
c© 2019 by the authors; licensee RonPub, Lübeck, Germany. This article is an open access article distributed under the terms and conditions of
the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).

Open Access

Open Journal of Information Systems (OJIS)
Volume 6, Issue 1, 2019

http://www.ronpub.com/ojis
ISSN 2198-9281

Multi-Game Code-Duel
for Learning Programming Languages

Sven Groppe, Ian Pösse

Institute of Information Systems (IFIS), University of Lübeck, Ratzeburger Allee 160, D-23562 Lübeck, Germany,
groppe@ifis.uni-luebeck.de, ian.poesse@student.uni-luebeck.de

ABSTRACT

Software developers compose computer instructions following the rules defined in programming languages for the
purpose of automatic information processing. However, different programming languages have different syntax
and semantic rules, and support different programming paradigms and design patterns. Learning a programming
language needs many efforts and much practicing in order to master the rules and apply the patterns. Leaning
multiple programming languages at the same time, of course, needs more efforts. In this work we develop the
concept of multi-game and an e-learning platform called “Multi-Game Platform for Code-Duels” for learning
multiple programming languages easily and efficiently. A multi-game is a video game, which consists of several
mini-games. Dividing a big game into mini-games reduces the development efforts and implementation complexity.
“Builders” is a multi-game developed in our platform consisting of three mini-games. Each mini-game can be
solved by implementing a program by learners using different languages. Using our multi-game platform, each
mini-game of Builders can be developed easily and played independently of the other mini-games. Finally, a user
evaluation over our multi-game platform is performed, where users rate our multi-game approach and platform for
learning programming languages very positively.

TYPE OF PAPER AND KEYWORDS

Regular research paper: e-learning, code-duel, multi-game, learning programming, script and query languages,
learning programming frameworks

1 INTRODUCTION

Programming languages are one of the most important
tools for scientific computing and information
processing. At the present time learning programming
languages is an obligatory course for the students not
only from the discipline of computer sciences but also
from other engineering departments.

A programming language contains a number of syntax
rules, semantics, design patterns and function libraries.
Learners must practice and use them in order to master
programming languages. In recent years, a large number
of new successful programming languages have been

developed for different needs and applications. In order
to help learners of programming languages, a number
of web platforms came up supporting learning new
programming languages, corresponding technologies
and frameworks.

Websites like Stackoverflow1 offer a question-answer-
portal for programmers. The w3schools2 website aims
at teaching web technologies and provides manuals
and program examples for different web programming
languages, technologies and frameworks. Other web

1 https://stackoverflow.com/, visited on 18.4.2019
2 https://www.w3schools.com/, visited on 18.4.2019

1

http://creativecommons.org/licenses/by/4.0/
http://www.ronpub.com/ojis
https://stackoverflow.com/
https://www.w3schools.com/

Open Journal of Information Systems (OJIS), Volume 6, Issue 1, 2019

platforms like Kattis3 and Codeforces4 provide a huge
archive of problems, which can be solved by the user
using a programming language of his/her choice. Once
the user is of the opinion that (s)he found the solution,
the user can upload the solution for validating and rating
purposes.

Websites like CodinGame5 use games for learning
programming languages, where learners practice
the programming language they want to learn by
implementing the game bots using the corresponding
language. These games are extra designed with
increasing complexity in implementing game bots. Our
work also uses the game bots for learning and practicing
programming languages. However, as will be seen, our
approach has big differences from ones used in these
websites.

These existing platforms can help individual users to
learn alone. However, they lack of features to support a
group of people to learn several programming languages,
related technologies and frameworks together, which is
typical in the education at universities. For example, the
University of Lübeck offers a course in which students
learn the Semantic Web technology (including its data
model, query language and Ontology concept), Cloud
Computing frameworks (including Hadoop, Pig6, Spark7

and Flink8), multi-platform programming via the Kotlin9

programming language and traditional web technologies
including HTML, CSS, JavaScript and PHP.

In the lecture, the instructor teaches the principles,
concepts and programming paradigms and styles of
these programming languages and technologies, and
explains them using program examples. In order to
really master these languages and techniques, however,
students must train themselves by actually using and
practicing them a lot. Aiming to provide a supplement
to the lecture, in this work we develop the concept
of multi-games and introduce a multi-game platform,
which helps students to learn programming languages
and corresponding technologies easily and efficiently. A
multi-game is a video game, which can be decomposed
into several mini-games. Each mini-game is to be solved
by implementing a program for a game bot. Designing
and implementing small games are easier than those
tasks for a big game reducing the task complexities for
the students. With our multi-game platform, each mini-
game can be played independently from the other mini-

3 https://open.kattis.com/, visited on 18.4.2019
4 http://codeforces.com/, visited on 18.4.2019
5 https://www.codingame.com/start, visited on

26.4.2019
6 https://pig.apache.org/, visited on 18.4.2019
7 https://spark.apache.org/, visited on 18.4.2019
8 https://flink.apache.org/, visited on 18.4.2019
9 https://kotlinlang.org/, visited on 18.4.2019

games. After solving all mini-games, their implemented
game bots work together to play the whole multi-game.

In this work, a video multi-game called “Builders” is
developed, which consists of three mini-games. In order
to play a mini-game, students need to develop a bot, and
different bots are implemented using different languages
and technologies. Therefore, when playing the multi-
game Builders, students can learn and practice different
programming languages and technologies. Furthermore,
our multi-game platform is a multi-player platform,
where bots from different students can play against each
other. Therefore, we call the type of our system a
Multi-Game Platform for Code-Duels. In our platform,
a tournament can be run, where the mini-game bots
of students compete with each other in order to obtain
a ranking of their bots. The feature of tournament
promotes the interest in and engagement with learning
and practicing programming languages of students.

Besides the scenario of using the Multi-Game
Platform for Code-Duels within lectures there are many
more applications of the platform. Of course, the
platform can be used in similar scenarios as in lectures
whenever new programming languages are learned by
the users themselves (self-study), the knowledge about
these programming languages and their programming
patterns have to be deepened, whenever programming
languages are learned at school, in the Kindergarten
or during on-the-job training. These scenarios of
the platform include further to test the qualifications
of software developers within the process of human
resources recruitment, or to propose challenges to
determine “The Software Developer of the Year” or
similar within a company. If the bots to be developed
solve very complex problems, then the platform might
be also used to distribute software development tasks
within a company or even to world-wide users (software
crowdsourcing).

Our contributions include:

• We introduce the concept of multi-game. A multi-
game consists of several mini-games, which can be
implemented independently using different languages.
Decomposing a single game into mini-games reduces
the development efforts and the implementation
complexity of the game.

• We design the multi-game “Builders” for learning
multiple languages. It consists of three mini-games
and each mini-game bot can be implemented using
different languages.

• We develop an e-learning platform called Multi-
Game Platform for Code-Duels for learning different
languages by playing the multi-game Builders.

2

https://open.kattis.com/
http://codeforces.com/
https://www.codingame.com/start
https://pig.apache.org/
https://spark.apache.org/
https://flink.apache.org/
https://kotlinlang.org/

S. Groppe, I. Pösse: Multi-Game Code-Duel for Learning Programming Languages

– Three different mini-games of Builders are played
independently of other mini-games.

– Three mini-games work together to form the multi-
game Builders.

– Our platform provides the necessary functionality
(e.g. design templates, code debug, test cases),
which enable the development of game bots easily.

– Our platform supports a tournament, where game
bots developed by the students can compete against
each other. The feature increases the learning
interests and engagement of students.

• We perform an user evaluation over the multi-game
approach and the platform, and a very positive rating
is obtained.

2 RELATED WORK

S. Deterding et al. define in [6] the term “gamification”
as “the use of game design elements in non-game
contexts”. By using gamification producers hope to
increase user interests and acceptance of their products.
In addition, they use various elements and levels of
gamification, such as the distribution of rewards as an
element in the first level or the use of a playcentric
design as one element of the last level. Our proposed
system can be also mainly classified into this last level
of gamification due to providing a code-duel platform for
students in a university course. However, we implement
and visualize also elements of the first level, i.e. rewards
are given by visualizing the skill level of a student,
where the student achieves higher levels of skill after
solving the exercises. Direct competitions between the
developed game bots are further E-Learning concepts
which have been implemented as tournament in the end
of the university’s course. Our platform supports a help
system by offering a chat to discuss questions of the
students between themselves or a supervisor.

Game design techniques are e.g. experience and
level systems (e.g., [13]), where with increased user
experience new features or previously hidden parts of
the game are unlocked, or based on good performances
the user reaches higher levels with increased difficulty or
higher standing. Time limits may also be used in order to
increase concentration for and engagement with a task.
Of course, tasks can be packaged in games or formulated
similar to game descriptions.

Game design techniques are not only techniques
occurring in games, but also game-accompanying
concepts. Players are rated based on their performances,
and rating results are listed in e.g. leaderboards
(e.g., [5]). Games also often distribute rewards
like emblems, badges and prizes whenever a player

reaches a certain performance or plays frequently.
Furthermore, visualization elements are provided in
games, e.g. progress bars [9] which show the progress
until completing a goal. Such elements provide users
with the information about their stepwise success in
long-term tasks. Another component is direct feedback.
If users are directly getting a (positive or negative)
feedback, there is a positive impact on their learn
efficiency and their engagement [17].

Gamification has been applied into almost all areas of
life: online shops [15], advertisement or market research
[24], fitness as well as educational programs [6].

The authors in [21] state that learning to program is
a complicated task and equips students with problem-
solving skills, including the decomposition of problems,
developing algorithms (using software patterns) and
finally coding. [7] introduces and compares some
online courses for learning programming languages
aiming at helping their users during the learning process.
The investigated platforms include Codecademy10 and
Coursera11. Codecademy focuses on web technologies
and uses a small-step task system. Coursera offers
courses from different schools or universities and
certificates are issued to the learner once (s)he finishes
a course. However, these course are much more time-
consuming. Also research prototypes introduce concepts
for learning programming languages online [4], mobile
[8, 19] or as desktop application [1].

The article [22] explains the concept of code duels
and review systems for improving programming skills
by using various rewards. For example, CodeAbbey12

uses a title system and rewards solved tasks with new
prizes, while in CodinGame13 the programmed game
bots can reach higher leagues after winning some duels.
Codeforces and Kattis use puzzles with different topics
like politics, films, games, sports and other current topics
of public’s attention. A ranking list is used in all
these platforms for learning programming languages to
increase the motivation of their participants. In Kattis
you can even compare yourself with participants of
your own university, and there is a ranking of the best
universities. CodinGame distributes additional badges,
which symbolize the learning progress of a participant.

The authors in [18] validate gamification websites for
learning programming languages in terms of increased
study performance (effectiveness and motivation). Even
children in Kindergarden learn coding by using special
websites for learning (visual) programming languages14

10 https://www.codecademy.com/, visited on 18.4.2019
11 https://www.coursera.org/, visited on 18.4.2019
12 http://www.codeabbey.com/, visited on 18.4.2019
13 https://www.codingame.com/, visited on 18.4.2019
14 The authors used the ScratchJr programming environment available

at http://www.scratchjr.org/ for their study.

3

https://www.codecademy.com/
https://www.coursera.org/
http://www.codeabbey.com/
https://www.codingame.com/
http://www.scratchjr.org/

Open Journal of Information Systems (OJIS), Volume 6, Issue 1, 2019

[23]. Agile software development techniques like pair
programming have also been investigated for websites
for learning programming [16].

The effectiveness of gamification in the e-learning
area and other environments has been investigated in
various studies. Barata et al. study in [2] and [3]
the effects of gamification on an university course. [2]
describes the implementation of this course and analyzes
the results of a single semester with this system. [3]
presents a study over two consecutive semesters and
compares the results of this test series with data from
previous years (where gamification has not been applied
to the university course). The authors in [20] identified a
set of digital competency skills like cognitive, language,
collaborative and creative problem-solving skills for
pupils learning programming.

Positive effects of gamification can be measured
in many other areas such as fitness, work and data
collection. Most often, users’ interest in the respective
platforms is increased [14]. Effects of gamification on
business, electronic commerce and online-surveys are
examined in [24] and [15]. Hamari et al. [14] provided
a systematic review of popular literature on gamification
by grouping the individual sources according to various
criteria, discussed the results of the studies and tried to
find common ground.

Different from these contributions and platforms
described in this section, our e-learning platform helps
learners to learn different programming languages by a
new multi-game concept. In our concept, a multi-game is
divided into several mini-games. Each mini-game has to
be solved by implementing a game bot. All mini-games
are played separately, but after solving all mini-games,
their bots work together to play the whole multi-game.
Designing several small bots has less development
efforts and implementation complexity than designing a
single, big game. Furthermore, our platform supports
the feature of a tournament, with which game bots from
different students can play against each other. This
feature promotes the fun and engagement with learning.

3 MULTI-GAME FOR CODE-DUELS

In this research work, we develop a platform of multi-
player video games called Multi-Game Platform for
Code-Duels aiming at helping students to learn different
programming languages, techniques, frameworks and
tools. In order to play the code-duel video game, a
student (i.e., the human player) needs to develop a
program for the game bot, which will simulate the
artificial intelligence to play the game against the bots
from other students or against bots provided by the
platform itself.

When playing a video game, players have to make
decisions in various different situations, contexts and
based on different types of input. Programming such
artificial intelligence is usually not straightforward, and
thus a bot, which simulates the behavior of a human
player, will be quite complex. In order to reduce the
complexity of bots and make it easier for students to
learn, we decompose a game into several mini-games.
The bots of the mini-games can be developed and the
mini-games played independently of other mini-games.
After all game bots have been developed by the students,
they are composed together to build the game bot of the
whole multi-game playing the overall game. We call
such a game multi-game, and the concept of multi-game
can be loosely defined as follows:
Definition (Multi-Game): A multi-game consists of
mini-games. Each mini-game is to be solved by
implementing a game bot independently from the other
mini-games. All the game bots of the mini-games form
together the game bot of the multi-game.

Using multi-games in learning programming
languages has a number of advantages. It is not
necessary to write a big, complex bot for playing the
whole game. Students only need to develop a small bot
for each mini-game. Thus bots are relatively easy to
implement, however practicing small programs are not
reducing the effects of learning at all. On the contrary, a
small bot can be more easily developed and thus quickly
used to play the mini-game. This will no doubt improve
the learning interests and practicing engagement of
students.

The rest of this section is organized as follows:
before presenting our e-learning platform for multi-
games for code-duels, we first identify the requirements
of an e-learning platform for learning programming
languages, related techniques, frameworks and tools
in 3.1. We then present the overview of the architecture
of our multi-game platform for code duels to learn and
practice several programming languages and associated
technologies simultaneously in Section 3.2. The
Section 3.3 presents our multi-game for code-duels
called “Builders”, where each mini-game is described in
detail.

3.1 Requirements of E-Learning Platform

Our research work aims at developing an e-learning
platform, which will help learners to learn and practice
multiple programming languages and techniques. Such
an e-learning platform should be easy to use and can
provide efficient help in learning. Before designing the
e-learning platform for Multi-Games for Code-Duels, we
first identify the requirements, which such a platform
for learning programming languages should meet, as

4

S. Groppe, I. Pösse: Multi-Game Code-Duel for Learning Programming Languages

follows:

1. The e-learning platform must be easy to use:

• The students can use the e-learning platform
without any software installation.

• The students can learn the numerous programming
languages, techniques, frameworks and tools
within one application.

• The students can enjoy state-of-the-art
programming comfort like syntax highlighting,
auto completion and displaying clear error
messages.

2. The e-learning platform should increase students’
engagement:

• Students should get feedback about the quality of
their solution (besides a ‘solved’ status).

• The solutions of the students should compete
against each other, such that there will be a ranking
of the solutions. The rankings might be presented
to the students in an anonymous way (where
students know their own rankings but not the ones
of their fellow students).

• After submission of solutions and after competing
with other solutions the students should get
feedback, such that they can improve their own
solutions for resubmission.

3. There should be some ‘kind of story’ over roughly the
half year the course takes place.

• Single exercises over the whole course should
be assembled in a way such that their solutions
together solve a bigger exercise. However,
the single exercises should be still solvable
independent from each other.

• Improving the solutions of the single exercises
should improve the solution for the overall bigger
exercise.

• A final ranking of the solutions should be based on
the bigger exercise.

4. The e-learning platform should be designed in a way
that hinders questionable practices of students.

• The single exercises should be solvable using
different programming languages, techniques,
frameworks and tools. With this feature, the
lecturer can ask the current students to use a
language and related techniques different from one
used in the same course in the past years. In

this way, the programming code developed by the
students from previous courses can not be used in
the current course. Each student must practice the
knowledge learned in the course on her/his own.

• The e-learning platform should be designed
according to state-of-the-art privacy and security
principles in order to avoid hacking and copying of
solutions, and should offer a safe platform to run
the students’ code.

As will be seen, our e-learning platform of Multi-
Games for Code-Duels meets these requirements.

3.2 Platform of Multi-Games for Code-Duels

Our multi-game platform for code-duels has been
developed as web application for the following reasons:

• Users can use our platform without installing any
special software (besides the Internet browser, which
is usually pre-installed).

• Users can use our platform anywhere and anytime
with any typical client hardware (desktop pcs
(recommended), tablets or even smartphones).

• The lecturer always has the possibility to look at the
submitted solutions of the users.

• The lecturer can administer submission phases and the
tournament through the web frontend.

• The administrator can maintain (e.g. update) the
software easily at the backend computers (without the
need to update the clients’ software).

The frontend of our platform of Multi-Games for
Code-Duels is a web user interface (see Figure 1), and
consists of following components:

• A video multi-game “Builders”: Our game is
inspired by the board game “The Settlers of Catan”
[10]. The map of the game world is presented on
the left in Figure 1. It includes three mini-games:
Controller, Planner and Executor. In order to play the
multi-game, students need to program a bot for each
mini-game using required programming and query
languages, and related technologies.

• A code editor: Students can write and develop the
code with the built-in code editor (on the right of
Figure 1). It also provides the code templates for
implementing the bots. Apart from defining input and
output variables, these templates also include the code
of basic but tedious operations like parsing the input
of a game round (see the Appendix). Using these

5

Open Journal of Information Systems (OJIS), Volume 6, Issue 1, 2019

Figure 1: The web user interface of the platform, where the map of the game world is presented on the left
together with buttons to apply test cases and submit. On the right the users can type in the bot’s program
and look at error and debug messages21.

templates, when programming, students can focus on
the important functions of the bots.

• Compiling & Running the Game, Submitting the
Code: In the lower left side of Figure 1, buttons are
provided to compile and afterwards run the developed
game bot against different test cases. After running a
test case, the student can investigate each round of the
game and watch the changes in the game map. After
all test cases have been successfully run, the student
can submit the code to be used as the student’s game
bot for the tournament.

Figure 2 presents an overview of the architecture
of our code-duels platform, which illustrates how the
backend of our platform works.

• Webserver: controls the user interface and delivers
corresponding HTML pages, and handles the
authentication process of the platform’s users. For
these tasks, the webserver accesses the game database
where users’ data is stored (e.g., users’ information
and their bot code).

• Game Service: When a user performs a test case or
submits the bot’s code at the frontend of the platform
(by clicking the corresponding button), the webserver
communicates with the game service to start the game.

The game service will hand over the bot’s code to
the execution service for compiling and running the
bot’s code. Afterwards the game service computes the
input for the game bot for each game round, delivers
this input to the execution service and receives the
commands of the game bot from the execution service
for this game round. Based on these commands the
game service computes the next state of the game,
which forms the input for the next game round. This
process is repeated until the end of the game. Finally,
the game’s states of each round is handed over through
the webserver to the client’s browser for displaying
together with the game bot’s commands and debug
messages.

• Execution Service: The bots of the mini-games
are compiled and executed by the execution service.
For this purpose, depending on the used query or
programming language, the SPARQL endpoint is
queried or batch files are processed.

• SPARQL Endpoint: The SPARQL endpoint is
queried whenever the game bot is implemented as
SPARQL query. Besides the SPARQL query, the
game’s current state is transferred from the game
service as RDF data, and the query result contains the
bot’s decisions for the current game round. We use the

6

S. Groppe, I. Pösse: Multi-Game Code-Duel for Learning Programming Languages

Inter-
net

Webserver

Game-
Service

Execution-
Service

SPARQL-
Endpoint

Batch
Processing

(Language A)

Batch
Processing

(Language N)

…

Client
(Browser)

Game
DB

Figure 2: Simplified architecture of the code-duels
platform for the multi-game “Builders”

Semantic Web database LUPOSDATE [11, 12] to run
the SPARQL endpoint.

• Batch Processing: If the game bot is implemented
in a general-purpose programming language, then the
execution service calls a batch file for this purpose.
The batch file contains the instructions for compiling
and running the game bot. The input of the game
round (as delivered by the Game Service) is handed
over to the game bot via standard input and the
commands of the game bot are received via the
standard output. We currently support JavaScript and
PHP as programming languages for the game bots.
By communicating via standard input and output the
support of other programming languages can be easily
integrated (as standard input and output is supported
by most programming language environments). If
there is any syntax or semantic error detected during
compilation, these errors are of course returned back
through the game service and webserver to the client
for displaying the error text in the client’s user
interface.

Standard security approaches have been adopted for
user authentication (by providing a login via user and
password) and a safe communication in the Internet is
guaranteed via SSL certificates and https-protocol. The
platform is secured against SQL injection attacks via
using prepared statements. In order to hinder malicious
bot programs attack the platform to receive important
information and sensitive data of the platform (e.g., from
the user database), the execution service doesn’t run on
the same computer as the webserver and the database
management system where the user database is stored.
The execution service creates an own folder for each

game bot (implemented in PHP or JavaScript), where
the bot’s program is stored and intermediate files for
compilation are saved. The users’ rights management of
the Linux operating system is used to further enhance
the security by running the game bot’s program with
the rights of a very restricted user of the server’s Linux
operating system. This restricted user only has the rights
to read and execute the bot’s program, such that the bot’s
program doesn’t have access to other files in the server
hosting the execution service. Further security actions
may be taken into account like using virtual machines
for each bot program or security sandboxes (e.g., as part
of SELinux15).

3.2.1 Performance of our Code Duels Platform

Our operational system is set up as virtual machine
with 5 cores and 6 Gigabytes main memory running the
Oracle Linux operating system on an Intel Xeon E5620
@ 2.4GHz.

We have measured the execution times of the bot
programs in the different languages (i.e., SPARQL,
JavaScript and PHP) running on the server. We have
used slightly modified versions of the templates in the
Appendix as bot programs. The modifications include
retrieving the current time at bot program start16,17 and
at the end of the game loop for printing it to the standard
error output18,19. For a proper running of the template,
the JavaScript template was additionally extended by a
command for each round20. The SPARQL evaluation
times were measured by the SPARQL endpoint.

The execution times for running the modified
templates (applied to a normal game map of size 6× 10)
were measured 10 times. The average execution time
for running the modified JavaScript template is 8,316
seconds, the one for the modified PHP template 6,123
seconds and for the SPARQL queries 0,03 seconds. The
input data size of the SPARQL queries is 1070 triples and
because of significant differences the execution times
were measured after a warm-up phase of 10 queries.

The execution times are sufficient for running the test
cases and developing the bot programs. The program
bots as well as the implemented game are sequential
programs. Further performance improvements could be
achieved by paralelizing or even distributing program
bots and the implemented game. However, as our
implemented game is round-based, the algorithmic
nature of the game as well as the bot programs is
15 https://fedoraproject.org/wiki/SELinux, visited

on 17.4.2019
16 var t0=new Date().getTime() ; in JavaScript
17 $ time start =microtime(true) ; in PHP
18 printErr ((t1−t0)+” milliseconds.”) ; in JavaScript
19 fwrite (STDERR,”{$time end−$time start} seconds\n”); in PHP
20 print (”BUY 0”);

7

https://fedoraproject.org/wiki/SELinux

Open Journal of Information Systems (OJIS), Volume 6, Issue 1, 2019

sequential and is only parallelizable on a fine-granular
basis.

The computations of different users running different
game bots are completely independant of each other.
Hence, the game and the bot programs can be
parallelized and even distributed within a cluster. In this
way the execution times for the modified templates are
minimum time durations for a turn-around time of the
students when using our platform of Multi-Games for
Code-Duels.

3.3 The Multi-Game “Builders”

In this work we develop the multi-game Builders.
Builders is inspired from the board game “The Settlers
of Catan”[10] (released in 1995), but has significant
modifications like simpler game rules and a simpler
layout of the game world in order to simplify the
programming of the game bots. Builders consists of
three mini-games: Controller, Planner and Executor.
For each mini-game, learners need to develop a bot using
a different language. We first describe the overall multi-
game in Section 3.3.1 and the three mini-games in the
succeeding sub-sections.

3.3.1 Overall Game

The game takes place in a (two-dimensional) game
world, which represents a land and is divided into square
fields of different types of natural resources. These
natural resources are wood, stone, clay and wheat21,
as depicted in Table 1. The natural resources will be
used by players to build other resources like streets and
cities, which will in turn bring their Builders natural
resources. Each resource field has a value of 1, 2 or
3. When a player builds a city, with each resource field
adjacent to the city, the player will acquire the number of
resources equal to the value of the field. Players use the
natural resources to buy victory points, and the player
who acquires the most victory points wins the game.

When playing the game, players can take different
actions. They can trade with the bank, build streets and
cities, and buy victory points. Victory points are bought
using natural resources. Hence players need to own as
many natural resources as possible. Natural resources
can be acquired by building cities. When a player builds
a city, the player receives the resources indicated in the
resource fields around the city. In order to build cities,
players need to build streets, because a city must be built
along a street owned by the player (expect for the first
city). Building a city costs one piece of wood, clay

21 Images provided by Andre Mari Coppola under CC BY 4.0
http://creativecommons.org/licenses/by/4.0/
(visited on 18.4.2019)

Table 1: Ids and images21 of the resource fields in the
Builders game

ID Resource Image

0 Sea

1 Stone

2 Wood

3 Wheat

4 Clay

and wheat, and building a street costs two stones. If a
player wants to build a city but (s)he lacks for a piece of
a resource like wood, the player can trade with the bank
for it. To trade resources, the player offers four resources
of one type to obtain a resource of another type, e.g. four
stones for a piece of wood. The prices of victory points
are randomly decided by the game platform and increase
slightly as more game rounds are passed. For example, in
the first-round playing, a victory point may cost a stone.

In order to be able to play the game, players need some
initial resources. At the very beginning of the game,
two resources of each type are allocated to each player.
Furthermore, at the beginning of each game round, a
resource type is randomly picked by the game platform.
If a player has built a city in previous rounds, which is
adjacent to such a resource field, the player will receive
the resources equal to the value of the field. Figure 3
shows that two players are playing the game. The blue
streets and cities are built by one player, and the red ones
are built by the other. Let us assume that the resource
wheat is selected at the beginning of a game-round. The
blue player has built a city, which is adjacent to two
wheat fields with the value 1. Hence the blue player
receives two pieces of wheat. The red player has a city
adjacent to a wheat field with the value 1 acquiring hence
a piece of wheat.

Two types of coordinate systems (see the numbers
in white color in Figure 3) are used in the game
to unambiguously address streets and cities (building
coordinate system) and resource fields (field coordinate
system) with integer values. The building coordinate
system used for streets and cities is in the upper left
corner. For example, the short blue street starts at
coordinates (2, 2) and ends at (3, 2) in this system. The
field coordinate system for the resource fields is shown in
the lower right corner. For example, the wheat field in the
lower-right corner of the map locates at the coordinates
(10, 6). The periphery in the map of the game world
is blue sea fields, which are also addressed by the

8

http://creativecommons.org/licenses/by/4.0/

S. Groppe, I. Pösse: Multi-Game Code-Duel for Learning Programming Languages

field coordinate system. The information of players is
displayed in the upper left and upper right corners of
the game map, including the quantities of resources and
victory points of each player in the corresponding colors.

The overall Builders game contains three mini-games.

builders controller: This mini-game decides whether
to buy victory points, and build and trade resources.

builders planner: This mini-game identifies all valid
fields for building streets and cities.

builders executor: This mini-game decides where to
build streets and cities.

builders: the overall game, which consists of the above
three mini-games.

Builders can be played as an overall game, or each
mini-game can be played independently of other mini-
games and the overall game. For this purpose, students
need to develop a bot for each mini-game. Table 2
describes the tasks to be implemented by the bots.
Once a bot is developed, the student can play the
corresponding mini-game. If a student implements all
three bots, (s)he can play Builders as overall game with
the three bots. How the three bots work together to
play the overall game is depicted in Figure 4. The
functionality to enable the interplay of the game bots of
the three mini-games has been provided by the game, and
does not need to be implemented by students.

3.3.2 Controller

Task: The controller is the decision maker of the
game. It decides if the player should trade resources
in order to build streets and cities, or build streets
and cities in order to obtain more resources or use the
natural resources to buy victory points. Such decisions
have an important impact on the win chance of the
game. In order to make a good decision, the bot must
consider various different situations and contexts, e.g.,
what natural resources are owned, which and where the
streets and cities have been built, how many victory
points have been acquired and how many rounds have
passed on. Therefore, developing a good strategy for
decision-making is a challenge for the student while
implementing the bot.

Language: In the current implementation of our
multi-game platform for code-duels, we choose
JavaScript as the programming language for the
controller bot. However, all general-purpose

programming and script languages22 are suitable
for implementing the bot. In general JavaScript can be
used in game development whenever browser-games are
developed, but also server-side realizations are possible
using the Node.js23 framework using one language
in the browser and in the server (and with the use of
frameworks like Cordova24 and Ionic25 also for mobile
platforms).26

Input: In order to make decisions, the controller needs
to know the current resources of the player, the cities and
streets of all players, and the price of victory points. The
information is given to the controller by the game service
as round input.

In order to simplify exchange of information between
the bots and the code-duels platform, standard input and
standard output are used. Most programming and script
languages support standard input and output natively
in a very simple way, such that (i) students can easily
program the routines for the communication with the
platform, and (ii) new languages can be integrated
without changing the routines for communication with
the bots.

We hence propose a very simple input format where
a line of the input contains all the necessary values,
separated by semicolon ‘;’. First, the player’s team is
encoded in the line, then the price of the current victory
point and the number of resources the player owns. The
resource quantities of both fields are encoded in the same
way. The resources are separated by a space, followed
by the ID of the resource and the quantity, separated by
a colon ‘:’. Then the number of cities and coordinates
and ownerships of the cities are given, and as last item
the number of streets and the streets themselves (i.e.,
coordinates, direction and ownership).27

22 As a matter of fact, our code-duels platform is designed for
an easy exchange of the bots’ implementation languages: It is
sufficient to just change the configuration of the code-duels platform
accordingly and provide a template with which the students can
start. Completely new programming and script languages are easy
to integrate due to the modularized backend of the platform.

23 https://nodejs.org
24 https://cordova.apache.org/
25 https://ionicframework.com/
26 Alternatives for one programming language for all platforms

like Kotlin (https://kotlinlang.org/) with multi-platform
support may be also interesting.

27 To read the input of the controller and package it into meaningful
data structures, many split operations on the input line are
necessary. Since the learning success was rated as low for the
students, and such a task has an increased frustration potential, it
was decided to already provide code for the purpose of reading and
parsing the round input in the template. The resulting template can
be seen in Listing 4 in the attachment “Templates”.

9

https://nodejs.org
https://cordova.apache.org/
https://ionicframework.com/
https://kotlinlang.org/

Open Journal of Information Systems (OJIS), Volume 6, Issue 1, 2019

Figure 3: The field coordinate system (in the lower right corner) and the building coordinate system (in the
upper left corner) of the game21

Table 2: Tasks of the different mini-games to be implemented by the students’ bots

Controller Planner Executor

The student needs to implement
the controller bot, which decides
whether or not to buy victory
points, and build and trade
resources. When developing the
strategy for decision-making, the
student should consider:

• When should be streets and cities
built?

• Which resource is the most
desired one to be mined? Close
to which resource should a city
be built?

• Is it always wise to buy victory
points? When should victory
points be bought?

• When and which resource should
be traded?

The planner receives as input a
desired resource and should deliver
x- and y-coordinates for building
a city adjacent to a field with the
desired resource. The student’s bot
does not need to select all valid
fields, such that the planner can
already filter adverse fields. The
student’s bot may sort the fields
according to some ranking criteria.
Invalid fields are e.g. those which

• are not close to a field with the
desired resource

• are connected to streets of the
opponent

• already contain a city

• Selection of a field specified by
the planner for building a city

• Find a path (from an own street)
to this field (not crossing the
opponent’s streets and cities)

• Find existing streets on this path

• Build streets, if not already there
on the path

• Build the city (at the selected
field), if the street is connected to
an own street and no street was
already built in this round

10

S. Groppe, I. Pösse: Multi-Game Code-Duel for Learning Programming Languages

Start of Round

Controller

End of Round

Planner

Executor

B
u

ild
er

s

costs of victory points,
streets and cities,
resources

streets and cities,
resources

streets and cities,
details of game world

selected fields

build intention

building buy victory point,
trading

Figure 4: An overview of the communication between
each component (of the single mini-games) of the
Builders’ multi-game

Listing 1: Example of controller-input
"1;0:1;0:4 1:5 2:3 3:3;3;4:0:0 9:1:1
↪→ 9:3:1;3;4:0:LEFTRIGHT:0 9:1:
↪→ TOPDOWN:1 9:2:TOPDOWN:1"

For example, looking at Listing 1, the following round
input is encoded:

• The player has the team number one.

• The current victory point costs a stone.

• The player has four stones, five units of wood, three
wheat and three clay (units).

• There are 3 cities on the map of the game world.

• There is a city of team 0 at coordinates (4, 0).

• There is a city of team 1 at coordinates (9, 1).

• There is a city of team 1 at coordinates (9, 3).

• There are 3 streets.

• There is a horizontal street of team 0 to the right
starting at coordinates (4, 0) and ending at coordinates
(5, 0).

• There is a vertical street of team 1 downward starting
at coordinates (9, 1) and ending at coordinates (9, 2).

• There is a vertical street of team 1 downward starting
at coordinates (9, 2) and ending at coordinates (9, 3).

Output: When the controller makes a decision, it
sends the decision as command either to the Game
Service or to the Planner bot. The outputs of the
controller and their relation are given in Table 3. In
a game round, the controller can make a decision to
trade resources when a resource is needed for developing
new resources. The controller informs the Game Service
of the trade decision. The Game Service allocates the
wanted resource and meanwhile takes the corresponding
resources away from the controller. If the controller
does not have enough resources for the trade, the Game
Service will not perform the trade command.

In each round, the controller must decide whether to
buy a victory point or not. If it decides to buy victory
points, it communicates with the Game Service. The
Game Service performs the command: either selling the
victory points to the player, or not selling victory points
if the player does not have enough resources. After
the buy command is executed, the current game round
is finished. If the controller decides not to buy victory
points, it can decide to build resources.

The controller does not make a decision of building
streets/cities, instead, it checks and decides which
resource needs to be mined by building cities. The
planner then selects appropriate fields, the executor
builds the streets and cities and the game round ends.
If the controller decides to do nothing, it sends the END
ROUND command to the Game Service, which ends the
current game round and starts a new round.

Test Case: We provide a test case for the controller
to check whether or not the implemented strategy of the
student’s game bot is suitable to defeat a weak opponent.
The weak opponent in this test case owns only one city,
but your team owns already two cities, such that your
team receives more resources (with a high probability).
In order to pass the test case your team should have
bought more victory points than the weak opponent after
20 rounds.

3.3.3 Planner

Task: When the planner receives the BUILD (resource
id) command from the controller, it selects valid fields
for building streets and cities that will bring the required
resources, and filters out invalid fields, which are not
adjacent to a field with the wanted resource, or which
are connected to streets of the opponent.

Language: As the task of the planner is simple
enough to be realized as query, the language of the
student’s bot is SPARQL, but also other query languages
can be easily integrated into the code-duels platform.

11

Open Journal of Information Systems (OJIS), Volume 6, Issue 1, 2019

Table 3: The outputs of the controller

Command Parameter Description Optional Excludes

BUY boolean Should a victory point be bought? No

BUILD Resource id id Build resource with id id Yes BUY true

TRADE Resource id from,
int number of,
resource to

Exchange number of resources to

with resource from

Yes

END ROUND End the current game round Yes

Table 4: Description and syntax of the input data of the planner

Input Type RDF Data Description

Resource Field

:a2b1 :x coord ”2”ˆˆxsd:integer;
:y coord ”1”ˆˆxsd:integer;
:resource :stone;
:value ”2”ˆˆxsd:integer;
:type :title.

A resource field at coordinates (2, 1) with
resource stone and value 2.

Cities

[] :x coord ”3”ˆˆxsd:integer;
:y coord ”1”ˆˆxsd:integer;
:nw :a3b1;
:ne :a4b1;
:se :a4b2;
:sw :a3b2;
:team ”1”ˆˆxsd:integer;
:type :building.

A city of team 1 at coordinates (3, 1) with
given adjacent resource fields.

Street

[] :x coord ”3”ˆˆxsd:integer;
:y coord ”1”ˆˆxsd:integer;
:dir :lr;
:team ”1”ˆˆxsd:integer;
:type :streat.

A street of team 1 starting from coordinates
(3, 1) and ending at coordinates (4, 1).

Field for Building

[] :x coord ”3”ˆˆxsd:integer;
:y coord ”1”ˆˆxsd:integer;
:nw :a3b1;
:ne :a4b1;
:se :a4b2;
:sw :a3b2;
:type :building place.

A building field at coordinates (3,1) with
the given adjacent resource fields.

Goal of Building :buildtarget :resource :wood. The goal of building in this round is wood.

Own Team :ownplayer :team ”1”ˆˆxsd:integer. The team of the player is 1.

12

S. Groppe, I. Pösse: Multi-Game Code-Duel for Learning Programming Languages

Students should design a query, which selects all valid
fields to build streets and cities by returning their x- and
y-coordinates. If no valid fields exist, the result of the
query is empty. There are often simple tasks outside of
game bots in games, which just need to retrieve some
information about e.g. users, available servers and game
status. It might be promising to store this information in
a database such that queries can be used for these tasks
(and to benefit from database features like atomicity and
consistency).

Input: In order to distinguish valid from invalid fields,
the planner needs the input information about all fields,
and the coordinates of cities and streets built. The
complete input information and its format are listed in
Table 4. Named blank nodes are used to describe the
resource fields. This has the advantage that cities and
streets can be described with these fields. For streets and
cities, however, unnamed blank nodes are used because
they no longer need to be referenced.

Output: After executing the query, the planner
outputs a group of x- and y-coordinates of valid fields
to the executor, which can be used to build streets and
cities.

Template: In this case, the skeleton of a SPARQL
query is sufficient as template. In order to save
the students’ typing, some basic information has been
provided in the template, e.g. the used prefixes,
the selection of the own team and the desired
resource. Furthermore, in order to focus learners on
the functionality of the bot, triple patterns are provided,
which select all the fields for building, their adjacent
fields and resources. This template is presented in
Listing 3 in the Appendix “Templates”.

Test Case: Constructing suitable test cases for the
planner is relatively simple. It has to be tested that
the students’ queries return correct fields for different
resource requirements. In addition, cities and streets
should be inserted at different coordinates to test that
these coordinates should be ignored. Figure 5 presents
such a situation. In addition to own streets and cities
(in blue) there is an enemy city (in green) with some
streets. The result of the template given in Listing 3 is
presented in Figure 6. As the template does not make
any restrictions (and returns every field), every possible
field is marked with an arrow. Valid issued fields are
marked by a green arrow, invalid ones by a red arrow.

3.3.4 Executor

Task: The executor bot is responsible for finding the
suitable fields to build streets and cities in order to
develop the resources required by the controller. In
this mini-game students develop and implement a simple
path-finding algorithm. Streets can only be built between
fields where at least one of their own streets or cities is
located. In addition, newly built streets may not lead
to the fields connected by an opposing street. Newly
built cities must always be located at coordinates that
are reached with its own street. The exception for this
rule is the first city, which may be built at freely chosen
coordinates.

Language: The implementation of path-finding
algorithms need the features of general purpose
programming languages like loops, recursion and so
on. For the executor we decided to use the PHP
programming language, but any other general-purpose
programming language may be used (after integration of
its support into the platform). PHP is most widely used
as server-side programming language and hence for the
game development in general may be used for the server-
side code (not only restricted to game bots).

Input: The executor receives already built cities and
streets, the current resources of the player and the fields
selected by the planner as inputs. Similar to the input
of the controller, the executors’ input consist only of one
line. Different values are separated by semicolon ‘;’.
First, the available resources are given, each separated
by a space, followed by the id of the resource and its
quantity, separated by a colon ‘:’. The number of cities
and the values of the individual cities are then handed
over. These are represented by three values, the x- and y-
coordinates of the city and the owner’s team. Afterwards
the line contains the number of streets. Each street is
represented by four values, the x- and y-values of starting
coordinates, the direction of the street, and the owner’s
team.

Listing 2 provides an example of this encoding,
containing the following information:

• The player owns one stone, two wood, four wheat and
three clay units.

• There is one city on the map.

• There is a city of team 1 at coordinates (9, 3).

• There are two streets on the map.

• Team 1 owns a street downward starting at coordinates
(9, 2).

13

Open Journal of Information Systems (OJIS), Volume 6, Issue 1, 2019

Figure 5: Example test case for the planner21

• Team 1 owns a street downward starting at coordinates
(9, 1).

• The planner provides a coordinate for building.

• The planner suggests to build at the coordinates (9, 1).

• The player’s team has the team number 1.

• The map’s width is 10.

• The map’s length is 6.

Output: The output of the executor is listed in Table 5.
After finding suitable fields for building streets and
cities, it outputs a command and informs the Game
Service to build them at the corresponding coordinates.
The Game service performs the building task or declines
it if the given fields are invalid or the player doesn’t have
enough resources. It then ends the current game round
and starts a new round if the game isn’t finished yet.

Test Case: For testing the students’ bots, at least three
types of test cases should be created. One should test
that the program works when passing only a few fields.
Another should check that a number of fields do not
overwhelm the program. The last type of cases should

Listing 2: Example input of the executor mini-game
"0:1;1:2;2:4;3:3;1;9:3:1;2;9:2:
↪→ TOPDOWN:1;9:1:TOPDOWN:1;1;9:1;1;10
↪→ ;6"

test that enemy streets and cities are being bypassed.
Especially for the last type, different test cases can be
generated to intercept possible special cases.

Template: The template is presented in Listing 5 in
the Appendix “Templates”. The tedious and error-prone
split operations are given in the template.

4 EVALUATION

This section presents the user evaluation of our code-
duels platform for the multi-game “Builders”. The
evaluation contains two parts: an online questionnaire
and playing the game by developing the bots. The
evaluation is performed in the University of Lübeck
during the period from 19.12.2017 until 01.01.2018. The
participants are recruited freely by sending an e-mail to

14

S. Groppe, I. Pösse: Multi-Game Code-Duel for Learning Programming Languages

Figure 6: The result of the template of Listing 3 (test case “wheat”)

Table 5: Description and Syntax of the output of the executor

Command Parameter Description Optional Excludes

BUILD street int x,
int y,
string direction

Build street at coordinates (x,y) in
the given direction

Yes BUILD city

BUILD city int x,
int y

Build city at coordinates (x, y) Yes BUILD street

the MINT section of the University of Lübeck.
At the end of the evaluation period, eight participants

completed the questionnaire. 31 students participated in
the development of bots and played the corresponding
mini-games or the overall game. Among them, five
students successfully developed the controller mini-
game, four students programmed the planner, and two
students solved the executor. Finally two students
implemented all three mini-games, and one of them
defeated the boss in the overall multi-game.

4.1 Questionnaire

The questionnaire contains three parts: (i) General
demographic questions about existing programming

knowledge; (ii) Rating how the features and design of the
code-duels platform impact the learning of programming
languages; (iii) Providing feedback about the features
and design of the platform. The questions of the first
two parts are rated with a scale from 1 (negative) to
6 (positive), and in the third part participants provide
feedback in free text.

4.1.1 Demography

The first part of the questionnaire contains general
demographic questions about existing programming
knowledge of participants.

First, the users were asked about their general
programming skills. Only one user stated that (s)he

15

Open Journal of Information Systems (OJIS), Volume 6, Issue 1, 2019

0

1

2

3

4

5

Motivation Learning Success Fun Ease of Use

Tournament Multi-Game Gamification

Figure 7: Mean of the participants’ answers

had no prior knowledge. Five of the users rated their
programming skills with 4 or 5 to be good. The
remaining two judged their knowledge with a 3.

Subsequently, they were asked about knowledge of
web technologies, e.g., query and web programming
languages. Four out of eight participants had no any
knowledge about the web technologies. Three users
rated their knowledge as good with a 4 or 5. Only one
user rated this question with a 3. Three of the participants
had experience with e-learning platforms, two of which
use them regularly with a rating of 4 or 5. The third uses
these systems rarely with a rating of 2.

Finally, the users were asked about their knowledge
of the programming languages, i.e., PHP, JavaScript
and SPARQL, which are implementation languages of
the mini-games of Builders. Four users did not have
any knowledge about JavaScript language and the other
four did not know about PHP. Only one of them had
knowledge about SPARQL and this user rated her/his
SPARQL knowledge with 5 to be good. Two users rated
their JavaScript skills to be good, three rated their PHP
skills to be good.

4.1.2 Gamification, Multi-Game and
Tournament

In the second part of the questionnaire, participants
assess the impact of the game features (gamification,
multi-games and tournament) provided in our code-duels
platform to learning programming languages, including
the motivation of learning, the self-esteemed learning
success, the fun of using the system to learn and the ease
of use of the system for learning. Figure 7 presents the
mean value of the participants’ answers, and Figure 8
provides the standard deviations of the participants’
answers.

The evaluation results show that the game features
(gamification, multi-games and tournament) have a
quite positive impact on the learning of programming

0

0,2

0,4

0,6

0,8

1

1,2

Motivation Learning Success Fun Ease of Use

Tournament Multi-Game Gamification

Figure 8: Standard deviations of the participants’
answers

languages, and they have a similar degree of impact
on the learning, but the multi-game concept obtains a
slightly lower rating. In the evaluation, the students only
need to develop three small bots. If the students are also
asked to develop a single bot for the overall Builders
game, and compare the implementation complexity and
development efforts, we are sure that the feature of
the multi-game divided into mini-games would be rated
much better, such that the multi-game is an important
method in learning. In addition, it should be noted that
the evaluations of the multi-game concept have relatively
high standard deviations compared to those of the other
aspects. It therefore seems to be highly dependent on
each person’s opinion whether this concept is perceived
as positive or negative.

4.1.3 Platform Design

At the end of the survey, students are solicited to
assess the features and design of our platform and give
feedback in free text. The assessment was generally
rather positive. Students also gave valuable comments
and suggestions for improvement, which are presented
in this part.

The biggest criticism were the descriptions of the
mini-games and the connection with the multi-game.
Several times it was noted that it was not clear
enough what exactly the tasks of each mini-game
was. In addition, two errors and minor inaccuracies
were reported in the description of the planner mini-
game. The descriptions have already been significantly
improved (by e.g. adding more information, to-do-lists
for students for each mini-game and figures providing an
overview of the connections between the different mini-
games). The errors have been corrected based on this
feedback.

As a second negative point, unclear error messages

16

S. Groppe, I. Pösse: Multi-Game Code-Duel for Learning Programming Languages

were noted. Many users were not always sure if there
was an error in their source code or not. This was
compounded by the fact that an error occurred during the
test that stopped the execution of the solution without an
error message. We already worked over the platform’s
code improving error handling.

Many commented that programming skills in
SPARQL would be needed to solve the planner mini-
game. Our platform and the multi-game Builders will
be used within a university course containing Semantic
Web topics including the SPARQL query language.
Hence the students will have knowledge about SPARQL
to solve the planner mini-game.

As the quality of each mini-game’s bot also influences
the quality of the overall multi-game bot, one user
criticized that it is demotivating if (s)he solves one mini-
game only badly. This would reduce the motivation to
improve other mini-games, too.

Several students assess that this game provides a
good exercise for learning programming languages,
and decomposing a game into several mini-games
reduces overall complexity without limiting the user’s
capabilities. When asked whether the e-learning
platform is a supplement to the university course, five
out of eight responded with a clear ‘yes’. Two answered
‘more yes’ and only one user with ‘maybe’.

On average, 6 students spent each 1.2 hours to
implement the controller. 4 students finish the planner
and they spent an average of 2.5 hours each with this
mini-game. Only 2 users implemented the executor
mini-game, one of whom spent 4 hours, the other 1 hour.

The feedback provided by the students on the
invested time basically coincides with the expectations.
In particular, the implementation of a route finding
algorithm can take a long time. Also, the incorporation
into the RDF format of the planner can take a lot of
time. Only the implementation of the controller took
longer time than expected. One reason could be the
description, which we have significantly improved based
on the feedback. Another reason could be that the
controller was the mini-game to start with and hence
students may have needed some time to get used to the
overall user interface and game.

4.2 Analysis

In summary, the general assessment of the implemented
concepts was more positive than negative. It can
already be stated that the concepts of multi-games
and the tournament have a positive effect on the fun
and motivation of the students. In particular, the
feedback from the user who has already participated in
the corresponding university course has been extremely
positive.

The participants, who have little to no experience
with web-based programming languages, evaluated very
positively. This shows that the students who didn’t visit
a lecture can use the platform to catch up on missing
material.

Although it was noted that it is difficult to solve the
problems without prior knowledge, mini-games were
still solved by students who had little or no experience
with the programming and query languages (especially
with SPARQL). We hence conclude that relevant units of
the lecture can be learned with the help of the platform
with comparatively little time effort.

When implementing the bots, students use different
approaches to the tasks. Of the submitted solutions
for the controller mini-game, four used an approach
that first built streets and cities for a certain number of
rounds and victory points were bought subsequently. A
solution bought victory points whenever possible and
tried not to build, but this user did not pass all mini-
games to compete in the overall multi-game. Victory
points were often bought after a certain condition was
fulfilled. These conditions were 3 built cities, 4 built
cities, 3 rounds or 8 rounds. Only one implementation
used the trade option to buy victory points if only one
resource was missing.

There were four solutions for the planner mini-game,
and all used an approach in which all valid fields were
returned. Only one approach sorted the fields by x-
and y-coordinates. Three solutions used FILTER EXISTS

or FILTER NOT EXISTS, sometimes in combination with
OPTIONAL. Only one solution applied the MINUS operator.

Two students finished the executor mini-game. One
used a brute-force approach to path-finding, where
runtime overhead was reduced by considering the costs
of an already found path as upper limit to early stop
the execution for more costly paths. The second student
used a hard-coded approach, which was tailored to one
test case to be passed for the submission of the bot. To
prevent hard-coded approaches in the future, we already
provide more test cases, but also hidden or randomized
test cases could be built in.

5 SUMMARY AND CONCLUSIONS

In this work, we developed an e-learning platform called
Multi-Game for Code-Duels, aiming to help students
to learning different programming languages efficiently
and easily. In order to realize this aim, a concept of
multi-game is developed and used in the platform. A
multi-game consists of several mini-games, where each
mini-game is solved by developing a game bot. Each
mini-game is independent from the other mini-games,
and all the mini-games can work together to form a

17

Open Journal of Information Systems (OJIS), Volume 6, Issue 1, 2019

big multi-game. Developing several small mini-games,
instead of a single big game, reduces the development
efforts and implementation complexity of the game bots
significantly.

In this platform, we develop a multi-game Builders,
which is inspired by the board game Settlers of
Catan[10]. The Builders multi-game consists of the
three mini-games Controller, Planner and Executor. For
each mini-game, a bot needs to be implemented using a
different language. One small bot of a mini-game can be
more easily and quickly developed than a big bot for the
whole multi-game. Once a mini-game bot is developed,
the student can use it to play the corresponding mini-
game no matter whether or not the student has developed
the bots of other mini-games. This will in turn bring
the student more fun and engagement with learning and
practicing programming.

Finally, a user evaluation was carried out. The users
provide quite positive ratings to the e-learning platform
of Multi-Game for Code-Duels to help the learning of
programming languages. Furthermore, many of the
users had little experience with web-based programming
languages and especially SPARQL queries, but they
could develop the corresponding bots using our platform.
This shows that our multi-game platform for code-duels
can help students to learn programming and accompany
the courses of programming languages.

Currently, our platform supports JavaScript as the
implementation language for the controller, SPARQL
for the planner and PHP for the executor. However,
other languages can be easily integrated into our multi-
game platform. Future work is the integration of
other types of languages and frameworks such as
distributed programming models, e.g. MapReduce28,
script languages for big data processing like Pig29,
frameworks for modern cloud databases (e.g., Hive30),
and even languages for describing content and its layout
like HTML and CSS. We expect to obtain new research
results when integrating and utilizing those languages in
our Multi-Game platform for Code-Duels, which are not
general-purpose programming languages.

Furthermore, development of other types of multi-
games, which are e.g. not round-based and having
real-time requirements, and development of commercial
multi-player online games (based on the human players’
view) are other directions for future work.
28 https://wiki.apache.org/hadoop#MapReduce,

visited on 18.4.2019
29 https://pig.apache.org/, visited on 18.4.2019
30 https://hive.apache.org/, visited on 18.4.2019

REFERENCES

[1] M. Al-Shawwa, I. Alshawwa, and S. Abu-Naser,
“An intelligent tutoring system for learning java,”

International Journal of Academic Information
Systems Research (IJAISR), vol. 3, no. 1, pp. 1–6,
2019.

[2] G. Barata, S. Gama, J. Jorge, and D. Gonçalves,
“Engaging engineering students with
gamification,” in Games and virtual worlds
for serious applications (VS-GAMES), 2013 5th
international conference on. IEEE, 2013, pp.
1–8.

[3] G. Barata, S. Gama, J. Jorge, and D. Gonçalves,
“Improving participation and learning with
gamification,” in Proceedings of the First
International Conference on gameful design,
research, and applications. ACM, 2013, pp.
10–17.

[4] S. Bhatti, A. Dewani, S. Maqbool, and M. A.
Memon, “A web based approach for teaching and
learning programming concepts at middle school
level,” International Journal of Modern Education
and Computer Science (IJMECS), vol. 11, no. 4,
pp. 46–53, 2019.

[5] C. Cheong, F. Cheong, and J. Filippou, “Quick
quiz: A gamified approach for enhancing learning,”
in 17th Pacific Asia Conference on Information
Systems (PACIS), 2013.

[6] S. Deterding, D. Dixon, R. Khaled, and L. Nacke,
“From game design elements to gamefulness:
defining gamification,” in Proceedings of the
15th international academic MindTrek conference:
Envisioning future media environments. ACM,
2011, pp. 9–15.

[7] L. M. Dubowy, “Coden für alle – programmieren
lernen mit online-kursen,” c‘t, vol. 18, pp. 124 –
129, Aug. 2015.

[8] A. S. Filipe and A. Nobre, “Design of a
learning framework for open mobile applications,”
Educação em Foco, vol. 24, no. 1, pp. 513–530,
2019.

[9] D. R. Flatla, C. Gutwin, L. E. Nacke, S. Bateman,
and R. L. Mandryk, “Calibration games: Making
calibration tasks enjoyable by adding motivating
game elements,” in Proceedings of the 24th Annual
ACM Symposium on User Interface Software and
Technology, ser. UIST ’11, 2011, pp. 403–412.

[10] C. GMBH, “Catan - Das Spiel — Catan.de,” https://
www.catan.de/spiel/die-siedler-von-catan, visited
on 26.4.2019.

[11] S. Groppe, Data Management and Query
Processing in Semantic Web Databases. Springer
Verlag, Heidelberg, 2011.

18

https://wiki.apache.org/hadoop#MapReduce
https://pig.apache.org/
https://hive.apache.org/
https://www.catan.de/spiel/die-siedler-von-catan
https://www.catan.de/spiel/die-siedler-von-catan

S. Groppe, I. Pösse: Multi-Game Code-Duel for Learning Programming Languages

[12] S. Groppe, “Luposdate semantic web database
management system,” https://github.com/
luposdate/luposdate, vsited on 14.4.2019.

[13] J. Hamari and J. Koivisto, “Social motivations
to use gamification: An empirical study of
gamifying exercise,” in 21st European Conference
on Information Systems (ECIS), 2013.

[14] J. Hamari, J. Koivisto, and H. Sarsa, “Does
gamification work?–a literature review of
empirical studies on gamification,” in System
Sciences (HICSS), 2014 47th Hawaii International
Conference on. IEEE, 2014, pp. 3025–3034.

[15] G. Heinemann, Der neue Online-Handel:
Geschäftsmodell und Kanalexzellenz im Digital
Commerce. Springer-Verlag, 2017.

[16] O. Iskrenovic-Momcilovic, “Pair programming
with scratch,” Education and Information
Technologies, vol. 24, no. 5, p. 2943–2952,
2019.

[17] K. M. Kapp, “Games, gamification, and the quest
for learner engagement,” T+ D, vol. 66, no. 6, pp.
64–68, 2012.

[18] F. L. Khaleel, N. S. Ashaari, and T. S. M. T. Wook,
“An empirical study on gamification for learning
programming language website,” Jurnal Teknologi,
vol. 81, no. 2, 2019.

[19] S. I. Malik, R. Mathew, R. Al-Nuaimi, A. Al-
Sideiri, and J. Coldwell-Neilson, “Learning
problem solving skills: Comparison of e-learning
and m-learning in an introductory programming
course,” Education and Information Technologies,
vol. 24, no. 5, p. 2779–2796, 2019.

[20] J. Nouri, L. Zhang, L. Mannila, and E. Norén,
“Development of computational thinking, digital
competence and 21st century skills when learning
programming in k-9,” Education Inquiry, pp. 1–17,
2019.

[21] P. Piwek, M. Wermelinger, R. Laney, and
R. Walker, “Learning to program: from problems
to code,” in Proceedings of the 3rd Conference on
Computing Education Practice, 2019.

[22] H. Schulz, “Wetthacken – spielerisch
programmieren üben im netz,” c‘t, vol. 18,
pp. 130 – 133, Aug. 2015.

[23] A. Strawhacker and M. U. Bers, “What they learn
when they learn coding: investigating cognitive
domains and computer programming knowledge in
young children,” Educational Technology Research
and Development, vol. 67, no. 3, pp. 541–575,
2019.

[24] E. Uzunova et al., “A new business model of
marketing research,” Izvestiya, no. 1, pp. 32–42,
2015.

19

https://github.com/luposdate/luposdate
https://github.com/luposdate/luposdate

Open Journal of Information Systems (OJIS), Volume 6, Issue 1, 2019

AUTHOR BIOGRAPHIES

Sven Groppe earned his
diploma degree in Informatik
(Computer Science) in 2002 and
his Doctor degree in 2005 from
the University of Paderborn. He
earned his habilitation degree
in 2011 from the University
of Lübeck. He worked in the
European projects B2B-ECOM,
MEMPHIS, ASG and TripCom.
He was a member of the DAWG

W3C Working Group, which developed SPARQL. He
was the project leader of the DFG project LUPOSDATE,
an open-source Semantic Web database, and one of the
project leaders of two research projects, which research
on FPGA acceleration of relational and Semantic Web
databases. He is currently one of the project leaders
of two DFG projects focusing on GPU acceleration of
database indices and Semantic Internet of Things. He
is also the chair of the Semantic Big Data workshop
series, which is affiliated with the ACM SIGMOD
conference (so far 2016 to 2019), and of the Very Large
Internet of Things workshop in conjunction with the
VLDB conference (so far 2017 to 2019). His research
interests include databases, Semantic Web, query and
rule processing and optimization, Cloud Computing,
acceleration via GPUs and FPGAs, peer-to-peer (P2P)
networks, Internet of Things, data visualization and
visual query languages.

Ian Pösse was born in
Aschaffenburg, Germany, in
1995. He earned his bachelor’s
degree in Computer Science
in 2018 at the University of
Lübeck. His bachelor thesis
covered the development of a
gamificated e-learning platform
for webbased programming
languages. He is currently
continuing his study aiming for

a master’s degree.

20

S. Groppe, I. Pösse: Multi-Game Code-Duel for Learning Programming Languages

APPENDIX: TEMPLATES

This Appendix contains the templates for the students’ bots.

Listing 3: SPARQL query template for the planner
1 PREFIX : <h t t p : / / i f i s . uni−l u e b e c k . de / b u i l d e r s />
2 PREFIX xsd : <h t t p : / /www. w3 . org / 2 0 0 1 / XMLSchema#>
3

4 SELECT DISTINCT $x $y
5 WHERE
6 {
7 : b u i l d t a r g e t : r e s o u r c e $ r e s o u r c e .
8 : ownplaye r : team $ownteam .
9

10 $ p l a c e : ne $ f i e l d n e .
11 $ f i e l d n e : v a l u e $ v ne .
12 $ f i e l d n e : r e s o u r c e $ r n e .
13

14 $ p l a c e : nw $ f i e l d n w .
15 $ f i e l d n w : v a l u e $v nw .
16 $ f i e l d n w : r e s o u r c e $ r nw .
17

18 $ p l a c e : s e $ f i e l d s e .
19 $ f i e l d s e : v a l u e $ v s e .
20 $ f i e l d s e : r e s o u r c e $ r s e .
21

22 $ p l a c e : sw $ f i e l d s w .
23 $ f i e l d s w : v a l u e $ v sw .
24 $ f i e l d s w : r e s o u r c e $ r sw .
25

26 $ p l a c e : x c o o r d $x .
27 $ p l a c e : y c o o r d $y .
28

29 # TODO: Add game l o g i c here
30

31 }

21

Open Journal of Information Systems (OJIS), Volume 6, Issue 1, 2019

Listing 4: JavaScript code template for the controller
1 v a r l i n e = ” ” ;
2 v a r b u y T a r g e t = ” ” ;
3 v a r i t emCount = ” ” ;
4 v a r team = 0 ;
5 v a r round = 0 ;
6 w h i l e (t r u e) {
7 v a r i t e m s = [] ;
8 v a r buy = [] ;
9 v a r s t r e e t s = [] ;

10 v a r b u i l d i n g s = [] ;
11 l i n e = r e a d l i n e () ;
12 v a r s p l i t t e d = l i n e . s p l i t (” ; ”) ;
13 team = p a r s e I n t (s p l i t t e d [0]) ;
14 b u y T a r g e t = s p l i t t e d [1] ;
15 i t emCount = s p l i t t e d [2] ;
16 v a r i t e m C o u n t s = i t emCount . s p l i t (” ”) ;
17 f o r (v a r i = 0 ; i < i t e m C o u n t s . l e n g t h ; i++) {
18 v a r c u r I t e m = i t e m C o u n t s [i] . s p l i t (” : ”) [0] ;
19 v a r c u r V a l u e = i t e m C o u n t s [i] . s p l i t (” : ”) [1] ;
20 i t e m s [p a r s e I n t (c u r I t e m)] = p a r s e I n t (c u r V a l u e . t r i m ()) ;
21 }
22 v a r b u y T a r g e t S p l i t = b u y T a r g e t . s p l i t (” ”) ;
23 f o r (v a r i = 0 ; i < b u y T a r g e t S p l i t . l e n g t h ; i++) {
24 v a r c u r I t e m = b u y T a r g e t S p l i t [i] . s p l i t (” : ”) [0] ;
25 v a r c u r V a l u e = p a r s e I n t (b u y T a r g e t S p l i t [i] . s p l i t (” : ”) [1]) ;
26 buy [c u r I t e m] = c u r V a l u e ;
27 }
28 v a r b u i l d C o u n t = p a r s e I n t (s p l i t t e d [3]) ;
29 v a r b u i l d i n g S p l i t = s p l i t t e d [4] . s p l i t (” ”) ;
30 f o r (v a r i = 0 ; i < b u i l d C o u n t ; i++) {
31 v a r c u r B u i l d i n g = b u i l d i n g S p l i t [i] . s p l i t (” : ”) ;
32 v a r x = c u r B u i l d i n g [0] ;
33 v a r y = c u r B u i l d i n g [1] ;
34 v a r team = c u r B u i l d i n g [2] ;
35 b u i l d i n g s [i] = [x , y , team] ;
36 }
37 v a r s t r e e t C o u n t = p a r s e I n t (s p l i t t e d [5]) ;
38 v a r s t r e e t S p l i t = s p l i t t e d [6] . s p l i t (” ”) ;
39 f o r (v a r i = 0 ; i < s t r e e t C o u n t ; i++) {
40 v a r c u r S t r e e t = s t r e e t S p l i t [i] . s p l i t (” : ”) ;
41 v a r x = c u r S t r e e t [0] ;
42 v a r y = c u r S t r e e t [1] ;
43 v a r d i r = c u r S t r e e t [2] ;
44 v a r team = c u r S t r e e t [3] ;
45 s t r e e t s [i] = [x , y , team] ;
46 }
47 / / TODO: Add game l o g i c here
48

49 p r i n t E r r (” Debug o u t p u t ”) ;
50 p r i n t (”ROUNDEND”) ;
51 }

22

S. Groppe, I. Pösse: Multi-Game Code-Duel for Learning Programming Languages

Listing 5: PHP code template for the executor
1 <?php
2 whi le (t r u e) {
3 $ l i n e = r e a d l i n e () ;
4 $ i n p u t = e x p l o d e (’ ; ’ , $ l i n e) ;
5 $ cons = array () ;
6 $ i t e m s = array () ;
7 f o r ($ i = 0 ; $ i < 4 ; $ i++)
8 $ i t e m s [$ i] = i n t v a l (e x p l o d e (’ : ’ , $ i n p u t [$ i]) [1]) ;
9 $ b u i l d i n g C o u n t = i n t v a l ($ i n p u t [4]) ;

10 $ b u i l d i n g s = array () ;
11 f o r ($ i = 0 ; $ i < $ b u i l d i n g C o u n t ; $ i++) {
12 $ b u i l d i n g s [$ i] = array () ;
13 $ temp = e x p l o d e (” : ” , $ i n p u t [$ i + 5]) ;
14 $ b u i l d i n g s [$ i] [” x ”] = $ temp [0] ;
15 $ b u i l d i n g s [$ i] [” y ”] = $ temp [1] ;
16 $ b u i l d i n g s [$ i] [” team ”] = $ temp [2] ;
17 }
18 $ s t r e e t C o u n t = i n t v a l ($ i n p u t [5 + $ b u i l d i n g C o u n t]) ;
19 $ s t r e e t s = array () ;
20 f o r ($ i = 0 ; $ i < $ s t r e e t C o u n t ; $ i++) {
21 $ s t r e e t s [$ i] = array () ;
22 $ temp = e x p l o d e (” : ” , $ i n p u t [$ i+6+$ b u i l d i n g C o u n t]) ;
23 $ keyfrom = $ temp [0] . ” ” . $ temp [1] ;
24 i f ($ temp [2] == ’LEFTRIGHT ’)
25 $ k e y t o = (i n t v a l ($ temp [0]) + 1) . ” ” . $ temp [1] ;
26 e l s e $ k e y t o = $ temp [0] . ” ” . (i n t v a l ($ temp [1]) + 1) ;
27 $ cons [$ keyfrom] [$ k e y t o] = $ temp [3] ;
28 $ cons [$ k e y t o] [$ keyfrom] = $ temp [3] ;
29 $ s t r e e t s [$ i] [” x ”] = $ temp [0] ;
30 $ s t r e e t s [$ i] [” y ”] = $ temp [1] ;
31 $ s t r e e t s [$ i] [” d i r ”] = $ temp [2] ;
32 $ s t r e e t s [$ i] [” team ”] = $ temp [3] ;
33 }
34 $ f i e l d C o u n t = i n t v a l ($ i n p u t [6+ $ b u i l d i n g C o u n t + $ s t r e e t C o u n t]) ;
35 $ f i e l d s = array () ;
36 f o r ($ i = 0 ; $ i < $ f i e l d C o u n t ; $ i++) {
37 $ f i e l d s [$ i] = array () ;
38 $ temp = $ i n p u t [$ i+7+$ b u i l d i n g C o u n t+$ s t r e e t C o u n t] ;
39 $ temp = e x p l o d e (” : ” , $ temp) ;
40 $ f i e l d s [$ i] [” x ”] = $ temp [0] ;
41 $ f i e l d s [$ i] [” y ”] = $ temp [1] ;
42 }
43 $ team = $ i n p u t [7 + $ b u i l d i n g C o u n t + $ s t r e e t C o u n t + $ f i e l d C o u n t] ;
44 $ wid th = $ i n p u t [8 + $ b u i l d i n g C o u n t + $ s t r e e t C o u n t + $ f i e l d C o u n t] ;
45 $ h e i g h t = $ i n p u t [9 + $ b u i l d i n g C o u n t + $ s t r e e t C o u n t + $ f i e l d C o u n t] ;
46 / / TODO: Add game l o g i c here
47

48 f w r i t e (STDERR , ” Debug o u t p u t ”) ;
49 echo ”ENDROUND\n ” ;
50 }
51 ?>

23

	Introduction
	Related Work
	Multi-Game for Code-Duels
	Requirements of E-Learning Platform
	Platform of Multi-Games for Code-Duels
	Performance of our Code Duels Platform

	The Multi-Game ``Builders''
	Overall Game
	Controller
	Planner
	Executor

	Evaluation
	Questionnaire
	Demography
	Gamification, Multi-Game and Tournament
	Platform Design

	Analysis

	Summary and Conclusions

