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ABSTRACT

The use of RDF to expose semantic data on the Web has seen atidranorease over the last few years. Nowa-

days, RDF datasets are so big and interconnected that, iy &assical mono-node solutions present significant
scalability problems when trying to manage big semantiaddapReduce, a standard framework for distributed
processing of great quantities of data, is earning a placeagthe distributed solutions facing RDF scalability

issues. In this article, we survey the most important woddrassing RDF management and querying through
diverse MapReduce approaches, with a focus on their magtesfies, optimizations and results.
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1 INTRODUCTION needed. Furthermore, very active Open Data initiatives,
such as the Linked Open Datd_OD) community, are

Massive publication efforts have flooded the Web wifi"omoting its use to publish structured data on the Web
huge amounts of semantic data represented in RDF [F#]d {0 connect it to other data sources [5]. _
TheResource Description FramewofRDF) providesa " turn, SPARQL [45] is the W3C recommendation
graph-based model to structure and link data along fifeS€8rch and extract information from RDF graphs.
so-called Semantic Web. An RDF dataset draws a JFARQL is essentially a declarative language based on

rected labeled graph of knowledge in which entities afjaph-pattern matching With_ SQL-like synt_ax. Graph
values are linked via labeled edges with meaning. patterns are built on top ofriple Patterns(triples al-
lowing variable components) which are grouped within

In less than a de(_:ade,_ RDF has become a popula_r fI%'sic Graph Patternsleading to query subgraphs in
mat to expose and interlink data from almost every fie{gi-, yariables must be bounded. Graph patterns com-
of knowledge, from bioinformatics and geography 10 S@;,y igin triple patterns, but other constructions are
cial networks. There are two main reasons for this suge possible (see Section 2.2). Thus, query resolu-
cess. First, its semantic model is extremely simple: &bn performance mainly depends on two factorsrei)

tlt_les (also called resources) are described in the f(_)rmtﬂgving RDF triples (for triple pattern resolution) de-
triples(subj ect, predicate, object). Then, RDF it-

self is schema-relaxed and its vocabulary can evolve ashttp: //1i nkeddat a. or g/
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pends on how triples are organized, stored, and indexadd analyzing these techniques in Sections 6 and 7, and

Then, (ii)join performance is determined by optimizatheir experimental results are studied in Section 8. These

tion strategies [51], but also by the join resolution algeesults discover the current limitations, and help us to

rithms. Both factors are typically addressed within RDieach conclusions about the interesting research oppor-

storage systems, referred toRBF stores tunities arising in SPARQL resolution on a large scale
RDF stores [10] are built on top of relational system#der MapReduce-guided scenarios. These opportuni-

or are carefully designed from scratch to fit particuldies are finally discussed in Section 9.

RDF peculiarities. In any case, current RDF stores typ-

ically lack scalability when large volumes of RDF dat

must be managed [15]. This fact hinders the construc- RDF & SPARQL

tion of scalable applications in the increasingly IargFh

! . e Semantic Web emerges over a technology stack

LOD cloud. As evidence of this RDF growth, LOD- C .
. o ’ f f lan-
Staté, a project constantly monitoring the LOD Clouolcomprlsmgagreat variety of standards, formats, and lan

] uages. Nevertheless, this paper focuses on how data is
reported that the number of triples grew to more th g bap

- : . : ectively stored and represented for query resolution,
62 b||||_on triples in Novemper 2013. A more de_talle ence our interest is exclusively related to the aforemen-
analysis shows that many single datasets comprise mt?éﬁed RDF and SPARQL
than a hundred million triples, and the storage of suc '

datasets in a mono-node machine, which must provide
efficient access, becomes a formidable challenge. Uhl RDF

fortunately, while significant progress has been malc_j%F, the dat del dqf tic dat .
on RDF storage on a mono-node configuration, suctr. > ¢ @ai@ MOdetused ior semantic data organiza-

as highly-compressed indexes [38], distributed squtioT‘\?‘.n‘OI It is_t‘;i gitrﬁcted r:abeled tgraph(;rlhwhicr resfou;cr:]es
are still at initial stages and continue to be an open ch@[€ Cescribed througn properties and the vailes for these
lenge [25]. properties. Triples (also called statements) are the atoms

. . . . of RDF: (subj ect, predicate, object). The subject
In this scenario, MapReduce [11] arises as acandld%{gntifies the resource being described, the predicate is

infrastructure for dealing with the efficient processing Q ; : o

. . : e property applied to it, and the object is the concrete
big semantic datasets. In short, MapReduce is a frames . !
work for the distributed processing of large quantities (\)/f_ilue_for this property. Figure 1.ShOWS an RDF excerpt
with five RDF triples (left) and its graph-based repre-

Sgte% ir:rgasi”r)(l)r?ri\;lg p(;adeli)yDC-;i ct)gglrem[:lels]s’ir:t |?6\(/)\3|dgly entation (right). As can be seen, part of the success of
9 P 9 ' F is due to this direct labeled graph conception and

from Yahoo! [53], Facebook [56] or Twitter [34] are. ; .
. : . its expressive power: an RDF dataset models a network
managed using MapReduce. Obviously, it has als : :
of statements through natural relationships between data,

been tested for RDF management at large scale.  In
: by means of labeled edges. The labeled graph structure
this paper, we survey the state of the art concernin . :
) - - uriderlying the RDF model allows new semantics to be
MapReduce-based solutions providing an efficient res- . .
asily added on demand. In other words, graph flexi-

iosll:gognai(:]f iﬁg’;ﬁg:&l tahlsvr\/gsufrc;:te Ma(;;;&ilg_gs%il'ty allows semi-structured information (entities hagi
ifferent levels of detail) to be handled.

solutions store RDF and perform SPARQL resolution — . :
P Q As shown in the previous example, the RDF data

their main decisions and strategies —, and to analyzethelrd | considers that subiects (the r ; being d
opportunities in the near future, in which large-scale pr(r)n_o_bedco sde S d'a tsu Jecs_g et.fcles(;)ubcesUR? 94 e
cessing will be even more demanding. scribed) and predicates are identified by s [4]

The rest of the paper is organized as follows. Sev%pereas objects (the values for the properties) can be ei-

. . : . er other resources or constant values (cditedals).
tion 2 provides basic notions about RDF and SPARQ : A ( )
. : . ere exists a special kind of node calleldnk node
whereas Section 3 describes MapReduce foundationsto . o .
. ) ) which identifies unnamed resources, usually serving as
provide basic knowledge about its strengths, but alsorent nodes of a group of triples (containers, collec
its weaknesses. In Section 4, we depict the main chE\f1 group P !

i . . ons, etc.). Thus, the RDF data model is typically for-
lenges which arise when MapReduce is used to meet the,: o .
. malized as follows [22]. Assume infinite, mutually dis-
needs of RDF storage and SPARQL resolution. Then,.In
. ; X e joint setsU (RDF URI referencés B (Blank node} and
Section 5, we introduce a simple classification in whi .
. , . RDF literals).
the most-prominent techniques are organized accordin

to the complexity that their nodes assume within Map-

Reduce clusters. This organization is used for explaini@&ﬁnition 1 (RDF triple) Atuple(s, p, o) € (UUB) x
x (UUBUL) is called an RDF triple, in which §”

2http://stats. | od2. eul is the subject, )" the predicate and ‘0" the object.
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RDF Graph

ex:S1 foaf:age 25 .

ex:S2 foaf:age 25 .

ex:S1 ex:study ex:C1 .

ex:S2 ex:study ex:C1 .

ex:C1 ex:hasProfessor ex:P1.

ex:hasProfessor

Figure 1: An RDF graph example.

SPARQL Query a statements, p,0) € (IUB) x I x (IUBU L), and
SELECT 2age 2courses A exst N, we can formally define TPs and BGPs, as follows:
WHERE { 1’

ex:S1 foaf:age ?age . Page L. .

ex:S1 ex:study Pcourses . Definition 3 (SPARQL triple pattern) A tuple from

} (TULUV)x (IUV) x (IULUYV)isatriple pattern.

Figure 2: A first SPARQL query.
Note that blank nodes act as non-distinguished vari-

ables in graph patterns [45].
Definition 2 (RDF graph) An RDF graphG is a set of

RDF triples. As stated;s, p, o) can be represented as aP€finition 4 (SPARQL Basic Graph pattern (BGP))
direct edge-labeled graph 2 o. A SPARQL Basic Graph Pattern (BGP) is defined as a

set of triple patterns. SPARQL FILTERs can restrict
a BGP. If By is a BGP andR is a SPARQLbuilt-in
2.2 SPARQL condition, then By FI LTER R) is also a BGP.

SPARQL is the W3C standard to query the RDF dataSeveral constructors can be applied over BGPs,
model. It follows the same principles (interoperabilitsuch as theJNI ON of two groups (similar to SQL),
extensibility, decentralization, etc.) and a similar dragOPTI ONAL graph patterns (similar to the relational left
notion. Intuitively, a SPARQL graph pattern comprisesuter join [44]) orFl LTER conditions to provide re-
named terms but also variables for unknown terms. Tégictions on solutions (such asgexfunctions). Pérez
pattern returns solutions when it matches an RDF suli-al. [44] complete this formalization with more seman-
graph after variable substitution. This required substittics (mappings, evaluation, etc.) and a deep study on
tion of RDF terms for the variables is then the solutiogomplexity query evaluation. Anglés and Gutiérrez [2]
for the query. reveal that the SPARQL algebra has the same expressive
An SPARQL query example, with the appropriate sypower as Relational Algebra, although their conversion
tax, is presented on the left side of the Figure 2, wherdasot trivial [9].
the right side represents the intuitive query graph pat-
tern. The WHERE clause serializes the graph pattesn mapREDUCE
to be matched against the RDF graph, whereas the SE-
LECT clause lists those variables delivered as results.\fapReduce [11] is a framework and programming
the current example, when the aforementioned quenyigdel for the distributed processing of large volumes of
matched to the RDF graphin Figure 1, the resultis a sigfata. In practice, it can be considered astbéactostan-
plemapping ?age="25" and?cour ses= ex: C1.  dard for Big Data processing. Its main aim is to provide
The smaller components of a graph patternigle parallel processing over a large number of nodes. Map-
Patterns(hereafteMP9, i.e, triples in which each of the Reduce takes autonomous charge of the parallelization
subject, predicate and object may be a variable (thisték, data distribution and load balancing between every
formalized in Definition 3). The previous example is aode, as well as fault tolerance on the cluster [60]. This
Basic Graph Patterr{hereafteBGP) composed of two enables a wide range of parallel applications in which de-
joined triple patterns. In general terms, BGPs are setsoper responsibilities focus, exclusively, on designin
of triple patterns in which all of them must be matchethe specific problem solution.
(this is formalized in Definition 4). They can be seen as MapReduce is not schema-dependent, so it can pro-
inner-joins in SQL. cess unstructured and semi-structured data at the price of
Formally speaking, in SPARQL, URIs are extended fmarsing every input item [35]. MapReduce relies on two
IRIs [12], hence we introduce a skbof RDF IRI refer- main operations which process data items in the form
ences, and a novel séf, of variables, disjoint fronY. of key-valuepairs: Map andReduce. Map tasks read
Thus, following Pérez et al. [44], @RDF triple is now input pairs, and generate lists of new pairs comprising
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SPLIT —) MAPPING SORT ===  REDUCING
25
o
Node 1 MAP 1
ex:S1, s
A ex:S1 foaf:age 25 . > foaf:age, p
RDF Graph 2,0
ex:S1 foaf:age 25 . ex:S2, s 25,(2,0)
ex:S2 foaf:age 25 . ex:S2 foaf:age 25 . }9 foaf:age, p ex:C1, [(1,5),(2,0)]
ex:S1 ex:study ex:C1 . 25,0 ex:hasprofessor, (1,p)
nput 1 ex:P1, (1,0)
input 1 ex:S1, s ex:S1, (2,s)
ex:S1 ex:study ex:C1. ex:study, p il ex:S2,(2,s)
ex:Cl,0 I ex:study, (2,p)
I foaf:age, (2,p)
Node 2 MAP 2 output
ex:S2, s
RDF Graph ex:S2 ex:study ex:C1.  >f existudy, p

ex:Cl,0

ex:S2 ex:study ex:C1.
ex:C1 ex:hasProfessor ex:P1.

REDUCE 7
ex:study, (2,p)

ex:Cl, s
input 2 ex:C1 ex:hasProfessor ex:P1 —> ex:hasProfessor, p

ex:study

- “

foaf:age

i p
P

REDUCE 8

foaf:age, (2,p)

Figure 3: The overall MapReduce count resources process.

all different values gathered for a given key. Note th&tata are stored in a distributed manner among nodes, di-
the domain of input keys and values is different from thaded into file chunks of predefined size (typically 64 or
domain of output keys and valueise(, input pairs cor- 128 MB). MapReduce takes advantagedata locality,
respond to raw data read, and output pairs correspaadeachvap task reads data from the same machine it
to processed data). These lists are sent tdRdguce is running on, thus avoiding unnecessary bandwidth us-
tasks by an intermediate step.Reduce task reads its age [11]. WherVap tasks end, their output is divided
inputs, groups them, and obtains final values. In thisto as many chunks as keys, and each one is sent to its
way, its input and output keys and values belong to therrespondindgreduce node. Final results dReduce
same domain. A generic example of input and outptaisks are distributed again among the cluster machines,
types is illustrated in Listing 1 [11]. It is worth emphaas they are commonly used in a subsequent MapReduce
sizing thatMap andReduce tasks perform exhaustivejob [60].

I/O disk operations. Botivap andReduce read inputs

from disk and their results are written again on disk. This

fact turns 1/O disk operations into the main bottlene Example. Let us suppose that we deS|gn_ a
pReduce-based solution to process the simple

of MapReduce processes [35], and must be taken i F ¢ illustrated in Fi 1 0 biecti
consideration when designing an optimized MapRed excerpt 1flustrated in Figure L. ur objective
IS to count the number of occurrences of different

process [28]. resources within the RDF dataset, and group them by
attending to their role in the graph (subject, predicate,
or object). The input data are assigned to Wap
tasks, attempting to provide them with the chunk
map: (k1,vl) — list(k2,v2) residing in the same machine. Edghp task reads its
reduce: (k2,list(v2)) — list(v2) assigned triples, one by one, and outputs three pairs for
each triple, stating the resource and the role it plays:
(<resour cesubj ect >, s), (<resource_predi cate>, p),

A MapReduce cluster has a Master/Slave architectuagd( <r esour ce_obj ect >, 0) .
A single Masterinitializes the process, schedules tasks TheMap outputis grouped by resource and sent to dif-
and keeps bookkeeping information. All other noddsrentReduce tasks, one per different resource. Each
are Workers which runMap and Reduce tasks [11]. Reduce increments the number of occurrences by role
Typically, a single machine processes several tasks [68}d writes the results on disk. This process is illustrated

Listing 1: Map and Reduce operations diagram
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in Figure 3. As can be seen, MapReduce is deployedch node is responsible for matching the correspond-
using two nodes, hence the original RDF dataset is dig query against the subgraph that it stores. If queries
vided into two chunks. Node 1 processes the first thraee simple TPs, each node obtains its partial result set
triples, and Node 2 works with the remaining two. Eaahihich is then merged with the result sets retrieved from
Map task outputs its corresponding pairs, which are théme other nodes. However, general SPARQL queries (in
sorted before thBeduce tasks, in which the final statis-the form of conjunctive TPs) imply cross joins between
tics are obtained. O different nodes. This is a traditional complex opera-
tion in distributed databases, where node coordination is
mandatory and data exchanging between them overloads
the overall query performance. MapReduce-based ap-
3.1 Hadoop & Related Technologies proaches follow the aforemention&p andReduce
job to face this problem in the SPARQL ecosystem.
Apache Hadoopprovides the most relevant implemen- | 5 MapReduce clustethe full RDF dataset is dis-
tation of the MapReduce framework, published under th§yted between the nodes When a new query is re-
Apache License 2:0 It is designed to work in heterogeejved, each node runshap task on its corresponding
neous clusters of commodity hardware with Unix/Linuyata andbtains all the triples satisfying the query lo-
operating systems. To the best of our knowledgey|ly. These temporary results are sorted by the corre-
Hadoop is the implementation used in each acadengigonding join variable and sentReduce tasks, which
work proposing MapReduce for SPARQL resolution. finally perform the join. Note that these tasks have no
Hadoop implementsiDFS (Hadoop Distributed File communication with each other, and read different result
System) [6], a distributed file system based on th@nks.
Google File System model [18]. It is designed to pro- A naive approach, with no optimizations, would fol-
vide scalability, fault tolerance and high aggregate pesw the next general steps:
formance. An important feature of HDFS is data repli-
cation: each file is divided into blocks and replicated1. IntheMap stage, triples are read from their storage
among nodes (the replication factor in HDFS is three by and transformed into key-value pairs in which keys
default). This replication also favors the aforementioned correspond to the join variable bindings. Note that
data locality, i.e. Map tasks are performed in the same  the process is performed for the two TPs in the join.
node where their input data are stored. These results are written to disk.
Replicated data files in HDFS are schema-free and in- ) ) _
dex free, so each content must be parsed explicitly. If- Those retrieved triples are read in the form of key-
practice, this fact overloads MapReduce performance, Value pairs and sorted by key befdzeduce.
hgnce Qiﬁerent alternatives can be considered to n_1ini3_ TheReduce stage reads the pairs and keeps those
mize this impact. One of the most reIe_vant alternatives matching the join condition. Obviously, two pairs
is HBasé: this is a NoSQL colpm_n-orlented database join when they share the same key. These triples
which tak_es advantage_of the dlstrlbuted_ I_—|_DFS features are written in the final output.
and provides Google BigTable [8] capabilities on top of

HDFS and Hadoop. HBase indexes data by row key, col-t js worth noting that some joins can depend on other
umn key, and a timestamp value, and maps them iRfresolved joins,e. when a TP is used in two joins over
an associated byte array which allows random data @gferent variables [26], and triples can be scattered in an
cess to MapReduce applications. HBase also allows sgfknown way over the data excerpts. Thus, it is possible
ondary indexes and filters that reduce data transferiggt more than one job is needed to obtain the final result.
over the network, improving the overall MapReduce peafy such a scenario, these jobs perform sequentially, and
formance. each one takes the previous job output as input [28]. In
this case, a first step is mandatory to select which vari-
4 CHALLENGES FOR MAPREDUCE-BASED ables will be resolved in each job [26, 39].
SPARQL RESOLUTION A natural straightforward optimization is to imple-
ment multi-way join resolution [24] in MapReduce,
As explained in Section 2.2, SPARQL resolution usile, the possibility of performing a join on more than
ally takes the form of pattern matching between the RQyo TPs sharing the same variable. In other words, Map-
graph and the BGP [25]. In distributed environmentReduce allows multi-way joins to be resolved in a single
Shttp: // hadoop. apache. or g job [1], in contrz_is_t to classical solutions vyhich make as
4htt p: / / ww. apache. or g/ | i censes/ LI CENSE- 2. 0 many two-way joins as needed [39]. This can be use-
Shttps://hbase. apache. org ful to resolve the so-calle®tar Queries(several TPs
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SPARQL Query
SELECT ?X
WHERE { D

?X rdf:type ex:student . 1 TP1

?X ex:study ex:ComputerScience . TP2

?X foaf:name ?Y . 1 TP3

?X foaf:age 72 } L TP4 D<ax P4 D

X TP3 TP1 TP2 TP3 TP4
(c)
TP1 P2

Figure 4. Potential execution plans in SPARQL star-shaped geries. (a) Original query, (b) Plan constructed
by traditional two-ways joins, (c) Optimized plan with mult i-way joins.

SPARQL Query
SELECT ?X
WHERE { < » D<oy
?X rdf:type ex:student . TP1
?Y rdf:type ex:degree . TP2 /\
?X ex:study ?Y . 1 TP3
?Y exchasProfessor ?2Z. | TP4 D<oy T TP2

D<Jax TP2 P4

E Ps D<ax AL
?Z rdf:type ex:professor } TP5 /’\ /\ /\
. TP1 TP3  TP4 TPS

(c)

TP1 TP3

(b)

Figure 5: Potential execution plans in SPARQL path queries(a) Original query, (b) Plan constructed with
multi-way joins, (c) Optimized plan with multi-way joins.

sharing a join variable), such as the query illustrated ireduce tasks [49, 19]. For this reasoefficient vari-
Figure 4(a). ables selectioris crucial [28, 26]. It can be seen in the

The classical resolution plan for this query, shown fath Query(a query in which TPs form a chained path)
Figure 4(b), would make a first join betwedi®l and described in Figure 5(a). This query can be resolyed_wnh
TP2, a second join between the previous result set ati§ resolution plan illustrated in Figure 5(b). A first job
TP3, and finally a join between the output of the prevfan produce the join betweeiP1 andTP3, over?X.
ous one and@P4. Otherwise, this could also be solved by hen, & multi-way join between the result of this first
means of two independent joins, for instaf@LxTP2 J0b, TP2, andTP4, over?Y, can be resolved in a sec-
and TP3TP4, and a final join of both results. In con-2nd job. Finally, a join between the last job output and
trast, MapReduce can make all these joins in just oRES OVer?Z, provides the final result. Thus, the query
step [39], because all TPs share the same variable. Thigatisfied with three jobs. Another choice, shown in
is illustrated in Figure 4(c). Figure 5(c), is to run a single job which joiff$*1 and

TP3, over?X, andTP4 andTP5, over?Z. Then, a sec-

In general, the exact number of required MapReduSSd job makes the multi-way join between the outputs of

jobs depends on the order in which join variables fe first job andrP2 over,?Y. In this case, the query is

chosen. I_n addition, each job SUPPOSES & SErloUS OVRL /e with only two jobs because, unlike the previous
head, which can be almost equivalent to reading a b'l'an WO of the ioins can be done in parallel
lion triples [27]; partly because of job initialization [}3 pian, : P '

partly because of data shuffing betweemp and
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Resource popularity is another important issue pose, some approaches use a NoSQL database (in
which must be considered. Urbani et al. [58] point out general, HBase) on top of HDFS. These approaches
that some resources are more popular than others in an leverage database indexes to improve RDF retrieval
RDF dataset. Thufeduce tasks can receive very dis- within individual nodes, therefore improving TP
parate quantities of data and it can lead to lower perfor- resolution within theMap stage. These random
mance because the whole process depends on the sloweraccess capabilities allow more complei&p and
task [25]. For instance, in the query of Figure 5(a), it Reduce stages to be implemented in practice.
can be expected that the join betwe€R4 and TP5
ends sooner than the join betweBR1 andTP3. Thus,  Regardless of this physical tuning, all approaches
query optimization must take into account the fact tha@rry out specific strategies for reducing the number of
resources are distributed in a biased way. MapReduce jobs required for general SPARQL resolu-

Finally, I/O disk operations are the main bottlenecktion. Both physical decisions and these processing strate-
in MapReduce jobs, as stated before. This fact is esgées are reviewed in Section 6 within the corresponding
cially relevant for semantic data processing becauseagproaches.
the schema-relaxed nature of RDF. In practice, this fea-
ture means that triples can be located anywhere in ti/brid solutions. This second family, in contrast to
dataset. Thus, how data is effectively encoded is detgtive solutions, deploys MapReduce clusters on more
minative for parsing and processing triples. If this faglomplex nodes, typically installing mono-node state-of-
is not considered, each MapReduce job can be forcedtg-art RDF stores. This decision allows each node to

read the whole dataset [28, 26]. partially resolve SPARQL queries on its stored subgraph,
so that MapReduce jobs are only required when indi-
5 CLASSIFICATION vidual node results must be joined. In this scenario,

triples distributionis an important decision to minimize
As stated, different MapReduce-based solutions hgee even avoid) the number of MapReduce jobs required
been proposed for SPARQL resolution on a large scafler query resolution.
Thus, we propose a specific classification which allows
us to review these solutions in a coherentway. To do thigible 1 summarizes the most relevant solutions, in the
we divide the technique according to the complexity thatate of the art, according to the above classification. The
their nodes must assume within the MapReduce clusg@responding papers are reviewed in the next two sec-
We consider two main families that we refer toreive tions.
andhybrid solutions. In addition to the reviewed papers, it is worth noting
that there exist some other proposals [54, 47, 50, 31]
which are deployed on top of additional frameworks run-

Native solutions. This first family considers all solu- ", Had h Pig 141 Hive [56. 57
tions relying exclusively on the MapReduce frameworR!N9 OVEr madoop, such as Fig [41] or Hive [56, 57].
These solutions use high-level languages over Hadoop

That is, queries are resolved with a series of MapRedu i dr ed K lexitios f devel
jobs on low complexity nodes, typicallydisregardingth@ idemap andr educe task complexities from devel-

help of specific semantic technology in each node of tRBE": However, we do not look at them in detail be-

cluster. cause their main contributions are related to higher level
Thus, the overall SPARQL resolution performanc%etails’ while their interngl MapReduce configurations

mainly depends on (a) physical tuning decisions, afgspond to the same principles discussed below.

(b) processing strategies which reduce the number of re-

quired jobs. As for (a), we consider two main decisios NATIVE SOLUTIONS

to optimize the physical aspects: _ ) ) ) o
This section reviews the most relevant techniques within

¢ Data storages one the main bottlenecks within théhe native solutions. Attending to the previous classi-
MapReduce ecosystem. Note that data are perdigation, we analyze solutions running on native HDFS
tently read from disk and stored again to commurstorage (Section 6.1), and NoSQL-based proposals
cateMap andReduce stages. Thus, how the datdSection 6.2).
are organized for storage purposes in HDFS is one
of the considerations addressed by the existing 21 HDFS-based Storage

lutions. o o )
Before going into detail, it is worth noting that all these

e Data indexings an immediate improvement for re-solutions usesingle line notationsfor serializing RDF
ducing the aforementioned I/O costs. For this puttata in plain files stored in HDFS. Some solutions use
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Table 1: Classification and strategies of MapReduce-basedlsitions addressing SPARQL resolution.

Solution Type Purpose Solution Reason Papers
Simplify ~ automated| Single line notations Each triple is stored in a sepa-[28],
processing rate line [26],
[27],
Native [39]
. Substitution of common pret Data size reduction [28],
solutions Reduce storage

fixes by IDs [26],
Division of data in several files Only files with corresponding [27]
by predicate and object type | TPs will be read
Storage of all triples with thg Improve reading speed df [48]
same subject in a single line | queries with large number of

requirements

Improve data
processing speed

results
Map-side joins Reduce data shuffled and trans{19],
ferred between tasks [49]
NoSQL solutions Provide indexed access 1o[55],
triples [43],
[49]
Greedy algorithm Optimize Star Queries [28],
[26],
Reduce number of Multiple Selection algorithm | Optimize Path Queries [39]
MapReduce jobs Early elimination heuristic Prioritize jobs that completely [27]
eliminate variables
Clique-based heuristic Resolve queries with map-side[19]
joins
Hybrid Allow parallel sub-| Graph Partitioning Each node receives a significanpt[25],
solutions graph processing subgraph [36]
Parallel subgraph processing | Each node resolves subgraTh
joins

straight N-Triples format [20] for storage purposes [39%tructure. It enables spatial savings, but also parsing tim
while others preprocess data and transform them to theéicause the amount of read data is substantially reduced.
own formats. This simple decision simplifies RDF Husain et al. [26] focus on storage requirements and
processing, because triples can be individually pardé@ costs bydividing data into several files This deci-
line-by-line. In contrast, formats like RDF/XML [3] sion allows data to be read in a more efficient way, avoid-
force the whole dataset to be read in order to extracing the reading of the whole dataset in its entirety. This
triple [28, 26, 39, 46, 25]. optimization comprises two sequential steps:

1. A predicate-based partitioning is firstly performed.
Thus, triples with the same predicate are stored as
pairs( subj ect, obj ect) within the same file.

RDF storage issues are addressed by
Rohloff and Schantz [48], Husainetal. [28, 26, 27]
and Goasdoué and Kaoudi [19] in order to reduce
space requirements and data reading on each joR. Then, these files are further divided imtedicate-
Rohloff and Schantz [48] transform data from N3 into a  typechunks in order to store together resources of
plain text representation in which triples with the same  the same type (e.gex: student Or ex: degree in
subject are stored in a single line. Although it is not  the example in Figure 1). This partitioning is per-
an effective approach for query processing (in which a  formed in two steps:
potentially small number of triples must be inspected), . ) o
it is adequate in the MapReduce context because large (&) Explicit type informationis firstly used for

triple sets must be scanned to answer less-selective partitioning.  That is, (subj ect, obj ect)
queries [48]. pairs, fron_1 the df : type pr_edlcate flle,_are di-
vided again into smaller files. Each file stores
Another immediate approach is based on common all subjects of a given type, enabling resources
RDF prefix substitution [28]. In this case, all occur- of the same type to be stored together.
rences of RDF terms (within different triples) are re- (b) Implicit type informationis then applied.
placed by short IDs which reference them in a dictionary Thus, each predicate file is divided into as
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many files as different object types it containdn addition, subject and object partitions are grouped
This division materializes theredicate-type within a node by their property values. The property
split. Note that this is done with the informaxr df : t ype is highly skewed, hence its partition is bro-
tion generated in the previous step. Thus, eakbn down into smaller partitions to avoid performance is-
chunk contains all the(subject, object) sues. In fact, property values in RDF are highly skewed
pairs for the same predicate and type. in general [32], which can cause property partitions to
) . . differ greatly in size. This issue is addressed by defin-
General query resolution performs on an iterative gljq 5 threshold: when creating a property partition, if the
gorithm which looks for the files required for resolving, ;e of triples reaches the threshold, another partition
each TP in the query. According to the TP features, th€qreated for the same property. It is important to note
algorithm proceeds as follows: that this replication method improves the performance,

« If both predicate and object are variables (but nfpelljt at the cost of fault-tolerance: HDFS standard replica-

type has been previously identified), the algorith 0N pol_icy ensures that each iter_n of the dat_a is stored in
must process alpredicate-typefiles for the re- t ree different node_s, but with this personalized method,
trieved type. thisis n_ot necessarily true.

Husain et al. [28] and Myung et al. [39] focus os-

e If both predicate and object are variables (but ti#icing the number of MapReduce jobsrequired to re-
type has not been identified), or if only the predsolve a query. Both approaches use algorithms to select
icate is variable, then all files must be processedriables in the optimal way. Their operational founda-
Thus, the algorithm stops because no savings digns are as a follows. In a first step, all TPs are an-
be obtained. alyzed. If they do not share any variable, no joins are

required and the query is completed in a single job. Note

e If the predicate is bounded, but the object is varihat while a cross product would be required in this case,
able (but the type has been previously identifiecthis issue is not addressed by these works. Otherwise,
the algorithm only processes theedicate-typédile there are TPs with more than one variable. In this case,
for the given predicate and the retrieved type.  yariables must be ordered and two main algorithms are

¢ Ifthe predicate is bounded, but the object is variab?gnSiderEd:

(but the type has not been identified), plédicate- o The greedy algorithmpromotes variables partici-
typefiles must be processed. pating in the highest number of joins.

For instance, when making split selection for the ¢ The multiple selection algorithnpromotes vari-
query of Figure 5(a), the selected chunks would be the ables which are notinvolved in the same TP because

following: these can be resolved in a single job.
e TP1: type fileex: st udent . Both algorithms can be combined for variable order-
o TP2: type fileex: degr ee. ing. Whereas Myung et al. [39] make an explicit differ-

entiation between the algorithms, Husain et al. [28] im-
plement a single algorithm which effectively integrates
e TP4: predicate-type fileex: hasProf essor-ex: them. These algorithms are simple, report quick perfor-
pr of essor . mance, and lead to good results. However, they are not
e TP5: type fileex: prof essor . always opt_imal_. Ina Iate_r quk, Husain et al. [26] obtain
each possible job combination and select the one report-
Goasdoué and Kaoudi [19] focus their attention on aimg the lowest estimate cost. This solution, however, is
other MapReduce issue: the job performance greatly deported as computationally expensive.
pends on the amounts of intermediate data shuffled andHusain et al. [27] revisit their previous work and de-
transmitted fromvap to Reduce tasks. Their goal is velop Bestplan a more complex solution for TPs selec-
to partition and place data so that most of the joins c&an. In this solution, jobs are weighted according to their
be resolved in the Map phase. Their solution replacestimated cost. The problem is then defined as a search
the HDFS replication mechanism by a personalized oradgorithm in a weighted graph, where each vertex rep-
where each triple is also replicated three times, butiiesents a state of TPs involved in the query, and edges
three different types of partition: subject partitionsypr represent a job to make the transition from one state to
erty (predicate) partitions, and object partitions. Foramother. The goalis to find the shortest weighted path be-
given resource, the subject, property, and object paseen the initial state,, where each TP is unresolved,
titions of this resource are placed in the same nodethe final statey,,;, where every TP is resolved. How-

e TP3: predicate-type filex: st udy- ex: degr ee.
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ever, it is possible (in the worst case) that the complexity2 NoSQL Solutions
of the problem were exponential in the number of join- ) ] _
ing variables. Only if the number of variables is small! order to improve RDF retrieval in each node,

enough, is it a feasible solution for generating the graE'ﬂme approaches use the NoSQL distributed database
and finding the shortest path. Base[55, 43, 49] on top of HDFS. These solutions per-

For hiaher numbers of ioining variables. tRelaxed- form triples replication, in diverse tables, and use some
Best, Iar?al orithm is useé It agsumes un,iform cost f indexing strategies to speed up guery performance for

5P o 9 N . - Ps with distinct unbound variables. The main draw-
all jobs; i.e. the problem is to find the minimum num-

ber of jobs. This concern can also be infeasible, but |?Ck of these approaches is that each triple is now stored

: . . . . many times, one for each different table, and this spatial
is possible to implement a greedy algorithm that finds Verhead is added to the HDFS replication itself (with a
upper bound on the maximum number of jobs that pe

. . . fault replication f r of three).
forms better than the greedy algorithm defined in [28 gaut P gato actor of three) . . -
: : . oo . Sun and Jin [55] propose a sextuple indexing similar

This algorithm is based on aarly elimination heuris-

tic. That is, jobs thatompletely eliminateariables are to the one of Hexastore [59] or RDF3X [40]. It con-
gy Do . sists of six indexesS PO, P.SO, QSP, PSO, SQP, and

selected first, whereomplete eliminatiomeans that this . o .

PO_S, which cover all combinations for unbound vari-

variable is resolved in every TP Et appears. ) ables. Thus, all TPs are resolved with one access to the
On the other hand, Goasdoué and Kaoudi [19] reP&srresponding index.

sentthe query asguery graptwhere nodes are TPs, and pailioy et al. [43] reduce the number of tables to

edges model join variable; petwgen them (these aretlﬂ"ee, corresponding to index88 0, OSP, andPO_S.
beled \,N'th the name pfthejom variables). Then, the COPps with only one bound resource are resolved with
ceptclique s_ubgrgphs proposed from the weII-knowna range quUery <resour ce>, i ncr ement (<r esour ce>)] .
concept ofclique in Graph Theory; a clique subgrapi, ¢, rther improve query performance, all indexes store
G, is the subset of all nodes which are adjacent to tBﬁIy the 8-byte MDSHashes d§, p, o} values; a table

edge labeled with the variable(i.e.: triples that share containing the reverse MD5Hash to values is kept and
variable v). Using this definition, possible queries arfsed during object retrieval.

divided into the following groups: Schatzle and Przyjaciel-Zablocki [49] reduce the

number of tables even more, using only two, cor-
e 1-clique query:where the query graph contains gesponding to indexe§ PO and O_.PS The HBase
single clique subgraph. These queries can be Fter API is used for TPs which boungsubj ect and
solved in theVvlap stage of a single job, because thenj ect) or(obj ect and predi cate). In turn, predicate
join can be computed locally at each node. bounded TPs can be resolved using thBase Filter
API on any of the two tables.

« Central-clique query:where the query graph con- Although these solutions rely on HBase for triple re-

tains a single clique subgraph that overlaps with &f|€Ving: join operations are still performed vidap

other clique subgraphs. These queries can be #8d Reduce operations. SunandJin [S5] use simi-

solved in a single complete job. The query cdg" algorithms to that described previously for [28, 39].

be decomposed into 1-clique queries that can papailiou etal. [43], on the contrary, develop a com-
resolved in theMap phase of a MapReduce jobplex join strategy where joins are performed differently

and then the results of these joins can be joined(ﬁ’?pending on BGP characteristics. The different join

the variable of the common clique on tReduce Strategies are:

stage. o
e The map phase joinis the base case and follows

the general steps described in section 4. That is, the
e General queryThis is neither 1-clique nor central- mappers read the triples and erfkiey, valuepairs
clique query. These queries require more than one in which i) thekeyscorrespond to the join variable
job to be resolved. A greedy algorithm, referred  pindings, and ii) thezaluescorrespond to the bind-
to asCliqueSquareis used to select join variables.  jngs for all other variables included in the TPs of the
This algorithm decomposes queries into clique sub- join (if exist) calculated in previous jobs. In turn,
graphs, evaluates joins on the common variables of  the reducers merge, for each key, the corresponding
each clique, and finally collapses them. All this pro-  |ist of values in order to perform the join. Although
cessing is implemented in a MapReduce job. As this strategy is namerhap phase jointhe actual
cliques are collapsed, each node in the query graph join is performed in theReduce phase (the name
represents a set of TPs. only refers to when data is extracted from HBase).

10
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e Thereduce phase joinis used when one of the TP40 manage a significant RDF subgraph in each node in
retrieves a very small number of input data conorder to minimize inter-node communication costs. In
pared to the rest. In this case, thiep stage is the fact, when join resolution can be isolated within a single
same as in thdlap phase joinbut only this TP is node, the complete query is resolved in parallel using
used as input. It is in th&®duce stage where, MapReduce. These queries are defineBasllelizable
for each mapped binding, data are retrieved if th&yithout Communicatio(PWOC) by Huang et al. [25].
match other TPs. In this case, the final results are just the addition of each

node output (note that a cross product would be required

in this case, but this case is not considered in the original
ﬁaper). If a query is not PWOC, it is decomposed in par-
llelizable queries and their result is finally merged with
pReduce.
A straightforward, but smart, data distribution per-
e Instead of launching a MapReduce job, temtral- forms hashing by subject, object or subject-object (re-
ized join performs the join operation in a singlesources which can appear as subject or object in a
node. This is only an efficient choice when the inpiiple) [36]. This hash-based partitioning is also used
data size is small, and the initialization overhead 8f multiple distributed RDF Stores such as YARS2
a MapReduce job is a major factor in query perfof23], Virtuoso Cluster [14], Clustered TDB [42], or
mance. CumulusRDF [33]. In the current scenario, hash-
partitioning enables TPs sharing a variable resource to be
Furthermore, Schatzle and Przyjaciel-Zablocki [49ksolved without inter-node communication. This result
develop a join strategy namedap-Side Index Nestedis especially interesting for star-shaped query resaytio

Loop Join(MAPSIN join). This strategy performs thebut more complex queries require intermediate results to

join in the Map stage instead of thReduce one. It be combined and this degrades the overall performance

firstly performs a distributed table scan for the first TIF25]. Edge-based partitioning is another effective means
and retrieves all local results from each machine. Fef graph distribution. In this case, triples which share

each possible variable binding combination, Mep subject and object are stored in the same node. How-
function is invoked for retrieving compatible bindinggver, triples describing the same subject can be stored
with the second TP. The computed multiset of solution$ different nodes, hindering star-shaped query resolu-

is stored in HDFS. This approach highly reduces the néibn [25]. Finally, Huang et al. [25] and Lee and Liu [36]

work bandwidth usage, as only compatible data for tierform a vertex-based partitioning. By considering that

second TP needs to be transferred to the nodes whegfth triple models a graph edge, this approach distributes
run theMap tasks. Note that, when the join is matesubsets of closer edges in the same machines. This par-
rialized in theReduce stage, all possible bindings araitioning involves the following three steps:

transferred fromvap to Reduce tasks. Joins involv-

ing three or more TPs are computed successively. Fof. The whole graph is vertex-based partitioned in dis-
each additional TP, ap stage is performed after join-  joint subsets. This class of partitioning is well-

ing the previous TPs. In this case, thlp function is known in Graph Theory, so standard solutions such
invoked for each solution obtained in the previous joins. a5 theMetis partitioner[30], can be applied.

Finally, in the case of multi-way joins, compatible bind-

ings for all TPs are retrieved from HBase ina sinfl 2. Then, triples are assigned to partitions.

stage. Finally, for queries involving a high selective TP

(retrieving few results), th&kp function is invoked in 3. Partitions are finally expanded through controlled
one machine for avoiding the MapReduce initialization.  triple replication.

e The partial input join is similar toReduce phase
join, but allows an arbitrary number of TPs to b
selected for extracting their results in tiep stage.
These selection use information gathered during t
bulk data loading to HBase.

7 HYBRID SOLUTIONS It is worth noting that df : t ype generates undesirable
connections: every resource is at two hops of any other
The approaches reviewed in the previous sectiogsource of the same type. These connections make the
strictly rely on the MapReduce framework for resolvgraph more complex and reduce the quality of graph par-
ing SPARQL queries. Some other techniques introdutitioning significantly. Huang et al. [25] remove triples
specific semantic technology in each node of the clustaith predicate df : t ype (along with triples with similar
In general, this class of solutions deploy an RDF stosemantics) before partitioning. Highly-connected ver-
in each cluster machine and distribute the whole datadees are also removed because they can damage quality
among each node. The motivation behind this ideaiisa similar way. In this case, a threshold is chosen and

11
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those vertices with more connections are removed befoEexample. We illustrate these definitions using the
partitioning. RDF excerpt shown in Figure 1. Let us suppose that
Huang et al. [25] create partitions including tripleriples are partitioned by subject, and each one is as-
with the same subject. In turn, Lee and Liu [36] obtaisigned to a different partition. In this case, théop
partitions for three different kinds of groups: guaranteeor any type ofl-hop expansiowould simply
obtain the initial partitions without adding any additibna
e Subject-based triple groupscomprising those triples. This is shown in Figure 6(a).
triples with the same subject. The 2-hop partitions are obtained by including triples
“related” to those in the corresponding 1-hop parti-
tion. How this relationship is materialized depends
on the type of partition. Directed 2-hop guarantee

e Subject-object-based triple groupscomprising and2-hop forward direction-based expansiadd triples

those triples with the same subjectobject. whose subject is object in any triple within the 1-hop
partition. In the current example, the trip{ex: C1,

The overall query performance could be improved ék: hasPr of essor, ex: P1) is added to partitions 1 and
triples replication is allowed. It enables larger subgsaph, but the partition 3 is unchanged because there are no
to be managed and queried, yielding configurable spao®sre triples with their subject included in the 1-hop par-
time tradeoffs [25]. On the one hand, storage requitition. The resulting partitions are shown in Figure 6(b).
ments increase because some triples may be stored iihe 2-hop reverse direction-based expansidius-
many machines. On the other hand, query performariaed in Figure 6(c), add triples whose object is a subject
improves because more queries can be locally resolviedany triple within the 1-hop partition. For the current
Note that the performance gap between completely paxample, partitions 1 and 2 remain unchanged whereas
allel resolved queries and those requiring at least one jtte partition 3 addgex: S1, ex:study, ex:Cl) and
is highly significant. Huang et al. [25] introduce two parex: S2, ex: study, ex: Cl).
ticular definitions to determine the best triple replicatio The undirected 2-hop guaranteeand 2-hop
choice: bidirection-based expansiomadd triples whose sub-

ject or object appear, as subject or object, in any triple
¢ Directed n-hop guaranteeann-hop guarante@ar- within the 1-hop partition. In our current example,
tition comprises all vertices which act as objectsx: C1, ex: hasProfessor, ex:P1) is added to parti-
in triples whose subject is in gm-1)-hop guaran- tions 1 and 2 because their subjest:(c1) is already in
teepartition. Thel-hop guarante@artitions corre- the partition. In turn(ex: S1, ex:study, ex:Cl) and
sponds to the partition created by the vertex partiex: s2, ex: study, ex: C1) are added to the partition 3
tioning method previously described. because their objectx: c1) is also in the partition. The
) . resulting partitions are illustrated in Figure 6(d).
. Und|.rected n-hop.g_uaranteehls is S|m|Iar. tothe  1he subsequent 3 and 4-hop partitions are obtained
previous one, but it includes each vertex linked o) q\ying the same decisions. It can be tested that, in this
vertex in the(n-1)-hop guarantepartition (.e. ver- example, bothundirected 4-hop guaranteand 4-hop

tices which are subject of a triple having its obje¢jgjrection-based expansidnclude the whole grapha
on the(n-1)-hop guarantee

e Object-based triple groups comprising those
triples with the same object.

Lee and Liu [36] propose comparable definitions: This n-hop review leads to an interesting result: in

o k-hop forward direction-based expansimrsimilar ully connected graphs, botimdirected k-hop guaran-
to directed n-hop guaranteét adds triples with the teeandk-hop bidirection-based expansipartitions will

subject acting as the object of a triple in the part@_ventually include the whole graphrnfk is sufficiently
tion. increased. However, this is not true for directed guaran-

tees/expansions, as some resources can be connected by
e k-hop reverse direction-based expansi@uds the direction which is not considered [25].
triples with an object which appears as the subjectTo determine if a query is completely resolved in par-
of a triple in the partition. allel, centrality measures are used. Huang et al. [25] use
the concept oDistance of Farthest EdgéDoFE). The
e k-hop bidirection-based expansias similar to vertex of a query graph with the smallest DoFE will be
undirected n-hop guaranteeThus, it adds triples considered as theore If the DoFE of the core vertex
with a resource playing any resource role for a triplg |ess than or equal to the n-hop guarantee, then the
in the partition. query is PWOC. It is worth noting that if directed n-

12
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(a) (b) (c) (d)
. h Undirected 2-hop
1-hop guarantee / 1-hop D;i‘:eiozr-w:f dg(;li?;i:i?: / 2-hop reverse direction- guarantee / 2-hop
expansion P . based expansion bidirection-based
based expansion expansion
. ex:S1 foaf:age 25 . ex:51 foaf:age 25. ex:S1 foaf:age 25 . ex:51 foaf:age 25.
Partition 1 ex:S1 ex:study ex:Cl ex:S1 ex:study ex:C1. ex:S1 ex:study ex:Cl ex:S1 ex:study ex:C1 .
’ ’ Y extl . ex:C1 ex:hasProfessor ex:P1 . ’ : Y etz ex:C1 ex:hasProfessor ex:P1 .
- ex:S2 foaf:age 25 . ex:52 foaf:age 25 . ex:S2 foaf:age 25 . ex:52 foafage 25 .
Partition 2 ex:S2 ex:study ex:Cl ex:S2 ex:study ex:C1 . ex:S2 ex:study ex:Cl ex:S2 ex:study ex:C1 .

- . Y et ex:Cl ex:hasProfessor ex:P1. - : Y et ex:C1 ex:hasProfessor ex:P1.
it :C1 ex:hasProfi :P1. : : :
Partition3 | o.c1 ex:hasProfessor ex:P1 ‘ ‘ ex:C1 ex:hasProfessor ex:P1 . ex:Cl exchasProfessor ex ex:C1 exchasProfessor ex:P1 .
ex:S1 ex:study ex:C1 . ex:S1 ex:study ex:C1 .
ex:S2 ex:study ex:C1 . ex:S2 ex:study ex:C1 .

Figure 6: Example of different hop partitions over the RDF graph example in Figure 1.

hop guarantee is used, the distance must be meastirech a university ontology. It also provides a set of
considering the query as a directed graph; if undirectéd queries varying in complexity. Thus, we aim to an-
n-hop guarantee is used, the query can be consideredlgze how solutions face two correlated dimensions: i)
an undirected graph. Lee and Liu [36] propose simildataset sizeand ii) resolution performance at incre-
definitions with the name ofenter vertexandradius mental query complexity.
Radius can be calculated &sward radius(when us-
ing forward direction-based expansiomgyverse radius g 1  Native solutions on HDES
(when using reverse direction-based expansiordjdir
rectional radius(when using bidirectional-based exparAs stated, native solutions running on HDFS make use
sion). In these cases, the query graph must be considenetlusively of MapReduce infrastructure for SPARQL
as directed, inversely directed, and undirected. resolution. On the one hand, RDF is stored using dif-
If triples replication is used, it is possible that moréerent file configurations within HDFS. On the other
than one partition could resolve a query. This coulthnd, SPARQL queries are resolved with successive jobs
lead to duplicate results when resolving PWOC queriggross the nodes. It is worth noting that all techniques
Huang et al. [25] address this issue in the following wagnalyzed in this section use multi-way joins for query
when a partition is created, additional triples with theptimization.
form (v, <i sOaned>, " Yes") are added, where corre-  The initial work by Husain etal. [28] proposes a
sponds to core vertexes of the partitioe (not added as promising specific optimization on the basis of organiz-
an n-hop guarantee). When resolving a query in paralliglg triples in files by certain properties. They perform,
an additional TP with the formore, <i sOmed>, " Yes") though, a reduced evaluation with a cluster of 10 nodes,
is added to the query. aimed at testing the feasibility and scalability of the pro-
posal. They report runtime for six queries from LUBM
on incremental dataset sizes. The solution scales up to
1, 100 million triples and shows sublinear resolution time

. . . : w.r.t. the number of triples. However, no comparisons
This section summarizes the experimental results pro-

) . . are made against any other proposal, so its impact within
vided by the authors of the most prominent teChqu.jﬁ]Se state of the art cannot be quantified. Their next solu-

described in the previous sections. Itis worth mentionin . . X
. : trl1 n [26] fills this gap and evaluates the approach (again
that any performance comparison would be unfair, as the . )
a cluster of 10 nodes) against mono-node stores:

solutions are tested under different configurations a :
g BlgOWLIM6 and Jen&(in-memory and the SDB model
most of them do not compare to each other. These vari® ~. : .
. . . . . on disk). The latest solution by Husain et al. [27] com-
ations include different node configurations and cluster . :
o X . are their approach against the mono-node RDF3X [40].
compositions; the version of Hadoop used in the expefi-,, . .
) . - In this latter comparison, larger datasets are tested; rang
ments and also its configuration; and the datasets size. . o ;
Nevertheless, all of them use the well-known Lehig g from LUBM(10K), with 1.1 billion triples, to LUBM
’ 9 0K), with 3.3 billion triples. In addition to LUBM,

University Benchmark[21] (LUBM), obtaining dataset
from LUBM(100) to LUBM(30K). This benchmark al-  entp:/mww.ontotext.com/owlim/editions
lows synthetic data, of arbitrary size, to be generated’http:/jjena.apache.org/

8 ANALYSIS OF RESULTS
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a subset of the SBench Performance Benchmark [52impact of MapReduce initialization decreases for larger
is also used as evaluation queries. These last wodetasets.
reach similar conclusions. As expected, the Jena inPapailiou et al. [43] compare themselves with the
memory model is the fastest choice for simple querigapno-node RDF3X and with the MapReduce-based so-
but it performs poorly at complex ones. Moreover, lution HadoopRDF [27]. The experiments comprise a
runs out of memory on a large scale (more than 100 milariable number of nodes for the clusters and a single
lion triples). Jena SDB works with huge sizes, but ihachine for RDF3X. This machine deploys an identical
is one order of magnitude slower than HadoopRDF. émnfiguration to that used for the nodes in the clusters.
general, BigOWLIM is slightly slower in most datasetUBM datasets are generated for 10,000 and 20,000
sizes, and slightly faster in the 1 billion dataset (mostiyniversities, comprising 1.3 and 2.7 billion triples re-
because of its optimizations and triple pre-fetch). A depectively. Their solution shows the best performance
tailed review shows that BigOWLIM outperforms théor large and non-selective queries (Q2 and Q9), and
MapReduce proposal in simple queries (such as Ql@ytperforms HadoopRDF by far for centralized joins.
whereas it is clearly slower in the complex oneg)(Q2 Nonetheless, it is slightly slower than RDF3X for this
or Q9). They also evaluate the impact of the number cdise. Regarding scalability, execution times are almost
reducers, showing no significantimprovementin the pdirearw.r.t. the input when the number of nodes does not
formance with more than 4 reducers. RDF3X performary within the node, and decreases almost linearly when
better for queries with high selectivity and bound olmore nodes are added to the cluster.
jects €.9.Q1), but HadoopRDF outperforms RDF3X for Schatzle and Przyjaciel-Zablocki [49] perform an
queries with unbound objects, low selectivity, or joins ogvaluation of their MAPSIN join technique over a cluster
large amounts of data. Moreover, RDF3X simply cannaiith 10 nodes. They also use the?B@nch in addition
execute the two queries with unbound objects (Q2 atwlLUBM. For LUBM, datasets from 1,000 to 3,000 uni-
Q9) with the LUBM(30K) dataset. versities are generated; for &ench, datasets from 200
Goasdoué and Kaoudi [19] compare their solutiamillion to 1 billion triples are generated. Their results ar
with respect to HadoopRDF [27]. Datasets LUBM(10Kgompared against PigSPARQL [50], another work from
and LUBM(20K) are used in the tests. All the queriesome of the same authors that uses Pig to query RDF
correspond to 1-clique or central-clique queries, and thdetasets. Both approaches scale linearly, but MAPSIN
they can be resolved in a single MapReduce job. This ah HBase enable an efficient way of Map-Side join be-
lows CliqueSquare to outperforms HadoopRDF in eachuse it reduces the necessary data shuffle phase. This
query by a factor from 28 to 59. allows join times to be reduced froi to 28 times with
Myung et al. [39] focus their evaluation on testrespect to the compared technique.
ing their scalability with LUBM at incremental sizes.
However, the maximum size is only LUBM(100)e. g 3 Hybrid solutions
synthetic-generated triples from 100 universities. In-con
trast, Husain et al. [28] start their evaluation from 1,000he hybrid solutions aim to minimize the number of
universities. Therefore, the very limited experimentatidMapReduce jobs, resolving queries in local nodes and
framework prevents the extraction of important concluiestricting the communication and coordination between
sions. Nonetheless, they also verify the sublinear psedes just for complex queries (cross-joins between
formance growth of the proposal{.t. the input) and nodes). This is only effective on the basis of a previous
the significant improvement using multi-way joins versmart subgraph partitioning.

sus two-way joins. Huang et al. [25] establish a fixed dataset of 2,000 uni-
versities (around 270 million triples) for their evaluatjo
8.2 Native solutions on NoSQL and do not compare incremental sizes. They perform on

a cluster of 20 nodes, and their proposal is built with the

As explained before, this class of solutions replaces tR®F3X [40] triple store working in each single node.
plain HDFS storage by a NoSQL database in order to ifirst, they compare the performance of RDF3X on a sin-
prove the overall data retrieval performance. The followle node against the SHARD [48] native solution, show-
ing results support this assumption, showing interestiingy that this latter is clearly slower because most joins
improvements for query resolution. require a costly complete redistribution of data (stored in
SunandJin [55] make an evaluation usinglain files). In contrast, subject-subject joins can be ef-
LUBM [21] datasets from 20 to 100 universitiesficiently resolved thanks to the hash partitioning. Next,
Although no comparisons are made with respect to athe performance of Huang et al.’s solution is evaluated
other solutions, their results report better performanagainst RDF3X on a single node. Once again, the sim-
for growing dataset sizes. This result is due to thpest queries (Q1, Q3, Q4, etc.) run faster on a single
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machine, whereas the hybrid MapReduce solution dess HBase, where triples can be indexed for faster access.
matically improves the performance of complex queriés hybrid solutions, the main contributions are related to
(Q2, Q6, Q9, Q13 and Q14), ranging from 5 to 500 timéww data is partitioned in order to obtain optimal sub-
faster. The large improvement is achieved for large clugraphs.
ters, because chunks are small enough to fit into mainAlthough many of the prominent solutions cannot be
memory. In addition, they verify that the 1-hop guarantefirectly compared, given their different configurations, a
is sufficient for most queries, except those with a largeetailed analysis of their results draws significant con-
diameter (Q2, Q8 and Q9), in which the 2-hop guarantelisions: (i) MapReduce-based solutions scale almost
achieves the best performance and, in general, supptinisarly with respect to incremental data sizes, (ii) they
most SPARQL queries (given the small diameter of thperform worse than classical mono-node solutions with
path queries). simple queries or small datasets, but (iii) they outperform
Finally, Lee and Liu [36] yield to a very similar ap-these solutions when the query complexity or the dataset
proach. They also install RDF3X in each single noddze increases.
(20 nodes in the cluster), but their performance is only The state-of-the-art approaches also evidence that data
compared against a single-node configuration. In canust be preprocessed (i) to obtain easily readable nota-
trast, they perform on incremental sizes (up to 1 billiation, (ii) to enable partial reads to be done, and (iii) to
triples) and study different benchmarks besides LUBMeduce storage requirements. In addition, two of the re-
They also conclude that a 2-hop guarantee is sufficieigwed papers also organize data in such a way that the
for all queries (it leads to similar results to even a 4-hgpocess can capitalize on data locality and perform joins
guarantee) and, in each case, this subgraph partitioningridvap tasks [49, 19]. It highly reduces data shuffling
more efficient than the hash-based data distribution usadd improves performance. Although this preprocessing
for instance, in SHARD [48]. The single-node configustep could be computationally expensive, it is a once-
ration does not scale on most datasets, whereas the saatéy task which improves performance dramatically. In
bility of the MapReduce system is assured once the resltis scenario, binary RDF serialization formats such as
lution time increases only slightly at incremental dataseDF/HDT [16] could enhance the overall space/time
sizes. tradeoffs. Note that these approaches can manage RDF
in compressed space, enabling TP resolution at high lev-
els of the memory hierarchy.
9 DISCUSSION AND CONCLUSIONS Apparently, the more complex the solutions, the bet-
) ) ) ter the performance results, but this comes at an impor-
MapReduce is designed to process data in dignt cost. On the one hand, they incur serious storage
tributed scenarios under the assumption of no intgfyerheads because of data redundancy: NoSQL solu-
communication betweeap andReduce tasks during tions can require up to 6 times the space of native so-
their execution. However, RDF data is interweaved bl‘f:r[ions, whereas hybrid solutions report up to 4.5 times
cause of its graph nature, and triple relationships are SRR for 2-hop partitions. On the other hand, the sim-
tially arbitrary. For these reasons, multiple MapReduggar native solutions are easier to implement in vanilla
jobs can be necessary to resolve SPARQL queries. MofgspReduce clusters, which make deployment in shared
over, a plain data storage and organization overloads fhastructures or in third party services (such as AWS
processing, and expensive costs must be paid whengsgktic MapRedud® an almost straightforward opera-
a new job starts. Thus, efficient SPARQL resolution gy As complexity grows, solutions are harder to im-
MapReduce-based solutions is mainly based on opti%mem_
ing RDF data management and minimizing the numbenije these works showcase relevant contributions for
of MapReduce jobs required for query resolution.  gpaARQL resolution using MapReduce, the absence of
We review the most relevant proposals throughoggmmunication between tasks continues to present an
the paper, establishing a categorization in two differegiportant challenge when joins are involved. This can be
groups: (i) native solutions and (i) hybrid solutionsseen as a general MapReduce issue that motivates differ-
Native solutions resolve SPARQL queries using Magnt researches. Some proposals add an additional phase
Reduce tasks exclusively, whereas hybrid solutions pg§-the MapReduce cycle. For instance, Map-Reduce-
form subgraph resolution in each node, and resort {fsrge [61] adds an additional function at the end of
MapReduce to join the results of each subgraph. In Rga MapReduce cycle in order to support relational al-
tive solutions, the main contributions relate to reducir&bra primitives without sacrificing its existing general-

the number of jobs needed to perform joins, and to dg§a and simplicity. In turn, Map-Join-Reduce [29] intro-
organization. Data can be stored in HDFS, where data

must be organized in files, or in another solution such®http://aws. amazon. coni el asti crapr educe
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duces dfiltering-join-aggregationprogramming model for structured dataACM Transactions on Comput-

which is an extension of the MapReduce programming ing Systemsvol. 26, no. 2, article 2, 2008.

model. Tuple MapReduce [17], though, takes a differeq9] R. Cyganiak, “A relational algebra for

approach and proposes a theoretical model that extends SPARQL,” HP Laboratories Bristol, Tech.

MapReduce to improve parallel data processing tasks us- Rep. HPL-2005-170, 2012, available at:

ing compound-records, optional in-reduce ordering, or  http://ww. hpl . hp. coni t echr epor t s/ 2005/

intersource datatype joins. In addition, there are specific  HpPL- 2005- 170. ht i .

proposals for providing supportto iterative programs li{d0] C. David, C. Olivier, and B. Guillaume, “A Sur-

Twister [13] or HaLoop [7]. This aims to improve data  vey of RDF Storage Approache#®\RIMA Journa)

locality for those tasks accessing to the same data (even vol. 15, pp. 11-35, 2012.

in different jobs), while providing some kind of cachingl1] J. Dean and S. Ghemawat, “MapReduce: Simpli-

of invariant data. Thus, it is expected that all these fied Data Processing on Largee Clusters,Pioc.

general-purpose proposals will feedback specific appli- of the 6th Symposium on Operating Systems Design

cations, and SPARQL resolution on MapReduce will be & Implementation (OSDJ)2004, pp. 137-150.

benefited with advances from these lines of research.[12] M. Duerst and M. Suignard, “RFC 3987, Interna-
tionalized Resource Identifiers (IRIs),” 2005.

[13] J. Ekanayake, H. Li, B. Zhang, T. Gunarathne, S.-
h. Bae, J. Qiu, and G. Fox, “Twister: a Runtime for
Iterative MapReduce,” iroc. of the 19th ACM In-
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