

M. Bouet, M. Schneider: A NoSQL-Based Framework for Managing Home Services

1

A NoSQL-Based Framework for

Managing Home Services

Marinette Bouet, Michel Schneider

LIMOS, Clermont-Ferrand University, Complexe des Cézeaux, 63178 Aubiere, Cedex, France,

marinette.bouet@univ-bpclermont.fr, michel.schneider@isima.fr

ABSTRACT

Individuals and companies have an increasing need for services by specialized suppliers in their homes or

premises. These services can be quite different and can require different amounts of resources. Service suppliers

have to specify the activities to be performed, plan those activities, allocate resources, follow up after their

completion and must be able to react to any unexpected situation. Various proposals were formulated to model

and implement these functions; however, there is no unified approach that can improve the efficiency of software

solutions to enable economy of scale. In this paper, we propose a framework that a service supplier can use to

manage geo-localized activities. The proposed framework is based on a NoSQL data model and implemented

using the MongoDB system. We also discuss the advantages and drawbacks of a NoSQL approach.

TYPE OF PAPER AND KEYWORDS

Regular research paper: Home services, DSL, framework, NoSQL, MongoDB, healthcare, cleaning services

1 INTRODUCTION

In this paper we are interested in activities performed at

private homes as well as activities performed at

commercial locations by a service provider. The

approaches for specifying, planning and achieving such

activities are similar regardless of the nature of these

activities. Consequently, our objective here is to

propose a common framework to support their

management.

 In-home services for private individuals represent a

business sector that has become increasingly important

in all the western countries. The types of activity vary

widely and include housework, childcare, elder care,

short- and long-term care for handicapped and disabled

people, landscaping services and home medical care.

However, it is the home medical care sector that is the

most organized and requires the most attention. The

term “home care” as used here includes care for sick or

dependent people, disabled adults and the chronically

ill. In France, home medical care services are supplied

by licensed organizations such as SSIAD (home care

services), HAD (hospital care at home) and SAMSAH

(medical and social services for handicapped adults).

Healthcare is regulated and must adhere to strict legal

and medical constraints. Moreover, persons involved in

the at-home care (usually professionals, but may also

be parents or close relatives) must comply with

statutory conditions and must have the requisite skills.

 For these home-care interventions, the main

problem is optimal organization based on the care

required and the available resources [15]. Many

previous studies have investigated software tools to

help manage home care activities [10]. On one hand,

some of these studies propose adapting ERP software,

primarily to meet classic management needs such as

 Open Access

Open Journal of Information Systems (OJIS)

Volume 3, Issue 1, 2016

www.ronpub.com/ojis

ISSN 2198-9281

© 2016 by the authors; licensee RonPub, Lübeck, Germany. This article is an open access article distributed under the terms and conditions

of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).

mailto:marinette.bouet@univ-bpclermont.fr

Open Journal of Information Systems (OJIS), Volume 3, Issue 1, 2016

2

patient management, admissions and discharges,

keeping patient records and managing billing and

invoicing tasks. On the other hand, other studies have

designed and implemented diverse algorithms to help

in planning interventions and allocating human

resources. The difficulty at this level is to integrate the

various constraints. These two types of works are far

too often treated separately.

 Services offered at company sites have represented

an expanding sector for quite some time. Even in this

field, the activities required are varied: arranging and

maintaining the premises, cleaning, equipment

installation and maintenance, repairs, training,

workplace assistance, etc. To explore this topic, we

will focus primarily on cleaning services, the

management of which is very close to management of

home care and involves similar steps: determining

services, planning interventions, allocating human

resources, monitoring service delivery, and so on.

Commercial ERP software tools have been specifically

designed for this sector to help cleaning agencies to

organize their activities.

 To our knowledge, no unified approach exists to

handle similar situations for different industry sectors.

This paper’s main objective is to propose a generic

framework that allows service providers to manage

geo-localized activities regardless of the nature of their

services. Another objective is to design this framework

so that it can be both easily extended and easily

personalized. This framework is suitable for any type

of activity that repeats fairly regularly and whose

duration ranges from a few minutes to a few hours per

day. Our proposal handles data using a NoSQL system

[12] and initiates processing via web services. A

NoSQL approach presents several advantages over

other technologies: it is easier to structure the data to

specific needs; the design is closer to the

implementation and development is simple; and it is

easier to evolve data structures and modify processing.

Nonetheless, this approach suffers from some

drawbacks, including difficulty expressing integrity

constraints, installation difficulty and lack of

transactional control. We shall show how to minimize

the consequences of these difficulties.

 In addition to this introduction, the paper includes 6

other parts. Part 2 describes the current state of the art.

Part 3 presents the general characteristics of the

proposed framework and its architecture. Part 4 details

the conceptual model for managing activities. Part 5

describes the logical model based on a NoSQL

representation of documents. Part 6 describes an

implementation using MongoDB. Finally, Part 7

contains our conclusion and future perspectives.

Appendix A describes the syntax for our temporal

language.

2 RELATED WORK

For a long time, the home care and cleaning services

sectors occupied the attention of professionals, who

have marketed numerous software tools for managing

those activities. For example, in an Anglo-American

context, the authors of [10] list 10 tools recommended

for managing medical activities, and the authors of [9]

list 40 tools for managing activities in the cleaning

sector. The core functionality is rather similar on both

sides and contains a variety of features such as billing

and invoicing, client management, mobile access, GPS

integration, scheduling and routing, human resource

management, quality improvement, etc. Approached

from a French context, similar tools exist, in particular

AtHome [1] and MedLink [22] for home care

management. All these tools are expensive - often well

out of the purchasing range of a small company. To our

knowledge, no comparative detailed studies exist to

support an informed choice among such tools, and it is

quite difficult to obtain information on the logical

architecture or the technologies these tools use.

 Researchers were especially interested in the sector

of home care. We can distinguish two main thrusts of

the research: modelling activities and planning/routing

services.

 There are several main works that are concerned

with modelling activities. In [17], a multi-agent system

is proposed to enhance monitoring, surveillance and

educational services for chronic disease management.

In [21], a framework is proposed for understanding

home care operations and their management. The main

processes are identified, and an IDEF0 description is

suggested. In [18], the authors state that workflows

provide an adequate means of supporting coordination

and monitoring of care processes. Because care

processes depend directly on patient profiles, an

ontology-driven approach is proposed to help with the

construction of personalized careflows.

 In [6], the problem of improving the cooperation

between actors through a cognitive approach is

addressed; it specifies the requirements for cooperation

and proposes a framework and a prototype. In [23], the

concepts of BCP (Business Continuity Plan) and MDE

(Model Driven Engineering) are applied in the context

of e-Health systems. The Plas'O'Soins project [3], to

which we contributed, is centred on the coordination

and follow-up of home care activities. A prototype was

developed whose architecture was based on three main

modules: a specification module for care description, a

planning and routing module and an intervention

recording module. An experiment was performed in

conjunction with three home care institutions.

 The planning of home care and the optimal

determination of tours has been the object of many

M. Bouet, M. Schneider: A NoSQL-Based Framework for Managing Home Services

3

works, so bibliography is plentiful on the subject. We

shall focus on some important points. First, the

proposals differ by the constraints that were taken into

account. These constraints are multiple and concern the

caregivers (availability, jobs and qualifications, types

of contracts, preferences of patients, tour localization,

etc.), the patients (required qualifications, schedule

preferences, unavailability, caregiver preferences, etc.),

the care institution (respect for caregivers’ work

schedules, caregivers’ preferences for well-balanced

tours and caregivers’ preferences for full employment,

etc.), and the medical practices (specifically,

dependences between activities). A description of some

of these constraints appears in [5].

 The objective of these studies—which function to

optimize—is not always the same and includes

minimizing the operating costs (by considering staff

costs) [19], minimizing the number of trips,

minimizing the drive time for all tours and minimizing

total tour duration. This type of problem is

characterized by the abbreviation MTSPTW (Multiple

Travelling Salesman Problem Time Windows). In

some cases, the problem can be formulated in the form

of a linear program, and some studies proposed exact

approaches. However, considering its NP complexity,

researchers have also studied how to resolve the

problem using heuristic approaches. Table 1 lists an

overview of some of these approaches.

 These various research works are essentially

theoretical in nature. Most were validated using only

theoretical cases or synthetic data. Nevertheless,

considering the complexity and the variability of the

problems, an experiment in a real-world context

represents an undeniable gain. The experiment carried

out in the Plas'O'Soins project [3] was instructive and

incited the researchers to concentrate on specific issues.

Specifying activities and planning surfaced are the

most important points.

3 THE POSITIONING OF THE FRAMEWORK

In this section we list the principles on which our

proposal is based and detail the architecture and the

functions of our framework.

3.1 Characteristics and objectives

We position our proposals in a unified framework that

fulfils the following characteristics.

C1: The framework is calibrated to serve the needs of

a service provider which collects resources to perform

the services.

Table 1: Approaches for planning and routing

Exact approaches

Overview Bektas [4]

Extended Multiple

Traveling Salesman

Problem

Kergosian et al. [15]

Multiple Treatments and

Time Windows

Torres Ramos et al.

[25]

Heuristic approaches

Tabu search
Gourc et al. [11]

Jemai et al. [13]

Genetic algorithms Kiraly et al. [16]

Ant colony optimization Liu et al. [20]

Rules engine Weppenaar et al. [26]

C2: The services are the object of a contract or a

preliminary agreement.

C3: A service is exactly geo-localized, either to a home

or to customer premises. Thus, it is necessary to

physically move resources around to perform the

services.

C5: A service is composed of activities. An activity

respects a precise timing defined by temporal intervals

(scheduling start times as soon as possible, scheduling

end times as late as possible) with more or less regular

repetitions.

C6: The activities are predefined and listed in a

catalogue. For each activity, this catalogue defines the

types of staff able to perform it, the standard duration

of the activity and the price unit.

C7: A staff member may be permanent or temporary

(professional person in the case of a home care

institution, temporary person in the case of a cleaning

agency).

C8: The activities require equipment provided by the

institution or the agency and consumables that must be

supplied on demand. Equipment must be preinstalled

and regularly maintained.

C9: An activity requires, at minimum, one staff

member with the necessary skills; if several staff

members are required, at least one must possess the

necessary skills and be appointed as the main staff

member.

Open Journal of Information Systems (OJIS), Volume 3, Issue 1, 2016

4

Figure 1: Main processes of the proposed framework

 The various objectives that this framework must

guarantee are listed below.

O1: Specify the interventions to be made at each

customer location according to previously agreed upon

commitments or contracts.

O2: Organize the planning of the interventions by

selecting the duration and the necessary resources for

each activity, using these values to subsequently plan

tours for permanent staff members.

O3: Support service follow-up and logging of every

malfunction or problem to help with finding solutions.

O4: Handle service invoicing, purchasing, delivery of

consumables, equipment purchases and/or rentals

installed for customers, vehicle purchase and/or rental,

salaries for permanent staff, remuneration for

temporary staff, etc.

O5: Establish balance sheets for activities to allow

evolution of the practices to improve the quality of the

services.

O6: Continually assess activities and allow for

modifications concerning the evolution of the service

providing institution or agency such as defining new

services, prospecting for new customers, recruiting new

staff members, etc.

3.2 Organization of the Processes

The main processes that fulfil objectives O1 to O6 are

represented in Figure 1. The heart of the framework is

constituted by processes P1, P2, and P3, which allow

for elaborating service contracts, managing the

activities corresponding to these services, and contract

termination, respectively.

In home care, P1 corresponds to all the preliminary

operations required to decide whether to accept a new

patient and determine that patient’s care protocols. P3

supports all the procedures required to end a home care

contract. Similarly, for a cleaning agency, P1

corresponds to acquisition of a new customer and

defining services associated with that customer’s

contract. P5 deals with managing all the customer

information required for the activities. In home care,

that information consists of a patient’s physical

characteristics and medical records. For a cleaning

agency, it consists of information about the state and

arrangement of the customer’s premises. In both cases,

storing the geographical address of the home or the

premises is required for precise estimation of travel

time and for calculating the tours. P7 is the process that

defines the various activities and the skills of the staff

members required to perform them according to the

contract. In the rest of this paper, we shall concentrate

on the process P2, which coordinates the main

operations.

4 CONCEPTUAL MODELLING OF ACTIVITIES

MANAGEMENT PROCESS

This section is both a generalization and an extension

of the work which we previously led on the

Plas'O'Soins project [8].

4.1 Organization and Operation

Execution of the activities for the various customers is

supervised through the process P2, which deals with

activities management. This process consists of three

sub-processes: activity specification, activity planning

and execution and follow-up (Figure 2).

P1 : Contracts

elaboration

P2 : Activities management

 (specification – planning – follow-up)
P3 : Contracts

closure

P5 : Customers

management

P6 : Human resources

management

P7 : Activities

definition

P8 : Purchases and

logistics management

P9 : Administrative and

financial management
P10 : Quality

management

P4 : Services invoicing

M. Bouet, M. Schneider: A NoSQL-Based Framework for Managing Home Services

5

Figure 2: The three sub-processes of the activities

management process

Step 1: Specifying the activities associated with each

customer is the initial sub-process, and this sets

conditions for the other two. This process begins as

soon as the contract process with a customer concludes.

Step 2: Activity planning can be a continual process

depending on the business needs. It consists of

identifying the beginning and end of each intervention

and assigning one or more staff members to the

activity, while also taking into account travel times and

the duration of the interventions. This process

determines the daily tours for every permanent staff

member. It is easy to see how most businesses would

need to run this planning process every day or every

week. The activities to be completed must have been

specified previously for the entire period covered by

the planning process (for example, day or week). The

planning must satisfy various types of constraints (cf.

section 2). We can envisage strong constraints as those

that must necessarily be satisfied, while weak

constraints are those that should be satisfied if possible.

Using an automated software tool to calculate the

planning leads to some limitations because it is difficult

to take all aspects of the problem into account.

However, automation can supply a significant amount

of help. It is imperative to design an interface that

allows users to finalize the solution.

Step 3: The sub-process of execution-follow-up allows

every staff member to refer back to information

relevant to each of the interventions made during a tour

and to record information about the results.

 Typically, the three sub-processes run in sequence.

Feedback must analysed to solve any problems

encountered during execution. We list below the most

important problems (the numbers in the text refer to

Figure 2).

1. If the automatic tool is unable to find a planning

solution, the activities specification must be altered and

rescheduled; alternatively the coordinator must

complete the plan manually.

2. A problem detected at the execution level may

require a modification of the current planning but still

use the same activities.

3. A problem detected at the execution level may

require modification of the corresponding activities. A

new planning process must then be completed, either at

the level of the activities concerned (a local

rescheduling operation) or at the level of all the

activities (a global rescheduling operation). The system

can first attempt a local rescheduling; if that fails, it can

launch a global rescheduling operation.

4. A problem detected at the execution level can raise

warnings for the continuation of the corresponding

activity; however, it is not necessary to modify it or to

reschedule it.

 This decomposition in three sub-processes infers

three views of the activities—prescribed activities,

planned activities and completed activities—all of

which must be managed simultaneously. Data capture

and reporting are handled through two main interfaces:

the coordinator interface and the staff member

interface. Activity specification and planning are

handled through the coordinator interface, and

execution follow-up is handled through the staff

member interface.

4.2 Temporal Modelling

The activities in which we are interested here are

repetitive with more or less regularity. An explicit

specification of the repetition schedule is required to

prepare the planning. This specification can be

performed using a calendar (developed form), but then

repetitions do not appear directly. Another solution is

to specify schedules in the form of assertions

(condensed form) where repetitions are expressed

directly in a semi-natural language (e.g., daily at 8:00

except Sunday). The condensed form of specification is

closer to common medical usage, is easier to

communicate and allows for more sophisticated

reasoning than the developed form. In this section, we

propose a general model for expressing almost-regular

repetitions in condensed form. Irregularities show up

for at least two reasons: increased activity in certain

periods and exceptions on certain days.

Performed activities

Planned activities

Planified activities

3

4

1

2

Prescribed activities

Step 1: Specification of

activities for each

customer

Step 2: Plan of activities for all

customers

Step 3: Activities execution and

follow-up

Open Journal of Information Systems (OJIS), Volume 3, Issue 1, 2016

6

The model presented below is an improvement from

the model [7] we suggested for the Plas'O'Soins

project. We assume that an activity to be specified

takes place during a given period characterized by a

starting date and an ending date. If the period is not

specified, then the activity begins at the date of the

specification (upon validation) and continues until a

new specification introduces a conflict. Within the

specified period, the activity repetition is expressed in

the days that compose it. Within a day, an activity can

occur within one or several disjoint intervals. We call

temporality the triplet (period, days, intervals) and use

expressions to specify its different forms.

 A formal description of these expressions is given

in Appendix A. Here we provide only an intuitive

presentation that conforms to a user’s view. Days can

be a list of weekdays, a list of dates or an expression

(every day, every (2) days, odd days, even days,

holidays, etc.). Intervals may contain several values,

each one representing a time window: a part of the day

(i.e., morning, evening, etc.), a time slot (i.e., 10 h-11

h) or a specific time (i.e., 10 h), which means that the

activity should start precisely at this time. All these

values can be combined as long as the corresponding

time windows do not overlap. Finally, in some cases, it

is sufficient to simply indicate the number of times an

activity must take place within one day (without

specifying time windows). We will illustrate this

model using the cases listed in Table 2.

Case 1 and Case 2 introduce simple repetitions. For

Case 1, the activity takes place on certain days of the

week in the morning and the evening. For Case 2, the

activity takes place every day in the morning.

However, the repetition of an activity is not always

perfectly regular. Furthermore, there may be

exceptions. Our language allows users to combine

several expressions to specify overlapping repetitions

or exceptions. Such combinations pose no problem as

long as the days associated with the expressions of a

same activity are disjoint and in pairs, as in Case 3.

However, a problem arises when the days associated

with different expressions are not disjoint, as shown in

Case 4. This case is ambiguous because it is unknown

whether Sunday activities must take place in the

morning and in the evening or in the morning only. To

resolve this ambiguity, we introduce the notion of

exceptions via the keyword "except". Thus, the above

case is correctly specified, as indicated in Case 5. Case

6 introduces exceptions on Sunday (the activity takes

place in the morning only) and on holidays (no activity

occurs on a holiday because a holiday is not associated

with a specification).

 A correct specification must satisfy the following

two conditions: i) the intervals associated with an

expression must not overlap, and ii) the days

designated by the different expressions of the same

activity must not overlap.

Table 2: Good and bad specifications for a repetition

Case Activity Period Days Intervals

1 OK Toilet 04/21/13-05/15/13 Monday, Wednesday,

Friday

Morning, evening

2 OK Toilet 04/21/13-05/15/13 Everyday Morning

3 OK Toilet 04/21/13-05/15/13 Monday, Wednesday,

Friday

Morning, Evening

 04/21/13-05/15/13 Sunday Morning

4 Ambiguous Toilet 04/21/13-05/15/13 everyday Morning, Evening

 04/21/13-05/15/13 Sunday Morning

5 OK Toilet 04/21/13-05/15/13 Every day except

(Sunday)

Morning, Evening

 04/21/13-05/15/13 Sunday Morning

6 OK Toilet 04/21/13-05/15/13 Every day except

(Sunday, holidays)

Morning, Evening

 04/21/13-05/15/13 Sunday Morning

M. Bouet, M. Schneider: A NoSQL-Based Framework for Managing Home Services

7

4.3 Specification of Different Granularities for an

Activity

The specification of an activity must be as flexible as

possible and able to adapt to different situations that

may be encountered. Therefore, we suggest three levels

of granularity for specifying an activity.

Fine granularity. This level corresponds to the most

precise specification and should be used whenever the

activity must be executed according to a specific

procedure (defined in the catalogue).

Listing 1: An activity with a fine granularity

 Listing 1 shows a typical example in the context of

home care. The operations at this level are usually well

defined; the specified duration will be respected, and

the performed schedule will often be close to the

theoretical schedule.

Middle granularity. This granularity corresponds to the

specification of a general activity. Some variability

exists in the execution, which depends on the

conditions encountered (state of the patient, degree of

soiling of a room).

Listing 2: An activity with a middle granularity

The modalities of achievement are indicated in

comments. These are only recommendations because it

is not possible to foresee the exact operations to make.

The example in Listing 2 illustrates the middle level of

granularity. In some cases, the observed duration may

be significantly different from the specified value. The

performed schedule will may diverge from the

theoretical one.

Coarse granularity. At this level it is simply stated

passages at home. Each required passage is specified

by its temporalities and an indicative duration. In the

medical context, regular passages are often necessary

to prevent any worsening of the patient’s state. We

illustrate this in Listing 3. Potential treatments to be

performed are listed in the Comments field.

Listing 3: An activity with coarse granularity

 Each passage can be personalized. For example, the

recommendations for the patient Aurélie DUMONT for

the morning passage could be different from those of

the evening passage. These recommendations will be

reported in the "comments" field. Another solution is to

introduce two different passage specifications. The

duration of a passage is merely indicative; the

performed schedule may be very different from the

theoretical one.

 In general, the higher the granularity level is, the

more the performed schedule differs from the

theoretical one. It is important to note that the three

levels of granularity can be managed by a single data

structure and a single interface specification (see

Sections 5 and 6).

4.4 Grouping Activities and Generating

Interventions

To calculate the planning from the specifications, we

must first transform temporal condensed forms (see

section 3.4) in developed form. It is indeed necessary

to determine the activities to be carried out for each day

Patient: DUPONT Gérard

Activity: Toilet in washbasin

Period: 04/21/13-05/15/13

Days: every day except holiday

Intervals: morning

Number of staff: 1

Duration: 10 minutes

Staff type: Nursing assistant

Comments: Warning, the patient has

paralysis in his right arm.

Patient: AUDIARD Jules

Activity: Toilet

Period: 04/21/13-05/15/13

Days: every day except holiday

Intervals: morning

Number of staff: 1

Duration: 20 minutes

Staff type: Nursing assistant

Comments: This patient has difficulty

getting up. According to the patient’s

state, choose a toilet at a washbasin

or a toilet in bed.

Patient: DUMONT Aurélie

Activity: Nurse passage

Period: 04/21/13-05/15/13

Days: every day except holiday

Intervals: morning

Number of staff: 1

Duration: 30 minutes

Staff type: Nurse

Comments: This patient has difficulty

breathing. Control the temperature

and the blood pressure. Install if

necessary oxygen mask. In the

morning, if the patient's condition

allows it, make him run a few steps.

Open Journal of Information Systems (OJIS), Volume 3, Issue 1, 2016

8

of the planning horizon. This transformation can be

easily performed by a simple algorithm exploiting the

features of our temporal language. Moreover, before

making the planning, it is advantageous to group all

activities that can be performed for a given customer in

the same time interval by the same type of staff

member. This will minimize the number of trips. This

grouping must be made for each customer and for each

day. For example, for the patient AUDIARD Jules

(Listing 2), suppose that a head cleaning is required

every Saturday morning. On Saturday morning, this

activity can be grouped with the toilet specified in

Listing 1.

 A grouping of activities for a given customer and a

given day, must respect the following principles:

(i) The activities of a group must all be carried out by

the same type of staff member.

(ii) The activities of a group must run in sequence

without waiting (we can tolerate in some cases a small

waiting period) in respect of their durations and their

intervals.

(iii) The activities of a group must not conflict with an

activity of another type of staff member.

 Several types of algorithms can be devised to make

the grouping. Constraints can be introduced to avoid

the production of too large groups that would not be

appropriate. For example, in home care, it is necessary

to avoid too long presence of a staff member with a

patient. It is the grouping algorithm which determines

the duration and the time interval of an intervention

from the duration and the time interval of each activity

which composes it. Such algorithms must be regarded

as a help and users must manually adjust the resulting

grouping. At the end, each group represents an

intervention in the patient's home or at the customer's

premises. These are the interventions which constitute

the entry point for the planning procedure. The

grouping concept so defined may be considered at any

level of granularity. Thus, we can group a specific

activity with a passage if their temporal specifications

match. This means that, during the passage, the staff

member perform an supplementary operation in

addition to those that were required for the activity.

4.5 Planning Activities

Planning has to determine the schedule of interventions

according to the availability of permanent staff

members. When overload conditions occur, it is

appropriate to involve temporary staff. In our

framework, we suggest a procedure using two main

steps: determination of tours and assigning

interventions to tours.

Step 1. Determination of daily tours: The number of

tours for each planning day is determined based on the

availability of permanent staff members. This

determination must consider the number of working

hours each staff member must achieve, the work

schedules of the business, overtime work and due

holidays. The output of this step is a set of possible

tours in a day, each of which lists the start time, the end

time and the available staff members. A staff member

can complete several tours in a day (for example, one

in the morning and one in the evening). This step can

be partially automated.

Step 2. Assignment of interventions to tours: The

assignment of interventions to tours involves placing

each intervention on a tour with respect to the type of

staff member, the expected duration of the tour and the

specified time interval. The system can seek to

optimize one or more criteria, for example, by

maximizing the number of assigned interventions,

minimizing travel time, minimizing waiting time or

minimizing the total duration of tours. The constraints

to be satisfied may be more or less complex (see

Section 2). Some constraints are strong (mandatory to

satisfy); others are weak (satisfy if possible). As stated

in Section 2, many studies have focused on this issue in

the context of home care. Efficient algorithms are now

available and can be adapted to a given context.

However, it is difficult to take all the constraints of the

real problem into account. We must therefore consider

this type of algorithm as an aid. A user must validate

the result and adjust it manually if required.

 Interventions not assigned to a tour should be

performed by temporary staff. If necessary, it is

possible to assign priorities to interventions so that

high-priority operations are always assigned to a tour.

4.6 Realization and Follow-up of Activities

It is important to capture the results of each completed

intervention, however briefly, to enable monitoring of

services and their continuous improvement. The

preparation of this report can be simplified by using

predetermined forms. With the advent of digital

technology, it can be very useful to equip each staff

member with a smartphone or a tablet. It then becomes

possible for each staff member to retrieve information

about the planned tour before departing, to create the

report in real time, to send it after each intervention.

The format of the reporting form may be pre-adapted to

correspond to the intervention by the planning

procedure.

M. Bouet, M. Schneider: A NoSQL-Based Framework for Managing Home Services

9

Figure 3: The conceptual data model

(Cardinalities of an association are placed to the right of vertical segments

at the to the top of horizontal segments; the default value is 1)

0..1
0..1

*
*

mainStaff

mainStaff

mainStaff

mainStaff

mainStaff

mainStaff

mainStaff

*

* *

staffMember

1..n

*

* *

*

*
*

*
*

*
*

*

* *

*

*

*

*

*

0..1

0..1

*

* *

*

*

1..n 1..n

*

*

*

*

*

*

*

*

*

*

*

* *

*

*

*

*

* 1..n

*

*

*

*

beneficiary institution travelTimes

contract

prescription

prescribedIntervention

plannedIntervention

toursOrganization

computedTour

plannedTour

performedTour

performedIntervention

ability

staffType

permanent

temporary

employer

activity

temporality

Open Journal of Information Systems (OJIS), Volume 3, Issue 1, 2016

10

 However, the report must include the start time of

the intervention, the end time, the activities carried out,

their durations and a way to include comments. If a

wireless connection is available along the entire route

of the tour, such input and output information can be

transmitted in real time; otherwise, report information

must be stored locally until the connectivity is restored.

A tablet offers a comfortable form factor but is not

essential. The experiments that were conducted as part

of the Plas'O'Soins project [3] demonstrated that using

smartphones was acceptable.

 A related problem is managing delays in a tour. In

some cases, it is important that the staff member notify

the coordinator and the customer when a delay occurs

so that readjustments can be made immediately. The

use of smartphones is very useful for this purpose. Live

information exchange also allows staff to react

immediately in case of alerts. Storing such reports

makes it possible to exploit the underlying information

offline to conduct various types of analyses, for

example, analysing the actual duration of completed

actions with the goal of readjusting the estimated

duration for each type of activity, analysing the

interventions assigned to non-permanent staff to help

with decisions on hiring permanent staff, analysing

incidents or problems encountered during execution to

adjust procedures, and so forth.

4.7 Conceptual Diagram

To synthesize this conceptual presentation, we propose

the UML class diagram shown in Figure 3, which

brings together the key concepts we have described and

their associations. The prescription class in Figure 3

handles activities specification and is the focal point.

Each instance of this class represents a specification in

condensed form. The three views described earlier for

interventions correspond to the three classes

prescribedIntervention, plannedIntervention and

performedIntervention. There is an instance of these

classes for each day that involve the activities of an

intervention. The organization and calculation of tours

are made only for permanent staff members.

 Prescriptions may be determined outside of any

contract. Interventions can be planned and/or carried

out without being prescribed (for example to cope with

an unexpected situation). In terms of staff members, we

distinguish the main member (who may be the only

operator) and other staff members. The characteristics

of the institution - and in particular its GPS coordinates

- are stored in the institution class (one instance). The

travelTimes class stores the travel time between any

pair of destinations (including the institution). The

institution is considered as point of arrival and

departure for tours. Two directions of travel are

distinguished because the travel times can be different.

These travel times are used to calculate tours and are

re-evaluated any time a change occurs in a customer’s

GPS coordinates (change of residence or new

customer).

4.8 Simplified Versions

It is possible to envisage simplified versions of this

conceptual model, for example, by assuming only one

staff member is required per intervention and/or

assuming that activity grouping is not useful. In such

cases, calculating interventions and tours becomes

considerably simpler. For example, simplifications

such as these may be suitable for a machine

maintenance company.

5 NOSQL LOGICAL MODELS

This section describe our NoSQL logical models. We

first present our data model in Section 5.1 and our

services model in Section 5.2.

5.1 Data Model

The section 5.1.1 introduces the notations, which we

use to describe our data model. The model itself is

discussed in the section 5.1.2.

5.1.1 Notations

We base our framework on a "document" oriented

model. Different NoSQL systems [12] are based on a

representation of data by documents. We use the

following notations based on those used in JSON [24]:

 Braces ("{" and "}") enclose the description of a

document’s or subdocument’s structure.

 Brackets ("[" and "]") indicate repetition of a field

or a sub-document.

 A colon (":") separates the name of a document or a

subdocument from its description.

 Metadata and string values in a document are

enclosed by double quotes; a colon (":") separates

the metadata name from its value.

 The identifier for a document is appended by the

metadata "_id" when a document’s identifier is

provided by the user; otherwise, the system

generates an identifier automatically.

 In addition, a document can reference the identifier

of another document. Such references are expressed

using the metadata "nomDocument_id". This type of

reference corresponds to the concept of foreign key and

is a simple way to represent a one-to-many association.

A document-oriented model can support both

M. Bouet, M. Schneider: A NoSQL-Based Framework for Managing Home Services

11

standardisation (synonymous with flexibility to

changing data) and encapsulation (synonymous with

limitation of joins). However, encapsulation can

degrade performance when the database becomes very

large, so it is necessary to maintain a wise balance

between these two approaches [14].

 Documents that represent instances of the same

class are grouped into collections. The documents in a

collection do not necessarily have the same format. A

document-based model does not generally include

schema. However, in our proposal, all documents that

belong to the same collection have the same format.

Below, we list the format corresponding to each

collection.

5.1.2 Formats of the Documents

The logical model that stems from the conceptual

model in Figure 3 consists of 15 document types

(collections). Each class represents a document type—

with some exceptions. For example, "temporality" is

encapsulated in the document type "prescription",

while "staffType" and "employer" are encapsulated in

the document type "staff". The n-n associations all

involve a class A that represents dated information and

a class B which represents undated information. They

are modelled by encapsulating references to the

documents of the B collection in each document of the

A collection. Below are the formats for the 15

document types along with some comments.

(D1)

beneficiary:

{

 "_ id ": string, "name": string,

 "firstName": string,

 "address": string,

 "GPS":

 {

 "X": string,

 "Y": string

 }

}

The document "beneficiary" corresponds to a

customer for whom a services contract is in place. The

geographic location is based on the customer’s GPS

coordinates. These coordinates are used to calculate

routes and tours.

(D2)

contract:

{

 "_ id ": string,

 "beneficiary_id": string,

 "startDate": date ,

"endDate": date,

 "establishedOn": date,

 "establishedBy": string,

 "requiredAbilities":

 ["abilityName": string],

 "objectives": string,

 "characteristics": string,

 "contacts": string,

 "modalitiesRate": string

 }

The document "contract" specifies the services to

be achieved. It specifies the particular skills required to

fulfil the services given the current situation. The

subdocuments "objectives", "characteristics" and

"contacts" are specific to each application. For

example, in a home care scenario, the subdocument

"objectives" includes the main reason and any

secondary reasons supplied for hospitalization. These

reasons are duly listed by the medical authorities and

institutions are obliged to comply. The subdocument

"characteristics" includes the patient’s physical

characteristics (weight, height, etc.). The values of

these characteristics can affect the treatment to be

performed. Finally, the subdocument "contacts" notes

people who can assist the beneficiaries, such as their

doctor, pharmacist, nurse, social worker, husband or

wife. In contrast, in the case of a cleaning company, the

subdocument "objectives" would indicate the cleaning

goals, and the subdocument "characteristics" would

indicate the usual conditions of the premises and any

difficulties that might be encountered.

(D3)

prescription:

{

 "beneficiary_id": string,

 "contract_id": string,

 "establishedOn": date,

 "establishedBy": string,

 "activityName": string,

 "activity Duration": integer,

 "temporalities":

 [{"period": string,

 "days": string,

 "timeSlots": string}],

 "mainStaffStatus": string,

 "mainStaffType ": string,

 "otherStaff":

 [{"staffStatus": string,

 "staffType": string}],

 "comment": string

}

The document "prescription" is used to declare an

activity that is proposed to a beneficiary by the

institution. This declaration is made in a condensed

form through the temporal triplet (period, days,

Open Journal of Information Systems (OJIS), Volume 3, Issue 1, 2016

12

intervals) presented in Section 4.2. These indications

permit to generate the daily interventions to achieve for

the beneficiary (document (D4)).The specified activity

must be referenced in the document (D9) that also

provides the standard duration of the activity, the types

of staff able to handle it and the unit price.

(D4)

prescribedIntervention:

{

 "beneficiary_id": string,

 "date": date,

 "mainStaffStatus": string,

 "mainStaffType": string,

 "activities": [{

 "activityName": string,

 "activityDuration ": integer,

 "otherStaff":[{

 "StaffStatus": string,

 "StaffType": string}],

"timeIntervals": [{

 "arrivalTime": string,

 "departureTime": string}],

"comment": string}

The document "prescribedIntervention" gathers all

the prescribed activities that can be performed on a

particular day in the premises of a beneficiary by the

same type of staff member in a sequential manner (see

the three principles outlined in Section 4.4). The

intervention is expressed on each date of the period (as

in the document "prescription", it is expressed in a

condensed form). This grouping of activities is a

preliminary stage for calculating the tours. The main

objective is to minimize travel. The generation of

interventions is a complex problem performed by a

specialized service (see section 5.2.2).

(D5)

plannedIntervention:

{

 "beneficiary_id": string,

 "date": date,

 "mainStaffName": string,

"arrivalTime": string,

"departureTime": string,

"plannedTourNumber": integer,

"activities": [{

 "activityName": string,

 "activityDuration": integer,

 "otherStaff":

 [{"staffName": string}],

"comment": string

}

Document (D5) is generated automatically for each

intervention assigned to a planned tour. Interventions

performed by temporary staff are not included in tours.

For this type of intervention, the coordinator must

create the corresponding document by providing the

staff names and by assigning a 0 value for the tour

number. Some home care institutions may

systematically use temporary staff. In such cases, help

can be envisaged for the creation of relevant

documents. For example, one could imagine a service

performing a solicitation by e-mail (on the basis of a

list of contacts) and automatic document creation when

a positive response is received.

(D6)

performedIntervention:

{

 "beneficiary_id": string,

 "date": date,

 "mainStaffName": string,

 "arrivalTime": string,

 "departureTime ": string,

"plannedTourNumber": integer,

"activities": [{

 "activityName": string,

 "activityDuration": integer,

 "otherStaff":

 [{"staffName": string}],

"comment": string}}

The document (D6) is formatted the same as the

previous one and initialized by the system using

information resulting from (D5). The staff member

completes and uploads it at the conclusion of the

intervention.

(D7)

staff:

{

"_id ": string,

"name": string,

"firstName": string,

"address": string,

"typeName": string,

"statusName": string,

"employer":

{"employerName": string,

"employerAddress": string},

"ownedAbilities":

["abilityName": string]

}

M. Bouet, M. Schneider: A NoSQL-Based Framework for Managing Home Services

13

The document (D7) provides information on the

staff members who are qualified to perform the

interventions. For each member, it stores status, type

and that staff member’s specific abilities. This latter

information could be used to optimize the allocation of

staff to patients and tours.

 (D8)

institution:

{

"institutionName": string,

"address": string,

"GPS": {"X": string, "Y": string}

}

The document (D8) is used to locate the institution

geographically. It is assumed that the institution is the

starting point and the ending point of each tour.

(D9)

activity:

{

"activityName" : string,

"activityDuration": integer,

"activityCategory": string,

"staffTypes": ["typeName": string],

"priceUnit": string

}

The document "activity" lists the activities that the

institution is able to implement. Each activity lists the

types of staff required to achieve it. For example, for

home care, a toilet activity may be performed by a

either a nursing assistant or a nurse, but an injection

may only be performed by a nurse.

(D10)

ability:

{

"abilityName": string,

"comment": string

}

The document (D10) lists specific abilities of the

institution’s staff. For example, for home care, an

ability could be "Alzheimer's" or "end of life". These

abilities are independent of the staff type (nursing

assistant, nurse) or status (permanent, temporary).

Listing these abilities is important for assigning staff

members to tours. For example, a nurse able to handle

Alzheimer's disease should be preferentially assigned

to a tour that includes an "Alzheimer’s" patient.

(D11)

toursOrganization:

{

"date": date,

"timeIntervals": [{

"startTime": string,

"endTime": string,

"staffType": string,

"numberOfTours": integer,

"staffs": ["staff_id": string]}]

}

The document (D11) allows the institution to

choose the organization of its tours. A tour occurs at a

given date in a given time interval (morning, 15-18h

...), with a given type of staff. Tours are grouped by

interval and type of staff. The number of staff members

available in an interval must be at least equal to the

number of tours for this interval.

(D12)

computedTour:

{

"date": date,

"computedTourNumber": integer,

"staff_id": string,

"startTime": string,

"endTime": string,

"visits": [{

"beneficiary_id": string,

"arrivalTime": string,

"departureTime": string,

"otherStaff":

["staff_id": string]}]

}

The document (D12) stores results provided by the

planning service (see section 5.2.2). The interventions

to be performed on a given date are distributed among

the various tours declared in the document (D11). A

staff member is assigned to each tour. The arrival and

departure times at each home are calculated by taking

into account the intervention durations and the travel

times.

(D13)

plannedTour:

{

"date": date,

"plannedTourNumber": integer,

"staff_id": string,

Open Journal of Information Systems (OJIS), Volume 3, Issue 1, 2016

14

"startTime": string,

"endTime": string,

"visits": [{

"beneficiary_id": string,

"arrivalTime": string,

"departureTime": string,

"otherStaff":

["staff_id": string]}],

"comment": string

}

The automated service dedicated to planning and

touring does not always provide a result that

completely meets the coordinator’s needs. Manual

adjustments are sometimes necessary to take

constraints or unexpected events that occur at the last

moment into account. The document (D13) records the

planning the coordinator really wants. From the

"computedTour" document, the coordinator can modify

or delete a tour, or create a new tour.

(D14)

performedTour:

{

"date": date,

"plannedTourNumber": integer,

"staff_id": string,

"startTime": string,

"endTime": string,

"visits": [{

"beneficiary_id": string,

"arrivalTime": string,

"departureTime": string,

"otherStaff": ["staff_id": string],

"comment": string}]

}

The document (D14) records the characteristics of

completed tours. These characteristics are captured by

a staff member assigned to the tour. They can be

entered into a fixed computer at the end of the tour, or

(better) from a mobile device (smartphone or tablet) at

the end of each visit.

(D15)

travelTimes:

{

"between": [{

"beneficiary_id1": string,

"beneficiary_id2": string,

"time": integer}],

fromInstitution: [{

"beneficiary_id": string,

"time": integer}],

toInstitution: [{

"beneficiary_id": string,

"time": integer}]

}

The document (D15) records the travel times

between each pair of homes and between each home

and the institution. We consider the two directions for

each route since the travel times are not necessarily the

same.

5.2 Services Model

The processing to be performed as part of process P2

(activities management) can be grouped into five broad

categories: CRUD services, computing services,

display, analysis and archive services.

5.2.1 CRUD Services

The CRUD services (Create, Read, Update and Delete)

are low-level services that enable document

management. An overview of the different services

which are needed is given in Table 3.

 C and R services are valid for all documents.

Documents (D4), (D5) and (D12) are created

automatically by the system. All others documents

must be created by users. U and D services are not

available for all documents. For (D1), (D2), (D7), (D8),

(D9), (D10) and (D11), U is allowed but D is

prohibited. These documents serve as references and

uncontrolled removal could cause integrity problems.

Moreover, it is useful to keep them to allow analysis on

historical data.

 Update is valid for (D3)—but only to stop a

prescription at a given date. Delete is allowed for (D4),

(D5), (D12) and (D13) as a result of updates to

documents (D2) and (D11). For example, when a

prescription is stopped at a date d, it is indeed

necessary to recalculate the interventions and thus the

tours that had already been planned from date d + 1.

Similarly, we must recalculate tours if document (D11)

is the subject of an update or a delete. These deletions

are automatically ensured by two specific services:

cascadeUfromD2 and cascadeUDfromD9.

 Documents (D6) and (D14) are created from

information provided by a staff member after

completing an intervention and are never updated or

deleted. They are kept exactly as created to support

activity tracing and historical analyses. C and U

services are activated through specific interfaces that

require the user to introduce valid values for foreign

keys. Such CRUD services guarantee the referential

integrity of the data.

M. Bouet, M. Schneider: A NoSQL-Based Framework for Managing Home Services

15

Table 3: Synopsis of CRUD services for 15 documents

Documents Create Read Update Delete Delete from

(D1) beneficiary x x x

(D2) contract x x x

(D3) prescription x x x (stopped)

(D4) prescribedIntervention x (A) x x (from update (D3))

(D5) plannedIntervention x (A) x x (from update (D3))

(D6) performedIntervention x x

(D7) staff x x x

(D8) institution x x x

(D9) activity x x x

(D10) ability x x x

(D11) toursOrganization x x x x

(D12) computedTour x (A) x x (from update (D3))

x (from update or delete

(D11))

(D13) plannedTour x x x (from update (D3))

x (from update or delete

(D11))

(D14) performedTour x x

(D15) routesTime x(A) x x(A)

Enter the date

Read the travel times document

For each interval in the date / *these intervals are available in the document toursOrganization */

 For each type of staff

 Read the number of tours

 Read interventions for the date for the interval and for type of staff with status = "Permanent"

 Call the solver to compute the tours in the interval

 If the solver has found a solution within a delay TMax

 Then store each computed tour in a computedTour document

 Otherwise display a "automated planning not possible - perform manually" message

 EndIf

 EndFor

EndFor

Listing 4: Scenario for implementing the computeTours service

Open Journal of Information Systems (OJIS), Volume 3, Issue 1, 2016

16

Table 4: Useful services

Name Purpose Used documents

Computing Services

computeInterventions(date) Group the activities of each beneficiary (D3), (D4)

computeTours(date) Compute the tours to optimize a global criteria (D5),(D11), (D12)

computeTravelTimes() Compute travel times (D1), (D15)

Display Services (examples)

displayPlannedTours

(date, staff_name)

Display the planned tours for a given staff with the name of the

beneficiaries, their addresses and the visit schedules.
(D1), (D5), (D13)

displayPlannedInterventions

(period, beneficiary_name)

Display the planned interventions for a given beneficiary with the

staff name, the activities and the visit schedules.
(D1), (D5), (D13)

displayPerformedInterventions

(period, beneficiary_name)

Display the performed interventions for a given beneficiary with the

staff name, the activities and the visit schedules.
(D1), (D6), (D14)

Data Analysis Services (examples)

averageActivityDuration

(activity, period)

Compute the average value for the duration of the activity observed

over the given period
(D6)

sumHours(period, staff_name)
Compute the total duration of the interventions performed by a given

staff for the given period
(D6), (D7)

5.2.2 Computing Services

Two specific services are devoted to generating

interventions and planning (Table 4). These two

services are linked because the generation of

interventions is a preparatory step to planning. The

generation of interventions complies with the

conditions defined in Section 4.4. There may be

conflicts between two interventions when they occur in

overlapping time windows with two different staff

members. The service should detect conflicts. When a

conflict is detected, the system must send a message to

the coordinator to notify him to change the time

specifications for the activities involved.

Planning is complicated because of the variety of

constraints to be considered (see section 4.5). Another

difficulty is the systematic capture under operational

conditions of all the data required for accurate

calculation. It is important to consider automatic

planning as an aide because that view means the

problem the system solves is to create results in a form

suitable for a coordinator to make modifications easily.

It is then important to indicate to the user any changes

that would violate a strong constraint.

Our framework incorporates documents that

express the most important constraints: respecting the

type and status of a staff member, respecting the time

intervals for an activity and matching staff abilities

with the abilities required for a patient. The system can

easily be extended to record other types of data

necessary to express additional constraints, for

example, respecting the patient preferences for certain

staff members or respecting a patient’s time

constraints. An important contribution of this

framework is facilitating communication between the

data preparation services and the planning service.

Listing 4 shows a scenario for the organization of this

service. The computing of tours can be performed by a

solver or by a specific algorithm. It can also be

performed manually if the number of tours and

interventions is not too large.

A third service calculates travel times (Table 4).

Different approaches can be used to implement the

service, for example, it could make an initial estimation

and then subsequently readjust it by taking into account

the observed time during the first few visits or use road

mapping software based on addresses or use software

such as Google Maps, which calculates travel time

based on GPS positions.

M. Bouet, M. Schneider: A NoSQL-Based Framework for Managing Home Services

17

Figure 4: Architecture for implementation

5.2.3 Display Services

Most helpful displays can be obtained from the R

services of documents. For example, the tours to be

conducted by a staff member on a given day will be

retrieved by the R service (D13). However, this display

requires a user to enter the staff_id and provides only

the beneficiary_id and visiting hours. To obtain a

display which lists the activities to be performed, the

names of beneficiaries and their addresses from the

staff name, we must build a more elaborate service that

joins documents (D1) and (D4). Table 4 illustrates

examples of display services involving several

documents.

5.2.4 Analysis Services

To improve the management of the institution, it is

important to compute a number of indicators for a

given past period. Therefore, data must be kept for a

sufficiently long period. Table 4 provides examples of

services for computing indicators.

5.2.5 Archiving Services

It is not possible to store all the data locally over a long

period. We therefore suggest the use of a repository

that can be accessed on demand. We can see that all

documents, except (D1), (D7), (D8), (D9) and (D10),

incorporate a usage date. Therefore, for example, we

can envisage archiving regularly (such as every 2

years) any documents whose usage date is more than

four years from the current date. This archival process

must maintain the integrity of embedded references to

enable any type of research on past data.

6 IMPLEMENTATION WITH MONGODB

We propose to implement our framework by using the

MongoDB system [2]. Our goal is to identify the

possible facilities a NoSQL system can bring. For this

test implementation, we do not use documents (D2)

and (D10) because we do not consider the abilities of

staff members when planning. To create the tests we

developed a data set relating to home care.

6.1 Architecture and Conditions of Implementation

Browser-based interfaces concerning prescribed and

planned interventions are activated from a terminal

connected to a Windows 7 server. The server hosts the

database. We used version 2.6 of MongoDB which can

be downloaded for free. A smartphone running

Android is made available to each staff member in

charge of interventions. Interfaces concerning

performed interventions are activated from the

smartphones. At the beginning of a tour, the staff

member initiates a web exchange with the server to

load the characteristics of the interventions to be

performed, and, at the end of the tour, the staff member

launches a new web exchange to transmit the updated

values (Figure 4).

Data stored on the smartphones is managed with the

SQLite database system. We use this system because

SQLite is integrated with Android (version 4.4.2) and

therefore requires no special software installation. The

applications on the server and on the smartphones are

coded in the Java language. Data exchange between

MongoDB and SQLite is performed via the server

using Node.js (version 0.10), which is a platform that

enables the use of JavaScript on both the server and

client side.

server http
Node.js

Home

operator

SQLite
database

data

data

Institution

coordinator data

 MongoDB
database

data

Care plans and
beneficiaries
management

Performed
interventions
management

Open Journal of Information Systems (OJIS), Volume 3, Issue 1, 2016

18

Figure 5: Interface for creating a new prescription

Figure 6: Interface for creating the temporality of a prescription

M. Bouet, M. Schneider: A NoSQL-Based Framework for Managing Home Services

19

Figure 7: Interface for displaying the prescriptions of a beneficiary

Figure 8: Interface for displaying the prescribed interventions

Open Journal of Information Systems (OJIS), Volume 3, Issue 1, 2016

20

Figure 9: Interface for specifying tours organization

Figure 10: Interface for allocating staff to computed tours

M. Bouet, M. Schneider: A NoSQL-Based Framework for Managing Home Services

21

Three groups of computer science students

programmed the system as part of their project work.

The effort involved was distributed by views: a one

member group was responsible for the prescribed view

(documents (D1), (D3), (D4) and (D9)), a pair for the

planned view (documents (D5), (D7), (D8), (D11),

(D12), (D13) and (D15)) and another pair for

performed view (documents (D6) and (D14)). Each

group created services related to the documents it was

responsible for. Each group worked over a 4-month

period at the rate of fifteen hours per month. These

students did not know MongoDB and Android at the

outset, and this project represented an opportunity for

them to learn these two systems.

6.2 Development

First, we established a representative data set to

populate the database. Each group initialized its work

from the following items: the data set, the format of

each document type and the service descriptions. The

data set includes 10 beneficiaries whose homes are

located within a 30 km square urban area. The care

institution is located north of that area. Travel times

were assessed from aerial distances on the basis of an

average travel speed of 50 km/h. For each beneficiary,

we considered two to three prescriptions. For example,

here are the care prescriptions for the patient SMITH

Adams from 08/31/2015 to 09/14/2015:

 shower - every day - morning

 walking assistance - Monday, Wednesday and

Friday - morning, evening,

 rehabilitation by a physiotherapist - Tuesday,

Thursday – morning

 Interfaces were developed in Java from the

descriptions of documents and services and designed

taking into account the feedback we experienced from

the Plas'O'Soins project [3]. We provide some

examples of these interfaces below. Figure 5 shows the

interface for creating a prescribed activity. We can

make changes as long as the data have not been

recorded in the database. Temporalities are defined via

the interface of Figure 6. Remember that it is possible

to define several temporal expressions for an activity.

 When a prescription is validated, a new document

(D3) (prescription) is created in the database. It is

possible at any time to display a beneficiary’s

prescriptions using the interface shown in Figure 7.

This display corresponds to the notion of a “care plan”

as is typically defined in hospitalization services. The

"Stop" button stops a prescription. The "Edit" button

allows a user to edit a prescription. When a prescription

is edited, the current prescription is stopped and a new

one is started. Figure 8 shows the interface for

displaying daily planned interventions for a beneficiary

over the next two weeks. This display is obtained by

selecting the computeInterventions(d) service for each

day d of the period.

 The interface shown in Figure 9 allows the

coordinator to specify the organization of tours for a

given date. The coordinator must allocate available

staff members to each tour. This information is used

directly by the computeTours() service to calculate

tours. Given the small size of the collections in this

study, we performed this calculation manually. For

larger data sets, the application might call a solver such

as GLPK via the appropriate dll (java/glpk in this case)

to offer a pre-planning coordinator. For each computed

tour, the coordinator must then designate one of the

available staff members as the main staff member by

using the interface in Figure 10. This interface displays

the visits that compose the computed tour. After a staff

member has been assigned, that person’s name is

removed from the list of available staff.

 The interfaces of Figure 11 show how a staff

member can view planned tours for a given day and

update a planned intervention to generate the

intervention that will actually be performed. In the

example shown, the staff could not begin the operation

at the scheduled time. This intervention was composed

of two activities and the staff member has performed

only the first activity.

6.4 Personalization

Our framework can be customized to better meet the

needs of any particular type of service agency. An

example is shown below where we highlight the

facilities offered by MongoDB for this type of

modification. The framework must be arranged to

enable the coordinator to assign a priority to each

prescription. Documents (D3), (D4) and (D5) and the

computeTours(date) service are impacted by this

modification. Document (D3) is entered by the

coordinator, so it requires adding a new “priority” field

to the input screen. Documents (D4) and (D5) are

automatically generated by the system, so we have just

to change their writing in the database by adding the

new field. The computeTours(date) service must be

adjusted to take the priorities into account

(interventions with higher priority activities should be

placed first in a tour). A SQL implementation of this

framework would have required more modifications

because it would also be necessary to modify the

structure of the relational tables corresponding to

documents (D3), (D4) and (D5). It appears that a

NoSQL approach facilitates adaptations because the

number of elements to modify, include or delete is less

important than with an SQL approach. In addition,

Open Journal of Information Systems (OJIS), Volume 3, Issue 1, 2016

22

metadata embedded in MongoDB facilitate the

identification of elements.

6.5 Generalization

To show how this framework can be generalized to

other domains, consider an example for a business that

cleans a set of offices occupied by the AIRASEC

society. For this contract, the prescriptions from

08/31/2015 to 09/14/2015 are:

 wash floors - every day - morning - 30 minutes - two

first grade member staff.

 clean writing desk - Monday, Wednesday and Friday

- morning - 20 minutes - one first grade member

staff.

 polish floors - Monday - evening - 80 minutes – one

second grade member staff.

These prescriptions can be specified easily using

our temporal language. The

computeInterventions(date) service groups the first two

activities on Mondays, Wednesdays and Fridays. For

other days, the morning intervention includes only the

single “wash floors” activity. Finally on Monday

evening an intervention will be made separately to

accommodate the “polish floors” activity. Staff

allocations and tours will be calculated by the

computeTours(date) service by considering

interventions for all customers.

More generally, our framework is capable of

processing all services whose activities may be

described with our specification language, i.e.,

activities that occur during intervals in a day.

Moreover, the language can be easily extended to allow

the specification of activities which repeat over weeks

or months and for which the intervals of realization

cover several days. Appendix A provides an overview

of such extension which would make the system

suitable for application in many domains and especially

construction and civil engineering.

6.6 Balance Sheet

Throughout this implementation, the objective was to

verify the conditions for implementing our framework

with a NoSQL system. Compared to relational systems,

NoSQL systems have advantages - but also drawbacks

- that depend on the type of application. It is therefore

important to evaluate whether the benefits are truly

significant for our framework. In Table 5, we

considered various criteria and have supplied our

evaluation of each. Gaining an understanding of the

logical model and subsequently implementing the

physical model by the three groups of developers was

quite rapid. Cooperative development posed no

difficulty because the distribution of work across the

three views was simple and natural.

Document sharing was not difficult because each

document has a specific format that must be respected.

We did face integrity problems with the description of

services. Referential integrity comes from the

references between documents. These references have

been reduced to a minimum, and the system performs

referential integrity checks when the interfaces are

activated. We also wanted transactional atomicity

capability to guarantee that updates to (D3) and (D1)

would be propagated to several other collections.

However, transactional operations are not supported by

MongoDB. Therefore, we must implement it into the

application. We have not tested any competitive

solutions, but our framework does not require high

performance at this point.

Competition arises mainly when several staff

members access the server at the same time to obtain

information about their tours or to update them.

Documents in MongoDB are locked through

collections. In the absence of an active update

operation, multiple readings may occur simultaneously

from a collection; however, when a write lock has been

set on a document, that lock prohibits write operations

to any document in the collection. Therefore, write

operations for documents in collection (D6) for

interventions updates must be conducted in a strict

sequence, which may cause delays. However, these

delays can be managed transparently at the smartphone

level for staff members.

 The developer groups could not devote much time

to finalizing screens, and ergonomic improvements are

needed. Using interface-editing software would

probably provide more efficient development at this

level. Despite the absence of transaction management,

we believe that MongoDB is a good candidate for

implementing our framework. A framework must be

enriched and personalized, and on these points,

MongoDB is effective.

7 CONCLUSIONS AND PERSPECTIVES

Summary of our proposals:

Various commercially available software tools have

been designed to help service providers organize their

activities in private homes or in local businesses;

however, these tools are relatively expensive and are

out of the reach of smaller companies. No current

unified approach exists to allow economies of scale.

Observing that mobilized concepts and operations do

not differ greatly from one domain to the other, our

goal in this paper was to propose a generic framework

for the field of geo-localized services.

M. Bouet, M. Schneider: A NoSQL-Based Framework for Managing Home Services

23

Figure 11: Smartphone interfaces for reading and updating interventions

Table 5: Criteria evaluated through the implementation

Criteria Our evaluation

Quality of logical oriented document modelling Good

Acquire developers understanding of the logical model Easy

Development of physical model by developers Easy

Cooperative development effectiveness High

Adequacy of the physical model with interfaces Good

Flexibility High

Referential integrity Good

Handling complex queries Fair

Concurrency Not evaluated but not critical

Transactional management Poor

Open Journal of Information Systems (OJIS), Volume 3, Issue 1, 2016

24

 This framework provides a unified description of

processes. The core process supports the management

of activities. It is subdivided into three sub-processes

that correspond to the three views of activities:

prescribed view, planned view and performed view.

These views are based on an original temporal model

that supports descriptions of recurring activities for

each customer. These activity descriptions may be

created at different levels of granularity and can adapt

well to a variety of real-life situations. The framework

assembles all the information required for planning and

routing and supports both manually or automatic

achievement of those tasks. The proposed concepts

were illustrated using two different areas: home

healthcare and on-premises cleaning services. This

analysis resulted in a generic conceptual model that can

be implemented using either relational systems or

NoSQL systems. Our proposed model can be

considered as a domain-specific language (DSL) for

the service sector.

 We then conducted an implementation with a

NoSQL approach in two phases: i) logical modelling

based on "documents" and "services", and ii)

implementation of the logical model using the

MongoDB system. The logical model is simple and

compact. The organization of treatments as services

operating on documents is natural. Thus, the

framework is easy to understand. We verified the

ability of MongoDB to support rapid implementation

thanks to the following facilities: convenience of

physical implementation, ease of cooperation between

developer groups and ease of evolution. We considered

the well-known disadvantages of the NoSQL approach

concerning referential integrity, concurrency and

transactional management. In our framework,

referential integrity and concurrency do not pose

difficult problems; however, the absence of a

transaction manager is a serious drawback.

 A framework must also offer personalization

capabilities. Thanks to its flexibility—and despite its

drawbacks—we believe that a system such as

MongoDB is a good candidate for the implementation

of an adaptable and extensible framework. Through

this prototype, we wanted to show the feasibility of the

framework. We believe that our technical choices can

be adapted to develop an industrial version.

Advantages of our framework:

This framework provides several important advantages

over existing solutions:

1) It allows a significant reduction of development

costs because an implementation based on a NoSQL

DBMS is easier and faster than one based on a

relational DBMS, making it possible to offer business

solutions that are within the reach of small service

agencies.

2) It is generic and can adapt to the needs of several

domains, thus taking advantage of economies of scale.

3) Its NoSQL implementation is flexible enough to

support specific adaptations for each type of service

agency.

4) It structures the activities management process into

three phases that correspond to separate modules. In

particular, the data required for planning are organized

in a clear and compact way. It is therefore possible to

modify scheduling algorithms without redesigning the

data structure.

5) The language proposed for specifying activities is

new and is both structured and rich. By allowing

specifications at several levels of granularity, it offers

flexibility to managers in establishing activity plans.

SQL versus NoSQL approaches:

The commercial solutions are usually based on

relational DBMSs. These systems have demonstrated

their effectiveness and hold decisive advantages

regarding integrity checking. NoSQL systems have

gaps in integrity checking, but are easier to implement.

Their data model is generally simpler and more

compact. Thus, our conceptual model translates into 15

MongoDB document types, while an equivalent

relational implementation would require more than 30

tables. In addition, structural changes are easier to

manage using a NoSQL DBMS. It is necessary to study

the advantages and disadvantages of each type of

DBMS with respect to the intended application. In our

case, it appears that the final balance is in favour of an

implementation based on a NoSQL DBMS.

Perspectives:

The framework applies only to the activities

management process and would need to be extended to

incorporate data and services to support the other

processes shown in Figure 1. The modelling of these

other processes does not pose any particular

difficulties, and we fully expect MongoDB to permit

easy and coherent extensions to support them. It would

be interesting to study how to deliver certain required

equipment and consumables to homes by including

them in the tour planning process. One solution would

be to consider a delivery as an activity. Thus, a delivery

could be grouped with another activity.

 One point we consider significant is that of

planning. It is very difficult to model a priori all the

constraints that managers may face. Some constraints

may occasionally appear at the last moment. We

stressed the need to consider this framework a move

M. Bouet, M. Schneider: A NoSQL-Based Framework for Managing Home Services

25

toward creating of a form of aid that permits the

coordinator to finalize the result. A solution that

allowed a coordinator to express constraints in a high

level language would be most effective. The integration

of such a language would probably require important

restructuring of the planning data. We leave this

important feature for future work.

REFERENCES

[1] Arcan, “AtHome software”. http://www.arcan.fr/

logiciel-suivi-soins-a-domicile.html, accessed

April 1, 2015.

[2] R. Arora, and R. R. Aggarwal, “Modeling and

Querying Data in MongoDB”, International

Journal of Scientific and Engineering

Research, Vol 4, Issue 7, 2013.

[3] R. Bastide, P. Bardy, B. Borrel, C. Boszodi, M.

Bouet, K. Gani, E. Gayraud, D. Gourc, E.

Lamine, P.H. Manenq, M. Schneider, F.

Toumani, “Plas’O'Soins: A software platform for

modeling, planning and monitoring homecare

activities”, Innovation and Research in

BioMedical engineering (IRBM), 35(2), pp. 82-

87, 2014.

[4] T. Bektas, “The multiple traveling salesman

problem: an overview of formulations and

solution procedures”, Omega, Volume 34, Issue

3, pp. 209–219, 2006.

[5] B. Bachouch, “An optimization model for task

assignment in home health care”, IEEE Workshop

on Health Care Management (WHCM10),

Venise, Italy, Feb. 2010.

[6] N. Bricon-Souf, F. Anceaux, N. Bennani, E.

Dufresne, L. Watbled, “A distributed

coordination platform for home care: analysis,

framework and prototype”, International Journal

of Medical Informatics, 74(10), pp. 809-825,

2005.

[7] M. Bouet, K. Gani, M. Schneider, F. Toumani,

“A general model for specifying near periodic

recurrent activities - application to home care

activities”, IEEE 15th International Conference

on e-Health Networking, Applications & Services

(Healthcom), pp. 207-211, 2013.

[8] M. Bouet, K. Gani, M. Schneider, F. Toumani,

“Définition d’un DSL pour les soins à domicile“,

Livrable du projet Plas’O’Soins, Décembre 2014.

[9] Capterra, “Top Maid Service Software”

http://www.capterra.com/maid-service-software/,
accessed April 1, 2015.

[10] Consumeraffairs, “Compare Reviews for Best

Home Health Care Software”,

http://www.consumeraffairs.com/online/home-

health-care-software, accessed April 1, 2015.

[11] D. Gourc, F. Marmier, P. Gaborit, “An approach

based on tabu search technique for solving a

multi time window home healthcare scheduling”,

10ème Conférence Francophone de

Modélisation, Optimisation et Simulation, 2014

[12] J. Han, E. Haihong, D. Le, J. Du, “Survey on

NoSQL database”, 6th International Conference

on Pervasive computing and applications

(ICPCA), 2011.

[13] J. Jemai, M. Chaieb, K. Mellouli, “The home care

scheduling problem: a modeling and solving

issue”, 5th International IEEE Conference

on Modeling, Simulation and Applied

Optimization (ICMSAO), pp. 1-6, 2013.

[14] A. Kanade, A. Gopal, S. Kanade, “A study of

normalization and embedding in MongoDB”,

Advance Computing Conference (IACC), IEEE

International Conference, pp. 416-421, 2014.

[15] Y. Kergosien, C. Lenté, J. C. Billaut, “Home

health care problem: An extended multiple

traveling salesman problem”, 4th

Multidisciplinary International Scheduling

Conference: Theory and Applications, 2009.

[16] A. Király, J. Abonyi, “A novel approach to solve

multiple traveling salesmen problem by genetic

algorithm”, Computational Intelligence in

Engineering, Springer, 2010.

[17] V. G. Koutkias, I. Chouvarda, N. Maglaveras, “A

multiagent system enhancing home-care health

services for chronic disease management”, IEEE

Transactions on Information Technology in

Biomedicine, 9(4), pp. 528-537, 2005.

[18] E. Lamine, A. R. H. Tawil, R. Bastide, H.

Pingaud, “An Ontology-Driven Approach for the

Management of Home Healthcare Process”,

Enterprise Interoperability, VI, Springer, pp.

151-161, 2014.

[19] E. Lanzarone, A. Matta, “Robust nurse-to-patient

assignment in home care services to minimize

overtimes under continuity of care”, Oper. Res.

Heal. Care, 2014

http://www.sciencedirect.com/science/journal/03050483
http://www.sciencedirect.com/science/journal/03050483/34/3
http://www.sciencedirect.com/science/journal/03050483/34/3

Open Journal of Information Systems (OJIS), Volume 3, Issue 1, 2016

26

[20] W. Liu, S. Li, F. Zhao, A. Zheng, “An ant colony

optimization algorithm for the Multiple Traveling

Salesmen Problem”, 4th IEEE Conference on

Industrial Electronics and Applications, 2009.

[21] A. Matta, S. Chahed, E. Sahin, Y. Dallery,

“Modelling home care organisations from an

operation management perspective”, Flexible

Services and Manufacturing Journal, 26(3), pp.

295-319, 2014.

[22] Medical Link, “MedLink product”,

http://www.med-link.org/, accessed April 1,

2015.

[23] O. Rejeb, R. Bastide, E. Lamine, F. Marmier, H.

Pingaud, “A model driven engineering approach

for business continuity management in e-Health

systems”, 6th IEEE International Conference on

Digital Ecosystems Technologies (DEST), pp. 1-

7, 2012.

[24] C. Severance, “Discovering JavaScript object

notation”, Computer, Volume 45, Issue 4, pp. 6-

8, 2012.

[25] A. F. Torres-Ramos, E. H. Alfonso-Lizarazo, L.

S. Reyes-Rubiano, C. L. Quintero-Araújo,

“Mathematical Model for the Home Health Care

Routing and Scheduling Problem with Multiple

Treatments and Time Windows”, Proceedings of

the 1st International Conference on

Mathematical Methods & Computational

Techniques in Science & Engineering, pp. 140-

145, 2014.

[26] D. V. I. Weppenaar, H. J. Vermaak, “Solving

planning problems with Drools Planner a

tutorial”, Interim: Interdisciplinary

Journal, 10(1), pp. 91-109, 2011.

APPENDIX A: FORMAL DEFINITION OF THE

TEMPORAL LANGUAGE

For this formal definition, we use a BNF notation. We

identify the repetition of an element by framing it into

braces and by post fixing it with one of three symbols :

"?", "*", "+" which respectively means that the

element may be present or absent, is present any

number of times, is present at least once.

 Important: To simplify the writing of a list of

contiguous successive elements, we use a shorthand

notation by indicating only the first item in the list and

the last one separated by "-" (e.g. Monday-Friday to list

all weekdays from Monday to Friday). A simple

temporal expression (see Listing A-1) is built from the

triplet (period, days, intervals). A general temporal

expression is as a combination of simple temporal

expressions. A general expression is correct if the set of

days coming for its simple expressions have an empty

intersection. We define below each triplet (time, day

intervals).

 The form 1 for days is used to specify dates in the

period (holiday is a shorthand to represent all dates of

public holidays). The form 2 is used to specify

weekdays. The form 3 specifies that the activity occurs

repeatedly every day or every n days from a given date.

The "except" keyword allows to exclude dates or days

and then introduces irregularities.

Ex1: every(2) days(01/12/13) except(holiday) means

every two days from 01/12/13 except holiday

Ex2: everyday except(Sunday) is equivalent to

Monday-Saturday

The intervals are marked in a day by standard day

parts (e.g. morning, afternoon) or a start time and an

end time (e.g. 17:30-18:00). If the activity must occur

at a specific schedule, the start time is only indicated.

Multiple intervals can be specified in a single day

provided they do not overlap in pairs. We give in

Table A-1 some examples corresponding to the

specification of two intervals in a day.

It is possible to extend this language to allow

durations of several days and thus intervals which are

defined on several days. Repetitions are then expressed

over weeks or months. In Table A-2, an activity is

specified for the maintenance of public spaces with a

duration of two days each month except for august.

The same activity is then specified but now only for the

months 3, 6, 9 of years 2015 and 2016. In both cases, it

is necessary to be able to point out a month number in

the year or a day number in the month with the

functions monthyear() and daymonth().

M. Bouet, M. Schneider: A NoSQL-Based Framework for Managing Home Services

27

Table A-1: Examples of interval specifications

Specification Semantic

2 times 2 interventions in the day at any moment

morning afternoon 1 intervention in the morning and 1 in the afternoon

morning 15:00-17:00 1 intervention in the morning and 1 between 15:00 and 17:00

8:00-10:00 15:00-17:00 1 intervention between 8:00 and 10:00 and 1 between 15:00 and 17:00

9:00 16:00 1 intervention at 9:00 and 1 at 16:00

Listing A-1: BNF syntax for our temporal language

Expressions

<simple-temporal-expression> ::= <period> <days> <intervals>

<general-temporal-expression> ::= {<simple-temporal-expression>}+

Period

<period> ::= <starting-date> "-"{<ending-date>}?

<starting-date> ::=/a date with the format mm/dd/yy/

<ending-date> ::=/a date with the format mm/dd/yy/

Days

<days-expression-form1> ::= {<date>}+ | "holiday" | {<date>}+ "holiday"

<days-expression-form2> ::= {<day-of-week>}+ ["except("{<date>}*

 ["holiday"]")"]

<days-expression-form3> ::= {"everyday" | "every(n)days("<date>")"}

["except("{<date>}* {<day-of-week>}* ["holiday"]")"]

<date>::=/a date with the format mm/dd/yy/

<day-of-week>::= "monday"|"tuesday"|"wednesday"|"thursday"|"friday"|

 "saturday"|"sunday"

Intervals

<intervals>::= (<integer> "times") |{<interval>}+

<integer>::= /number of occurrences of the activity in the day/

<interval>::=<string-form>|<pair-form>|<hour-form>

<string-form>::="morning"|"midday"|"afternoon"|"evening"|"night"

<pair-form>::=<starting-hour>"-"<ending-hour>

<hour-form>::=<hour> /an hour with the format hh:mm

Open Journal of Information Systems (OJIS), Volume 3, Issue 1, 2016

28

Table A-2: Specification for an activity that lasts several days

Activity Period Months Intervals

Maintenance of

public spaces
01/01/15-12/31/16

Every month

except(august)

daymonth(1)-daymonth(2)

except(holiday)

august daymonth(1) except(holiday)

Maintenance of

public spaces
01/01/15-12/31/16

monthyear(3)

monthyear(6)

monthyear(9)

daymonth(1)-daymonth(2)

except(holiday)

AUTHOR BIOGRAPHIES

Dr. Marinette Bouet is an associate

professor at the University of

Clermont-Ferrand. She conducts her

research in the world of databases.

Specifically, she is interested in

content-based image retrieval in

image databases and in image

mining. Most recently, she has

become interested in data and service integration and

home care management.

Dr. Michel Schneider is

emeritus Professor of Databases

and Information Systems at the

University of Clermont-Ferrand

and has over 35 years of

experience as lecturer and

researcher in the information

technology field. He has

contributed to many different research topics including:

decision support systems, data warehouses, mediation

systems and semantic models for databases. He

continues to participate in several editorial boards

covering these topics.

