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ABSTRACT

The use of RDF to expose semantic data on the Web has seen a dramatic increase over the last few years. Nowa-
days, RDF datasets are so big and interconnected that, in fact, classical mono-node solutions present significant
scalability problems when trying to manage big semantic data. MapReduce, a standard framework for distributed
processing of great quantities of data, is earning a place among the distributed solutions facing RDF scalability
issues. In this article, we survey the most important works addressing RDF management and querying through
diverse MapReduce approaches, with a focus on their main strategies, optimizations and results.
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1 INTRODUCTION

Massive publication efforts have flooded the Web with
huge amounts of semantic data represented in RDF [37].
TheResource Description Framework(RDF) provides a
graph-based model to structure and link data along the
so-called Semantic Web. An RDF dataset draws a di-
rected labeled graph of knowledge in which entities and
values are linked via labeled edges with meaning.

In less than a decade, RDF has become a popular for-
mat to expose and interlink data from almost every field
of knowledge, from bioinformatics and geography to so-
cial networks. There are two main reasons for this suc-
cess. First, its semantic model is extremely simple: en-
tities (also called resources) are described in the form of
triples(subject, predicate, object). Then, RDF it-
self is schema-relaxed and its vocabulary can evolve as

needed. Furthermore, very active Open Data initiatives,
such as the Linked Open Data1 (LOD) community, are
promoting its use to publish structured data on the Web
and to connect it to other data sources [5].

In turn, SPARQL [45] is the W3C recommendation
to search and extract information from RDF graphs.
SPARQL is essentially a declarative language based on
graph-pattern matching with SQL-like syntax. Graph
patterns are built on top ofTriple Patterns(triples al-
lowing variable components) which are grouped within
Basic Graph Patterns, leading to query subgraphs in
which variables must be bounded. Graph patterns com-
monly join triple patterns, but other constructions are
also possible (see Section 2.2). Thus, query resolu-
tion performance mainly depends on two factors: (i)re-
trieving RDF triples(for triple pattern resolution) de-

1http://linkeddata.org/
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pends on how triples are organized, stored, and indexed.
Then, (ii) join performance is determined by optimiza-
tion strategies [51], but also by the join resolution algo-
rithms. Both factors are typically addressed within RDF
storage systems, referred to asRDF stores.

RDF stores [10] are built on top of relational systems
or are carefully designed from scratch to fit particular
RDF peculiarities. In any case, current RDF stores typ-
ically lack scalability when large volumes of RDF data
must be managed [15]. This fact hinders the construc-
tion of scalable applications in the increasingly large
LOD cloud. As evidence of this RDF growth, LOD-
Stats2, a project constantly monitoring the LOD cloud,
reported that the number of triples grew to more than
62 billion triples in November 2013. A more detailed
analysis shows that many single datasets comprise more
than a hundred million triples, and the storage of such
datasets in a mono-node machine, which must provide
efficient access, becomes a formidable challenge. Un-
fortunately, while significant progress has been made
on RDF storage on a mono-node configuration, such
as highly-compressed indexes [38], distributed solutions
are still at initial stages and continue to be an open chal-
lenge [25].

In this scenario, MapReduce [11] arises as a candidate
infrastructure for dealing with the efficient processing of
big semantic datasets. In short, MapReduce is a frame-
work for the distributed processing of large quantities of
data. Initially developed by Google [11], it is widely
used in environments of Big Data processing [60]. Data
from Yahoo! [53], Facebook [56] or Twitter [34] are
managed using MapReduce. Obviously, it has also
been tested for RDF management at large scale. In
this paper, we survey the state of the art concerning
MapReduce-based solutions providing an efficient res-
olution of SPARQL on a large scale . Our main goal
is to gain insights about how current MapReduce-based
solutions store RDF and perform SPARQL resolution –
their main decisions and strategies –, and to analyze their
opportunities in the near future, in which large-scale pro-
cessing will be even more demanding.

The rest of the paper is organized as follows. Sec-
tion 2 provides basic notions about RDF and SPARQL,
whereas Section 3 describes MapReduce foundations to
provide basic knowledge about its strengths, but also
its weaknesses. In Section 4, we depict the main chal-
lenges which arise when MapReduce is used to meet the
needs of RDF storage and SPARQL resolution. Then, in
Section 5, we introduce a simple classification in which
the most-prominent techniques are organized according
to the complexity that their nodes assume within Map-
Reduce clusters. This organization is used for explaining

2http://stats.lod2.eu/

and analyzing these techniques in Sections 6 and 7, and
their experimental results are studied in Section 8. These
results discover the current limitations, and help us to
reach conclusions about the interesting research oppor-
tunities arising in SPARQL resolution on a large scale
under MapReduce-guided scenarios. These opportuni-
ties are finally discussed in Section 9.

2 RDF & SPARQL

The Semantic Web emerges over a technology stack
comprising a great variety of standards, formats, and lan-
guages. Nevertheless, this paper focuses on how data is
effectively stored and represented for query resolution,
hence our interest is exclusively related to the aforemen-
tioned RDF and SPARQL.

2.1 RDF

RDF is the data model used for semantic data organiza-
tion. It is a directed labeled graph in which resources
are described through properties and the values for these
properties. Triples (also called statements) are the atoms
of RDF: (subject, predicate, object). The subject
identifies the resource being described, the predicate is
the property applied to it, and the object is the concrete
value for this property. Figure 1 shows an RDF excerpt
with five RDF triples (left) and its graph-based repre-
sentation (right). As can be seen, part of the success of
RDF is due to this direct labeled graph conception and
its expressive power: an RDF dataset models a network
of statements through natural relationships between data,
by means of labeled edges. The labeled graph structure
underlying the RDF model allows new semantics to be
easily added on demand. In other words, graph flexi-
bility allows semi-structured information (entities having
different levels of detail) to be handled.

As shown in the previous example, the RDF data
model considers that subjects (the resources being de-
scribed) and predicates are identified by URIs [4],
whereas objects (the values for the properties) can be ei-
ther other resources or constant values (calledliterals).
There exists a special kind of node calledblank node
which identifies unnamed resources, usually serving as
parent nodes of a group of triples (containers, collec-
tions, etc.). Thus, the RDF data model is typically for-
malized as follows [22]. Assume infinite, mutually dis-
joint setsU (RDF URI references),B (Blank nodes), and
L (RDF literals).

Definition 1 (RDF triple) A tuple(s, p, o) ∈ (U ∪B)×
U × (U ∪B ∪ L) is called an RDF triple, in which “s”
is the subject, “p” the predicate and “o” the object.
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 RDF Graph 

   ex:S1 foaf:age 25 . 

   ex:S2 foaf:age 25 . 

   ex:S1 ex:study ex:C1 . 

   ex:S2 ex:study ex:C1 . 

   ex:C1 ex:hasProfessor ex:P1 . 

ex:S1 

ex:hasProfessor 

ex:S2 

25 ex:C1 ex:P1 

Figure 1: An RDF graph example.

ex:S1 

?age ?courses 

SPARQL Query 

SELECT ?age ?courses 

WHERE { 

   ex:S1 foaf:age ?age . 

   ex:S1 ex:study ?courses . 

} 

Figure 2: A first SPARQL query.

Definition 2 (RDF graph) An RDF graphG is a set of
RDF triples. As stated,(s, p, o) can be represented as a
direct edge-labeled graphs

p
−→ o.

2.2 SPARQL

SPARQL is the W3C standard to query the RDF data
model. It follows the same principles (interoperability,
extensibility, decentralization, etc.) and a similar graph
notion. Intuitively, a SPARQL graph pattern comprises
named terms but also variables for unknown terms. The
pattern returns solutions when it matches an RDF sub-
graph after variable substitution. This required substitu-
tion of RDF terms for the variables is then the solution
for the query.

An SPARQL query example, with the appropriate syn-
tax, is presented on the left side of the Figure 2, whereas
the right side represents the intuitive query graph pat-
tern. The WHERE clause serializes the graph pattern
to be matched against the RDF graph, whereas the SE-
LECT clause lists those variables delivered as results. In
the current example, when the aforementioned query is
matched to the RDF graph in Figure 1, the result is a sim-
plemapping: ?age="25" and?courses= ex:C1.

The smaller components of a graph pattern areTriple
Patterns(hereafterTPs), i.e., triples in which each of the
subject, predicate and object may be a variable (this is
formalized in Definition 3). The previous example is a
Basic Graph Pattern(hereafterBGP) composed of two
joined triple patterns. In general terms, BGPs are sets
of triple patterns in which all of them must be matched
(this is formalized in Definition 4). They can be seen as
inner-joins in SQL.

Formally speaking, in SPARQL, URIs are extended to
IRIs [12], hence we introduce a setI of RDF IRI refer-
ences, and a novel set,V of variables, disjoint fromI.
Thus, following Pérez et al. [44], anRDF triple is now

a statement(s, p, o) ∈ (I ∪ B) × I × (I ∪ B ∪ L), and
we can formally define TPs and BGPs, as follows:

Definition 3 (SPARQL triple pattern) A tuple from
(I ∪L∪ V )× (I ∪ V )× (I ∪L∪ V ) is a triple pattern.

Note that blank nodes act as non-distinguished vari-
ables in graph patterns [45].

Definition 4 (SPARQL Basic Graph pattern (BGP))
A SPARQL Basic Graph Pattern (BGP) is defined as a
set of triple patterns. SPARQL FILTERs can restrict
a BGP. If B1 is a BGP andR is a SPARQLbuilt-in
condition, then(B1 FILTER R) is also a BGP.

Several constructors can be applied over BGPs,
such as theUNION of two groups (similar to SQL),
OPTIONAL graph patterns (similar to the relational left
outer join [44]) orFILTER conditions to provide re-
strictions on solutions (such asregexfunctions). Pérez
et al. [44] complete this formalization with more seman-
tics (mappings, evaluation, etc.) and a deep study on
complexity query evaluation. Anglés and Gutiérrez [2]
reveal that the SPARQL algebra has the same expressive
power as Relational Algebra, although their conversion
is not trivial [9].

3 MAPREDUCE

MapReduce [11] is a framework and programming
model for the distributed processing of large volumes of
data. In practice, it can be considered as thede factostan-
dard for Big Data processing. Its main aim is to provide
parallel processing over a large number of nodes. Map-
Reduce takes autonomous charge of the parallelization
task, data distribution and load balancing between every
node, as well as fault tolerance on the cluster [60]. This
enables a wide range of parallel applications in which de-
veloper responsibilities focus, exclusively, on designing
the specific problem solution.

MapReduce is not schema-dependent, so it can pro-
cess unstructured and semi-structured data at the price of
parsing every input item [35]. MapReduce relies on two
main operations which process data items in the form
of key-valuepairs: Map andReduce. Map tasks read
input pairs, and generate lists of new pairs comprising
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Figure 3: The overall MapReduce count resources process.

all different values gathered for a given key. Note that
the domain of input keys and values is different from the
domain of output keys and values (i.e., input pairs cor-
respond to raw data read, and output pairs correspond
to processed data). These lists are sent to theReduce
tasks by an intermediate step. AReduce task reads its
inputs, groups them, and obtains final values. In this
way, its input and output keys and values belong to the
same domain. A generic example of input and output
types is illustrated in Listing 1 [11]. It is worth empha-
sizing thatMap andReduce tasks perform exhaustive
I/O disk operations. BothMap andReduce read inputs
from disk and their results are written again on disk. This
fact turns I/O disk operations into the main bottleneck
of MapReduce processes [35], and must be taken into
consideration when designing an optimized MapReduce
process [28].

Listing 1: Map and Reduce operations diagram

map: (k1, v1) → list(k2, v2)
reduce: (k2, list(v2)) → list(v2)

A MapReduce cluster has a Master/Slave architecture.
A single Master initializes the process, schedules tasks
and keeps bookkeeping information. All other nodes
are Workers, which runMap andReduce tasks [11].
Typically, a single machine processes several tasks [60].

Data are stored in a distributed manner among nodes, di-
vided into file chunks of predefined size (typically 64 or
128 MB). MapReduce takes advantage ofdata locality,
so eachMap task reads data from the same machine it
is running on, thus avoiding unnecessary bandwidth us-
age [11]. WhenMap tasks end, their output is divided
into as many chunks as keys, and each one is sent to its
correspondingReduce node. Final results ofReduce
tasks are distributed again among the cluster machines,
as they are commonly used in a subsequent MapReduce
job [60].

Example. Let us suppose that we design a
MapReduce-based solution to process the simple
RDF excerpt illustrated in Figure 1. Our objective
is to count the number of occurrences of different
resources within the RDF dataset, and group them by
attending to their role in the graph (subject, predicate,
or object). The input data are assigned to theMap
tasks, attempting to provide them with the chunk
residing in the same machine. EachMap task reads its
assigned triples, one by one, and outputs three pairs for
each triple, stating the resource and the role it plays:
(<resource subject>,s), (<resource predicate>,p),
and(<resource object>,o).

TheMap output is grouped by resource and sent to dif-
ferentReduce tasks, one per different resource. Each
Reduce increments the number of occurrences by role
and writes the results on disk. This process is illustrated

4
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in Figure 3. As can be seen, MapReduce is deployed
using two nodes, hence the original RDF dataset is di-
vided into two chunks. Node 1 processes the first three
triples, and Node 2 works with the remaining two. Each
Map task outputs its corresponding pairs, which are then
sorted before theReduce tasks, in which the final statis-
tics are obtained. ✷

3.1 Hadoop & Related Technologies

Apache Hadoop3 provides the most relevant implemen-
tation of the MapReduce framework, published under the
Apache License 2.04. It is designed to work in heteroge-
neous clusters of commodity hardware with Unix/Linux
operating systems. To the best of our knowledge,
Hadoop is the implementation used in each academic
work proposing MapReduce for SPARQL resolution.

Hadoop implementsHDFS (Hadoop Distributed File
System) [6], a distributed file system based on the
Google File System model [18]. It is designed to pro-
vide scalability, fault tolerance and high aggregate per-
formance. An important feature of HDFS is data repli-
cation: each file is divided into blocks and replicated
among nodes (the replication factor in HDFS is three by
default). This replication also favors the aforementioned
data locality, i.e. Map tasks are performed in the same
node where their input data are stored.

Replicated data files in HDFS are schema-free and in-
dex free, so each content must be parsed explicitly. In
practice, this fact overloads MapReduce performance,
hence different alternatives can be considered to mini-
mize this impact. One of the most relevant alternatives
is HBase5: this is a NoSQL column-oriented database
which takes advantage of the distributed HDFS features
and provides Google BigTable [8] capabilities on top of
HDFS and Hadoop. HBase indexes data by row key, col-
umn key, and a timestamp value, and maps them into
an associated byte array which allows random data ac-
cess to MapReduce applications. HBase also allows sec-
ondary indexes and filters that reduce data transferred
over the network, improving the overall MapReduce per-
formance.

4 CHALLENGES FOR M APREDUCE-BASED
SPARQL RESOLUTION

As explained in Section 2.2, SPARQL resolution usu-
ally takes the form of pattern matching between the RDF
graph and the BGP [25]. In distributed environments,

3http://hadoop.apache.org
4http://www.apache.org/licenses/LICENSE-2.0
5https://hbase.apache.org

each node is responsible for matching the correspond-
ing query against the subgraph that it stores. If queries
are simple TPs, each node obtains its partial result set
which is then merged with the result sets retrieved from
the other nodes. However, general SPARQL queries (in
the form of conjunctive TPs) imply cross joins between
different nodes. This is a traditional complex opera-
tion in distributed databases, where node coordination is
mandatory and data exchanging between them overloads
the overall query performance. MapReduce-based ap-
proaches follow the aforementionedMap andReduce
job to face this problem in the SPARQL ecosystem.

In a MapReduce cluster,the full RDF dataset is dis-
tributed between the nodes. When a new query is re-
ceived, each node runs aMap task on its corresponding
data andobtains all the triples satisfying the query lo-
cally. These temporary results are sorted by the corre-
sponding join variable and sent toReduce tasks, which
finally perform the join . Note that these tasks have no
communication with each other, and read different result
chunks.

A naive approach, with no optimizations, would fol-
low the next general steps:

1. In theMap stage, triples are read from their storage
and transformed into key-value pairs in which keys
correspond to the join variable bindings. Note that
the process is performed for the two TPs in the join.
These results are written to disk.

2. Those retrieved triples are read in the form of key-
value pairs and sorted by key beforeReduce.

3. TheReduce stage reads the pairs and keeps those
matching the join condition. Obviously, two pairs
join when they share the same key. These triples
are written in the final output.

It is worth noting that some joins can depend on other
unresolved joins,i.e. when a TP is used in two joins over
different variables [26], and triples can be scattered in an
unknown way over the data excerpts. Thus, it is possible
that more than one job is needed to obtain the final result.
In such a scenario, these jobs perform sequentially, and
each one takes the previous job output as input [28]. In
this case, a first step is mandatory to select which vari-
ables will be resolved in each job [26, 39].

A natural straightforward optimization is to imple-
ment multi-way join resolution [24] in MapReduce,
i.e., the possibility of performing a join on more than
two TPs sharing the same variable. In other words, Map-
Reduce allows multi-way joins to be resolved in a single
job [1], in contrast to classical solutions which make as
many two-way joins as needed [39]. This can be use-
ful to resolve the so-calledStar Queries(several TPs
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?X 

Figure 4: Potential execution plans in SPARQL star-shaped queries. (a) Original query, (b) Plan constructed
by traditional two-ways joins, (c) Optimized plan with mult i-way joins.
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SELECT ?X  

WHERE { 

   ?X rdf:type ex:student . 

   ?Y rdf:type ex:degree . 

   ?X ex:study ?Y . 

   ?Y ex:hasProfessor ?Z . 
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?Z 
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TP4 

?Z 
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TP2 

TP4 TP5 
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Figure 5: Potential execution plans in SPARQL path queries.(a) Original query, (b) Plan constructed with
multi-way joins, (c) Optimized plan with multi-way joins.

sharing a join variable), such as the query illustrated in
Figure 4(a).

The classical resolution plan for this query, shown in
Figure 4(b), would make a first join betweenTP1 and
TP2, a second join between the previous result set and
TP3, and finally a join between the output of the previ-
ous one andTP4. Otherwise, this could also be solved by
means of two independent joins, for instanceTP1✶TP2
andTP3✶TP4, and a final join of both results. In con-
trast, MapReduce can make all these joins in just one
step [39], because all TPs share the same variable. This
is illustrated in Figure 4(c).

In general, the exact number of required MapReduce
jobs depends on the order in which join variables are
chosen. In addition, each job supposes a serious over-
head, which can be almost equivalent to reading a bil-
lion triples [27]; partly because of job initialization [43],
partly because of data shuffling betweenmap and

reduce tasks [49, 19]. For this reason,efficient vari-
ables selectionis crucial [28, 26]. It can be seen in the
Path Query(a query in which TPs form a chained path)
described in Figure 5(a). This query can be resolved with
the resolution plan illustrated in Figure 5(b). A first job
can produce the join betweenTP1 andTP3, over?X.
Then, a multi-way join between the result of this first
job, TP2, andTP4, over?Y, can be resolved in a sec-
ond job. Finally, a join between the last job output and
TP5, over?Z, provides the final result. Thus, the query
is satisfied with three jobs. Another choice, shown in
Figure 5(c), is to run a single job which joinsTP1 and
TP3, over?X, andTP4 andTP5, over?Z. Then, a sec-
ond job makes the multi-way join between the outputs of
the first job andTP2 over,?Y. In this case, the query is
resolved with only two jobs because, unlike the previous
plan, two of the joins can be done in parallel.
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Resource popularity is another important issue
which must be considered. Urbani et al. [58] point out
that some resources are more popular than others in an
RDF dataset. Thus,Reduce tasks can receive very dis-
parate quantities of data and it can lead to lower perfor-
mance because the whole process depends on the slower
task [25]. For instance, in the query of Figure 5(a), it
can be expected that the join betweenTP4 and TP5
ends sooner than the join betweenTP1 andTP3. Thus,
query optimization must take into account the fact that
resources are distributed in a biased way.

Finally, I/O disk operations are the main bottleneck
in MapReduce jobs, as stated before. This fact is espe-
cially relevant for semantic data processing because of
the schema-relaxed nature of RDF. In practice, this fea-
ture means that triples can be located anywhere in the
dataset. Thus, how data is effectively encoded is deter-
minative for parsing and processing triples. If this fact
is not considered, each MapReduce job can be forced to
read the whole dataset [28, 26].

5 CLASSIFICATION

As stated, different MapReduce-based solutions have
been proposed for SPARQL resolution on a large scale.
Thus, we propose a specific classification which allows
us to review these solutions in a coherent way. To do this,
we divide the technique according to the complexity that
their nodes must assume within the MapReduce cluster.
We consider two main families that we refer to asnative
andhybrid solutions.

Native solutions. This first family considers all solu-
tions relying exclusively on the MapReduce framework.
That is, queries are resolved with a series of MapReduce
jobs on low complexity nodes, typically disregarding the
help of specific semantic technology in each node of the
cluster.

Thus, the overall SPARQL resolution performance
mainly depends on (a) physical tuning decisions, and
(b) processing strategies which reduce the number of re-
quired jobs. As for (a), we consider two main decisions
to optimize the physical aspects:

• Data storageis one the main bottlenecks within the
MapReduce ecosystem. Note that data are persis-
tently read from disk and stored again to communi-
cateMap andReduce stages. Thus, how the data
are organized for storage purposes in HDFS is one
of the considerations addressed by the existing so-
lutions.

• Data indexingis an immediate improvement for re-
ducing the aforementioned I/O costs. For this pur-

pose, some approaches use a NoSQL database (in
general, HBase) on top of HDFS. These approaches
leverage database indexes to improve RDF retrieval
within individual nodes, therefore improving TP
resolution within theMap stage. These random
access capabilities allow more complexMap and
Reduce stages to be implemented in practice.

Regardless of this physical tuning, all approaches
carry out specific strategies for reducing the number of
MapReduce jobs required for general SPARQL resolu-
tion. Both physical decisions and these processing strate-
gies are reviewed in Section 6 within the corresponding
approaches.

Hybrid solutions. This second family, in contrast to
native solutions, deploys MapReduce clusters on more
complex nodes, typically installing mono-node state-of-
the-art RDF stores. This decision allows each node to
partially resolve SPARQL queries on its stored subgraph,
so that MapReduce jobs are only required when indi-
vidual node results must be joined. In this scenario,
triples distributionis an important decision to minimize
(or even avoid) the number of MapReduce jobs required
for query resolution.

Table 1 summarizes the most relevant solutions, in the
state of the art, according to the above classification. The
corresponding papers are reviewed in the next two sec-
tions.

In addition to the reviewed papers, it is worth noting
that there exist some other proposals [54, 47, 50, 31]
which are deployed on top of additional frameworks run-
ning over Hadoop, such as Pig [41] or Hive [56, 57].
These solutions use high-level languages over Hadoop
to hidemap andreduce task complexities from devel-
opers. However, we do not look at them in detail be-
cause their main contributions are related to higher level
details, while their internal MapReduce configurations
respond to the same principles discussed below.

6 NATIVE SOLUTIONS

This section reviews the most relevant techniques within
the native solutions. Attending to the previous classi-
fication, we analyze solutions running on native HDFS
storage (Section 6.1), and NoSQL-based proposals
(Section 6.2).

6.1 HDFS-based Storage

Before going into detail, it is worth noting that all these
solutions usesingle line notationsfor serializing RDF
data in plain files stored in HDFS. Some solutions use
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Table 1: Classification and strategies of MapReduce-based solutions addressing SPARQL resolution.

Solution Type Purpose Solution Reason Papers

Native
solutions

Simplify automated
processing

Single line notations Each triple is stored in a sepa-
rate line

[28],
[26],
[27],
[39]

Reduce storage
requirements

Substitution of common pre-
fixes by IDs

Data size reduction [28],
[26],
[27]Division of data in several files

by predicate and object type
Only files with corresponding
TPs will be read

Improve data
processing speed

Storage of all triples with the
same subject in a single line

Improve reading speed of
queries with large number of
results

[48]

Map-side joins Reduce data shuffled and trans-
ferred between tasks

[19],
[49]

NoSQL solutions Provide indexed access to
triples

[55],
[43],
[49]

Reduce number of
MapReduce jobs

Greedy algorithm Optimize Star Queries [28],
[26],
[39]Multiple Selection algorithm Optimize Path Queries

Early elimination heuristic Prioritize jobs that completely
eliminate variables

[27]

Clique-based heuristic Resolve queries with map-side
joins

[19]

Hybrid
solutions

Allow parallel sub-
graph processing

Graph Partitioning Each node receives a significant
subgraph

[25],
[36]

Parallel subgraph processing Each node resolves subgraph
joins

straight N-Triples format [20] for storage purposes [39],
while others preprocess data and transform them to their
own formats. This simple decision simplifies RDF
processing, because triples can be individually parsed
line-by-line. In contrast, formats like RDF/XML [3]
force the whole dataset to be read in order to extract a
triple [28, 26, 39, 46, 25].

RDF storage issues are addressed by
Rohloff and Schantz [48], Husain et al. [28, 26, 27]
and Goasdoué and Kaoudi [19] in order to reduce
space requirements and data reading on each job.
Rohloff and Schantz [48] transform data from N3 into a
plain text representation in which triples with the same
subject are stored in a single line. Although it is not
an effective approach for query processing (in which a
potentially small number of triples must be inspected),
it is adequate in the MapReduce context because large
triple sets must be scanned to answer less-selective
queries [48].

Another immediate approach is based on common
RDF prefix substitution [28]. In this case, all occur-
rences of RDF terms (within different triples) are re-
placed by short IDs which reference them in a dictionary

structure. It enables spatial savings, but also parsing time
because the amount of read data is substantially reduced.

Husain et al. [26] focus on storage requirements and
I/O costs bydividing data into several files. This deci-
sion allows data to be read in a more efficient way, avoid-
ing the reading of the whole dataset in its entirety. This
optimization comprises two sequential steps:

1. A predicate-based partitioning is firstly performed.
Thus, triples with the same predicate are stored as
pairs(subject,object) within the same file.

2. Then, these files are further divided intopredicate-
typechunks in order to store together resources of
the same type (e.g.ex:student or ex:degree in
the example in Figure 1). This partitioning is per-
formed in two steps:

(a) Explicit type informationis firstly used for
partitioning. That is, (subject,object)
pairs, from therdf:type predicate file, are di-
vided again into smaller files. Each file stores
all subjects of a given type, enabling resources
of the same type to be stored together.

(b) Implicit type information is then applied.
Thus, each predicate file is divided into as

8
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many files as different object types it contains.
This division materializes thepredicate-type
split. Note that this is done with the informa-
tion generated in the previous step. Thus, each
chunk contains all the(subject,object)
pairs for the same predicate and type.

General query resolution performs on an iterative al-
gorithm which looks for the files required for resolving
each TP in the query. According to the TP features, the
algorithm proceeds as follows:

• If both predicate and object are variables (but the
type has been previously identified), the algorithm
must process allpredicate-typefiles for the re-
trieved type.

• If both predicate and object are variables (but the
type has not been identified), or if only the pred-
icate is variable, then all files must be processed.
Thus, the algorithm stops because no savings can
be obtained.

• If the predicate is bounded, but the object is vari-
able (but the type has been previously identified),
the algorithm only processes thepredicate-typefile
for the given predicate and the retrieved type.

• If the predicate is bounded, but the object is variable
(but the type has not been identified), allpredicate-
typefiles must be processed.

For instance, when making split selection for the
query of Figure 5(a), the selected chunks would be the
following:

• TP1: type fileex:student.

• TP2: type fileex:degree.

• TP3: predicate-type fileex:study-ex:degree.

• TP4: predicate-type fileex:hasProfessor-ex:
professor.

• TP5: type fileex:professor.

Goasdoué and Kaoudi [19] focus their attention on an-
other MapReduce issue: the job performance greatly de-
pends on the amounts of intermediate data shuffled and
transmitted fromMap to Reduce tasks. Their goal is
to partition and place data so that most of the joins can
be resolved in the Map phase. Their solution replaces
the HDFS replication mechanism by a personalized one,
where each triple is also replicated three times, but in
three different types of partition: subject partitions, prop-
erty (predicate) partitions, and object partitions. For a
given resource, the subject, property, and object par-
titions of this resource are placed in the same node.

In addition, subject and object partitions are grouped
within a node by their property values. The property
rdf:type is highly skewed, hence its partition is bro-
ken down into smaller partitions to avoid performance is-
sues. In fact, property values in RDF are highly skewed
in general [32], which can cause property partitions to
differ greatly in size. This issue is addressed by defin-
ing a threshold: when creating a property partition, if the
number of triples reaches the threshold, another partition
is created for the same property. It is important to note
that this replication method improves the performance,
but at the cost of fault-tolerance: HDFS standard replica-
tion policy ensures that each item of the data is stored in
three different nodes, but with this personalized method,
this is not necessarily true.

Husain et al. [28] and Myung et al. [39] focus onre-
ducing the number of MapReduce jobsrequired to re-
solve a query. Both approaches use algorithms to select
variables in the optimal way. Their operational founda-
tions are as a follows. In a first step, all TPs are an-
alyzed. If they do not share any variable, no joins are
required and the query is completed in a single job. Note
that while a cross product would be required in this case,
this issue is not addressed by these works. Otherwise,
there are TPs with more than one variable. In this case,
variables must be ordered and two main algorithms are
considered:

• The greedy algorithmpromotes variables partici-
pating in the highest number of joins.

• The multiple selection algorithmpromotes vari-
ables which are not involved in the same TP because
these can be resolved in a single job.

Both algorithms can be combined for variable order-
ing. Whereas Myung et al. [39] make an explicit differ-
entiation between the algorithms, Husain et al. [28] im-
plement a single algorithm which effectively integrates
them. These algorithms are simple, report quick perfor-
mance, and lead to good results. However, they are not
always optimal. In a later work, Husain et al. [26] obtain
each possible job combination and select the one report-
ing the lowest estimate cost. This solution, however, is
reported as computationally expensive.

Husain et al. [27] revisit their previous work and de-
velopBestplan, a more complex solution for TPs selec-
tion. In this solution, jobs are weighted according to their
estimated cost. The problem is then defined as a search
algorithm in a weighted graph, where each vertex rep-
resents a state of TPs involved in the query, and edges
represent a job to make the transition from one state to
another. The goal is to find the shortest weighted path be-
tween the initial statev0, where each TP is unresolved,
to the final statevgoal, where every TP is resolved. How-
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ever, it is possible (in the worst case) that the complexity
of the problem were exponential in the number of join-
ing variables. Only if the number of variables is small
enough, is it a feasible solution for generating the graph
and finding the shortest path.

For higher numbers of joining variables, theRelaxed-
Bestplanalgorithm is used. It assumes uniform cost for
all jobs; i.e., the problem is to find the minimum num-
ber of jobs. This concern can also be infeasible, but it
is possible to implement a greedy algorithm that finds an
upper bound on the maximum number of jobs that per-
forms better than the greedy algorithm defined in [28].
This algorithm is based on anearly elimination heuris-
tic. That is, jobs thatcompletely eliminatevariables are
selected first, wherecomplete eliminationmeans that this
variable is resolved in every TP it appears.

On the other hand, Goasdoué and Kaoudi [19] repre-
sent the query as aquery graphwhere nodes are TPs, and
edges model join variables between them (these are la-
beled with the name of the join variables). Then, the con-
ceptclique subgraphis proposed from the well-known
concept ofclique in Graph Theory; a clique subgraph
Gv is the subset of all nodes which are adjacent to the
edge labeled with the variablev (i.e.: triples that share
variable v). Using this definition, possible queries are
divided into the following groups:

• 1-clique query:where the query graph contains a
single clique subgraph. These queries can be re-
solved in theMap stage of a single job, because the
join can be computed locally at each node.

• Central-clique query:where the query graph con-
tains a single clique subgraph that overlaps with all
other clique subgraphs. These queries can be re-
solved in a single complete job. The query can
be decomposed into 1-clique queries that can be
resolved in theMap phase of a MapReduce job,
and then the results of these joins can be joined in
the variable of the common clique on theReduce
stage.

• General query: This is neither 1-clique nor central-
clique query. These queries require more than one
job to be resolved. A greedy algorithm, referred
to asCliqueSquare, is used to select join variables.
This algorithm decomposes queries into clique sub-
graphs, evaluates joins on the common variables of
each clique, and finally collapses them. All this pro-
cessing is implemented in a MapReduce job. As
cliques are collapsed, each node in the query graph
represents a set of TPs.

6.2 NoSQL Solutions

In order to improve RDF retrieval in each node,
some approaches use the NoSQL distributed database
HBase[55, 43, 49] on top of HDFS. These solutions per-
form triples replication, in diverse tables, and use some
indexing strategies to speed up query performance for
TPs with distinct unbound variables. The main draw-
back of these approaches is that each triple is now stored
many times, one for each different table, and this spatial
overhead is added to the HDFS replication itself (with a
default replication factor of three).

Sun and Jin [55] propose a sextuple indexing similar
to the one of Hexastore [59] or RDF3X [40]. It con-
sists of six indexes:S PO, P SO, OSP, PSO, SOP, and
PO S, which cover all combinations for unbound vari-
ables. Thus, all TPs are resolved with one access to the
corresponding index.

Papailiou et al. [43] reduce the number of tables to
three, corresponding to indexesSPO, OSP, andPO S.
TPs with only one bound resource are resolved with
a range query[<resource>,increment(<resource>)].
To further improve query performance, all indexes store
only the 8-byte MD5Hashes of{s,p,o} values; a table
containing the reverse MD5Hash to values is kept and
used during object retrieval.

Schätzle and Przyjaciel-Zablocki [49] reduce the
number of tables even more, using only two, cor-
responding to indexesS PO and O PS. The HBase
Filter API is used for TPs which bound(subject and

object) or (object and predicate). In turn, predicate
bounded TPs can be resolved using theHBase Filter
API on any of the two tables.

Although these solutions rely on HBase for triple re-
trieving, join operations are still performed viaMap
and Reduce operations. Sun and Jin [55] use simi-
lar algorithms to that described previously for [28, 39].
Papailiou et al. [43], on the contrary, develop a com-
plex join strategy where joins are performed differently
depending on BGP characteristics. The different join
strategies are:

• The map phase join is the base case and follows
the general steps described in section 4. That is, the
mappers read the triples and emit(key, value)pairs
in which i) thekeyscorrespond to the join variable
bindings, and ii) thevaluescorrespond to the bind-
ings for all other variables included in the TPs of the
join (if exist) calculated in previous jobs. In turn,
the reducers merge, for each key, the corresponding
list of values in order to perform the join. Although
this strategy is namedmap phase join, the actual
join is performed in theReduce phase (the name
only refers to when data is extracted from HBase).
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• Thereduce phase joinis used when one of the TPs
retrieves a very small number of input data com-
pared to the rest. In this case, theMap stage is the
same as in theMap phase join, but only this TP is
used as input. It is in theReduce stage where,
for each mapped binding, data are retrieved if they
match other TPs.

• The partial input join is similar toReduce phase
join, but allows an arbitrary number of TPs to be
selected for extracting their results in theMap stage.
These selection use information gathered during the
bulk data loading to HBase.

• Instead of launching a MapReduce job, thecentral-
ized join performs the join operation in a single
node. This is only an efficient choice when the input
data size is small, and the initialization overhead of
a MapReduce job is a major factor in query perfor-
mance.

Furthermore, Schätzle and Przyjaciel-Zablocki [49]
develop a join strategy namedMap-Side Index Nested
Loop Join(MAPSIN join). This strategy performs the
join in the Map stage instead of theReduce one. It
firstly performs a distributed table scan for the first TP,
and retrieves all local results from each machine. For
each possible variable binding combination, theMap
function is invoked for retrieving compatible bindings
with the second TP. The computed multiset of solutions
is stored in HDFS. This approach highly reduces the net-
work bandwidth usage, as only compatible data for the
second TP needs to be transferred to the nodes which
run theMap tasks. Note that, when the join is mate-
rialized in theReduce stage, all possible bindings are
transferred fromMap to Reduce tasks. Joins involv-
ing three or more TPs are computed successively. For
each additional TP, aMap stage is performed after join-
ing the previous TPs. In this case, theMap function is
invoked for each solution obtained in the previous joins.
Finally, in the case of multi-way joins, compatible bind-
ings for all TPs are retrieved from HBase in a singleMap
stage. Finally, for queries involving a high selective TP
(retrieving few results), theMap function is invoked in
one machine for avoiding the MapReduce initialization.

7 HYBRID SOLUTIONS

The approaches reviewed in the previous section
strictly rely on the MapReduce framework for resolv-
ing SPARQL queries. Some other techniques introduce
specific semantic technology in each node of the cluster.
In general, this class of solutions deploy an RDF store
in each cluster machine and distribute the whole dataset
among each node. The motivation behind this idea is

to manage a significant RDF subgraph in each node in
order to minimize inter-node communication costs. In
fact, when join resolution can be isolated within a single
node, the complete query is resolved in parallel using
MapReduce. These queries are defined asParallelizable
Without Communication(PWOC) by Huang et al. [25].
In this case, the final results are just the addition of each
node output (note that a cross product would be required
in this case, but this case is not considered in the original
paper). If a query is not PWOC, it is decomposed in par-
allelizable queries and their result is finally merged with
MapReduce.

A straightforward, but smart, data distribution per-
forms hashing by subject, object or subject-object (re-
sources which can appear as subject or object in a
triple) [36]. This hash-based partitioning is also used
in multiple distributed RDF Stores such as YARS2
[23], Virtuoso Cluster [14], Clustered TDB [42], or
CumulusRDF [33]. In the current scenario, hash-
partitioning enables TPs sharing a variable resource to be
resolved without inter-node communication. This result
is especially interesting for star-shaped query resolution,
but more complex queries require intermediate results to
be combined and this degrades the overall performance
[25]. Edge-based partitioning is another effective means
of graph distribution. In this case, triples which share
subject and object are stored in the same node. How-
ever, triples describing the same subject can be stored
in different nodes, hindering star-shaped query resolu-
tion [25]. Finally, Huang et al. [25] and Lee and Liu [36]
perform a vertex-based partitioning. By considering that
each triple models a graph edge, this approach distributes
subsets of closer edges in the same machines. This par-
titioning involves the following three steps:

1. The whole graph is vertex-based partitioned in dis-
joint subsets. This class of partitioning is well-
known in Graph Theory, so standard solutions such
as theMetis partitioner[30], can be applied.

2. Then, triples are assigned to partitions.

3. Partitions are finally expanded through controlled
triple replication.

It is worth noting thatrdf:type generates undesirable
connections: every resource is at two hops of any other
resource of the same type. These connections make the
graph more complex and reduce the quality of graph par-
titioning significantly. Huang et al. [25] remove triples
with predicaterdf:type (along with triples with similar
semantics) before partitioning. Highly-connected ver-
tices are also removed because they can damage quality
in a similar way. In this case, a threshold is chosen and
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those vertices with more connections are removed before
partitioning.

Huang et al. [25] create partitions including triples
with the same subject. In turn, Lee and Liu [36] obtain
partitions for three different kinds of groups:

• Subject-based triple groups, comprising those
triples with the same subject.

• Object-based triple groups, comprising those
triples with the same object.

• Subject-object-based triple groups, comprising
those triples with the same subjector object.

The overall query performance could be improved if
triples replication is allowed. It enables larger subgraphs
to be managed and queried, yielding configurable space-
time tradeoffs [25]. On the one hand, storage require-
ments increase because some triples may be stored in
many machines. On the other hand, query performance
improves because more queries can be locally resolved.
Note that the performance gap between completely par-
allel resolved queries and those requiring at least one join
is highly significant. Huang et al. [25] introduce two par-
ticular definitions to determine the best triple replication
choice:

• Directed n-hop guarantee:ann-hop guaranteepar-
tition comprises all vertices which act as objects
in triples whose subject is in an(n-1)-hop guaran-
teepartition. The1-hop guaranteepartitions corre-
sponds to the partition created by the vertex parti-
tioning method previously described.

• Undirected n-hop guarantee:this is similar to the
previous one, but it includes each vertex linked to a
vertex in the(n-1)-hop guaranteepartition (i.e. ver-
tices which are subject of a triple having its object
on the(n-1)-hop guarantee).

Lee and Liu [36] propose comparable definitions:

• k-hop forward direction-based expansionis similar
to directed n-hop guarantee. It adds triples with the
subject acting as the object of a triple in the parti-
tion.

• k-hop reverse direction-based expansionadds
triples with an object which appears as the subject
of a triple in the partition.

• k-hop bidirection-based expansionis similar to
undirected n-hop guarantee. Thus, it adds triples
with a resource playing any resource role for a triple
in the partition.

Example. We illustrate these definitions using the
RDF excerpt shown in Figure 1. Let us suppose that
triples are partitioned by subject, and each one is as-
signed to a different partition. In this case, the1-hop
guaranteeor any type of1-hop expansionwould simply
obtain the initial partitions without adding any additional
triples. This is shown in Figure 6(a).

The 2-hop partitions are obtained by including triples
“related” to those in the corresponding 1-hop parti-
tion. How this relationship is materialized depends
on the type of partition. Directed 2-hop guarantee
and2-hop forward direction-based expansionadd triples
whose subject is object in any triple within the 1-hop
partition. In the current example, the triple(ex:C1,
ex:hasProfessor, ex:P1) is added to partitions 1 and
2, but the partition 3 is unchanged because there are no
more triples with their subject included in the 1-hop par-
tition. The resulting partitions are shown in Figure 6(b).

The 2-hop reverse direction-based expansion, illus-
trated in Figure 6(c), add triples whose object is a subject
in any triple within the 1-hop partition. For the current
example, partitions 1 and 2 remain unchanged whereas
the partition 3 adds(ex:S1, ex:study, ex:C1) and
(ex:S2, ex:study, ex:C1).

The undirected 2-hop guaranteeand 2-hop
bidirection-based expansionadd triples whose sub-
ject or object appear, as subject or object, in any triple
within the 1-hop partition. In our current example,
(ex:C1, ex:hasProfessor, ex:P1) is added to parti-
tions 1 and 2 because their subject (ex:C1) is already in
the partition. In turn,(ex:S1, ex:study, ex:C1) and
(ex:S2, ex:study, ex:C1) are added to the partition 3
because their object (ex:C1) is also in the partition. The
resulting partitions are illustrated in Figure 6(d).

The subsequent 3 and 4-hop partitions are obtained
following the same decisions. It can be tested that, in this
example, bothundirected 4-hop guaranteeand 4-hop
bidirection-based expansioninclude the whole graph.✷

This n-hop review leads to an interesting result: in
fully connected graphs, bothundirected k-hop guaran-
teeandk-hop bidirection-based expansionpartitions will
eventually include the whole graph ifn/k is sufficiently
increased. However, this is not true for directed guaran-
tees/expansions, as some resources can be connected by
the direction which is not considered [25].

To determine if a query is completely resolved in par-
allel, centrality measures are used. Huang et al. [25] use
the concept ofDistance of Farthest Edge(DoFE). The
vertex of a query graph with the smallest DoFE will be
considered as thecore. If the DoFE of the core vertex
is less than or equal to the n-hop guarantee, then the
query is PWOC. It is worth noting that if directed n-
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Figure 6: Example of different hop partitions over the RDF graph example in Figure 1.

hop guarantee is used, the distance must be measured
considering the query as a directed graph; if undirected
n-hop guarantee is used, the query can be considered as
an undirected graph. Lee and Liu [36] propose similar
definitions with the name ofcenter vertexand radius.
Radius can be calculated asforward radius(when us-
ing forward direction-based expansion),reverse radius
(when using reverse direction-based expansion), orbidi-
rectional radius(when using bidirectional-based expan-
sion). In these cases, the query graph must be considered
as directed, inversely directed, and undirected.

If triples replication is used, it is possible that more
than one partition could resolve a query. This could
lead to duplicate results when resolving PWOC queries.
Huang et al. [25] address this issue in the following way:
when a partition is created, additional triples with the
form (v,<isOwned>,"Yes") are added, wherev corre-
sponds to core vertexes of the partition (i.e. not added as
an n-hop guarantee). When resolving a query in parallel,
an additional TP with the form(core,<isOwned>,"Yes")
is added to the query.

8 ANALYSIS OF RESULTS

This section summarizes the experimental results pro-
vided by the authors of the most prominent techniques
described in the previous sections. It is worth mentioning
that any performance comparison would be unfair, as the
solutions are tested under different configurations and
most of them do not compare to each other. These vari-
ations include different node configurations and cluster
compositions; the version of Hadoop used in the experi-
ments and also its configuration; and the datasets size.
Nevertheless, all of them use the well-known Lehigh
University Benchmark[21] (LUBM), obtaining datasets
from LUBM(100) to LUBM(30K). This benchmark al-
lows synthetic data, of arbitrary size, to be generated

from a university ontology. It also provides a set of
14 queries varying in complexity. Thus, we aim to an-
alyze how solutions face two correlated dimensions: i)
dataset sizeand ii) resolution performance at incre-
mental query complexity.

8.1 Native solutions on HDFS

As stated, native solutions running on HDFS make use
exclusively of MapReduce infrastructure for SPARQL
resolution. On the one hand, RDF is stored using dif-
ferent file configurations within HDFS. On the other
hand, SPARQL queries are resolved with successive jobs
across the nodes. It is worth noting that all techniques
analyzed in this section use multi-way joins for query
optimization.

The initial work by Husain et al. [28] proposes a
promising specific optimization on the basis of organiz-
ing triples in files by certain properties. They perform,
though, a reduced evaluation with a cluster of 10 nodes,
aimed at testing the feasibility and scalability of the pro-
posal. They report runtime for six queries from LUBM
on incremental dataset sizes. The solution scales up to
1, 100million triples and shows sublinear resolution time
w.r.t. the number of triples. However, no comparisons
are made against any other proposal, so its impact within
the state of the art cannot be quantified. Their next solu-
tion [26] fills this gap and evaluates the approach (again
on a cluster of 10 nodes) against mono-node stores:
BigOWLIM6 and Jena7 (in-memory and the SDB model
on disk). The latest solution by Husain et al. [27] com-
pare their approach against the mono-node RDF3X [40].
In this latter comparison, larger datasets are tested, rang-
ing from LUBM(10K), with 1.1 billion triples, to LUBM
(30K), with 3.3 billion triples. In addition to LUBM,

6http://www.ontotext.com/owlim/editions
7http://jena.apache.org/

13



Open Journal of Semantic Web (OJSW), Volume 1, Issue 1, 2014

a subset of the SP2Bench Performance Benchmark [52]
is also used as evaluation queries. These last works
reach similar conclusions. As expected, the Jena in-
memory model is the fastest choice for simple queries,
but it performs poorly at complex ones. Moreover, it
runs out of memory on a large scale (more than 100 mil-
lion triples). Jena SDB works with huge sizes, but it
is one order of magnitude slower than HadoopRDF. In
general, BigOWLIM is slightly slower in most dataset
sizes, and slightly faster in the 1 billion dataset (mostly
because of its optimizations and triple pre-fetch). A de-
tailed review shows that BigOWLIM outperforms the
MapReduce proposal in simple queries (such as Q12),
whereas it is clearly slower in the complex ones (e.g.Q2
or Q9). They also evaluate the impact of the number of
reducers, showing no significant improvement in the per-
formance with more than 4 reducers. RDF3X performs
better for queries with high selectivity and bound ob-
jects (e.g.Q1), but HadoopRDF outperforms RDF3X for
queries with unbound objects, low selectivity, or joins on
large amounts of data. Moreover, RDF3X simply cannot
execute the two queries with unbound objects (Q2 and
Q9) with the LUBM(30K) dataset.

Goasdoué and Kaoudi [19] compare their solution
with respect to HadoopRDF [27]. Datasets LUBM(10K)
and LUBM(20K) are used in the tests. All the queries
correspond to 1-clique or central-clique queries, and thus
they can be resolved in a single MapReduce job. This al-
lows CliqueSquare to outperforms HadoopRDF in each
query by a factor from 28 to 59.

Myung et al. [39] focus their evaluation on test-
ing their scalability with LUBM at incremental sizes.
However, the maximum size is only LUBM(100),i.e.
synthetic-generated triples from 100 universities. In con-
trast, Husain et al. [28] start their evaluation from 1,000
universities. Therefore, the very limited experimentation
framework prevents the extraction of important conclu-
sions. Nonetheless, they also verify the sublinear per-
formance growth of the proposal (w.r.t. the input) and
the significant improvement using multi-way joins ver-
sus two-way joins.

8.2 Native solutions on NoSQL

As explained before, this class of solutions replaces the
plain HDFS storage by a NoSQL database in order to im-
prove the overall data retrieval performance. The follow-
ing results support this assumption, showing interesting
improvements for query resolution.

Sun and Jin [55] make an evaluation using
LUBM [21] datasets from 20 to 100 universities.
Although no comparisons are made with respect to any
other solutions, their results report better performance
for growing dataset sizes. This result is due to the

impact of MapReduce initialization decreases for larger
datasets.

Papailiou et al. [43] compare themselves with the
mono-node RDF3X and with the MapReduce-based so-
lution HadoopRDF [27]. The experiments comprise a
variable number of nodes for the clusters and a single
machine for RDF3X. This machine deploys an identical
configuration to that used for the nodes in the clusters.
LUBM datasets are generated for 10,000 and 20,000
universities, comprising 1.3 and 2.7 billion triples re-
spectively. Their solution shows the best performance
for large and non-selective queries (Q2 and Q9), and
outperforms HadoopRDF by far for centralized joins.
Nonetheless, it is slightly slower than RDF3X for this
case. Regarding scalability, execution times are almost
linearw.r.t. the input when the number of nodes does not
vary within the node, and decreases almost linearly when
more nodes are added to the cluster.

Schätzle and Przyjaciel-Zablocki [49] perform an
evaluation of their MAPSIN join technique over a cluster
with 10 nodes. They also use the SP2Bench in addition
to LUBM. For LUBM, datasets from 1,000 to 3,000 uni-
versities are generated; for SP2Bench, datasets from 200
million to 1 billion triples are generated. Their results are
compared against PigSPARQL [50], another work from
some of the same authors that uses Pig to query RDF
datasets. Both approaches scale linearly, but MAPSIN
on HBase enable an efficient way of Map-Side join be-
cause it reduces the necessary data shuffle phase. This
allows join times to be reduced from1.4 to 28 times with
respect to the compared technique.

8.3 Hybrid solutions

The hybrid solutions aim to minimize the number of
MapReduce jobs, resolving queries in local nodes and
restricting the communication and coordination between
nodes just for complex queries (cross-joins between
nodes). This is only effective on the basis of a previous
smart subgraph partitioning.

Huang et al. [25] establish a fixed dataset of 2,000 uni-
versities (around 270 million triples) for their evaluation,
and do not compare incremental sizes. They perform on
a cluster of 20 nodes, and their proposal is built with the
RDF3X [40] triple store working in each single node.
First, they compare the performance of RDF3X on a sin-
gle node against the SHARD [48] native solution, show-
ing that this latter is clearly slower because most joins
require a costly complete redistribution of data (stored in
plain files). In contrast, subject-subject joins can be ef-
ficiently resolved thanks to the hash partitioning. Next,
the performance of Huang et al.’s solution is evaluated
against RDF3X on a single node. Once again, the sim-
plest queries (Q1, Q3, Q4, etc.) run faster on a single
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machine, whereas the hybrid MapReduce solution dra-
matically improves the performance of complex queries
(Q2, Q6, Q9, Q13 and Q14), ranging from 5 to 500 times
faster. The large improvement is achieved for large clus-
ters, because chunks are small enough to fit into main
memory. In addition, they verify that the 1-hop guarantee
is sufficient for most queries, except those with a larger
diameter (Q2, Q8 and Q9), in which the 2-hop guarantee
achieves the best performance and, in general, supports
most SPARQL queries (given the small diameter of the
path queries).

Finally, Lee and Liu [36] yield to a very similar ap-
proach. They also install RDF3X in each single node
(20 nodes in the cluster), but their performance is only
compared against a single-node configuration. In con-
trast, they perform on incremental sizes (up to 1 billion
triples) and study different benchmarks besides LUBM.
They also conclude that a 2-hop guarantee is sufficient
for all queries (it leads to similar results to even a 4-hop
guarantee) and, in each case, this subgraph partitioning is
more efficient than the hash-based data distribution used,
for instance, in SHARD [48]. The single-node configu-
ration does not scale on most datasets, whereas the scala-
bility of the MapReduce system is assured once the reso-
lution time increases only slightly at incremental dataset
sizes.

9 DISCUSSION AND CONCLUSIONS

MapReduce is designed to process data in dis-
tributed scenarios under the assumption of no inter-
communication betweenMap andReduce tasks during
their execution. However, RDF data is interweaved be-
cause of its graph nature, and triple relationships are spa-
tially arbitrary. For these reasons, multiple MapReduce
jobs can be necessary to resolve SPARQL queries. More-
over, a plain data storage and organization overloads the
processing, and expensive costs must be paid whenever
a new job starts. Thus, efficient SPARQL resolution on
MapReduce-based solutions is mainly based on optimiz-
ing RDF data management and minimizing the number
of MapReduce jobs required for query resolution.

We review the most relevant proposals throughout
the paper, establishing a categorization in two different
groups: (i) native solutions and (ii) hybrid solutions.
Native solutions resolve SPARQL queries using Map-
Reduce tasks exclusively, whereas hybrid solutions per-
form subgraph resolution in each node, and resort to
MapReduce to join the results of each subgraph. In na-
tive solutions, the main contributions relate to reducing
the number of jobs needed to perform joins, and to data
organization. Data can be stored in HDFS, where data
must be organized in files, or in another solution such

as HBase, where triples can be indexed for faster access.
In hybrid solutions, the main contributions are related to
how data is partitioned in order to obtain optimal sub-
graphs.

Although many of the prominent solutions cannot be
directly compared, given their different configurations, a
detailed analysis of their results draws significant con-
clusions: (i) MapReduce-based solutions scale almost
linearly with respect to incremental data sizes, (ii) they
perform worse than classical mono-node solutions with
simple queries or small datasets, but (iii) they outperform
these solutions when the query complexity or the dataset
size increases.

The state-of-the-art approaches also evidence that data
must be preprocessed (i) to obtain easily readable nota-
tion, (ii) to enable partial reads to be done, and (iii) to
reduce storage requirements. In addition, two of the re-
viewed papers also organize data in such a way that the
process can capitalize on data locality and perform joins
on Map tasks [49, 19]. It highly reduces data shuffling
and improves performance. Although this preprocessing
step could be computationally expensive, it is a once-
only task which improves performance dramatically. In
this scenario, binary RDF serialization formats such as
RDF/HDT [16] could enhance the overall space/time
tradeoffs. Note that these approaches can manage RDF
in compressed space, enabling TP resolution at high lev-
els of the memory hierarchy.

Apparently, the more complex the solutions, the bet-
ter the performance results, but this comes at an impor-
tant cost. On the one hand, they incur serious storage
overheads because of data redundancy: NoSQL solu-
tions can require up to 6 times the space of native so-
lutions, whereas hybrid solutions report up to 4.5 times
just for 2-hop partitions. On the other hand, the sim-
pler native solutions are easier to implement in vanilla
MapReduce clusters, which make deployment in shared
infrastructures or in third party services (such as AWS
Elastic MapReduce8) an almost straightforward opera-
tion. As complexity grows, solutions are harder to im-
plement.

While these works showcase relevant contributions for
SPARQL resolution using MapReduce, the absence of
communication between tasks continues to present an
important challenge when joins are involved. This can be
seen as a general MapReduce issue that motivates differ-
ent researches. Some proposals add an additional phase
to the MapReduce cycle. For instance, Map-Reduce-
Merge [61] adds an additional function at the end of
the MapReduce cycle in order to support relational al-
gebra primitives without sacrificing its existing general-
ity and simplicity. In turn, Map-Join-Reduce [29] intro-

8http://aws.amazon.com/elasticmapreduce
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duces afiltering-join-aggregationprogramming model
which is an extension of the MapReduce programming
model. Tuple MapReduce [17], though, takes a different
approach and proposes a theoretical model that extends
MapReduce to improve parallel data processing tasks us-
ing compound-records, optional in-reduce ordering, or
intersource datatype joins. In addition, there are specific
proposals for providing support to iterative programs like
Twister [13] or HaLoop [7]. This aims to improve data
locality for those tasks accessing to the same data (even
in different jobs), while providing some kind of caching
of invariant data. Thus, it is expected that all these
general-purpose proposals will feedback specific appli-
cations, and SPARQL resolution on MapReduce will be
benefited with advances from these lines of research.
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