
c© 2015 by the authors; licensee RonPub, Lübeck, Germany. This article is an open access article distributed under the terms and conditions of
the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).

Open Access

Open Journal of Semantic Web (OJSW)
Volume 2, Issue 1, 2015

http://www.ronpub.com/ojsw
ISSN 2199-336X

Distributed Join Approaches for
W3C-Conform SPARQL Endpoints

Sven Groppe, Dennis Heinrich, Stefan Werner

Institute of Information Systems (IFIS), University of Lübeck, Ratzeburger Allee 160, D-23562 Lübeck, Germany,
{groppe, heinrich, werner}@ifis.uni-luebeck.de

ABSTRACT

Currently many SPARQL endpoints are freely available and accessible without any costs to users: Everyone can
submit SPARQL queries to SPARQL endpoints via a standardized protocol, where the queries are processed on the
datasets of the SPARQL endpoints and the query results are sent back to the user in a standardized format. As these
distributed execution environments for semantic big data (as intersection of semantic data and big data) are freely
accessible, the Semantic Web is an ideal playground for big data research. However, when utilizing these distributed
execution environments, questions about the performance arise. Especially when several datasets (locally and those
residing in SPARQL endpoints) need to be combined, distributed joins need to be computed. In this work we give an
overview of the various possibilities of distributed join processing in SPARQL endpoints, which follow the SPARQL
specification and hence are ”W3C conform”. We also introduce new distributed join approaches as variants of
the Bitvector-Join and combination of the Semi- and Bitvector-Join. Finally we compare all the existing and newly
proposed distributed join approaches for W3C conform SPARQL endpoints in an extensive experimental evaluation.

TYPE OF PAPER AND KEYWORDS

Regular research paper: Semantic Web, SPARQL endpoint, distributed join, W3C-conform, SPARQL,
query processing, query optimization

1 INTRODUCTION

The current World Wide Web enables an easy, instant
access to a vast amount of online information. How-
ever, the content in the Web is typically for human con-
sumption, and is not tailored for machine processing.
The Semantic Web [50] is hence intended to establish
a machine-understandable web.

The World Wide Web Consortium (W3C) [43] devel-
oped numerous standards and approaches around the Se-
mantic Web vision. Among them is the Resource De-
scription Framework (RDF) [44], which is used as the
data model of the Semantic Web. The W3C also defined
SPARQL [14] as RDF query language, and the ontology
languages RDFS [9] and OWL [38] to express knowl-

edge.

There are masses of Semantic Web data freely avail-
able to the public – thanks to the efforts of the linked
data initiative [26]. In 2011 the data contained over 30
billion triples in nearly 300 datasets with over 500 mil-
lion links between these datasets. These numbers still
grow rapidly: In 2014 these numbers have already been
more than doubled [36]. Many of these freely available
datasets are additionally accessible via SPARQL query
servers, called SPARQL endpoints. Anyone can submit
SPARQL queries to SPARQL endpoints via a standard-
ized protocol [46], where the query is processed on the
dataset of the SPARQL endpoint and the query result is
returned in one of the standardized formats XML [49],
JSON [48] or TSV/CSV [47]. In this way one does not

30

http://creativecommons.org/licenses/by/3.0/
http://www.ronpub.com/ojsw

S. Groppe, D. Heinrich, S. Werner: Distributed Join Approaches for W3C-Conform SPARQL Endpoints

need to set up an own SPARQL database and import the
data into it, but can use these SPARQL endpoints for data
access.

The RDF query language SPARQL [45] in its cur-
rent version 1.1 [14] took a further step in federated
query processing over distributed SPARQL endpoints by
introducing the SERVICE clause. With the SERVICE
clause one can express subqueries to be processed on a
remote SPARQL endpoint. In this way the results of a
remote SPARQL endpoint can be combined with local
data. Even several SERVICE clauses can be used in one
query, such that the data residing in several SPARQL
endpoints can be easily combined. This is one of the
most powerful features of SPARQL 1.1: Even the mature
relational query language SQL [20] does not standardize
any comparable language features, which combine the
data of remote database servers or simply combine the
data of several local databases within one query. Pro-
prietary extensions like OPENROWSET in SQL Server
[29] and the federated storage engine in MySQL [32] are
not integrated in the SQL standard.

By filtering out irrelevant data already at the SPARQL
endpoint the performance is increased and the commu-
nication costs are decreased, whenever data of a num-
ber of SPARQL endpoints or local data and the data of
SPARQL endpoints is combined. Distributed join ap-
proaches [13] in distributed databases are designed to
achieve this goal in the relational world in a homoge-
neous environment, where only one distributed database
management system is running.

1.1 Utilizing Third-Party SPARQL Endpoints

When a user has an own SPARQL endpoint for freely
available linked data, she/he must update datasets in the
endpoint on a regular basis in order to keep them up-to-
date. Furthermore, the user must reserve hardware for
the SPARQL endpoint: This is wasting her/his own re-
sources, regarding the fact that many organizations of-
fer SPARQL endpoints with the linked data the user
needs for her/his applications. We are hence interested
in the following scenarios: Users do not run their own
SPARQL endpoint. Intead, they utilize freely available
and accessible third-party SPARQL endpoints in order
to save own (computing and storage) resources and to
operate on the latest data.

Typically a user does not have any influence on
the configuration and setup of the SPARQL endpoints
freely available and accessible via the Internet. Dif-
ferent SPARQL endpoints might use different SPARQL
query evaluators and Semantic Web database manage-
ment systems with varying Quality-of-Service param-
eters [11, 5]. The only standardized way of commu-
nicating with a SPARQL endpoint is using the stan-

dardized protocols, query languages and result formats
specified by the W3C. We call a SPARQL endpoint a
W3C-conform SPARQL endpoint, if the SPARQL end-
point offers only the standardized way of communica-
tion specified by W3C. Most freely available SPARQL
endpoints are W3C-conform SPARQL endpoints, such
that users rely on these standards instead of advanced
(but proprietary) prootocols. In this heterogeneous envi-
ronment, distributed joins can hence only be expressed
by using the language features of SPARQL. Or in other
words: The distributed join approaches have no way
to set up requests to SPARQL endpoints other than to
send SPARQL queries. We will hence focus on and in-
vestigate only distributed join approaches, which gener-
ate SPARQL queries for their requests to SPARQL end-
points.

1.2 Our Contributions

Our contributions are:

• describing different distributed join approaches,
which utilize only SPARQL language features to
filter out irrelevant results already at the remote
SPARQL endpoint,

• presenting a set of new distributed join approaches
corresponding to the Bitvector-Join [28] in dis-
tributed databases, which use only SPARQL lan-
guage features and adapt the Btvector-Join concept
(having the best performance in our real-world sce-
nario),

• proposing a variant, which is a combination of the
Semi- [51] and Bitvector-Join approach, being usu-
ally faster than any of the two approaches, because
it not only avoids costly hash operations, but also
reduces the communication costs dramatically,

• showing that an additional built-in function in the
SPARQL specification would allow Bitvector-Joins
with superior performance, and

• a comprehensive experimental evaluation show-
ing the advantages and disadvantages of the
proposed distributed join approaches for W3C-
conform SPARQL endpoints.

1.3 Organization of Paper

The remainder of this paper is organized as follows:
Section 2 introduces the technologies of Semantic Web,
which are used in this work, and further related work.
In Section 3, we discuss the different distributed join
approaches, including existing ones and ones proposed
in this work, using concrete examples. Section 3 first

31

Open Journal of Semantic Web (OJSW), Volume 2, Issue 1, 2015

gives an overview of these approaches and then clas-
sify them according the important properites like how
the client must process the result of remote queries. Sec-
tion 4 presents two types of experiments running on syn-
thetic and on real-world data. We also provide an ex-
tensive analysis of the experimental results and discuss
the reasons for observed runtime characteristics in the
experiments. Finally, we summarize the proposed ap-
proaches for distributed joins for SPARQL endpoints and
conclude our paper in Section 5.

2 BASICS OF SEMANTIC WEB AND REMOTE
QUERIES

In this section, we introduce the technologies of Seman-
tic Web, which are used in this work, and other further
related work. We introduce the data model of the Seman-
tic Web in Section 2.1 and its query language in Section
2.2. Section 2.3 contains further related work, where we
especially focus on federation over SPARQL endpoints
and distributed join approaches for the Semantic Web.

2.1 Data Format RDF

The Resource Description Framework (RDF) [44] is
a language originally designed to describe (web) re-
sources, but can be used to describe any other informa-
tion. RDF data consists of a set of triples. Following
the grammar of a simple sentence in natural language,
the first component s of a triple (s, p, o) is called the
subject, p the predicate and o the object. More formally:

Definition (RDF triple): Assume there are pairwise dis-
joint infinite sets I , B and L, where I represents the set
of Internationalized Resource Identifiers (IRI), B the set
of blank nodes and L the set of literals. We call a triple
(s, p, o) ∈ (I ∪ B) × I × (I ∪ B ∪ L) an RDF triple,
where s represents the subject, p the predicate and o the
object of the RDF triple. We call an element of I∪B∪L
an RDF term.

In visualizations of the RDF data, the subjects and ob-
jects become (unique) nodes, and the predicates directed
labeled edges from their subjects to their objects. The
resulting graph is called RDF graph.

Listing 1 shows an example of RDF data consist-
ing of three triples, which describe a book published
by Publisher with the title "SPARQL" from the author
"Ghostwriter", in the serialization format N3 [8].

2.2 Query Language SPARQL

The World Wide Web Consortium proposed the RDF
query language SPARQL [45, 14] for searching in RDF
datasets. Listing 2 presents an example SPARQL query.

1 @prefix ex: <http://www.ifis.uni-
luebeck.de/example/>.

2 ex:book ex:publishedBy ex:Publisher .

3 ex:book ex:title "SPARQL" .

4 ex:book ex:author "Ghostwriter" .

Listing 1: Example of RDF data

The structure of SPARQL queries is similar to that of
SQL queries for relational databases. The most im-
portant part of a SPARQL query is the WHERE-clause.
A WHERE-clause consists of triple patterns, which are
used for matching triples. Known components of a triple
are directly given in a triple pattern, unknown ones are
left as variables (starting with a ?). If the known compo-
nents in a triple pattern matches the corresponding ones
in the triple, the variables in the triple pattern are bound
to the corresponding RDF terms in the matching triple.
The result of a triple pattern contains an entry (with
bound variables) for each matching triple. The results of
several triple patterns are joined over common variables.
All variables given between the keywords SELECT and
WHERE appear in the final result, all others are left
out. Besides SELECT-queries, also CONSTRUCT- and
DESCRIBE-queries are available to return RDF data.
Furthermore, ASK-queries can be used to check for the
existence of results indicated by a boolean value. Analo-
gous to N3, SPARQL queries may declare prefixes after
the keyword PREFIX.

Listing 2 presents an example SPARQL query,
the result of which is {(?title=”SPARQL”, ?au-
thor=”Ghostwriter”)} when applied to the RDF data in
Listing 1.

1 PREFIX ex: <http://www.ifis.uni-
luebeck.de/example/>

2 SELECT ?title ?author WHERE {
3 ?book ex:publishedBy ex:Publisher .

4 ?book ex:title ?title .

5 ?book ex:author ?author .

6 }

Listing 2: Example of a SPARQL query

Besides this basic structure, SPARQL offers several
other features like FILTER clauses to express filter con-
ditions, UNION to unify results and OPTIONAL for a
(left) outer join.

SPARQL in its new version 1.1 [14] additionally sup-

32

S. Groppe, D. Heinrich, S. Werner: Distributed Join Approaches for W3C-Conform SPARQL Endpoints

ports enhanced features like update queries, paths and
remote queries.

2.2.1 Remote Queries

Listing 3 presents the schema for queries containing a
SERVICE-clause. Here, A and B are placeholders for any
language constructs of SPARQL: While the demands ex-
pressed in A are processed on the local data, the demands
expressed in B are sent to a SPARQL endpoint residing
at endpoint-url, which are there processed and the re-
sult of B is sent back to the client. The demands in B
are encapsulated in a whole SPARQL query, which we
call remote query, before sending it to the corresponding
SPARQL endpoint. Afterwards, the results of A and B are
joined to form the final result of the query. A and B them-
selves could contain again SERVICE-clauses, and thus
SPAQL endpoints may be accessed several times within
a single query.

Listing 4 contains an extended version of the query
in Listing 2: The prices of the determined books in the
local data are retrieved from a SPARQL endpoint. The
query is an example for scenarios with static data stored
locally, which is seldom updated, and dynamic data with
frequent updates residing at a server. Remote queries can
be further used to combine datasets residing at different
servers in federated scenarios.

1 SELECT * WHERE {
2 A

3 SERVICE <endpoint-url> {
4 B

5 }

6 }

Listing 3: Schema of a SERVICE clause

2.2.2 Operator Graph

Basic operations of relational queries [12, 13] and also
SPARQL queries [42] can be expressed in terms of
(nestable) operators of the relational algebra. Relational
expressions can be visualized by an operator tree or by
its more general form, an operator graph. An additional
operator for SPARQL queries (in comparison to rela-
tional queries) is the triple pattern scan, which is a spe-
cial form of an index scan operator, yielding the result of
a triple pattern. Figure 1 presents the operator graph of
the SPARQL query in Listing 2. The operators at the bot-
tom are the triple pattern scan operators of the three triple
patterns contained in the SPARQL query. The results of
the triple patterns are combined by a join ./ over their
common variable ?book. Finally the projection operator

1 PREFIX ex: <http://www.ifis.uni-
luebeck.de/example/>

2 SELECT ?title ?author ?price
3 WHERE {
4 ?book ex:publishedBy ex:Publisher .

5 ?book ex:title ?title .

6 ?book ex:author ?author .

7 SERVICE ex:sparql {
8 ?book ex:price ?price .

9 }

10 }

Listing 4: Example of a SPARQL query with
SERVICE clause

π is applied to the result of the join: Only the bound val-
ues of the variables ?title and ?author remain in the
final result.

⋈?book

?book ex:publishedBy ex:Publisher ?book ex:author ?author

𝜋{?title, ?author}

?book ex:title ?title

Figure 1: Operator graph of the SPARQL query in
Listing 2

Furthermore, for remote queries in SERVICE clauses
of SPARQL queries, we can introduce an additional
SERVICE operator. Depending on the used algorithm
for distributed joins, we have to generate different vari-
ants of operator graphs in context of the SERVICE oper-
ator. We will discuss these different variants in Section
3.

2.3 Further Related Work

Table 1 provides an overview of the different federation
frameworks and their distributed join approaches. Some
just use the distributed join approaches of underlying en-
gines (like [18, 3, 25, 24, 23]). Other frameworks have
own (often non-blocking) implementations of distributed
joins (e.g. [27, 39, 22, 21, 2]). A third group implements
distributed joins by generating corresponding SPARQL
queries (for example [37, 31, 51], Jena [41] and Sesame
[10]). We especially focus on approaches of this third
group, extensively describe possibilities for expressing
distributed joins with SPARQL 1.1 and propose some

33

Open Journal of Semantic Web (OJSW), Volume 2, Issue 1, 2015

new distributed join approaches for this group, i.e. the
Value and Value (X chars) approaches and variants of
the Bitvector-Join approaches. [34, 35] contain surveys
over federation frameworks over SPARQL endpoints.

Most of the federation systems in Table 1 provide such
features that users do not need to know where data is
resided, but just formulate one query the triple patterns
of which are automatically matched against a number of
sources. In order to avoid querying many sources, which
do not contain any triples matching the triple patterns in
the query, the federation systems typically apply sophis-
ticated source selection approaches. After selecting rele-
vant sources the federation systems need optimized dis-
tributed join approaches for increasing the overall query
processing, which is the focus of this paper.

DARQ [33] creates an index called service descrip-
tion to select the relevant sources. Each service descrip-
tion contains statistical information about distinct predi-
cates in the data of a SPARQL endpoint. These distinct
predicates are simply matched against predicates in the
triple patterns of the considered query. If a variable at
the predicate position of a triple pattern is bound with a
value by a previous operation (the result of which will
be joined with that of the triple pattern), then we say that
the predicate of the triple pattern is bound. If a predicate
in a triple pattern is neither bound nor is a constant IRI,
the source selection approach of DARQ fails. Besides
service descriptions, DARQ offers query rewriting based
on a cost-based optimization to further reduce the query
processing time and the bandwidth usage.

In comparison to DARQ, LHD [39] and ADERIS [27]
additionally support triple patterns with unbound pred-
icates and simply select all data sources in such cases.
LHD uses a symmetric hash join to send subqueries and
integrate the results in parallel.

Vocabulary of Interlinked Datasets (VoiD) [4] is pub-
lished as W3C Semantic Web Interest Group note1 as
meta data format for describing LOD datasets, such that
datasets relevant to answer a given query can be selected
effectively in an automated manner.

The Web of Data Query Analyzer (WoDQA) [3] elim-
inates (not relevant) datasets by analyzing a given query
with respect to the VoiD descriptions of datasets.

In addition to utilizing VoiD descriptions, SPLEN-
DID [15] forwards SPARQL ASK queries to all data
sources when any of the subjects or objects of the cur-
rently considered triple pattern is bound, and selects only
those sources, which successfully pass this test. SPLEN-
DID optimizes the join order by a dynamic programming
strategy.

FedX [37] selects its sources only by sending
SPARQL ASK queries and utilizing a cache of the re-

1http://www.w3.org/TR/void/

cent results of these SPARQL ASK queries. FedSearch
[31] extends FedX by supporting keyword search clauses
and introduces optimizations for reducing the commu-
nication costs for top-k hybrid searches across multiple
data sources.

ANAPSID [2] adapts its query plans to the source
availability and runtime conditions of SPARQL end-
points. For this purpose, physical pipelining operators
are used to dynamically detect blocked sources and traf-
fic (even if they are not blocked at the beginning and be-
come blocked after some time). ANAPSID utilizes both
a catalog and ASK queries and apply heuristics [30] to
select the sources.

Graph Distributed SPARQL (GDS) [40] uses the Min-
imum Spanning Tree (MST) algorithm by exploiting
Kruskal algorithm to optimize the execution order of
triple patterns and joins. As distributed join approaches,
either Semi-Join or Bind Join is applied with a cache to
reduce traffic costs.

Avalanche [7] first collects on-line statistical infor-
mation about the data distribution as well as bandwidth
availability. Based on these and other qualitative statis-
tical information it optimizes a given query for quickly
providing first answers and executes the query in a dis-
tributed manner.

The goal of LDQPS [22] is also to early report results
by ranking the sources.

[21] proposes the non-blocking, pushed-based and
stream-based Symmetric Index Hash Join (SIHJoin),
which is able to process both remote and local linked
data. [21] defines also a cost model for this join opera-
tor, which is the basis for optimization steps.

Distributed SPARQL [51] introduces the Semi-Join
approach for querying SPARQL endpoints.

Contrary to the described approaches, the SPARQL
client-server query processor SHEPHERD [1] is tai-
lored to reduce SPARQL endpoint workload and gener-
ates shipping plans, where costly operators are placed
at the client site by decomposing SPARQL queries into
lightweight sub-queries that will be posted against the
endpoint.

[6] formalizes federation (and also navigation) in
SPARQL 1.1. Furthermore, [6] analyzes some classical
theoretical problems such as expressiveness and com-
plexity, and discusses algorithmic properties, like the
impossibility of answering some unbounded federated
queries.

[19] extends some of the distributed join approaches
to process aggregate queries (like minimum, maxi-
mum, counting, summation and average computations)
on SPARQL endpoints.

34

http://www.w3.org/TR/void/

S. Groppe, D. Heinrich, S. Werner: Distributed Join Approaches for W3C-Conform SPARQL Endpoints

Framework Platform Join Approach Cache
Jena/ARQ [41] Jena Bind Join, Nested Loop Join no
Sesame [10] Sesame Nested Loop Join no
DARQ [33] Jena Bind Join, Nested Loop Join yes
ADERIS [27] - In-Memory Asymmetric Hash-Join (Note: [27]

calls the join approach index nested loop join)
no

FedX [37] Sesame Bind Join parallelization (Vectored Evaluation) yes
FedSearch [31] Sesame Bind Join parallelization (Vectored Evalua-

tion), Parallel Competing Rank Join as Modi-
fication of Symmetric Hash Join

yes

GRANATUM [18] Jena Bind Join, Nested Loop Join no
LHD [39] Jena Bind Join, Symmetric Hash Join no
Splendid [15] Sesame Bind Join, Hash Join no
GDS [40] Jena Bind Join, Semi-Join yes
Avalanche [7] Avalanche Join-At-Endpoint yes
Distributed SPARQL [51] Sesame Semi-Join no
LDQPS [22] stream-based query

engine of LDQPS
Symmetric Hash Join no

SIHJoin [21] stream-based query
engine of SIHJoin

Symmetric Hash Join no

WoDQA [3] Jena Bind Join, Nested Loop Join yes
SemWIQ [25, 24, 23] Jena Bind Join yes
ANAPSID [2] ANAPSID Symmetric Hash Join no

Table 1: Used distributed join approaches in federation frameworks

3 DISTRIBUTED JOIN APPROACHES FOR
SPARQL ENDPOINTS

Different distributed join approaches require different
pre- and post-processing steps. Figure 2 provides an
overview of the variants of the operator graph for the dif-
ferent distributed join approaches based on the schema of
a service clause in Listing 3.

Figure 2 a) presents the operator graph scheme for
those distributed join approaches without preprocessing
phase, and where the result of the remote query still
needs to be joined with the result of applying A to the
local data. In comparison, variant b) is used in case of
distributed join approaches, which take the result of A to
reformulate the remote query or a set of remote queries
sent to the SPARQL endpoint. Furthermore, the result
of a remote query must either already contain the results
of the join between A and B or can still be associated
to the preprocessed result of A, such that necessary join
steps can be done within the SERVICE operator. Hence,
a succeeding pure join operation is not needed for vari-
ant b). In variant c) this is not the case and a succeeding
join operation between the results of A and the SERVICE
operation is required to retrieve correct results.

Table 2 maps different distributed join approaches to
their required operator graph scheme. We will discuss
the different distributed join approaches in more detail

a) Without using bound values of A with succeeding join

b) Using bound values of A without succeeding join

c) Using bound values of B with succeeding join

SERVICE <…> { B }

⋈

A

A

SERVICE <…> { B }

A

SERVICE <…> { B }

⋈

Figure 2: Operator graph schemes of different types
of distributed joins

in the following subsections.

35

Open Journal of Semantic Web (OJSW), Volume 2, Issue 1, 2015

Operator Graph
Scheme (according
to Figure 2)

Distributed Join

a) Trivial Approach

b)
Fetch-As-Needed/Bind Join
(with/without Cache)
Vectored Evaluation of
Fetch-As-Needed/Bind Join
Join-At-Endpoint

c)
Semi-Join Approach
Bitvector-Join Approach
Value Approach

Table 2: Distributed join approaches and their oper-
ator graph scheme

3.1 Trivial Approach

The trivial approach is also called Fetch-All and Ship-
Whole [28]. The trivial approach just sends the query
demands of B to the SPARQL endpoint (by encapsulating
B in a single SELECT query), and the results returned by
the SPARQL endpoint are joined with the results of A.
For example, the trivial approach sends the remote query
in Listing 5 to the SPARQL endpoint for the SERVICE-
clause of the query in Listing 4.

1 PREFIX ex: <http://www.ifis.uni-
luebeck.de/example/>

2 SELECT * WHERE {
3 ?book ex:price ?price .

4 }

Listing 5: The trivial approach sends this
remote query for the SERVICE-clause of the
query in Listing 4

The trivial approach performs obviously very well if
the result of the remote query is small, or nearly all of
the results of the remote query have join partners in A
(and are without duplicates). The trivial approach has
nearly no overhead in these cases.

3.2 Fetch-As-Needed / Bind Join

The Fetch-As-Needed approach [28] is also called Bind
join. It has several variants, but all variants fetch for a
specific result of A its join partner from the SPARQL
endpoint.

3.2.1 Basic Variant

The basic variant generates for each result of A a remote
query, where it replaces common variables of A and B
with their already bound values in the remote query. The
result received from the SPARQL endpoint is then just
joined with the currently considered result of A.

Listing 6 presents the remote query of the Fetch-As-
Needed approach for the query in Listing 4 and the data
in Listing 1. In this remote query (in comparison to the
one of the trivial approach in Listing 5), the variable
?book has been replaced with its already bound value
ex:book according to the result of A applied on the data
in Listing 1. If there would be several results of A, also
several remote queries would have been generated and
sent to the SPARQL endpoint.

1 PREFIX ex: <http://www.ifis.uni-
luebeck.de/example/>

2 SELECT * WHERE {
3 ex:book ex:price ?price .

4 }

Listing 6: Remote query sent by the Fetch-
As-Needed approach for the query in Listing 4
and the data in Listing 1

3.2.2 Fetch-As-Needed / Bind Join with Cache

This variant utilizes a cache to remember the answers of
already sent remote queries, and just takes the cached re-
sults for previously considered bound values of common
variables of A and B. In this way sending the same remote
queries several times is avoided, but comes with the costs
of managing a cache.

3.2.3 Vectored Evaluation of Fetch-As-Needed/
Bind Join

The vectored evaluation of a bind join sends only one
SPARQL query with UNION clauses containing the
original single requests with renamed variables for later
post-processing and determination of corresponding in-
termediate results.

For example, let us assume that the results of A contain
the bound values ex:book i with i ∈ {1, ..., n} of the
variable ?book. Then the Vectored Evaluation of Fetch-
As-Needed approach sends the remote query of Listing 7
to the SPARQL endpoint. After retrieving the result of
the SPARQL endpoint, the SERVICE operator associates
the results of A with those of the SPARQL endpoint
by just considering which of the variables ?price i is

36

S. Groppe, D. Heinrich, S. Werner: Distributed Join Approaches for W3C-Conform SPARQL Endpoints

bound. As a last step, the associated results must be com-
bined and the variable ?price i renamed to the original
variable name ?price.

1 PREFIX ex: <http://www.ifis.uni-
luebeck.de/example/>

2 SELECT * WHERE {
3 {ex:book_1 ex:price ?price_1 .}

4 UNION
5 ...

6 UNION
7 {ex:book_n ex:price ?price_n .}

8 }

Listing 7: Remote query sent by the Vectored
Evaluation of Fetch-As-Needed approach for
the query in Listing 4

The Vectored Evaluation of Fetch-As-Needed ap-
proach reduces greatly the overhead of sending many
queries to the SPARQL endpoint as is the case for
the other Fetch-As-Needed variants. However, the sent
query becomes significantly larger as well as the post-
processing step slightly more complicated.

3.3 Join-At-Endpoint

The Join-At-Endpoint approach sends the results of
A within the remote query, and the SPARQL end-
point computes the join result of A and B. For ex-
ample, let us assume that the results of A con-
tain the results {?book=ex:book i, ?title="T i",
?author="Ghostwriter i"} with i ∈ {1, ..., n}. Then
the Join-At-Endpoint approach sends the remote query
of Listing 8 to the SPARQL endpoint. The answer re-
turned by the SPARQL endpoint is already the join result
of A and B, with which the query evaluation of the client
continues.

The remote query of the Join-At-Endpoint approach is
the largest of all approaches and the result of the join of
A and B (to be sent back to the client) is typically also
greater than the result of B (to be sent back to the client
in the other approaches), which increases the communi-
cation costs. However, whenever the client has low com-
puting resources, or whenever the results of the join must
be further processed at the SPARQL endpoint or need to
be sent to a third node (being different from the client
and SPARQL endpoint), the Join-At-Endpoint approach
will be of benefit because of its unique property (among
the distributed join approaches) of the join computation
at the SPARQL endpoint.

1 PREFIX ex: <http://www.ifis.uni-
luebeck.de/example/>

2 SELECT * WHERE {
3 ?book ex:price ?price .

4 VALUES (?book ?title ?author) {

5 (ex:book_1 "T 1" "Ghostwriter 1")

6 ...

7 (ex:book_n "T n" "Ghostwriter n")

8 }

9 }

Listing 8: Remote query sent by the Join-At-
Endpoint approach for the query in Listing 4

3.4 Semi-Join Approach

The Semi-Join approach [28] is based on equivalences
between join and semi-join [13]:

A ./ B = A ./ (Bn A) = A ./ (B ./ πJ(A))

where J is the set of common variables of A and B (and
hence J contains the join variables). The Semi-Join ap-
proach transmits πJ(A) to the SPARQL endpoint, which
filters the results of B regarding πJ(A) to avoid returning
results of B, which do not have any join partner in A.

For example, let us assume that the results of A con-
tain the bound values ex:book i with i ∈ {1, ..., n} of
the variable ?book. Then the Semi-Join approach as de-
scribed in [51] sends the remote query of Listing 9 to the
SPARQL endpoint.

1 PREFIX ex: <http://www.ifis.uni-
luebeck.de/example/>

2 SELECT * WHERE {
3 ?book ex:price ?price .

4 FILTER(?book = ex:book_1 ||
5 ... || ?book = ex:book_n)

6 }

Listing 9: Remote query sent by the Semi-Join
approach for the query in Listing 4

3.5 Value Approach

With SPARQL 1.1 [14] we can formulate the Semi-Join
approach for one join variable in a more compact way by
testing a variable to be in a set of values. This reduces
the size of the query to be sent and many SPARQL eval-
uators are faster in processing this kind of expression. In

37

Open Journal of Semantic Web (OJSW), Volume 2, Issue 1, 2015

comparison to the Semi-Join approach, where duplicates
in the tested values lead to additional comparisons, we
avoid generating duplicates in the generated set of val-
ues. We call this approach the Value approach. In our
example, the remote query of Listing 10 is sent to the
SPARQL endpoint.

1 PREFIX ex: <http://www.ifis.uni-
luebeck.de/example/>

2 SELECT * WHERE {
3 ?book ex:price ?price .

4 FILTER(?book in
5 (ex:book_1, ..., ex:book_n))

6 }

Listing 10: Remote query sent by the Value
approach for the query in Listing 4

If there are more than one join variables, the results
of the Semi-Join approach and the Value approach may
differ, as the Value approach tests each variable indepen-
dent from each other if their bound value is in the given
set. In comparison, the Semi-Join approach considers
the values of all bound variables. Hence, the SPARQL
endpoint applying the Semi-Join approach returns only
results of B surely having a join partner in A. However,
the SPARQL endpoint utilizing the Value approach may
return some so called false drops: results of B not having
any join partners in A.

Value (X Chars) Approach

The Value approach still sends relative big remote
queries. The idea of the Value (X chars) approach is
to send only X chars of the values instead the complete
ones. The challenge is to send those characters, which do
not increase the number of false drops. Considering the
types of values (IRIs and literals), it seems to be a good
choice to send the last characters of the values. List-
ing 11 contains the remote query of our example for the
Value (3 chars) approach (n ≤ 9).

3.6 Bitvector-Join

Instead of sending πJ(A) to the SPARQL endpoint as the
Semi-Join approach does, the Bitvector-Join [28] sends a
bloom filter in form of a bit vector to the SPARQL end-
point. At the client side, for each value v bound to a join
variable of A, a fixed hash function h is applied and the
bit at position h(v) is set in the bloom filter (initialized in
the beginning with bits all unset). After transmitting the

1 PREFIX ex: <http://www.ifis.uni-
luebeck.de/example/>

2 SELECT * WHERE {
3 ?book ex:price ?price .

4 FILTER(substr(str(?book),strlen(str
(?book))-2,3) in

5 ("k_1", ..., "k_n"))

6 }

Listing 11: Remote query sent by the Value (3
chars) approach for the query in Listing 4

bloom filter the SPARQL endpoint checks for each re-
sult of B if the corresponding bit is set in the bloom filter
by using the same hash function as the client on the join
variables. Only those results of B are returned from the
SPARQL endpoint, which pass the bloom filter check.
This reduces greatly the number of sent bytes, but again
some false drops may occur.

However, the Bitvector-Join cannot be directly trans-
lated to W3C conform remote SPARQL queries.

3.6.1 NonStandard Approach

We introduce the NonStandard approach to test how
a slight extension of the SPARQL language enables
us to support Bitvector-Joins [28]. For this pur-
pose, we only need an additional built-in function
BitVectorFilter(?v,b,s), which returns true if the
bit at position h(?v) is set in the bloom filter b with
the size s. The hash function h needs to be a fixed one
(like in our implementation, where we use the Java stan-
dard hash function on objects), or additional parameters
could be given in the built-in function to describe the
hash function to be used.

In our example, the remote SPARQL query looks like
the query in Listing 12. Obviously the size of the re-
mote query is independent from the number of results of
A, which is one of the advantages of the NonStandard
approach.

3.6.2 W3C Conform Approach

Considering the SPARQL 1.1 [14] specification, a set
of hash functions MD5, SHA1, SHA256, SHA384 and
SHA512 is already specified, which return the checksum
of these hash functions (as a hex digit string) calculated
on the UTF-8 representation of the given parameter val-
ues. However, we do not have the possibility to form a
bloom filter as a bit vector from the checksums of join
variable values of A. The idea is now to use the check-

38

S. Groppe, D. Heinrich, S. Werner: Distributed Join Approaches for W3C-Conform SPARQL Endpoints

1 PREFIX ex: <http://www.ifis.uni-
luebeck.de/example/>

2 SELECT * WHERE {
3 ?book ex:price ?price .

4 Filter(ex:BitVectorFilter(?book

,28,5)).

5 }

Listing 12: Remote query sent by the
NonStandard approach for the query in
Listing 4

sums directly to filter out irrelevant results of B at the
SPARQL endpoint. However, the checksums are quite
long, often longer than the original values. Hence, we
propose to use only some characters of the checksums
instead all in order to reduce the size of the remote query.
Listing 13 presents the remote query for an example with
three results of A and for the MD5 hash function.

In comparison to the Value (X chars) approach the ad-
vantage of the W3C conform approach is that checksums
are quite irregular even for small changes of the input.
Hence, we can reduce the number of false drops in those
scenarios, where the values of the join variables of A do
not differ much. However, it comes with the costs of
an additional calculation of the checksums. Our exper-
iments in the next section show the advantages of this
approach especially in real-world scenarios.

1 PREFIX ex: <http://www.ifis.uni-
luebeck.de/example/>

2 SELECT * WHERE {
3 ?book ex:price ?price .

4 Filter(substr(MD5(str(?book)),1,2)

in ("7f","b1","19"))

5 }

Listing 13: Remote query sent by the W3C
Conform approach (here MD5) for the query
in Listing 4

4 EXPERIMENTAL EVALUATION

We have run two different types of experiments. The
first type of experiments uses synthetic datasets in or-
der to have configurable properties of the input data and
to test them. The second type of experiments runs real-

world data in order to show common results with syn-
thetic datasets and differences to real-world scenarios.

We describe the used underlying Semantic Web
framework in Section 4.1, the experimental environment
in Section 4.2, the used query, datasets and the results
for the synthetic datasets in Section 4.3 and for the real-
world scenario in Section 4.4, and finally a comprehen-
sive analysis in Section 4.5.

4.1 LUPOSDATE

LUPOSDATE [16] is an open source Semantic Web
database which uses different types of indices for
large-scale datasets (disk based) and for medium-scale
datasets (memory based) as well as processing of (pos-
sibly infinite) data streams. LUPOSDATE supports
the RDF query language SPARQL 1.1, the rule lan-
guage RIF BLD, the ontology languages RDFS and
OWL2RL, parts of geosparql and stsparql, visual edit-
ing of SPARQL queries, RIF rules and RDF data, and
visual representation of query execution plans (operator
graphs), optimization and evaluation steps, and abstract
syntax trees of parsed queries and rules. The advantages
of LUPOSDATE are the easy way of extending LUPOS-
DATE, its flexibility in configuration (e.g. for index
structures, using or not using a dictionary, ...) and it is
open source [17]. These advantages make LUPOSDATE
best suited for any extensions for scientific research.

We have integrated all the approaches described in this
paper and use LUPOSDATE as experimental platform to
evaluate their performances.

4.2 Experimental Setup

We have used two computers in the experiments: One
runs the client and the other a SPARQL endpoint. For
the experiments with synthetic data we used a symmet-
ric configuration. The operating system of both comput-
ers for the experiments with synthetic datasets is Win-
dows 7 Professional running on 4 Gbyte RAM and an
Intel(R) Core(TM) 2 Duo CPU E6550 @ 2,33 GHz. The
client and the SPARQL endpoint run a Java 1.8 virtual
machine. Both computers are connected via 1 Gigabit/s
LAN.

For the experiments running real-world data, we have
used another computer with higher computing resources
for the SPARQL endpoint, but the client is still running
on the same computer (with a configuration as described
above). We believe that this asymmetric configuration
is more typical in real-world. The hardware and soft-
ware configuration of the SPARQL endpoint for the ex-
periments with real-world data consists of an Intel Xeon
X5550 2 Quad CPU computer, each with 2.66 Gigahertz,

39

Open Journal of Semantic Web (OJSW), Volume 2, Issue 1, 2015

72 Gigabytes main memory, Windows 7 (64 bit) and Java
1.8.

We have run each query on their respective synthetic
datasets 1000 times and on real-world data 20 times and
present the average execution times in our figures.

4.3 Experiments with Synthetic Datasets

In the experiments with synthetic datasets, we use a
query, which combines local data (residing at the client’s
computer) with remote data (residing at the SPARQL
endpoint) over a simple join between two triple patterns.
In more detail, we require the object of the local data to
be the same as the subject of the remote data in the joined
result (see Listing 14).

1 SELECT * WHERE {
2 ?ls ?lp ?c .

3 SERVICE <endpoint-url> {
4 ?c ?rp ?ro .

5 }

6 }

Listing 14: Query used in experiments with
synthetic datasets

We developed data generators for the local and the re-
mote data, which are especially designed for the used
query. While the remote data (see Listing 15) is rela-
tively simple and just has exactly one join partner for
each object of the local data, the local data (see Listing
16) may consist of up to n triples with the same object
(but different subjects and predicates). In this way we
can analyze caching effects of the different approaches.

1 @prefix p:<http://www.ifis.uni-
luebeck.de/semantic_web/sparql/

endpoint/optimization/

distributedjoin#>.

2 p:c0 p:rp0 p:ro0.

3 p:c1 p:rp1 p:ro1.

4 ...

Listing 15: Scheme of remote data used in
experiments with synthetic datasets

In the experiments, we used datasets with 1, 10 and
100 different objects without duplicates of the objects
(i.e., n = 1). Additionally, we used datasets with 100
different objects and 2, 3 and 4 duplicates of each object
(i.e., n ∈ {2, 3, 4}). For the remote data, we have used

1 @prefix p:<http://www.ifis.uni-
luebeck.de/semantic_web/sparql/

endpoint/optimization/

distributedjoin#>.

2 p:s0_0 p:p0_0 p:c0.

3 ...

4 p:s0_n p:p0_n p:c0.

5

6 p:s1_0 p:p1_0 p:c1.

7 ...

8 p:s1_n p:p1_n p:c1.

9 ...

Listing 16: Scheme of local data used in
experiments with synthetic datasets

a dataset with 1000 triples reflecting the typical case that
the remote data is larger than the local data.

Results of Experiments on Synthetic Datasets

We have run and tested all the different approaches de-
scribed in this paper. The requests for the dataset of 100
triples to be joined with 4 duplicates go beyond the limit
of SPARQL query lengths of the system for the Semi-
Join approach as well as the Join-At-Endpoint approach.
Hence, we cannot present the numbers for these ap-
proaches for the mentioned dataset, but for all the other
approaches the query lengths are smaller and remain in
the limit of the system.

Figure 3 presents the execution times for the differ-
ent approaches applied to our different datasets. For the
analysis it is also important to know how many bytes are
sent to the SPARQL endpoint (see Figure 4), how many
bytes are sent from the SPARQL endpoint back to the
client (see Figure 5), and its total sum (see Figure 6).

Furthermore, we present in Figure 7 the execution
times per transmitted byte (computed by the execution
times divided by the sum of bytes sent and received from
client over network). The larger this number is, the more
time is needed for calculations besides transmitting the
endpoint queries and their results. The reason for a large
number is a high execution time in relation to a small
size of transmitted bytes.

4.4 Experiments with Real-World Data

The goal of DBpedia2 is to extract semantic data from
Wikipedia and offer this data publicly freely available as
Linked Open Data (LOD) [26]. In fact DBpedia is the

2http://wiki.dbpedia.org/

40

http://wiki.dbpedia.org/

S. Groppe, D. Heinrich, S. Werner: Distributed Join Approaches for W3C-Conform SPARQL Endpoints
Se

co
nd

s

0,0078

0,0156

0,0313

0,0625

0,1250

0,2500

0,5000

1,0000

2,0000

4,0000

8,0000

16,0000

32,0000

1 10 100 100
(2 duplicates)

100
(3 duplicates)

100
(4 duplicates)

Trivial Approach

Fetch-As-Needed

Fetch-As-Needed (with Cache)

Vectored Fetch-As-Needed

Vectored Fetch-As-Needed (with Cache)

Semi-Join Approach

Join-At-Endpoint

MD5 (4 chars)

SHA1 (4 chars)

SHA256 (4 chars)

SHA384 (4 chars)

SHA512 (4 chars)

Value

Value (4 chars)

NonStandard (128 bits)

Datasets

Figure 3: Execution times of different types of distributed joins in seconds for query on synthetic data

N
um

be
r

of
B

yt
es

128

256

512

1024

2048

4096

8192

16384

32768

65536

131072

262144

1 10 100 100
(2 duplicates)

100
(3 duplicates)

100
(4 duplicates)

Trivial Approach

Fetch-As-Needed

Fetch-As-Needed (with Cache)

Vectored Fetch-As-Needed

Vectored Fetch-As-Needed (with Cache)

Semi-Join Approach

Join-At-Endpoint

MD5 (4 chars)

SHA1 (4 chars)

SHA256 (4 chars)

SHA384 (4 chars)

SHA512 (4 chars)

Value

Value (4 chars)

NonStandard (128 bits)

Datasets

Figure 4: Bytes sent from client over network of different types of distributed joins for query on synthetic
data

41

Open Journal of Semantic Web (OJSW), Volume 2, Issue 1, 2015

N
um

be
r

of
B

yt
es

512

1024

2048

4096

8192

16384

32768

65536

131072

262144

524288

1048576

1 10 100 100
(2 duplicates)

100
(3 duplicates)

100
(4 duplicates)

Trivial Approach

Fetch-As-Needed

Fetch-As-Needed (with Cache)

Vectored Fetch-As-Needed

Vectored Fetch-As-Needed (with Cache)

Semi-Join Approach

Join-At-Endpoint

MD5 (4 chars)

SHA1 (4 chars)

SHA256 (4 chars)

SHA384 (4 chars)

SHA512 (4 chars)

Value

Value (4 chars)

NonStandard (128 bits)

Datasets

Figure 5: Bytes received from client over network of different types of distributed joins for query on synthetic
data

N
um

be
r

of
B

yt
es

512

1024

2048

4096

8192

16384

32768

65536

131072

262144

524288

1048576

1 10 100 100
(2 duplicates)

100
(3 duplicates)

100
(4 duplicates)

Trivial Approach

Fetch-As-Needed

Fetch-As-Needed (with Cache)

Vectored Fetch-As-Needed

Vectored Fetch-As-Needed (with Cache)

Semi-Join Approach

Join-At-Endpoint

MD5 (4 chars)

SHA1 (4 chars)

SHA256 (4 chars)

SHA384 (4 chars)

SHA512 (4 chars)

Value

Value (4 chars)

NonStandard (128 bits)

Datasets

Figure 6: Sum of bytes sent and received from client over network of different types of distributed joins for
query on synthetic data

42

S. Groppe, D. Heinrich, S. Werner: Distributed Join Approaches for W3C-Conform SPARQL Endpoints
E

xe
cu

tio
n

tim
e

pe
r

tr
an

sm
itt

ed
by

te
in

se
co

nd
s

by
te

s

4096

8192

16384

32768

65536

131072

262144

524288

1048576

2097152

100 200 300 400 500 600

Trivial Approach

Fetch-As-Needed

Fetch-As-Needed (with Cache)

Vectored Fetch-As-Needed

Vectored Fetch-As-Needed (with Cache)

Semi-Join Approach

Join-At-Endpoint

MD5 (4 chars)

SHA1 (4 chars)

SHA256 (4 chars)

SHA384 (4 chars)

SHA512 (4 chars)

Value

Value (4 chars)

NonStandard (128 bits)

Datasets

Figure 7: Execution times per (sent and received) byte over network of different types of distributed joins for
query on synthetic data

central dataset in the LOD cloud to which most other
datasets in LOD are linked. Hence users can ask sophis-
ticated queries against DBpedia datasets to get the infor-
mation available in Wikipedia (and users may combine
the information in Wikipedia with that of other linked
datasets).

1 PREFIX ont: <http://dbpedia.org/
ontology/>

2 PREFIX rdf: <http://www.w3.org
/1999/02/22-rdf-syntax-ns#>

3

4 CONSTRUCT {
5 ?s rdf:type ont:Station.

6 } WHERE {
7 ?s rdf:type ont:Station.

8 }

Listing 17: Query for constructing the local
data in experiments with DBpedia datasets

For the real-world data in a larger setting, we have im-
ported the DBPedia datasets Mapping-based Types and
Mapping-based Properties, which were extracted from
Wikipedia dumps generated in February / March 20153.

3http://wiki.dbpedia.org/Downloads2015-04

These datasets contain 37,666,266 triples.
For generating the local data we have run once the

construct query of Listing 17, which generates data about
railway stations described in wikipedia.

1 PREFIX ont: <http://dbpedia.org/
ontology/>

2 PREFIX rdf: <http://www.w3.org
/1999/02/22-rdf-syntax-ns#>

3

4 SELECT * WHERE {
5 ?s rdf:type ont:Station.

6 SERVICE <endpoint-url> {
7 ?s rdf:type ont:Station.

8 ?s ont:address ?address .

9 ?s ont:location ?location .

10 ?location ?p ?o .

11 }

12 }

Listing 18: Query used in experiments with
DBpedia datasets

In the experiments, we then run the query in Listing
18 on the local data (generated as described before) with
datasets of sizes 100, 200, 300, 400, 500 and 600 tripels

43

http://wiki.dbpedia.org/Downloads2015-04

Open Journal of Semantic Web (OJSW), Volume 2, Issue 1, 2015

(containing the same number of different stations). This
query asks for the address and location of the railway sta-
tions (of the local data) as well as all information about
the locations available.

Results of Experiments on Real-World Data

This time we have used bigger local datasets. All
approaches, except of the trivial one and the Fetch-
As-Needed approaches with and without cache, are
adapted to send several queries and set up requests to
the SPARQL endpoint block-wise (according to blocks
of local data) and thus avoiding exceeding the maxi-
mum number of characters, which the query parser can
process. In more detail, a query is sent for each 300
join partners of the local data. Hence the client sends
2 queries for the local datasets with sizes 400, 500 and
600 triples. In more sophisticated implementations, the
client could integrate as many join partners in the query
as the query size fits into the parser’s limits. In this way
approaches generating smaller query sizes would even
benefit much more than in the currently implemented ap-
proach (generating a query for each 300 join partners),
where the benefit is only based on smaller communica-
tion costs (and maybe smaller computation costs of the
queries) instead of benefits based on avoiding query re-
quests to the endpoint. Although we would need only
one query for the NonStandard approach, we also send
two queries for larger local datasets in our experiments.
This is because the bit vector size needs to be increased
otherwise (leading to higher computation costs) when
trying to avoid many false drops. The experiments do
not show an irregular increase of execution times in our
real-world scenario for the local datasets larger than 300
triples in comparison to the smaller ones.

Figure 8 presents the execution times for the differ-
ent approaches applied to our different local datasets and
the DBpedia data on the endpoint. Furthermore, we
present also how many bytes are sent to the SPARQL
endpoint (see Figure 9), how many bytes are sent from
the SPARQL endpoint back to the client (see Figure 10),
its total sum (see Figure 11) and the execution times per
transmitted byte (see Figure 12).

4.5 Analysis

We group our analysis results according to the following
criteria:

4.5.1 Duplicate-Sensitive versus Duplicate-
Insensitive Approaches

Some approaches are especially optimized for handling
duplicates (like Fetch-As-Needed with Cache and Vec-
tored Fetch-As-Needed with Cache), and avoiding ex-

tra costs is in the nature of other approaches like the
Bitvector-Join approaches (MD5, SHA-x with x ∈
{1, 256, 384, 512}), Value, Value (4 chars), NonStandard
and the trivial approach. For all these approaches, there
are only few differences in the execution times, as only
the client has to process the duplicates locally before
joining (except of the trivial approach) for generating the
query sent to the SPARQL endpoint, and during joining
(having also duplicated entries in the join result). The
main reason for nearly the same execution times is that
the same amount of bytes are sent from and received by
the client not depending on the number of duplicates.

Duplicate-insensitive approaches like Fetch-As-
Needed, Vectored Fetch-As-Needed, Semi-Join ap-
proach and Join-At-Endpoint increase the number
of bytes sent and received linearly to the number of
duplicates. Considering this fact it is not surprising that
the execution times are also linearly increasing with the
number of duplicates.

4.5.2 Trivial Approach versus other Ap-
proaches

The trivial approach is an exception: The number of sent
bytes is very low as the query sent to the SPARQL end-
point does not depend on the local data. Hence, the query
length is always the same for all datasets. Thus, the result
sent back from the SPARQL endpoint is also always the
same. The execution times mainly depend on the size of
this result: If it is small, the trivial approach can be one
of the fastest. Also if the local data is in such a man-
ner that the result set cannot be reduced (or not much
reduced) when using the other approaches, the trivial ap-
proach is one of the best by avoiding the overhead of the
other approaches.

The other approaches try to reduce the result of the
SPARQL endpoint. For this purpose, they have to send
larger queries (than the query of the trivial approach)
containing information of the local data to the SPARQL
endpoint. The main factors are here how large these
queries are and how well they can reduce the result com-
pared to the absolute minimum.

4.5.3 Join-At-Endpoint versus other Ap-
proaches

Join-At-Endpoint is an approach with extraordinary
properties: The query sent to the SPARQL endpoint must
contain all information of the client to process the join of
the local with the remote data. Hence, the sent queries
are the largest of all approaches for the synthetic dataset.
The computation costs are also relatively expensive, as
one can suppose by looking at the execution times per
transmitted byte (see Figures 7 and 12). Furthermore, if

44

S. Groppe, D. Heinrich, S. Werner: Distributed Join Approaches for W3C-Conform SPARQL Endpoints
Se

co
nd

s

1

2

4

8

16

32

64

128

256

100 200 300 400 500 600

Trivial Approach

Fetch-As-Needed

Fetch-As-Needed (with Cache)

Vectored Fetch-As-Needed

Vectored Fetch-As-Needed (with Cache)

Semi-Join Approach

Join-At-Endpoint

MD5 (6 chars)

SHA1 (6 chars)

SHA256 (6 chars)

SHA384 (6 chars)

SHA512 (6 chars)

Value

Value (22 chars)

NonStandard (4000 bits)

Datasets

Figure 8: Execution times of different types of distributed joins in seconds for DBpedia query

N
um

be
r

of
B

yt
es

256

512

1024

2048

4096

8192

16384

32768

65536

131072

262144

524288

100 200 300 400 500 600

Trivial Approach

Fetch-As-Needed

Fetch-As-Needed (with Cache)

Vectored Fetch-As-Needed

Vectored Fetch-As-Needed (with Cache)

Semi-Join Approach

Join-At-Endpoint

MD5 (6 chars)

SHA1 (6 chars)

SHA256 (6 chars)

SHA384 (6 chars)

SHA512 (6 chars)

Value

Value (22 chars)

NonStandard (4000 bits)

Datasets

Figure 9: Bytes sent from client over network of different types of distributed joins for DBpedia query

45

Open Journal of Semantic Web (OJSW), Volume 2, Issue 1, 2015
N

um
be

r
of

B
yt

es

65536

131072

262144

524288

1048576

2097152

4194304

8388608

100 200 300 400 500 600

Trivial Approach

Fetch-As-Needed

Fetch-As-Needed (with Cache)

Vectored Fetch-As-Needed

Vectored Fetch-As-Needed (with Cache)

Semi-Join Approach

Join-At-Endpoint

MD5 (6 chars)

SHA1 (6 chars)

SHA256 (6 chars)

SHA384 (6 chars)

SHA512 (6 chars)

Value

Value (22 chars)

NonStandard (4000 bits)

Datasets

Figure 10: Bytes received from client over network of different types of distributed joins for DBpedia query

N
um

be
r

of
B

yt
es

65536

131072

262144

524288

1048576

2097152

4194304

8388608

100 200 300 400 500 600

Trivial Approach

Fetch-As-Needed

Fetch-As-Needed (with Cache)

Vectored Fetch-As-Needed

Vectored Fetch-As-Needed (with Cache)

Semi-Join Approach

Join-At-Endpoint

MD5 (6 chars)

SHA1 (6 chars)

SHA256 (6 chars)

SHA384 (6 chars)

SHA512 (6 chars)

Value

Value (22 chars)

NonStandard (4000 bits)

Datasets

Figure 11: Sum of bytes sent and received from client over network of different types of distributed joins for
DBpedia query

46

S. Groppe, D. Heinrich, S. Werner: Distributed Join Approaches for W3C-Conform SPARQL Endpoints
E

xe
cu

tio
n

tim
e

pe
r

tr
an

sm
itt

ed
by

te
in

se
co

nd
s

by
te

s

8192

16384

32768

65536

131072

262144

100 200 300 400 500 600

Trivial Approach

Fetch-As-Needed

Fetch-As-Needed (with Cache)

Vectored Fetch-As-Needed

Vectored Fetch-As-Needed (with Cache)

Semi-Join Approach

Join-At-Endpoint

MD5 (6 chars)

SHA1 (6 chars)

SHA256 (6 chars)

SHA384 (6 chars)

SHA512 (6 chars)

Value

Value (22 chars)

NonStandard (4000 bits)

Datasets

Figure 12: Execution times per (sent and received) byte over network of different types of distributed joins
for DBpedia query

the join result increases in comparison to the result sent
back by the other approaches, which is the case for du-
plicates, the communication costs dramatically increase
leading to a bad performance.

Overall it seems that the Join-At-Endpoint approach
will only have benefits in the scenarios where the
SPARQL endpoint has much more computing resources
than the client, or where the result must be anyway sent
to another host.

4.5.4 Scenarios with few Join Partners

Except of the trivial approach for reasons already dis-
cussed in Section 4.5.2, all approaches have very small
total communication costs (as sum of bytes sent from and
received by the client) for few join partners. The com-
munication costs do not seem to be the main factor for
the Bitvector-Joins (except of NonStandard), Value and
Value (4 chars) approaches. Their execution times are
much higher than the Fetch-As-Needed approaches as
well as Join-At-Endpoint, because they have high com-
putation costs for scanning relevant intermediate results
and filtering. In comparison, the SPARQL endpoint can
fully utilize existing indices for the Fetch-As-Needed ap-
proaches as well as Join-At-Endpoint avoiding scans on
data to be filtered out in succeeding steps. Specialized

indices for e.g. the hashes used in Bitvector-Joins would
greatly improve execution times for the Bitvector-Joins,
which could be a task for future work.

Surprisingly, the Vectored Fetch-As-Needed ap-
proaches (with and without cache) are the slowest for
many join-partners in the real-world scenario. The rea-
son is obviously high communication costs, which are
not much smaller than those of the Fetch-As-Needed ap-
proaches, for sending large queries (as many triple pat-
terns must be repeated). There could be also high com-
putation costs of the complex queries with many union
operations of subqueries for each join partner. Espe-
cially the number of subqueries could significantly in-
crease the computation costs, as many operations need
to be done for each subquery. However, the execution
times per transmitted byte (see Figure 12) disproves this
hypothesis.

4.5.5 Bitvector-Joins using only W3C conform
SPARQL Constructs versus using User-
Defined Functions

Among the Bitvector-Joins applying a user-defined func-
tion as in the NonStandard approach has the best perfor-
mance for the synthetic data (but not for the real-world
data). The advantage of the user-defined function is its
constant size of the sent query independent of the size

47

Open Journal of Semantic Web (OJSW), Volume 2, Issue 1, 2015

of the local data (which is not the case for the other,
W3C conform, Bitvector-Join approaches). The com-
putation costs are much lower for the NonStandard ap-
proach, as not so many string operations need to be done
as well as set operations are avoided. In comparison to
the W3C conform Bitvector-Join approaches the Non-
Standard approach leads to more false drops for those
bitvector sizes with optimal performance, which is re-
flected in the bytes received (and hence also by the ex-
ecution times per transmitted byte presented in Figures
7 and 12). This seems to be the main factor why the
NonStandard approach is slower for the real-world sce-
nario. For the synthetic datasets due to the low computa-
tion costs, the NonStandard approach is the fastest.

The Value (4 chars) has lower computation costs in
comparison to the Bitvector-Join approaches for the syn-
thetic datasets, because the determination of the hash
value is avoided, while often having approximately
the same communication costs. The Value approach
has much higher communication costs for the synthetic
datasets because of the high sizes of the sent queries.

However, for the real-world scenario we need to com-
pare 22 chars (instead of only 4 as for the synthetic data)
for best performance, but we still have a significant num-
ber of false drops leading to higher communication costs.
These higher communication costs as well as the false
drops are the main reasons why the Bitvector-Join ap-
proaches (except of the Nonstandard approach) as well
as even the Value approach are faster in the real-world
scenario. The Bitvector-Join and the Value approaches
have a high number for the execution times per trans-
mitted byte (see Figure 12) because of their low num-
bers of bytes sent and received from the client. Or in
other words: These approaches spend their high compu-
tation costs per transmitted byte for drastically reducing
the transmission costs.

4.5.6 Overall Ranking of the Distributed Join
Approaches

The winner approaches are variants of the Bitvector-
Join approaches except for few join partners, where the
Fetch-As-Needed variants are the best followed by Semi-
Join and Join-At-Endpoint approaches, and except for
large addressed data in the SPARQL endpoint, where
the trivial approach offers simple computations and low
overhead.

For W3C conform SPARQL endpoints and more join
partners, the Bitvector-Join, Value and Value (X chars)
approaches are the fastest. Depending on the proper-
ties of the applied datasets the ranking among these ap-
proaches differ.

For SPARQL endpoints with support of additional
hash function the NonStandard approach is not always

the fastest, as the real-world scenario demonstrates.
However, we still believe that the performance in fed-
erated environments could greatly benefit from slight ex-
tensions of the W3C recommendations of SPARQL [14].
We hope that our research can provide an impulse for fu-
ture recommendations.

5 SUMMARY AND CONCLUSIONS

Whenever large datasets residing at different locations
need to be combined, intelligent ways to reduce com-
munication costs are the key to improve overall perfor-
mance. For this purpose, distributed join approaches
have been developed. Traditional distributed join ap-
proaches need to be checked for their application in
publicly freely available SPARQL endpoints. As many
SPARQL endpoints follow the SPARQL language spec-
ification, real-world realizations have to utilize some of
the numerous existing features of this specification for
advanced approaches on the one side, but missing fea-
tures in this specification also limit real-world realiza-
tions on the other side. However, our contribution shows
that many traditional distributed join approaches can be
formulated as SPARQL queries, but some need to be al-
tered (like the Bitvector-Join approaches), and we also
develop new variants like the Value and Value (X chars)
approaches.

Our experimental analysis demonstrates the advan-
tages and disadvantages regarding the overall execution
times as well as transferred bytes. In our experiments
the Bitvector-Join approaches (adapted to the possibil-
ities the SPARQL specification offers), the Value and
Value (X chars) approaches perform best for W3C con-
form SPARQL endpoints depending on the properties
of the used datasets. We also show that only slight ex-
tensions of the SPARQL specification would allow ad-
vanced types of distributed join approaches like the pro-
posed NonStandard approach.

REFERENCES

[1] M. Acosta, M. Vidal, F. Flöck, S. Castillo,
C. B. Aranda, and A. Harth, “SHEPHERD:
A Shipping-Based Query Processor to Enhance
SPARQL Endpoint Performance,” in Proceedings
of the ISWC 2014 Posters & Demonstrations Track
a track within the 13th International Semantic Web
Conference, ISWC 2014, Riva del Garda, Italy,
October 21, 2014., 2014, pp. 453–456. [Online].
Available: http://ceur-ws.org/Vol-1272/paper 147.
pdf

[2] M. Acosta, M.-E. Vidal, T. Lampo, J. Castillo,
and E. Ruckhaus, “ANAPSID: An Adaptive Query

48

http://ceur-ws.org/Vol-1272/paper_147.pdf
http://ceur-ws.org/Vol-1272/paper_147.pdf

S. Groppe, D. Heinrich, S. Werner: Distributed Join Approaches for W3C-Conform SPARQL Endpoints

Processing Engine for SPARQL Endpoints,” in The
Semantic Web ISWC 2011, ser. Lecture Notes in
Computer Science. Springer Berlin Heidelberg,
2011, vol. 7031, pp. 18–34. [Online]. Available:
http://dx.doi.org/10.1007/978-3-642-25073-6 2

[3] Z. Akar, T. G. Hala, E. E. Ekinci, and O. Dikenelli,
“Querying the Web of Interlinked Datasets using
VOID Descriptions,” in Linked Data on the Web
(LDOW2012), 2012.

[4] K. Alexander, R. Cyganiak, M. Hausenblas, and
J. Zhao, “Describing linked datasets - on the design
and usage of void, the ’vocabulary of interlinked
datasets’.” in WWW 2009 Workshop: Linked Data
on the Web (LDOW2009), Madrid, Spain, 2009.

[5] M. Ali and A. Mileo, “How Good Is Your SPARQL
Endpoint?” in On the Move to Meaningful
Internet Systems: OTM 2014 Conferences, ser.
Lecture Notes in Computer Science. Springer
Berlin Heidelberg, 2014, vol. 8841, pp. 491–
508. [Online]. Available: http://dx.doi.org/10.
1007/978-3-662-45563-0 29

[6] M. Arenas and J. Prez, “Federation and navigation
in sparql 1.1,” in Reasoning Web. Semantic
Technologies for Advanced Query Answering, ser.
Lecture Notes in Computer Science. Springer
Berlin Heidelberg, 2012, vol. 7487, pp. 78–
111. [Online]. Available: http://dx.doi.org/10.
1007/978-3-642-33158-9 3

[7] C. Basca and A. Bernstein, “Avalanche: putting the
spirit of the web back into semantic web querying,”
in Proceedings Of The 6th International Workshop
On Scalable Semantic Web Knowledge Base
Systems (SSWS2010), A. Fokoue, T. Liebig, and
Y. Guo, Eds., November 2010, pp. 64–79. [Online].
Available: http://dx.doi.org/10.5167/uzh-44857

[8] T. Berners-Lee and D. Connolly, “Notation3
(N3): A readable RDF syntax,” W3C, W3C
Team Submission, 2008. [Online]. Available:
http://www.w3.org/TeamSubmission/n3/

[9] D. Brickley and R. V. Guha, RDF Vocabulary De-
scription Language 1.0: RDF Schema, W3C Rec-
ommendation. W3C Recommendation, 2004,
available at http://www.w3.org/TR/rdf-schema/.

[10] J. Broekstra, A. Kampman, and F. van Harmelen,
“Sesame: A generic architecture for storing
and querying rdf and rdf schema,” in The
Semantic Web ISWC 2002, ser. Lecture Notes in
Computer Science. Springer Berlin Heidelberg,
2002, vol. 2342, pp. 54–68. [Online]. Available:
http://dx.doi.org/10.1007/3-540-48005-6 7

[11] C. Buil-Aranda, A. Hogan, J. Umbrich, and
P.-Y. Vandenbussche, “SPARQL Web-Querying
Infrastructure: Ready for Action?” in The
Semantic Web ISWC 2013, ser. Lecture Notes in
Computer Science. Springer Berlin Heidelberg,
2013, vol. 8219, pp. 277–293. [Online]. Available:
http://dx.doi.org/10.1007/978-3-642-41338-4 18

[12] E. F. Codd, “A Relational Model of Data for Large
Shared Data Banks,” Commun. ACM, vol. 13, no. 6,
pp. 377–387, 1970.

[13] T. Connolly and C. Begg, Database Systems A
Practical Approach to Design, Implementation,
and Management. Addison-Wesley, 2005.

[14] S. H. Garlik, A. Seaborne, and E. Prud’hommeaux,
SPARQL 1.1 Query Language. W3C Recommen-
dation, 2013, available at http://www.w3.org/TR/
sparql11-query/.

[15] O. Görlitz and S. Staab, “SPLENDID: SPARQL
Endpoint Federation Exploiting VOID Descrip-
tions,” in Proceedings of the Second Interna-
tional Workshop on Consuming Linked Data
(COLD2011), Bonn, Germany, October 23, 2011,
2011. [Online]. Available: http://ceur-ws.org/
Vol-782/GoerlitzAndStaab COLD2011.pdf

[16] S. Groppe, Data Management and Query Process-
ing in Semantic Web Databases. Springer, May
2011.

[17] S. Groppe, “LUPOSDATE Semantic
Web Database Management System,”
https://github.com/luposdate/luposdate, 2015.

[18] A. Hasnain, S. Sana e Zainab, M. Kamdar,
Q. Mehmood, J. Warren, ClaudeN., Q. Fa-
timah, H. Deus, M. Mehdi, and S. Decker,
“A Roadmap for Navigating the Life Sciences
Linked Open Data Cloud,” in Semantic Tech-
nology, ser. Lecture Notes in Computer Sci-
ence. Springer International Publishing, 2015,
vol. 8943, pp. 97–112. [Online]. Available:
http://dx.doi.org/10.1007/978-3-319-15615-6 8

[19] D. Ibragimov, K. Hose, T. Pedersen, and
E. Zimnyi, “Processing Aggregate Queries in
a Federation of SPARQL Endpoints,” in The
Semantic Web. Latest Advances and New Do-
mains, ser. Lecture Notes in Computer Sci-
ence. Springer International Publishing, 2015,
vol. 9088, pp. 269–285. [Online]. Available:
http://dx.doi.org/10.1007/978-3-319-18818-8 17

[20] International Organization for Standardization
(ISO), Information technology – Database
languages – SQL – Part 2: Foundation (SQL/Foun-
dation). ISO/IEC 9075-2:2011, 2011, available

49

http://dx.doi.org/10.1007/978-3-642-25073-6_2
http://dx.doi.org/10.1007/978-3-662-45563-0_29
http://dx.doi.org/10.1007/978-3-662-45563-0_29
http://dx.doi.org/10.1007/978-3-642-33158-9_3
http://dx.doi.org/10.1007/978-3-642-33158-9_3
http://dx.doi.org/10.5167/uzh-44857
http://www.w3.org/TeamSubmission/n3/
http://www.w3.org/TR/rdf-schema/
http://dx.doi.org/10.1007/3-540-48005-6_7
http://dx.doi.org/10.1007/978-3-642-41338-4_18
http://www.w3.org/TR/sparql11-query/
http://www.w3.org/TR/sparql11-query/
http://ceur-ws.org/Vol-782/GoerlitzAndStaab_COLD2011.pdf
http://ceur-ws.org/Vol-782/GoerlitzAndStaab_COLD2011.pdf
https://github.com/luposdate/luposdate
http://dx.doi.org/10.1007/978-3-319-15615-6_8
http://dx.doi.org/10.1007/978-3-319-18818-8_17

Open Journal of Semantic Web (OJSW), Volume 2, Issue 1, 2015

at http://www.iso.org/iso/catalogue detail.htm?
csnumber=53682.

[21] G. Ladwig and T. Tran, “SIHJoin: Query-
ing Remote and Local Linked Data,” in
The Semantic Web: Research and Appli-
cations, ser. Lecture Notes in Computer
Science. Springer Berlin Heidelberg, 2011,
vol. 6643, pp. 139–153. [Online]. Available:
http://dx.doi.org/10.1007/978-3-642-21034-1 10

[22] G. Ladwig and T. Tran, “Linked Data Query
Processing Strategies,” in The Semantic Web
- ISWC 2010 - 9th International Semantic
Web Conference, ISWC 2010, Shanghai, China,
November 7-11, 2010, Revised Selected Papers,
Part I, 2010, pp. 453–469. [Online]. Available:
http://dx.doi.org/10.1007/978-3-642-17746-0 29

[23] A. Langegger and T. L, “SemWIQ,” http://
sourceforge.net/projects/semwiq/, 2013.

[24] A. Langegger and W. Wöß, “SemWIQ - Semantic
Web Integrator and Query Engine,” in GI Jahresta-
gung (2), ser. LNI, vol. 134. GI, 2008, pp.
718–722. [Online]. Available: http://subs.emis.de/
LNI/Proceedings/Proceedings134/article2173.html

[25] A. Langegger, W. Wöß, and M. Blöchl, “A
Semantic Web Middleware for Virtual Data
Integration on the Web,” in The Semantic Web:
Research and Applications, ser. Lecture Notes in
Computer Science. Springer Berlin Heidelberg,
2008, vol. 5021, pp. 493–507. [Online]. Available:
http://dx.doi.org/10.1007/978-3-540-68234-9 37

[26] Linked Data, “Linked Data - Connect Distributed
Data across the Web,” 2015. [Online]. Available:
http://www.linkeddata.org

[27] S. Lynden, I. Kojima, A. Matono, and Y. Tanimura,
“Adaptive Integration of Distributed Semantic Web
Data,” in Databases in Networked Information
Systems, ser. Lecture Notes in Computer Science.
Springer Berlin Heidelberg, 2010, vol. 5999, pp.
174–193. [Online]. Available: http://dx.doi.org/10.
1007/978-3-642-12038-1 12

[28] L. F. Mackert and G. M. Lohman, “R* op-
timizer validation and performance evaluation
for distributed queries,” in Proceedings of the
12th International Conference on Very Large
Data Bases, ser. VLDB ’86. San Fran-
cisco, CA, USA: Morgan Kaufmann Publishers
Inc., 1986, pp. 149–159. [Online]. Available:
http://dl.acm.org/citation.cfm?id=645913.671480

[29] Microsoft, “OPENROWSET (Transact-SQL),”
2015, accessed on 16.11.2015. [Online]. Avail-

able: https://msdn.microsoft.com/de-de/library/
ms190312(v=sql.120).aspx

[30] G. Montoya, M.-E. Vidal, and M. Acosta, “A
heuristic-based approach for planning federated
sparql queries.” 3rd International Workshop on
Consuming Linked Data (COLD 2012) in CEUR
Workshop Proceedings, vol. 905, 2012.

[31] A. Nikolov, A. Schwarte, and C. Htter, “FedSearch:
Efficiently Combining Structured Queries and Full-
Text Search in a SPARQL Federation,” in The
Semantic Web ISWC 2013, ser. Lecture Notes in
Computer Science. Springer Berlin Heidelberg,
2013, vol. 8218, pp. 427–443. [Online]. Available:
http://dx.doi.org/10.1007/978-3-642-41335-3 27

[32] Oracle, “15.8 The FEDERATED Storage En-
gine,” 2015, accessed on 16.11.2015. [Online].
Available: http://dev.mysql.com/doc/refman/5.7/
en/federated-storage-engine.html

[33] B. Quilitz and U. Leser, “Querying Distributed
RDF Data Sources with SPARQL,” in Proceedings
of the 5th European Semantic Web Conference on
The Semantic Web: Research and Applications, ser.
ESWC’08. Berlin, Heidelberg: Springer-Verlag,
2008, pp. 524–538. [Online]. Available: http:
//dl.acm.org/citation.cfm?id=1789394.1789443

[34] N. Rakhmawati, J. Umbrich, M. Karnstedt,
A. Hasnain, and M. Hausenblas, “A Comparison of
Federation over SPARQL Endpoints Frameworks,”
in Knowledge Engineering and the Semantic
Web, ser. Communications in Computer and
Information Science. Springer Berlin Heidelberg,
2013, vol. 394, pp. 132–146. [Online]. Available:
http://dx.doi.org/10.1007/978-3-642-41360-5 11

[35] M. Saleem, Y. Khan, A. Hasnain, I. Ermilov,
and A.-C. N. Ngomo, “A Fine-Grained Eval-
uation of SPARQL Endpoint Federation Sys-
tems,” Semantic Web Interoperability, Usabil-
ity, Applicability, 2015, under review. [Online].
Available: http://www.semantic-web-journal.net/
system/files/swj954.pdf

[36] M. Schmachtenberg, C. Bizer, and H. Paulheim,
“Adoption of the Linked Data Best Practices in
Different Topical Domains,” in The Semantic Web
ISWC 2014, 2014, pp. 245–260.

[37] A. Schwarte, P. Haase, K. Hose, R. Schenkel,
and M. Schmidt, “FedX: A Federation Layer for
Distributed Query Processing on Linked Open
Data,” in The Semanic Web: Research and
Applications, ser. Lecture Notes in Computer
Science. Springer Berlin Heidelberg, 2011,
vol. 6644, pp. 481–486. [Online]. Available:
http://dx.doi.org/10.1007/978-3-642-21064-8 39

50

http://www.iso.org/iso/catalogue_detail.htm?csnumber=53682
http://www.iso.org/iso/catalogue_detail.htm?csnumber=53682
http://dx.doi.org/10.1007/978-3-642-21034-1_10
http://dx.doi.org/10.1007/978-3-642-17746-0_29
http://sourceforge.net/projects/semwiq/
http://sourceforge.net/projects/semwiq/
http://subs.emis.de/LNI/Proceedings/Proceedings134/article2173.html
http://subs.emis.de/LNI/Proceedings/Proceedings134/article2173.html
http://dx.doi.org/10.1007/978-3-540-68234-9_37
http://www.linkeddata.org
http://dx.doi.org/10.1007/978-3-642-12038-1_12
http://dx.doi.org/10.1007/978-3-642-12038-1_12
http://dl.acm.org/citation.cfm?id=645913.671480
https://msdn.microsoft.com/de-de/library/ms190312(v=sql.120).aspx
https://msdn.microsoft.com/de-de/library/ms190312(v=sql.120).aspx
http://dx.doi.org/10.1007/978-3-642-41335-3_27
http://dev.mysql.com/doc/refman/5.7/en/federated-storage-engine.html
http://dev.mysql.com/doc/refman/5.7/en/federated-storage-engine.html
http://dl.acm.org/citation.cfm?id=1789394.1789443
http://dl.acm.org/citation.cfm?id=1789394.1789443
http://dx.doi.org/10.1007/978-3-642-41360-5_11
http://www.semantic-web-journal.net/system/files/swj954.pdf
http://www.semantic-web-journal.net/system/files/swj954.pdf
http://dx.doi.org/10.1007/978-3-642-21064-8_39

S. Groppe, D. Heinrich, S. Werner: Distributed Join Approaches for W3C-Conform SPARQL Endpoints

[38] W3C OWL Working Group, OWL 2 Web Ontology
Language: Document Overview (Second Edition).
W3C Recommendation, 11 December 2012, avail-
able at http://www.w3.org/TR/owl2-overview/.

[39] X. Wang, T. Tiropanis, and H. C. Davis,
“LHD: Optimising Linked Data Query Processing
Using Parallelisation,” in Proceedings of the
WWW2013 Workshop on Linked Data on the Web,
Rio de Janeiro, Brazil, 14 May, 2013, 2013.
[Online]. Available: http://ceur-ws.org/Vol-996/
papers/ldow2013-paper-06.pdf

[40] X. Wang, T. Tiropanis, and H. Davis, “Eval-
uating Graph Traversal Algorithms for Dis-
tributed SPARQL Query Optimization,” in The
Semantic Web, ser. Lecture Notes in Com-
puter Science. Springer Berlin Heidelberg, 2012,
vol. 7185, pp. 210–225. [Online]. Available:
http://dx.doi.org/10.1007/978-3-642-29923-0 14

[41] K. Wilkinson, C. Sayers, H. Kuno, and
D. Reynolds, “Efficient RDF storage and re-
trieval in Jena2,” in Proc. First International
Workshop on Semantic Web and Databases, 2003.
[Online]. Available: http://www.cs.uic.edu/∼ifc/
SWDB/papers/Wilkinson etal.pdf

[42] World Wide Web Consortium, “SPARQL 1.1
Query Language: Translation to the SPARQL
Algebra,” http://www.w3.org/TR/sparql11-query/
#sparqlQuery, 2013.

[43] World Wide Web Consortium, “World Wide Web
Consortium (W3C),” http://www.w3.org, 2015.

[44] World Wide Web Consortium (W3C), RDF/XML
Syntax Specification (Revised). W3C Recommen-
dation, 2004, available at http://www.w3.org/2004/
REC-rdf-syntax-grammar-20040210/.

[45] World Wide Web Consortium (W3C), SPARQL
Query Language for RDF. W3C Recommen-
dation, 2008, available at http://www.w3.org/TR/
rdf-sparql-query/.

[46] World Wide Web Consortium (W3C), SPARQL 1.1
Protocol. W3C Recommendation, 2013, available
at http://www.w3.org/TR/sparql11-protocol/.

[47] World Wide Web Consortium (W3C), SPARQL 1.1
Query Results CSV and TSV Formats. W3C Rec-
ommendation, 2013, available at http://www.w3.
org/TR/sparql11-results-csv-tsv/.

[48] World Wide Web Consortium (W3C), SPARQL 1.1
Query Results JSON Format. W3C Recommen-
dation, 2013, available at http://www.w3.org/TR/
sparql11-results-json/.

[49] World Wide Web Consortium (W3C), SPARQL
Query Results XML Format (Second Edition).

W3C Recommendation, 2013, available at http:
//www.w3.org/TR/rdf-sparql-XMLres/.

[50] World Wide Web Consortium (W3C), “Semantic
Web,” 2015. [Online]. Available: http://www.w3.
org/standards/semanticweb/

[51] J. Zemánek, S. Schenk, and V. Svátek, “Optimiz-
ing SPARQL Queries over Disparate RDF Data
Sources through Distributed Semi-Joins,” in Pro-
ceedings of the Poster and Demonstration Session
at the 7th International Semantic Web Conference
(ISWC2008), Karlsruhe, Germany, October 28,
2008, 2008. [Online]. Available: http://ceur-ws.
org/Vol-401/iswc2008pd submission 69.pdf

51

http://www.w3.org/TR/owl2-overview/
http://ceur-ws.org/Vol-996/papers/ldow2013-paper-06.pdf
http://ceur-ws.org/Vol-996/papers/ldow2013-paper-06.pdf
http://dx.doi.org/10.1007/978-3-642-29923-0_14
http://www.cs.uic.edu/~ifc/SWDB/papers/Wilkinson_etal.pdf
http://www.cs.uic.edu/~ifc/SWDB/papers/Wilkinson_etal.pdf
http://www.w3.org/TR/sparql11-query/#sparqlQuery
http://www.w3.org/TR/sparql11-query/#sparqlQuery
http://www.w3.org
http://www.w3.org /2004/REC-rdf-syntax-grammar-20040210/
http://www.w3.org /2004/REC-rdf-syntax-grammar-20040210/
http://www.w3.org/TR/rdf-sparql-query/
http://www.w3.org/TR/rdf-sparql-query/
http://www.w3.org/TR/sparql11-protocol/
http://www.w3.org/TR/sparql11-results-csv-tsv/
http://www.w3.org/TR/sparql11-results-csv-tsv/
http://www.w3.org/TR/sparql11-results-json/
http://www.w3.org/TR/sparql11-results-json/
http://www.w3.org/TR/rdf-sparql-XMLres/
http://www.w3.org/TR/rdf-sparql-XMLres/
http://www.w3.org/standards/semanticweb/
http://www.w3.org/standards/semanticweb/
http://ceur-ws.org/Vol-401/iswc2008pd_submission_69.pdf
http://ceur-ws.org/Vol-401/iswc2008pd_submission_69.pdf

Open Journal of Semantic Web (OJSW), Volume 2, Issue 1, 2015

AUTHOR BIOGRAPHIES

Sven Groppe earned his
diploma degree in Informatik
(Computer Science) in 2002 and
his Doctor degree in 2005 from
the University of Paderborn. He
earned his habilitation degree
in 2011 from the University
of Lübeck. He worked in the
European projects B2B-ECOM,
MEMPHIS, ASG and TripCom.
He was a member of the DAWG
W3C Working Group, which

developed SPARQL. He was the project leader of the
DFG project LUPOSDATE, an open-source Semantic
Web database, and one of the project leaders of two
research projects, which research on FPGA acceleration
of relational and Semantic Web databases. His research
interests include databases, Semantic Web, query and
rule processing and optimization, Cloud Computing,
peer-to-peer (P2P) networks, Internet of Things, data
visualization and visual query languages.

Dennis Heinrich received his
M.Sc. in Computer Science
in 2013 from the University of
Lübeck, Germany. At the mo-
ment he is employed as a re-
search assistant at the Institute
of Information Systems at the
University of Lübeck. His re-
search interests include FPGAs
and corresponding hardware ac-
celeration possibilities for Se-

mantic Web databases.

Stefan Werner received his
Diploma in Computer Science
(comparable to Master of Com-
puter Science) in March 2011 at
the University of Lübeck, Ger-
many. Now he is a research as-
sistant/PhD student at the Insti-
tute of Information Systems at
the University of Lübeck. His
research focuses on multi-query
optimization and the integration
of a hardware accelerator for

relational databases by using run-time reconfigurable
FPGAs.

52

	Introduction
	Utilizing Third-Party SPARQL Endpoints
	Our Contributions
	Organization of Paper

	Basics of Semantic Web and Remote Queries
	Data Format RDF
	Query Language SPARQL
	Remote Queries
	Operator Graph

	Further Related Work

	Distributed Join Approaches for SPARQL Endpoints
	Trivial Approach
	Fetch-As-Needed / Bind Join
	Basic Variant
	Fetch-As-Needed / Bind Join with Cache
	Vectored Evaluation of Fetch-As-Needed/ Bind Join

	Join-At-Endpoint
	Semi-Join Approach
	Value Approach
	Bitvector-Join
	NonStandard Approach
	W3C Conform Approach

	Experimental Evaluation
	LUPOSDATE
	Experimental Setup
	Experiments with Synthetic Datasets
	Experiments with Real-World Data
	Analysis
	Duplicate-Sensitive versus Duplicate-Insensitive Approaches
	Trivial Approach versus other Approaches
	Join-At-Endpoint versus other Approaches
	Scenarios with few Join Partners
	Bitvector-Joins using only W3C conform SPARQL Constructs versus using User-Defined Functions
	Overall Ranking of the Distributed Join Approaches

	Summary and Conclusions

