. Aagedal, “Improving systems interoperability
with model-driven software development for health-
care,” Stud Health Technol Inform, vol. 129, pp.
122–126, 2007.

[54] J. Wargo, “SAP Mobile Platform:
Cross-platform app development,” 2014,
http://scn.sap.com/community/mobile/blog/
2014/09/26/sap-mobile-platform-cross-platform-
app-development.

[55] W. West and S. M. Pulimood, “Analysis of privacy
and security in HTML5 web storage,” J. Comput.
Sci. Coll., vol. 27, no. 3, pp. 80–87, Jan. 2012.

[56] J. Whittle and J. Hutchinson, “Mismatches between
industry practice and teaching of model-driven soft-
ware development,” in Proceedings of the 2011th
International Conference on Models in Software En-
gineering (MODELS). Berlin: Springer, 2012, pp.
40–47.

[57] “Xtext,” 2015, http://www.eclipse.org/Xtext/.

[58] N. Zang, M. B. Rosson, and V. Nasser, “Mashups:
Who? What? Why?” in CHI ’08 Extended Abstracts
on Human Factors in Computing Systems. New
York, NY, USA: ACM, 2008, pp. 3171–3176.

14

Tim A. Majchrzak, Jan Ernsting and Herbert Kuchen: Model-Driven Cross-Platform Apps: Towards Business Practicability

AUTHOR BIOGRAPHIES

Dr. Tim A. Majchrzak is an
associate professor for Informa-
tion Systems at the University of
Agder, Kristiansand, Norway. He
received BSc and MSc degrees in
Information Systems and a PhD
in economics (Dr. rer. pol.) from
the University of Münster. His
research comprises both techni-
cal and organizational aspects of
software engineering, often in the
context of Web technologies and

Mobile Computing. He has also published work on sev-
eral interdisciplinary Information Systems topics.

Jan Ernsting is a researcher for
Practical Computer Science at
the Institute for Information Sys-
tems at the University of Münster,
Germany. He received BSc
and MSc degrees in Information
Systems from the University of
Münster. Jan is interested in
Model-Driven Development of
Mobile Apps as well as Devel-
opment Processes enabling it.

Dr. Herbert Kuchen is profes-
sor for Practical Computer Sci-
ence at the Institute for Informa-
tion Systems at the University
of Münster, Germany. He re-
ceived his Diploma in Computer
Science as well as his PhD and
habilitation from RWTH Aachen
University, Germany. He is inter-
ested in Programming Languages
and Software Engineering in gen-
eral as well as in Model-Driven

Development and Development of Mobile Apps in partic-
ular.

15

	Introduction
	Background
	Characterization of Business Apps
	Requirements of Business Apps
	Model-Driven Software Development
	Cross-Platform Apps
	Existing Approaches

	Cross-Platform Development with MD2
	Introductory Example
	Architecture and Features of MD2
	MD2-DSL
	Underlying Technology
	Current Limitations

	Business-oriented Enhancement
	Discussion
	The Path towards Business Practicability
	Future Work

	Conclusion

