
c© 2016 by the authors; licensee RonPub, Lübeck, Germany. This article is an open access article distributed under the terms and conditions of
the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).

Open Access

Open Journal of Semantic Web (OJSW)
Volume 3, Issue 1, 2016

http://www.ronpub.com/ojsw
ISSN 2199-336X

OnGIS: Semantic Query Broker for
Heterogeneous Geospatial Data Sources

Marek Šmı́d, Petr Křemen

Faculty of Electrical Engineering, Czech Technical University in Prague, Technická 2, 166 27 Prague,
Czech Republic, {marek.smid, petr.kremen}@fel.cvut.cz

ABSTRACT

Querying geospatial data from multiple heterogeneous sources backed by different management technologies poses
an interesting problem in the data integration and in the subsequent result interpretation. This paper proposes
broker techniques for answering a user’s complex spatial query: finding relevant data sources (from a catalogue of
data sources) capable of answering the query, eventually splitting the query and finding relevant data sources for
the query parts, when no single source suffices. For the purpose, we describe each source with a set of prototypical
queries that are algorithmically arranged into a lattice, which makes searching efficient. The proposed algorithms
leverage GeoSPARQL query containment enhanced with OWL 2 QL semantics. A prototype is implemented in a
system called OnGIS.

TYPE OF PAPER AND KEYWORDS

Regular research paper: Geospatial semantics, OWL 2 QL, data integration, query containment, query broker,
heterogeneous data, lattice, OnGIS

1 INTRODUCTION

OnGIS is a semantic geospatial query broker. Some
parts of it (simple semantic data integration, two options
of a user interface) have been previously developed as
prototypes, see [28, 29].

We set ourselves two goals when designing a semantic
query broker: to choose a universal language, which
would be used for describing what data different sources
contain (i.e. a language appropriate for data integration),
and to find a way of describing what operations the
sources can do with their data. We achieved the two
goals by describing the sources with prototypical queries
that the sources can answer (a set of prototypical queries
for each source). A prototypical query is a semantic
geospatial query capturing capabilities of what a source
can answer, where free variables can be placed where
the source can answer the query with any value in the

variable’s place, e.g. a geometry for a spatial restriction,
or a literal for a data property restriction.

Prototypical queries fully capture relevant capabilities
of a data source in terms of data and operations the
source provides. It is necessary since heterogeneous
sources and services are considered, and therefore no
single specific technology for describing capabilities
can be used. Such examples include: (a) Traditional
GIS web services, e.g. Open Geospatial Consortium
(OGC)1, a large consortium, is setting many standards,
e.g. Web Feature Service (WFS) [22] that is a standard
for publishing vector spatial data, Web Coverage Service
(WCS) [24] that is a standard for publishing source
raster data, ESRI ArcGIS services [12], etc.; (b) Plain
relational databases, e.g. PostgreSQL+PostGIS, Oracle

1 http://www.opengeospatial.org/, cit. 21.6.2016.

32

http://creativecommons.org/licenses/by/4.0/
http://www.ronpub.com/ojsw
http://www.opengeospatial.org/

Marek Šmı́d, Petr Křemen: OnGIS: Semantic Query Broker for Heterogeneous Geospatial Data Sources

Spatial, etc.; (c) Linked Data2 [39] sources available
through SPARQL [36] endpoints, e.g. DBpedia [2],
LinkedGeoData [31], etc. Each can serve different data
and have different capabilities.

Linked Data is a promising method for publishing
and integrating different kinds of data including spatial
data. For example, OpenStreetMap data have already
been published this way as LinkedGeoData3. We will
borrow some of Linked Data techniques. First of all,
as the language used for describing the prototypical
queries, GeoSPARQL (see Section 3.1) is used. It is
a recent, detailed, spatial-query-enabling extension of
SPARQL. SPARQL is a query language for data in
Resource Description Framework (RDF) [38], and RDF
is a standard model for data interchange and it is also the
primary format of Linked Data.

The idea of how to choose a data source for answering
a query is that the system takes all prototypical queries
of all the sources, forms a special data structure with
them. When a user asks a query, the system compares
the user’s query with the data structure and decides
which data source(s) to use to answer the user’s query.
For comparing queries together we use a method called
query containment (a method stating the relation of
two queries; for definition see Section 4), for which
we utilize the OWL 2 QL language, one of the OWL
languages used for ontologies, which goes beyond the
expressive power of RDF alone.

In comparison with our previous work [28, 29], and
the work of others (see Section 2), OnGIS supports
a semantic discovery of geospatial sources capable of
answering parts of a query.

The rest of this paper is structured as follows. In
Section 2 we briefly explore existing methods and
technologies related to our work. Section 3 gives
background on GeoSPARQL and OWL 2 QL. Section 4
contains all necessary parts of the query containment we
have designed, inlcuding the computation of the query
containment and the GeoSPARQL semantics. Section 5
describes how to construct and search a lattice of
queries. Section 6 evaluates our implmentation. Finally,
Section 7 concludes the text.

2 RELATED WORK

There are some techniques for defining and searching
geographic information system (GIS) catalogues. For
example, Catalogue Service (CSW) [25], a standard
by Open Geospatial Consortium, is an interface to
discover, browse, and query metadata about GIS data and

2 http://linkeddata.org/, cit. 21.6.2016.
3 http://linkedgeodata.org/, cit. 21.6.2016.

services. CSW uses Dublin Core4 vocabulary to describe
web resources, which can be searched by metadata
(keywords, author, date, etc). However, CSW does not
allow for more complex queries or semantic search and
for spatial querying only bounding box is supported,
since the the capability of CSW for for describing
sources is very limited.

There is also some work on using semantic
technologies for spatial data. In [40], an ontology-
based information system is implemented, focusing on
ontology-based spatio-thematic query answering for city
maps. The system bases on description logics reasoner
RacerPro [15], which implements a more expressive
logic (compared to what we use) ALCQHIR+(D−).
Note that these letters denote what constructs are allowed
in the description logics that RacerPro uses. This
notation is used throughout this paper, and for its
explanation see [3]. The system in [40] implements its
custom storage, which directly includes the inference
algorithms and the query evaluation engine. A custom
query language SuQL (the substrate query language,
also in [40]) is used. However, [40] does not solve the
problem of integrating multiple data sources.

The authors in [4] use Parliament triple store
for supporting geospatial indexes, for storing spatial
data and for making complex spatial queries via
GeoSPARQL. However, [4] uses a precomputed data set
and does not directly support data integration.

The system in [45] links an RDF ontology to databases
and WFS [22]. It uses custom rules and algorithms
for query rewriting, but it does not provide the standard
OWL semantics. However, it supports query answering
from multiple data sources, specifically WFS servers for
spatial data and databases (via the D2R interface) for
attributes.

The spatial decision support system in [43] integrates
various data sources (e.g. OGC standards WMS, WFS,
WCS, WPS) and links them with ontologies. It also
uses catalogue services via ontologies and automatic
web service discovery. However, it focuses more on
geospatial analysis and ontology alignment than spatial
search.

The work in [21] has a similar goal as our OnGIS. [21]
proposes an interesting system, which is also based on
semantic technologies. But instead of open-world OWL
semantics, the work uses rules (specifically SWRL rules)
for integrating sources and for answering queries. The
problem of data integration is also summarized in [21].

Buster [35, 34] is a complex system dealing
with terminological, spatial, and temporal query
answering. It provides a common interface to
heterogeneous information sources in terms of an

4 http://dublincore.org/, cit. 21.6.2016.

33

http://linkeddata.org/
http://linkedgeodata.org/
http://dublincore.org/

Open Journal of Semantic Web (OJSW), Volume 3, Issue 1, 2016

intelligent information broker. Buster represents its
terminology using the language OIL [13] and the
description logic SHIQ and uses Dublin Core as the
vocabulary for modeling metadata. Buster solves some
of OnGIS goals in a similar fashion, but it does not
support complex queries in terms of e.g. spatial joins,
and it does not support the participation of multiple
sources on one user’s query.

The system Karma presented in [44] uses its own
base linking ontology for integrating spatial data
sources. The linking ontology seems rather limited, as
opposed to standard Simple Feature and GML ontologies
accompanying GeoSPARQL. It also performs linking of
features in two data sources by their spatial similarity.
However, Karma uses only limited RDF expressive
power and does not support complex spatial queries.

A comprehensive overview of related work in the area
of ontology-driven GIS integration is in [6].

As query containment is an important part of our
query-broking solution (see Section 4), the capabilities
of query containment of several systems are examined
here. FaCT++ [32] and its predecessor FaCT [16]
are reasoners supposed to support query containment,
but they do not support custom datatypes (which
are necessary for GeoSPARQL). Unfortunately, the
description of how their query containment works could
not be found, even digging in their C++, respectively
LISP source codes did not help.

Pellet5 is another reasoner with query containment
support. But it has a problem with data properties
since all variables in its query containment module are
modeled as individuals: when there is a data property
with a variable, there is a problem with illegal punning in
OWL. Pellet also supports the query language SPARQL-
DL [27], a SPARQL subset with OWL-based semantics.

The -ontop- system6, specifically its SPARQL query
engine Quest, has some support for query containment.
However, it seems that query containment is used only
for removing redundant queries during query rewriting;
not much information is available.

SPIN7, which stands for SPARQL Inferencing
Notation, is a SPARQL-based rule and constraint
language able to represent arbitrary SPARQL query in
RDF. But the SPIN RDF representation of a query
seemed unsuitable for deciding query containment with
OWL semantics to us. For example, there is a problem
with an OWL-illegal punning: SPIN uses the same
property8 for linking to a resource (IRI) and a literal.
This means the property would be both data property and

5 https://github.com/Complexible/pellet,
cit. 7.8.2016.

6 http://ontop.inf.unibz.it/, cit. 4.6.2014.
7 http://spinrdf.org/, cit. 10.5.2014.
8 http://spinrdf.org/sp#object

object property, and this is illegal in OWL.
In [7], the author shows a method to decide

query containment on SPARQL with OWL 2 EL [41]
ontologies using the translation into µ-calculus [5].
OWL 2 EL is of polynomial data complexity, which
is higher than AC0 complexity of OWL 2 QL (which
allows data query answering be performed directly by
relational databases). The method used is complex
enough to support property paths and optional graph
patterns, and to cover other OWL 2 profiles as well.
For example, the author states that the method of quey
containment in [7] can be used for OWL 2 QL without
inverse roles.

In [26], the authors deeply analyze the complexity
of query containment over “well-designed” SPARQL
queries supporting optional graph patterns and unions,
without RDFS or any other entailment regimes. The
results are however not reusable for our case, as
we leverage an entailment regime – the OWL 2 QL
reasoning.

In [10], there is an evaluation of three SPARQL query
containment solvers, two supporting RDFS, one not.
Two of them are actually µ-calculus containment solvers
and need some translation.

In [9] and [8], the authors propose methods for
SPARQL query containment in SHI description logics,
respectively under RDFS entailment regime. Both
methods use a translation into µ-calculus.

The methods for deciding query containment, which
are based on µ-calculus and presented in [7, 9, 8],
should be possible to extend for OWL 2 QL semantics,
and probably could also be extended with geospatial
reasoning. It would be interesting to see the result and
compare their performances to our method for deciding
query containment.

Good ways how to optimize querying multiple sources
are in [14], where the authors nicely summarize existing
and present new ways how to perform efficient SPARQL
query federation. The techniques presented there could
be used to optimize OnGIS in the future.

An alternative to GeoSPARQL is stSPARQL [19],
which is another query language based on SPARQL
with spatial and temporal extension functions. Most
features of the two query languages are similar with
some differences: GeoSPARQL has three families
of topological relations modeled both as properties
and functions (see Section 3.1), while stSPARQL
has one family of topological relations as functions
only. On the other hand, stSPARQL has temporal
functions, geospatial aggregate functions, and functions
for minimum bounding boxes (none of these are
necessary for the current version of OnGIS). stSPARQL
has been developed as part of Strabon [20], a
semantic spatiotemporal RDF store. The main

34

https://github.com/Complexible/pellet
http://ontop.inf.unibz.it/
http://spinrdf.org/
http://spinrdf.org/sp#object

Marek Šmı́d, Petr Křemen: OnGIS: Semantic Query Broker for Heterogeneous Geospatial Data Sources

Figure 1: GeoSPARQL basic classes and properties

reason GeoSPARQL has been selected for representing
semantic geospatial queries is its chance to become
widely used, as it is defined by the well-known OGC.

3 BACKGROUND

Choosing GeoSPARQL as the language for describing
spatial queries is a logical choice, as it is the most
detailed and up-to-date standard for describing spatial
queries over semantic data (specifically RDF). It is
based on RDFS reasoning. However, for deciding
the containment of GeoSPARQL queries, we need a
technique requiring the logical negation, and the logical
negation is not contained in RDFS. Therefore, we chose
OWL 2 QL, an ontology language suitable for its trade-
off between expressive power (it adds a few features to
RDFS, including limited negation, which suffices for our
purposes), and computational properties (it is tractable,
i.e. evaluable using a relational database; any increase
in expressive power would break this property). OWL 2
QL is therefore suitable also as the language for querying
data from the respective sources.

The translation of OWL 2 QL data queries into SQL
is used in our previous work in [28, 29]. There are other
profiles of OWL 2, namely EL and RL, but they are not
suitable for translation to RDBMS queries (see [42]).
OWL 2 EL is more expressive than QL (it supports e.g.
negative property assertions, functional data properties),
OWL 2 RL uses rule-based reasoning, therefore it does
not satisfy open-world assumption.

3.1 GeoSPARQL

GeoSPARQL is a relatively recent standard published
by OGC [23]. It extends SPARQL query language for
RDF data, adding support for spatial data and spatial
operations.

Basic GeoSPARQL concepts are described in
Fig. 1. GeoSPARQL contains three basic classes:

SpatialObject, and its two disjoint sub-classes
Feature and Geometry. The object property
hasDefaultGeometry is a sub-property of
hasGeometry, which links the two sub-classes.
Geometry instances can have various data

properties. The most important one is for the data
themselves, given in a form of serialization. All
serialization data properties are sub-properties of
hasSerialization, and the predefined ones are

• asWKT for WKT strings, having the range of
custom datatype wktLiteral, and

• asGML for GML data, having the range of custom
datatype gmlLiteral.

Other datatype properties are

• dimension (topological dimension),

• coordinateDimension (dimension of direct
positions),

• spatialDimension (dimension of the spatial
portion of the direct positions),

• isEmpty (has no points), and

• isSimple (contains no self-intersections except
its boundary).

GeoSPARQL defines object properties for topological
relations. There are three definition families of the
relations, and each contains eight relations. These
properties and relations are outlined in Table 1. Every
such object property has its domain and range equal to
SpatialObject.

All the three families divide all possible spatial
relations between two objects into eight basic
topological relations, but not exactly the same way.
The precise meaning of each topological relation can

35

Open Journal of Semantic Web (OJSW), Volume 3, Issue 1, 2016

Table 1: Topological relations with their meanings,
divided into families

object property meaning
Simple Feature family

sfEquals spatially equal
sfDisjoint disjoint (cannot touch)
sfIntersects share at least a point
sfTouches externally touch
sfWithin inside (can touch boundary)
sfContains inverse of sfWithin
sfOverlaps some points common,

same dimension
sfCrosses e.g. line crosses area

Egenhofer family
ehEquals spatially equal
ehDisjoint disjoint (cannot touch)
ehMeet externally touch
ehOverlap overlap
ehCovers inverse of ehCoveredBy
ehCoveredBy inside (can touch boundary)
ehInside inside (cannot touch boundary)
ehContains inverse of ehInside

RCC8 – Region Connection Calculus9 family
rcc8eq spatially equal
rcc8dc disconnected
rcc8ec externally connected
rcc8po partially overlapping
rcc8tppi tangential proper part inverse
rcc8tpp tangential proper part
rcc8ntpp non-tangential proper part
rcc8ntppi non-tangential proper

part inverse

be described by the DE-9IM model, which uses 3 × 3
matrices; for details see [11].

There is also a set of GeoSPARQL functions that
can be used in the filter section as defined in SPARQL
specification. These functions include alternates of all
topological relation properties, to be applied as functions
on geometry literals.

But there are also some more complex functions
for comparing and manipulating geometries, e.g.
distance for obtaining the distance between
two geometry literals (only this one is currently
supported in our prototype), union, intersection,
difference, and some others. GeoSPARQL also
contains some RIF (Rule Interchange Format) [37] rules,
but we will not consider them as well.

GeoSPARQL vocabulary and definitions are

9 Simple description is at http://en.wikipedia.org/wiki/
Region_connection_calculus, cit. 22.5.2014.

Table 2: Constructs used in DL−Lite and their
semantics

Syntax Semantics Comment
A AI ⊆ ∆I named concept
P P I ⊆ ∆I ×∆I named role
P− (P−)I = inverse of a role

= {(b, a)|(a, b) ∈ P I}
∃R (∃R)I = {a ∈ ∆I |∃b : existential

: (a, b) ∈ RI} quantification
¬B (¬B)I = ∆I \BI negation of

a basic concept

contained in an ontology provided by OGC10. In the
rest of this text, we will refer to the main GeoSPARQL
namespace11 with the prefix geo:.

3.2 OWL 2 QL

OWL 2 QL [42] is a profile of the Web Ontology
Language (OWL). The key feature is its tractability
(along with other OWL 2 profiles) traded for
expressiveness, which is lower compared e.g. to
OWL 2 DL. The tractability allows reformulation of
description logic queries into SQL and thus RDBMSs
(relational database management systems) can be used
as OWL 2 QL storage.

OWL 2 QL is based on DL−LiteHcore, a member of
the DL−Lite family of description logics [3] defined in
[1]. DL−LiteHcore constructs for defining concepts and
roles in description logics syntax are:

B ::= A | ∃R, C ::= B | ¬B, R ::= P |P−,

where A denotes a named concept, B a basic concept,
and C a general concept. Symbol P denotes a named
role, and R a complex role.

The semantics is defined by an interpretation I =
(∆I , ·I), where ∆I is a nonempty interpretation domain
and ·I is an interpretation function, which assigns to each
individual an element of ∆I , to each named concept a
subset of ∆I , and to each named role a binary relation
over ∆I . The semantics of the used constructs are
defined in Table 2.

A TBox (a set of all ontology terminological axioms,
e.g. subsumptions of concepts, domains, etc.) can be
defined by inclusion axioms of the form: B v C, and

10 Available at http://schemas.opengis.net/
geosparql/, cit. 16.4.2014, alongside with the imported
ontologies for Simple Feature and GML geometries.

11 http://www.opengis.net/ont/geosparql#

36

http://en.wikipedia.org/wiki/Region_connection_calculus
http://en.wikipedia.org/wiki/Region_connection_calculus
http://schemas.opengis.net/geosparql/
http://schemas.opengis.net/geosparql/
http://www.opengis.net/ont/geosparql#

Marek Šmı́d, Petr Křemen: OnGIS: Semantic Query Broker for Heterogeneous Geospatial Data Sources

Table 3: ABox axioms used in DL−Lite and their
semantics

Syntax Semantics Comment
a, b aI , bI ∈ ∆I individuals
A(a) aI ∈ AI concept assertion
P (a, b)

(
aI , bI

)
∈ P I property assertion

R1 v R2, interpreted by I as BI ⊆ CI , respectively
RI1 ⊆ RI2 .

An ABox consists of the following assertion axioms:
A(a), and P (a, b), where a, b are individuals. The
semantics of the axioms as interpreted by I is given in
Table 3.

OWL 2 QL extends DL−Lite with various features
not affecting its tractability, e.g. data roles.

In OWL terminology, concepts are called classes,
and roles are called properties. We will use OWL
terminology in the rest of this text.

4 QUERY CONTAINMENT WITH
GEOSPARQL

The essential part of matching a query against a set of
queries is the problem called query containment, which
decides subsumption relation of two queries. One query
is subsumed by another, q1 v q2, whenever each result
set of q1 for data D is a subset of the result set of q2 for
the same data D.

We formulate the queries in a subset of SPARQL
language, with the extension of some of the
GeoSPARQL vocabulary and its semantics, and the
OWL 2 QL semantics. From the SPARQL language,
only SELECT queries are supported. Graph patterns
and filters are supported, however optional patterns,
ordering, grouping, offsets, and limits are not.

From the GeoSPARQL query language, basic classes,
properties, serializations, topological relations, and some
other functions are supported. Specifically, the supported
features are:

• classes SpatialObject, Feature and
Geometry,

• object properties hasGeometry and
hasDefaultGeometry,

• data properties hasSerialization, asWKT,
and asGML (and parsing its literals in WKT and
GML),

• all the three topological relation families (Simple
Feature, Egenhofer, and RCC8),

Figure 2: Extending GeoSPARQL with the hierarchy
of topology object relations

• and the distance function (for details of all the
above, see Section 3.1).

In Section 4.1, a hierarchy on topological relations
is defined, Section 4.2 develops a general query
containment algorithm for OWL 2 QL, and Section 4.3
gives reasoning extension for GeoSPARQL.

4.1 Expanding GeoSPARQL Ontology

One part of supporting the semantics of GeoSPARQL
is to understand the relations among the topological
relations. GeoSPARQL ontology contains only a list
of all the topological relations without any hierarchy.
Therefore, we added a hierarchy comparing topological
relations between different relation families in order to
support the containment of queries. For example, both
rcc8tpp and rcc8ntpp (i.e. tangential and non-
tangential proper part from the RCC8 family) are sub-
properties of sfWithin.

The complete hierarchy of relations was determined
by their DE-9IM definitions, and its visualization in
Protégé12 is in Fig. 2.

4.2 Query Containment Basics

First, let us define a query as a tuple of output variables,
class restrictions, object and data property restrictions,
and filters, formally

q = (Vo, Rc, Rop, Rdp, Rf),

12 An open-source ontology editor,
http://protege.stanford.edu/, cit. 22.5.2014

37

http://protege.stanford.edu/

Open Journal of Semantic Web (OJSW), Volume 3, Issue 1, 2016

where

• Vo is a set of output variables of the query; a
variable is in the rest of the text prefixed with the
question mark,

• Rc is a set of class restrictions on variables, C(?x),
where C is a class name,

• Rop is a set of object property restrictions in the
form of either
OP (?x, ?y), OP (?x, i), or OP (i, ?y), where OP
is an object property name, and i is an individual,

• Rdp is a set of data property restrictions in the form
of either DP (?x, ?y), DP (?x, d), or DP (i, ?y)
whereDP is a data property name, and d is a literal,

• Rf is a set of filters, restricting the result by
functions. A filter is a predicate (a function
returning a boolean value), which must be satisfied
for the returned results. It has the form of f(x),
where f is a boolean function, and x is a tuple
having the same arity as f and the proper types.
Elements of x can be variables, individuals, literals,
and other function calls.

The elements of Rc, Rop and Rdp are also called
triples of the query q.

The main idea, how to decide query containment, is
based on [18] and [17]: Take two compared queries
q1 and q2, and a background ontology O (TBox and
ABox of valid axioms, on which background the query
containment is to be decided) and transform the queries
into two ABoxes, which, using a series of satisfiability
checks, lead to deciding whether O |= q1 v q2. Our
modifications of the already proposed methods include
adapting them for the OWL 2 QL logics (originally
they support DLR logic, having relations of any arity,
by a translation into satisfiability in SHIQ description
logics), and adding support for spatial reasoning by
extending completed ABox in Section 4.3.

First, we define a canonical ABox of a query (it is
basically just substituting variables with individuals, one
individual per variable):

Can(q) = Can(Rc) ∪ Can(Rop) ∪ Can(Rdp)

Can(Rc) = {C(ix) : C(?x) ∈ Rc}
Can(Rop) = {OP (ix, b) : OP (?x, b) ∈ Rop}

∪ {OP (a, iy) : OP (a, ?y) ∈ Rop}
∪ {OP (ix, iy) : OP (?x, ?y) ∈ Rop}

Can(Rdp) = {DP (ix, d) : DP (?x, d) ∈ Rdp}
∪ {DP (a, dy) : DP (a, ?y) ∈ Rdp}
∪ {DP (ix, dy) : DP (?x, ?y) ∈ Rdp}

where a subscripted i is a fresh individual, C is a
class, OP is an object property, DP is a data property,
a subscripted d is a fresh (artificial) literal, and a letter
prefixed with the question mark is a query variable.

Let us denote A1 = Can(q1), A2 = Can(q2), I1
all individuals in A1, IV 1 all individuals representing
variables in A1, D1 all literals in A1, DV 1 all literals
representing variables in A1, similarly I2, IV 2, D2, and
DV 2 for A2, and O for a background ontology.

A completed ABox of a property is an extended ABox
built on top of canonical ABoxes:

Com(OP (ix, iy), q1, q2) =

= α(ix, iy, q1, q2) ∪ β(ix, iy, q1, q2)

α(ix,iy, q1, q2) =

=

{
{(i′x, iy) : i′x ∈ I1 \ IV 1} if ix ∈ IV 2

∅ otherwise

β(ix,iy, q1, q2) =

=

{
{(ix, i′y) : i′y ∈ I1 \ IV 1} if iy ∈ IV 2

∅ otherwise

Com(DP (ix, dy), q1, q2) =

= γ(ix, dy, q1, q2) ∪ δ(ix, dy, q1, q2)

γ(ix,dy, q1, q2) =

=

{
{(i′x, dy) : i′x ∈ I1 \ IV 1} if ix ∈ IV 2

∅ otherwise

δ(ix,dy, q1, q2) =

=

{
{(ix, d′y) : d′y ∈ D1 \DV 1} if dy ∈ DV 2

∅ otherwise

Using those, we can define a testing ontology Ō(a) as
a function of axioms from A2:

Ō(C(ix)) =

= (O ∪A2) \ {C(ix)} ∪A1 ∪ {NC(ix)}
Ō(OP (ix, iy)) =

= (O ∪A2) \ {OP (ix, iy)} ∪A1

∪ {NOP (ix, iy)}
∪ {NOP (i′x, i

′
y) : (i′x, i

′
y) ∈ Com(OP (ix, iy))}

Ō(DP (ix, dy)) =

= (O ∪A2) \ {DP (ix, dy)} ∪A1

∪ {NDP (ix, dy)}
∪ {NDP (i′x, d

′
y) : (i′x, d

′
y) ∈ Com(DP (ix, dy))},

where NC is a fresh class for each C with the restriction
NC v ¬C added to Ō(a), and similarly NOP for each
OP and NDP for each DP .

38

Marek Šmı́d, Petr Křemen: OnGIS: Semantic Query Broker for Heterogeneous Geospatial Data Sources

If there exists an assertion a ∈ A2 such that Ō(a) is
consistent, or filters are not contained (see below), then
q1 6v q2, otherwise q1 v q2.

The proof of the correctness can be based on proofs
in [18] and [17], as our steps are based on those
articles with suitable modifications and simplifications
for OWL 2 QL semantics. Detailed proofs are out of the
scope of this text.

Intuitive proof: in order to q1 v q2 be valid, q1
has to restrict its results more than q2. This is tested
by taking one restriction in q2 (as an axiom in A2)
at a time, negating it, and putting it together with the
background ontology, A1, and the rest of A2. In a
case of a property, also some additional axioms. This
altogether is tested for consistency: If it is consistent,
it means that results are less restricted by q1 than by q2
(q1 still has some results, even if it is restricted with the
negation of a q2 restriction, meaning skipping at least the
results originally given by q2), and therefore q1 6v q2.
The additional axioms mentioned above are given by
Com(OP) and Com(DP). They are necessary because
a variable in A2 represented by an individual/literal
can be substituted by any non-variable individual/literal.
For consistency checking in the decisions of query
containment, it is necessary to substitute only non-
variable individuals/literals in A1.

To analyze complexity of the decisions, we follow
complexity of the steps: The size of Can(q) is linear to
the size of q, the size of Com(an assertion axiom, q1, q2)
is also linear to the size of q1, and the size of Ō(a) is
linear to the size of O, q1, and q2 combined. Therefore,
a query containment decision requires approximately
|q2| × (|O| + |q1| + |q2|) consistency checks in OWL 2
QL, i.e. a polynomial number in the query sizes and the
background ontology size. And since consistency checks
in OWL 2 QL are of NLogSpace-complete complexity
[42], the overall complexity of the query containment is
PolyTime. Note that this complexity is lower than the
complexity ExpTime in [17], thanks to lower expressive
power of OWL 2 QL.

To deal with filters, a different approach has to be
used because filters have multiple arity and different
semantics (they do not have the open world assumption),
thus using their reification, negation, and consistency
checks do not solve their containment.

A simple scheme is used for deciding query
containment with filters:

(∃f2 ∈ Rf2 : @f1 ∈ Rf1 : f1 v f2)⇒ q1 6v q2.

Intuitively the filter containment relation v expresses
whether one filter is more restrictive than the other. It
has to be defined according to the specific filter function
definition.

Another problem in query containment is variable
mapping. Using the simplest attitude, variables are
converted to individuals and literals, assuming they
are uniquely identified by their names, and the query
containment algorithm decides the query subsumption.
It works if the variables are named consistently between
the compared queries. However, this might not be
the case in the real world – different systems may
generate the prototypical queries describing its source
capabilities, and they may name the variables differently.
One option is to check all possible ways how to rename
the variables of one query to the variables of the other
while deciding query containment. When at least one
combination results in the positive answer, one query is
contained within the other. In OnGIS, we implemented a
simple algorithm to reduce the number of combinations
to check the containment. Here we give only the idea of
the algorithm with the details skipped.

We make only one assumption in variable mapping:
Output variables are the same. This is a realistic
assumption, since GIS systems in simple cases generate
e.g. objects’ geometries and labels. Therefore, the
implemented semantic GIS system may fix constant
output variable names and types. Then the variable
mapping algorithm recursively searches all possible
combinations of mapping variable names from one
query to the other, starting from the output variables,
preserving one condition: When a subset of variables in
one query is grouped together (e.g. by a query triple or
by a query filter), it must be grouped in the other query
as well.

4.3 Adding Support for GeoSPARQL

When deciding query containment with queries only on
the symbolic level with individuals, topological relations
are covered by extending them with a hierarchy, as
in Section 4.1. But when there are geospatial literals
involved, it gets more complicated.

First, we define the set of all topological relation
restrictions of a geometry individual as

Rel(i, q2) = {−TR(OP) : OP (ix, iy) ∈ Rop2

∧ (hG(ix, i) ∨ ix = i)}
∪{TR(OP) : OP (ix, iy) ∈ Rop2

∧ (hG(iy, i) ∨ iy = i)},

where hG v geo:hasGeometry, Rop2 is Rop in q2,
and TR(OP) (topological relation restriction values for
all topological relations) is defined in Table 4. Note that
in a topological relation both a geometry individual and
a feature individual can play roles (thus the logical or in
the definition).

39

Open Journal of Semantic Web (OJSW), Volume 3, Issue 1, 2016

Table 4: Values of restrictions TR(OP) of topological
relations

Egenhofer OP s TR(OP)
geo:ehEquals 0
geo:ehOverlap 0
geo:ehDisjoint -1
geo:ehContains -1
geo:ehCoveredBy 0
geo:ehCovers 0
geo:ehInside 1
geo:ehMeet 0
Simple Feature OP s TR(OP)
geo:sfEquals 0
geo:sfIntersects 0
geo:sfDisjoint -1
geo:sfContains -1
geo:sfCrosses 0
geo:sfTouches 0
geo:sfWithin 1
geo:sfOverlaps 0
RCC8 OP s TR(OP)
geo:rcc8eq 0
geo:rcc8po 0
geo:rcc8dc -1
geo:rcc8ec 0
geo:rcc8ntpp 1
geo:rcc8ntppi -1
geo:rcc8tpp 0
geo:rcc8tppi 0

Table 5: Meanings of TR(OP) values.

TR(OP) condition
0 a ≡ b
1 a ⊆ b

-1 b ⊆ a

The numerical values of TR(OP) in Table 4 represent
necessary conditions on the topological relation between
two geometries in order to answer an OP containment.
In order to OP (x, a) v OP (x, b), the relation between
the features/geometries a and b has to be according to
Table 5.

Then we can define an effective topological relation
restriction of a geometry individual:

re(i, q2) =

{
0 if |Rel(i, q2)| > 1,
the only element in Rel(i, q2) otherwise.

Using the topological relation restriction, we can

define the geometry containment relation:

x ∼r y =

 x ≡ y if r = 0,
x ⊆ y if r < 0,
y ⊆ x if r > 0,

where the relation ⊆ between two geometries represents
that one geometry is a subset (is within) another
geometry and the relation ≡ represents that the two
geometries are the same.

Then we can extend completed ABox of a data
property as:

Com2(hS(ix, dy)) = Com(hS(ix, dy))∪
∪ {(ix, g) : g ∈ D1 \DV 1 ∧ (dy ∼re(ix,q2) g)}

where hS v geo:hasSerialization, and the
rest of the symbols is defined in Section 4.2. When
Com2(DP) is used for obtaining Ō(a) instead of
Com(DP), the query containment decision procedure
is extended with GeoSPARQL topological relations
reasoning.

This way, containment on even complex query
patterns is answered correctly. To give an intuitive
proof, we will continue the intuitive proof at the end of
Section 4.2. Here the Com(DP), containing possible
substitutions for variables, needs to be extended with
substitutions also for geometry literals. But how to select
which geometry literals to substitute? It depends on
how the geometry restricts the rest of the query. For
example, when an object has to be within a geometry, the
geometry can be substituted with a geometry covering it.
The impact, which spatial restrictions have on geometry
substitutions, is given by TR(OP); for a specific object
it is computed by Rel(i, q2), and the effect that the
spatial restrictions have on the substitution is given by
re(i, q2). Then, by comparing geometries based on
re(i, q2), it can be correctly decided which geometries
to substitute for a geometry in a query to decide query
containment with spatial semantics.

Note that since all steps to obtain Com2 do not exceed
PolyTime complexity, using this spatial extension does
not affect the overall complexity of query containment.

Imagine the two queries in Listing 1, the structure of
which is displayed in Fig. 3. Note that the two polygons
there are the areas of the Czech Republic (CZ, in both
queries) and Slovakia (SK, in q2 only), and the two
countries are neighbors.

40

Marek Šmı́d, Petr Křemen: OnGIS: Semantic Query Broker for Heterogeneous Geospatial Data Sources

Figure 3: Example of a circle in a query.

Listing 1: q1 and q2 in circular spatial restriction
example
SELECT ? x WHERE {

? x a l g d : R e s t a u r a n t .
? x geo : s f W i t h i n ? g .
? x ex : h a s F o o d O r i g i n I n ? c .
? c a l g d : Count ry .
? c geo : s f T o u c h e s ? g .

q1: ? g geo : asWKT ”POLYGON((<CZ>)) ”
ˆ ˆ geo : w k t L i t e r a l .

q2: ? g geo : asWKT ”POLYGON((<CZ+SK>)) ”
ˆ ˆ geo : w k t L i t e r a l .

}

Obviously, q1 v q2 cannot be true, since the q1 results
contain restaurants in the Czech Republic with their food
origin in Slovakia, while the results of q2 do not. The
containment would be true, if there would be only the
geo:sfWithin spatial restriction.

To show how the proposed reasoning would reach the
correct decision, let us show the steps:

Rel(ig, q2) = {TR(geo:sfTouches),

TR(geo:sfWithin)} = {0, 1}
re(ig, q2) = 0

Therefore, the completed ABox for geo:asWKT
(<CZ+SK> in q2) will not be extended with <CZ>
from q1, thus testing consistency on Ō of this data
property will give consistent, meaning that q1 6v q2.

5 PROTOTYPICAL QUERY LATTICE
CONSTRUCTION AND SEARCHING

A lattice is a natural structure for representing a set of
queries ordered by their containment, as the set is a
partially ordered set (every two queries are related in
exactly one of three ways: q1 v q2, q2 v q1, or q1 and
q2 are unrelated). Section 5.1 describes how to generate

a lattice from a set of queries, Section 5.2 gives details
on how to search the lattice for a given query.

5.1 Building Lattice

All queries form a lattice structure as any partially
ordered set: Two queries can be ordered, or can be
incomparable. A lattice is an algebraic structure, which
has the least element and the greatest element13. In
our case, the least element is the abstract query giving
no results and the greatest element is the abstract query
giving all results.

Algorithm 1 with support functions in Algorithm 2
iteratively builds a lattice, where nodes represent sets
of semantically equivalent queries. Each node has a set
of data sources capable of answering the node’s queries
associated with it.

Algorithm 1 Lattice construction algorithm

Require: r v q
1: function INSERTINTOLATTICE(q, r)
2: if q ∈ children(r) then
3: return
4: end if
5: doAdd← true
6: inserted← false
7: for all c ∈ children(r) do
8: if q v c then . r v q v c
9: if c v q then . r v q ≡ c

10: unify(c, q)
11: return
12: end if
13: children(r)← children(r) \ {c}
14: children(q)← children(q) ∪ {c}
15: inserted← true
16: break
17: else if c v q then . r v c v q
18: INSERTINTOLATTICE(q, c)
19: doAdd← false
20: end if
21: end for
22: if doAdd then
23: if not inserted then
24: for all c ∈ children(r) do
25: CONNECTTOCHILDREN(q, c)
26: end for
27: end if
28: children(r)← children(r) ∪ {q}
29: end if
30: end function

13 For details, see https://en.wikipedia.org/wiki/
Lattice_(order), cit. 23.8.2016.

41

https://en.wikipedia.org/wiki/Lattice_(order)
https://en.wikipedia.org/wiki/Lattice_(order)

Open Journal of Semantic Web (OJSW), Volume 3, Issue 1, 2016

Algorithm 2 Support functions for lattice construction algorithm

Require: q not comparable to r
1: function CONNECTTOCHILDREN(q, r)
2: for all c ∈ children(r) do
3: if q v c then . q v c
4: if not CHILDRENCONTAIN(q, c) then
5: for all x ∈ children(q) do
6: if CHILDRENCONTAIN(c, x) then
7: children(q)← children(q) \ {x}
8: end if
9: end for

10: children(q)← children(q) ∪ {c}
11: end if
12: else
13: CONNECTTOCHILDREN(q, c) . q not comparable to c
14: end if
15: end for
16: end function
17: function CHILDRENCONTAIN(r, x)
18: return

∨
c∈children(r) ((x = c) ∨ CHILDRENCONTAIN(c, x))

19: end function

Algorithm 1 starts with the lattice being only one
root node, representing the query with empty answer
(as the top node of the lattice). It adds queries one by
one, placing a query into appropriate position of the
lattice: If the to be added query contains a query in
the lattice, but contains none of its children, add it as
a child, as in Algorithm 1, line 28; if it is semantically
equivalent to a query, unify it, as in Algorithm 1, line 10;
otherwise work recursively, as in Algorithm 1, line 18.
The function call initially starts with the inserted query
and the root (the no-answer query) as arguments.

In the worst case, adding a query to the lattice requires
the amount of query containment decisions equal to
twice the size of the lattice (when caching of query
containment results is in place, as the algorithm may
encounter the same query pair multiple times), i.e. to
build a lattice out of n prototypical queries requires the
maximum of n(n−1) query containment decisions. But
in practical situations, it is usually less, see Section 6.

5.2 Searching Lattice

Algorithm 3 contains the algorithm for searching a user’s
query in the lattice constructed in Section 5.1. The
function is called with the query searched for and the root
of the lattice (the no-answer query) as the arguments,
then it recursively searches the lattice. It returns all query
nodes, which are equivalent to the user’s query, or are
the “directly” contained ones (which are contained in the
user’s query, but no other contained in the user’s query
contains them). In case the algorithm cannot recursively

Algorithm 3 Lattice searching algorithm

Require: r v q
1: function SEARCHLATTICE(q, r)
2: S ← {c ∈ children(r) : c v q} . r v c v q
3: if S = ∅ then
4: if r = root of the lattice then
5: return USESPLITTING(q, r)
6: else
7: return {(q, r)}
8: end if
9: else

10: return {SEARCHLATTICE(q, c) : c ∈ S}
11: end if
12: end function

continue at the root level, and this means that the user’s
query does not contain any of the children of the root
(and hence it would not contain any query in the lattice),
Algorithm 3 switches to the “splitting” mode, which
continues with the Algorithm 4.

When in “splitting” mode, the user’s query is split to
subqueries, which are individually searched in the lattice.

Searching a lattice of n nodes should take, in the worst
case, n query containment decisions in case the splitting
is not used, and n + n|q| query containment decisions
when the splitting is used (where |q| is the number of
triples in q). This should happen only when the lattice is
of a deformed shape (e.g. all nodes are children of the
root, or it is a chain). In practical situations, the worst

42

Marek Šmı́d, Petr Křemen: OnGIS: Semantic Query Broker for Heterogeneous Geospatial Data Sources

Algorithm 4 Trying to split in lattice searching

Require: r v q
1: function USESPLITTING(q, r)
2: X ← {(c, sj) : c ∈ children(r) ∧ sj = join({s ∈ SPLIT(q) : c v s})} . r v c v s
3: return {SEARCHLATTICE(sj , c) : (c, sj) ∈ X ∧ sj /∈ PRUNE({sj : (c, sj) ∈ X})}
4: end function

case happens less as showed in Section 6.
There exist many strategies how to split a query to

subqueries in order to find sources capable of answering
them. It is a compromise between how many sources
must be involved in answering the user’s query (which
includes how much data must be transferred from the
sources to the broker and how much processing the
broker has to do to combine them) and the extensiveness
of the answer (the found query is always contained in the
users query, but the query formed by combining queries
from multiple sources may give more results to the users
query than a single query from an individual source).

One decision is when to do the splitting of the user’s
query, another one is when to try to join the subqueries
back when some of them can be answered by a single
source. The decision may be complex with different
optimizations, and it is part of our future work.

Currently, we propose a simple approach to split the
user’s query at the first level (the children of the lattice
root) and then join those split subqueries which contain
the same child of the root, as described in Algorithm 4.
This reduces both the number of query containment
decisions and the number of produced subqueries (i.e.
sources necessary to use for the complete answer).

Note that the auxiliary function “join” of a set of
subqueries simply returns a new query built from all
the subqueries joined (the union of their triples) with
the output variables being the union of the queries’
output variables. The function “vars” returns a set of
all variables appearing in a query or a triple. The
symbol q1 ⊆ q2 represents the syntactic containment,
i.e. whether the triples of q1 are a subset of the triples of
q2 and similarly for their output variables.

The algorithm for the splitting of a query in
Algorithm 5 splits the query into a set of subqueries, and
each subquery is formed by a disjoint subset of triples of
the original query. Every such triple subset is selected to
be of minimal size, but keeping the condition that for
every triple t in the subset, all triples sharing a non-
output variable with t are in the same subset (a non-
output variable is a variable not appearing in the original
query SELECT statement). This is illustrated in Fig. 4,
where the query formed by all triples in the figure is the
algorithm input, and the three subqueries represented by
the triples in the encircled regions A, B, and C are the

Figure 4: Splitting a query into subqueries (The dots
represent distinct variables, the arrows represent
predicates)

algorithm output.

In theory, a query could be split into single triples,
and the broker could let those triples be answered
individually by different sources. Then the broker would
have to do the conjunction itself, requiring that the
individuals across different sources match – even the
ones representing the user query’s non-output variables.
As we consider posing less requirements about the
alignment between individuals in different sources as
good practice, we proposed an algorithm, which keeps
the originally inner variables not exposed by the split
subqueries and just requires alignments on the output
variables. It is also one way how to limit the number
of queries to reduce the computational demands on the
broker. But it is a matter of design choice.

Algorithm 6 is another example of heuristics how to
reduce the number of queries necessary to be answered
by the sources. Note that by the symbol |q| we denote
the number of triples in a query q. First, Algorithm 6
finds all query subsets that are redundant (note that P
denotes a power set). Next, comes the heuristics. From
these redundant subsets, we pick only the ones with the
maximum number of elements (line 3), from which we
pick only the ones with the minimum total number of
triples with the intent of pruning the least restrictive
queries (line 4). When there is more than one such subset
available, we pick a subset randomly.

43

Open Journal of Semantic Web (OJSW), Volume 3, Issue 1, 2016

Algorithm 5 Query splitting

1: function SPLIT(q)
2: T ← all triples of q
3: vo ← output variables of q
4: O ← ∅
5: while T 6= ∅ do
6: t← one of {t ∈ T : vars(t) ∩ vo 6= ∅}
7: S ← SPREAD(t, T \ {t}, vo)
8: T ← T \ S
9: O ← O ∪ {a query with triples S and output variables vars(S) ∩ vo}

10: end while
11: return O
12: end function
13: function SPREAD(t, T, vo)
14: X ← {x ∈ T : vars(t) \ vo ∩ vars(x) 6= ∅}
15: return {t} ∪

⋃
x∈X SPREAD(x, T \X, vo)

16: end function

Algorithm 6 Prunning queries

1: function PRUNE(Q)
2: P ← {p ∈ P(Q) : join(p) ⊆ join(Q \ p)}
3: P1 ← {p ∈ P : |p| = max({|p| : p ∈ P})
4: P2 ← {p ∈ P1 :

∑
q∈p |q| = min({

∑
q∈p |q| : p ∈ P1})

5: return random element of P2

6: end function

6 TESING OF PROTOTYPICAL
IMPLEMENTATION

This sections tests our prototypical implementation of
the construction and searching of the query lattice by
two study cases. Finally, we compare our method of
query containment with other implementations. The first
testing case does not feature any spatial restriction and
uses the splitting of queries, and the second example has
spatial restrictions and does not use the query splitting.

6.1 The First Testing Case

Here is the first example of how the lattice construction
and searching works. It has been successfully tested
using the our prototypical implemenation. Consider the
following background ontology O consisting of:

• LinkedGeoData ontology [30] (prefix
lgd:), which describes OpenStreetMap
data. Among many others, it contains
classes lgd:Restaurant, lgd:Gym, and
lgd:HistoricBuilding, which are
relevant to our testing case. It also contains
the axiom lgd:HistoricBuilding v
lgd:Historic.

• GeoNames14 ontology [33] (prefix gn:),
describing its own well-classified database of
points. It is linked to LinkedGeoData. A little
conversion was performed to make it suitable
(converting individuals to classes). The following
classes are relevant: gn:S.REST (restaurants) and
gn:S.HSTS (historical sites). Also the following
axioms are included: lgd:Restaurant
≡ gn:S.REST and lgd:Historic ≡
gn:S.HSTS.

• Our example ontology for gourmets (prefix
ex:). It only contains one object property,
ex:hasFoodOrigin.

Note that for classes, C ≡ D is only syntactic sugar
for C v D and D v C.

We will consider the following geospatial sources
(services providing geospatial data, e.g. WFS servers
[22], (Geo)SPARQL endpoints, etc.):

• s1, having OpenStreetMap data, capable of
answering queries with the following restrictions:

– lgd:Restaurant(?x)

– lgd:Gym(?x)

14 http://www.geonames.org/, cit. 27.2.2016.

44

http://www.geonames.org/

Marek Šmı́d, Petr Křemen: OnGIS: Semantic Query Broker for Heterogeneous Geospatial Data Sources

Figure 5: The lattice of example sources.

– lgd:Gym(?x), lgd:HistoricBuild-
ing(?x)

– lgd:HistoricBuilding(?x)

• s2, having GeoNames data, capable of answering
queries with the following restrictions:

– gn:S.REST(?x)

– gn:S.REST(?x), gn:S.HSTS(?x)

– gn:S.HSTS(?x)

• s3, having example gourmet data, capable of
answering queries with the following restrictions:

– ex:hasFoodOrigin(?x, ?c)

– ex:hasFoodOrigin(?x, ?c), lgd:
Restaurant(?x)

When OnGIS is loaded with the background
ontology O and the sources s1, s2, s3, it creates
the lattice in Fig. 5. Note that the root node
bottom represents the no-answer query, and all
the prefixes are omitted for compactness. The
abbreviation R stands for Restaurant, G for
Gym, HB for HistoricBuilding, and FO for
hasFoodOrigin. As it is a lattice, all nodes with no
children depicted should be connected to the top node at
the bottom, representing the all-answer query. But it has
been skipped to make the figure simpler, and neither the
OnGIS algorithms operates with the top node.

Now when a user asks the query in Listing 2, the
prototype searches the lattice. It cannot find a single
source to answer the complete query, hence it splits the
query, and comes up with two partial queries – one for
s1 in Listing 3 and one for s3 in Listing 4. The lattice
nodes used for deciding which sources to use are darker
in Fig. 5.

Table 6: The statistics of the first testing case

Value/Average Std. dev.
Background ontology 16,251 axioms
Prototypical queries 9
Lattice size 8

Lattice construction
Containment decisions 50
Time 5.01 s 0.62 s

Lattice search
Containment decisions 20
Time 214 ms 30 ms

Listing 2: Example user’s query
SELECT ? x ? c ? g WHERE {

? x a l g d : R e s t a u r a n t .
? x a l g d : H i s t o r i c B u i l d i n g .
? x ex : h a s F o o d O r i g i n ? c .
? x geo : hasGeometry

[geo : h a s S e r i a l i z a t i o n ? g] .
}

Listing 3: Example result query for s1.
SELECT ? x ? g WHERE {

? x a l g d : H i s t o r i c B u i l d i n g .
? x geo : hasGeometry

[geo : h a s S e r i a l i z a t i o n ? g] .
}

Listing 4: Example result query for s3.
SELECT ? x ? c ? g WHERE {

? x a l g d : R e s t a u r a n t .
? x ex : h a s F o o d O r i g i n ? c .
? x geo : hasGeometry

[geo : h a s S e r i a l i z a t i o n ? g] .
}

Some statistics of the example using our OnGIS
prototype are given in Table 6. The response times
are computed from 20 lattice constructions and 200
lattice searches on a Linux laptop with Intel Core i7
@ 2.4 GHz with Oracle Java 8 (1.8.0 101) without
any parallelization. Notice that the reasoner used for
deciding consistency is Pellet (version 2.3.1), which is
designed for more expressive logic than OWL 2 QL.
Therefore designing reasoner tailored for OWL 2 QL
consistency checks gives space for optimizations.

Notice that both numbers of containment decisions are
lower than the theoretical maximums, 9(9 − 1) = 72
for lattice construction, and 8 + 8 · 5 = 48 for lattice
searching with the query splitting used.

45

Open Journal of Semantic Web (OJSW), Volume 3, Issue 1, 2016

Listing 5: Example of prototypical query in the
second example
SELECT ? x ? g WHERE {

? x a dbp : R e s t a u r a n t .
? x geo : hasGeometry

[geo : h a s S e r i a l i z a t i o n ? g] .
? x geo : e h I n s i d e

[a s f : Polygon ; geo : asWKT
”POLYGON((−31.3 8 1 , 3 9 . 9 8 1 . . .)) ”
ˆ ˆ geo : w k t L i t e r a l] .

}

Listing 6: User’s query for the second testing case
SELECT ? x ? g WHERE {

? x a l g d : R e s t a u r a n t .
? x geo : hasGeometry

[geo : h a s S e r i a l i z a t i o n ? g] .
? x geo : s f W i t h i n

[a s f : Polygon ; geo : asWKT
”POLYGON((1 1 52 ,20 5 2 , 2 0 . . .)) ”
ˆ ˆ geo : w k t L i t e r a l] .

}

6.2 The Second Testing Case

The second case, also successfully tested in our
OnGIS, uses LinkedGeoData, GeoNames, and DBpedia
ontologies as the background ontologies. The testing
example has three sources, each one using one of the
three ontologies, altogether containing more prototypical
queries than in the previous example. Moreover,
the prototypical queries contain spatial restrictions,
representing that the sources contain data only in
specified areas. For that purpose, the geo:ehInside
topological relation is used, together with a polygon
serialized by a WKT string. Thus, a prototypical query
can look like the one in Listing 5.

The three sources are:

• slgd, the data source described by LinkedGeoData.
The source contains 43 prototypical queries, which
all are spatially restricted by a rectangle that
bounds the area of Prague (the capital of the Czech
Republic),

• sgn, the data source described by GeoNames
ontology. The source contains 34 prototypical
queries, which all are spatially restricted by a
rectangle that bounds the area of the Czech
Republic,

• sdbp, the data source described by DBpedia
ontology. The source contains 3 prototypical

queries, which all are spatially restricted by a
rectangle that bounds the area of Europe.

Each of these sources contains a class for restaurants,
and these classes are linked together as being equal.
So when a user asks the query in Listing 6 (containing
rectangular spatial restriction slightly larger than the
Czech Republic), OnGIS correctly answers with the
source sgn, which is the most fitting one. Even
though the other two sources contain equal classes
for restaurants, the corresponding prototypical query
in slgd is narrower (strictly contained within the users
query) than the selected prototypical query in sgn. The
corresponding prototypical query in sdbp is wider than
the user’s query, and it does not satisfy to be contained
within the user’s query.

Also note that the user’s query uses the topological
relation geo:sfWithin, while the sources for
spatially restricting their data use geo:ehInside.
Since geo:ehInside is a sub-property of
geo:sfWithin (see Fig. 2), the spatial restriction
given by the user is weaker than the spatial restrictions
given by the sources, therefore the query can be
answered by sgn. When the user’s query would use a
stricter spatial restriction, e.g. geo:rcc8ntpp, none
of the sources could satisfy the query.

The resulting statistics of the second testing case is
given in Table 7. Again, both numbers of containment
decisions are lower than the theoretical maximums:
80(80 − 1) = 6, 320 for lattice construction, and 80 for
lattice searching without the query splitting used.

6.3 Comparison with Other Systems

We tried to compare our proposed method of query
containment with other implementations available. As
stated in Section 2, using the reasoners FaCT and
FaCT++ [32, 16] was not technically possible.

We succeeded using the query containment method in
Pellet (Pellet is also used as the reasoner for consistency
checks in our prototype), however, with some
limitations. A look into the Java class responsible for
query containment in Pellet, QuerySubsumption15,
reveals it is partially similar to a part of the solution
presented in Section 4.2, based on [18, 17]. For
deciding whether O |= q1 v q2, Pellet computes
T = Can(q1) ∪ O, and tries to answer q2 over T .
q1 v q2 iff the result is not empty. The translation seems
simpler compared to our approach, but it is not clear
how easy it would be to extend it with spatial reasoning,

15 Available at https://github.com/Complexible/
pellet/blob/master/query/src/main/java/
com/clarkparsia/pellet/sparqldl/engine/
QuerySubsumption.java, cit. 7.8.2016.

46

https://github.com/Complexible/pellet/blob/master/query/src/main/java/com/clarkparsia/pellet/sparqldl/engine/QuerySubsumption.java
https://github.com/Complexible/pellet/blob/master/query/src/main/java/com/clarkparsia/pellet/sparqldl/engine/QuerySubsumption.java
https://github.com/Complexible/pellet/blob/master/query/src/main/java/com/clarkparsia/pellet/sparqldl/engine/QuerySubsumption.java
https://github.com/Complexible/pellet/blob/master/query/src/main/java/com/clarkparsia/pellet/sparqldl/engine/QuerySubsumption.java

Marek Šmı́d, Petr Křemen: OnGIS: Semantic Query Broker for Heterogeneous Geospatial Data Sources

Table 7: The statistics of the second tesing case

Value/Average Std. dev.
Background ontology 31,331 axioms
Prototypical queries 80
Lattice size 80

Lattice construction
Containment decisions 5,568
Time 239.9 s 10.2 s

Lattice search
Containment decisions 69
Time 3.66 s 0.23 s

Table 8: The execution times for the simplified first
testing case by our versus Pellet’s query containment

Average Std. dev.
Lattice construction

Our query containment 713 ms 442 ms
Pellet query containment 1017 ms 659 ms

Lattice search
Our query containment 136 ms 23 ms
Pellet query containment 146 ms 24 ms

and it uses conjunctive query answering (which is
NP-complete in the case of OWL 2 QL), instead of
consistency checks (NLogSpace-complete in OWL 2
QL).

As Pellet does not support data properties, we tested it
only with a simplified version of our first testing case,
where we skipped the geo:hasGeometry part for
retrieving geometries both in prototypical queries and in
the user’s query (which would be needed for an actual
source querying, but it may be skipped in our example).

We replaced our query containment algorithm with
the one Pellet provides and kept the rest of the OnGIS
prototype the same (lattice construction and searching).
For the first testing cases, Pellet gvies the same results
for the lattice construction and search, but it takes more
thime than our approach. A comparion of the execution
times for the simplified first testing case by our versus
Pellet’s query containment are in Table 8.

Unfortunately, other query containment decision
systems mentioned in Section 2 have not been found or
have not been accessible.

7 CONCLUSION AND FUTURE WORK

In this paper, we developed a work for efficient
querying multiple heterogeneous geospatial sources, and
implemented in the system OnGIS. One part of this
work is describing heterogeneous geospatial sources
by sets of prototypical queries that these sources can
answer. Another part is how to find the data sources,

which can answer the user’s query (or for answering a
part of the query, in case no single source can answer
the entire query). We used GeoSPARQL, a modern
geospatial query language, enhanced with OWL 2 QL
semantics, for describing the queries. The structure used
for searching a user’s query is a lattice built from the
sources’ prototypical queries ordered by semantic query
containment.

The proposed algorithms are implemented and
successfully tested on a few nonlarge samples. There are
several ways to make OnGIS better usable in real world
scenarios with large data:

• Explore options how to parallelise the lattice
construction and searching algorithms.

• Compare two ways of the lattice ordering. The one
discussed in this article is “from bottom”, where
the root is the no-answer query. Another one is
“from top”, where the root is the all-answer query.
We have implemented a prototype of the latter
one as well, but some construction and searching
operations are more complex than in the case of the
former one, and our experiments suggest the latter
one is slower. But this may be strongly dependent
on the characteristics of input data.

• Reduce the amount of prototypical queries for large
data sources. One way could be developing a
template language for the GeoSPARQL queries
to get around the need to list each possible
combination of (class, spatial) restrictions as a
prototypical query.

Once these options are tackled, OnGIS can be coupled
with a geoprocessing component, which would combine
partial responses from selected sources (when multiple
sources had to be used for a split user’s query) to
complete the user’s query. This would complete the
OnGIS infrastructure and make it a fully functional
semantic geospatial data federation system for real-
world sources.

REFERENCES

[1] A. Artale, D. Calvanese, R. Kontchakov, and
M. Zakharyaschev, “The DL-Lite family and
relations,” J. of Artificial Intelligence Research,
vol. 36, pp. 1–69, 2009.

[2] S. Auer, C. Bizer, G. Kobilarov, J. Lehmann,
R. Cyganiak, and Z. Ives, “Dbpedia: A nucleus
for a web of open data,” in Proceedings of the
6th International The Semantic Web and 2nd Asian
Conference on Asian Semantic Web Conference.

47

Open Journal of Semantic Web (OJSW), Volume 3, Issue 1, 2016

Berlin, Heidelberg: Springer-Verlag, 2007, pp.
722–735.

[3] F. Baader, D. Calvanese, D. L. McGuinness,
P. Patel-Schneider, and D. Nardi, The description
logic handbook: theory, implementation, and
applications. Cambridge University Press, 2003.

[4] R. Battle and D. Kolas, “Enabling the geospatial
semantic web with Parliament and GeoSPARQL,”
Semantic Web Journal, vol. 3, no. 4, pp. 355–370,
Oct. 2012.

[5] J. Bradfield and C. Stirling, Handbook of modal
logic. Elsevier, Nov 2006, vol. 3, ch. Modal Mu-
Calculi, pp. 721–756.

[6] A. Buccella, A. Cechich, and P. Fillottrani,
“Ontology-driven geographic information
integration: A survey of current approaches,”
Computers & Geosciences, vol. 35, no. 4, pp. 710
– 723, 2009.

[7] M. W. Chekol, “On the Containment of SPARQL
Queries under Entailment Regimes,” in Thirtieth
AAAI Conference on Artificial Intelligence, 2016,
pp. 936–942.

[8] M. W. Chekol, J. Euzenat, P. Genevès, and
N. Layaı̈da, “SPARQL query containment under
RDFS entailment regime,” in Proceedings of
Automated Reasoning: 6th International Joint
Conference, B. Gramlich, D. Miller, and U. Sattler,
Eds. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2012, pp. 134–148.

[9] M. W. Chekol, J. Euzenat, P. Genevès, and
N. Layaı̈da, “SPARQL query containment under
SHI axioms,” in Proceedings of the Twenty-Sixth
AAAI Conference on Artificial Intelligence, ser.
AAAI’12. AAAI Press, 2012, pp. 10–16.

[10] M. W. Chekol, J. Euzenat, P. Genevès, and
N. Layaı̈da, “Evaluating and benchmarking
SPARQL query containment solvers,” in Proc. 12th
International semantic web conference (ISWC),
vol. 8219. Sydney, Australia: Springer Verlag,
Oct. 2013, pp. 408–423. [Online]. Available:
https://hal.inria.fr/hal-00917911

[11] E. Clementini, P. Felice, and P. Oosterom, “A
small set of formal topological relationships
suitable for end-user interaction,” in Advances in
Spatial Databases, ser. Lecture Notes in Computer
Science, D. Abel and B. Chin Ooi, Eds. Springer
Berlin Heidelberg, 1993, vol. 692, pp. 277–295.

[12] Esri, ArcGIS for Server – Publish Services,
2016, accessed on 4.8.2016. [Online].
Available: http://server.arcgis.com/en/server/10.4/
publish-services/windows/

[13] D. Fensel, F. van Harmelen, I. Horrocks, D. L.
McGuinness, and P. F. Patel-Schneider, “OIL:
an ontology infrastructure for the semantic web,”
IEEE Intelligent Systems, vol. 16, no. 2, pp. 38–45,
Mar 2001.

[14] S. Groppe, D. Heinrich, and S. Werner,
“Distributed join approaches for W3C-conform
SPARQL endpoints,” Open Journal of Semantic
Web (OJSW), vol. 2, no. 1, pp. 30–52,
2015. [Online]. Available: http://www.ronpub.
com/publications/OJSW 2015v2i1n04 Groppe.pdf

[15] V. Haarslev, R. Moeller, and M. Wessel, Racer,
2016, accessed on 21.6.2016. [Online]. Available:
https://www.ifis.uni-luebeck.de/index.php?id=385

[16] I. Horrocks, The FaCT System, 2003, accessed
on 14.5.2016. [Online]. Available: http://www.cs.
man.ac.uk/∼horrocks/FaCT/

[17] I. Horrocks, U. Sattler, S. Tessaris, and S. Tobies,
“How to decide query containment under
constraints using a description logic,” in Logic
for Programming and Automated Reasoning,
ser. Lecture Notes in Artificial Intelligence,
M. Parigot and A. Voronkov, Eds. Springer Berlin
Heidelberg, 2000, vol. 1955, pp. 326–343.

[18] I. Horrocks, S. Tessaris, U. Sattler, R. Aachen,
S. Tobies, R. Aachen, I. Horrocks, S. Tessaris,
U. Sattler, S. Tobies, and R. Aachen, “Query
containment using a DLR ABox,” in Ltcs-report
LTCS-99-15, LuFG Theoretical Computer Science,
RWTH, 1999.

[19] M. Koubarakis, K. Kyzirakos, M. Karpathiotakis,
C. Nikolaou, M. Sioutis, G. Garbis, and
K. Bereta, Introduction in stRDF and
stSPARQL, 2012, accessed on 27.7.2016.
[Online]. Available: http://www.strabon.di.uoa.
gr/files/stSPARQL tutorial.pdf

[20] K. Kyzirakos, M. Karpathiotakis, and
M. Koubarakis, Strabon: A Semantic Geospatial
DBMS. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2012, pp. 295–311.

[21] M. Lutz and D. Kolas, “Rule-based discovery in
spatial data infrastructure,” Transactions in GIS,
vol. 11, no. 3, pp. 317–336, 2007.

[22] Open Geospatial Consortium, OpenGIS Web
Feature Service 2.0 Interface Standard, 2010,
accessed on 21.6.2016. [Online]. Available: http:
//www.opengeospatial.org/standards/wfs

[23] Open Geospatial Consortium, OGC GeoSPARQL
— A Geographic Query Language for RDF
Data, 2012. [Online]. Available: http://www.
opengeospatial.org/standards/geosparql

48

https://hal.inria.fr/hal-00917911
http://server.arcgis.com/en/server/10.4/publish-services/windows/
http://server.arcgis.com/en/server/10.4/publish-services/windows/
http://www.ronpub.com/publications/OJSW_2015v2i1n04_Groppe.pdf
http://www.ronpub.com/publications/OJSW_2015v2i1n04_Groppe.pdf
https://www.ifis.uni-luebeck.de/index.php?id=385
http://www.cs.man.ac.uk/~horrocks/FaCT/
http://www.cs.man.ac.uk/~horrocks/FaCT/
http://www.strabon.di.uoa.gr/files/stSPARQL_tutorial.pdf
http://www.strabon.di.uoa.gr/files/stSPARQL_tutorial.pdf
http://www.opengeospatial.org/standards/wfs
http://www.opengeospatial.org/standards/wfs
http://www.opengeospatial.org/standards/geosparql
http://www.opengeospatial.org/standards/geosparql

Marek Šmı́d, Petr Křemen: OnGIS: Semantic Query Broker for Heterogeneous Geospatial Data Sources

[24] Open Geospatial Consortium, OGC WCS 2.0
Interface Standard – Core, 2012, accessed
on 21.6.2016. [Online]. Available: http:
//www.opengeospatial.org/standards/wcs

[25] Open Geospatial Consortium, OGC Catalogue
Services 3.0 – General Model, 2016, accessed
on 4.8.2016. [Online]. Available: http://www.
opengeospatial.org/standards/cat

[26] R. Pichler and S. Skritek, “Containment and
equivalence of well-designed SPARQL,” in
Proceedings of the 33rd ACM SIGMOD-SIGACT-
SIGART Symposium on Principles of Database
Systems, ser. PODS ’14. New York, NY, USA:
ACM, 2014, pp. 39–50.

[27] E. Sirin and B. Parsia, “SPARQL-DL: SPARQL
query for OWL-DL,” in OWLED, 2007.

[28] M. Šmı́d and Z. Kouba, “OnGIS: Methods of
searching in spatial data driven by ontologies,” in
Digitálnı́ technologie v geoinformatice, kartografii
a DPZ. Faculty of Civil Engineering, Czech
Technical University in Prague, 2012, pp. 107–116.

[29] M. Šmı́d and Z. Kouba, “OnGIS: Ontology
driven geospatial search and integration,” in Terra
Cognita 2012 Workshop, ser. CEUR Workshop
Proceedings, vol. 901. CEUR-WS.org, 2012, pp.
27–38.

[30] C. Stadler, J. Lehmann, and S. Auer,
LinkedGeoData Ontology, University of Leipzig,
accessed on 6.4.2011. [Online]. Available:
http://linkedgeodata.org/ontology/

[31] C. Stadler, J. Lehmann, K. Höffner, and S. Auer,
“LinkedGeoData: A core for a web of spatial open
data,” Semantic Web Journal, vol. 3, no. 4, pp. 333–
354, 2012.

[32] D. Tsarkov and I. Horrocks, FaCT++, 2007,
accessed on 21.6.2016. [Online]. Available: http:
//owl.man.ac.uk/factplusplus/

[33] B. Vatant, The GeoNames Ontology, GeoNames,
2012, accessed on 27.2.2016. [Online].
Available: http://www.geonames.org/ontology/
documentation.html

[34] U. Visser, Intelligent information integration for
the Semantic Web. Springer, 2005, vol. 3159.

[35] U. Visser, H. Stuckenschmidt, and C. Schlieder,
“Interoperability in GIS-enabling technologies,”
in Proceedings of the 5th AGILE Conference on
Geographic Information Science. Citeseer, 2002,
p. 291.

[36] W3C, SPARQL Query Language for RDF, 2008,
accessed on 21.6.2016. [Online]. Available: https:
//www.w3.org/TR/rdf-sparql-query/

[37] W3C, RIF Overview (Second Edition), 2013,
accessed on 21.6.2016. [Online]. Available: http:
//www.w3.org/TR/rif-overview/

[38] W3C, Resource Description Framework (RDF),
2014, accessed on 21.6.2016. [Online]. Available:
http://www.w3.org/RDF/

[39] W3C, Linked Data, 2015, accessed on
4.8.2016. [Online]. Available: https://www.w3.
org/standards/semanticweb/data

[40] M. Wessel and R. Möller, “Flexible software
architectures for ontology-based information
systems,” Journal of Applied Logic – Special
Issue on Empirically Successful Computerized
Reasoning, vol. 7, no. 1, pp. 75 – 99, 2009.

[41] World Wide Web Consortium, OWL 2 Web
Ontology Language: Profiles (Second Edition),
OWL 2 EL, 2012. [Online]. Available: https:
//www.w3.org/TR/owl2-profiles/#OWL 2 EL

[42] World Wide Web Consortium, OWL 2 Web
Ontology Language: Profiles (Second Edition),
OWL 2 QL, 2012. [Online]. Available: http:
//www.w3.org/TR/owl2-profiles/#OWL 2 QL

[43] C. Zhang, T. Zhao, and W. Li, “The framework of
a geospatial semantic web-based spatial decision
support system for digital earth,” Int. J. Digital
Earth, vol. 3, no. 2, pp. 111–134, 2010.

[44] Y. Zhang, Y.-Y. Chiang, P. Szekely, and C. A.
Knoblock, “A semantic approach to retrieving,
linking, and integrating heterogeneous geospatial
data,” in Joint Proceedings of the Workshop
on AI Problems and Approaches for Intelligent
Environments and Workshop on Semantic Cities.
ACM, 2013, pp. 31–37.

[45] T. Zhao, C. Zhang, M. Wei, and Z.-R. Peng,
“Ontology-based geospatial data query and
integration,” in GIScience, 2008, pp. 370–392.

49

http://www.opengeospatial.org/standards/wcs
http://www.opengeospatial.org/standards/wcs
http://www.opengeospatial.org/standards/cat
http://www.opengeospatial.org/standards/cat
http://linkedgeodata.org/ontology/
http://owl.man.ac.uk/factplusplus/
http://owl.man.ac.uk/factplusplus/
http://www.geonames.org/ontology/documentation.html
http://www.geonames.org/ontology/documentation.html
https://www.w3.org/TR/rdf-sparql-query/
https://www.w3.org/TR/rdf-sparql-query/
http://www.w3.org/TR/rif-overview/
http://www.w3.org/TR/rif-overview/
http://www.w3.org/RDF/
https://www.w3.org/standards/semanticweb/data
https://www.w3.org/standards/semanticweb/data
https://www.w3.org/TR/owl2-profiles/#OWL_2_EL
https://www.w3.org/TR/owl2-profiles/#OWL_2_EL
http://www.w3.org/TR/owl2-profiles/#OWL_2_QL
http://www.w3.org/TR/owl2-profiles/#OWL_2_QL

Open Journal of Semantic Web (OJSW), Volume 3, Issue 1, 2016

AUTHOR BIOGRAPHIES

Marek Šmı́d is a Ph.D.
student in the field of artificial
intelligence and biocybernetics
from the Czech Technical
University in Prague, Czech
Republic. His specialization
includes semantic technologies,
focusing on the language
OWL 2 QL, and geographic

information systems (GIS). His dissertation thesis deals
with GIS data integration using semantic techniques.
He took part in projects Netcarity, funded by European
Community, and Mondis, supported by Czech Ministry
of Culture.

Dr. Petr Křemen received
his Ph.D. degree in artificial
intelligence and biocybernetics
from the Czech Technical
University in Prague, Czech
Republic. He leads a research
team at the Department
of Cybernetics, Faculty of
Electrical Engineering, Czech
Technical University, Prague
in the field of ontology-based
information systems, ontology

development, ontology comparison, error explanation
and query answering. He is an author of more than 30
peer-reviewed articles, mainly on international fora.

50

	Introduction
	Related Work
	Background
	GeoSPARQL
	OWL 2 QL

	Query Containment with GeoSPARQL
	Expanding GeoSPARQL Ontology
	Query Containment Basics
	Adding Support for GeoSPARQL

	Prototypical Query Lattice Construction and Searching
	Building Lattice
	Searching Lattice

	Tesing of Prototypical Implementation
	The First Testing Case
	The Second Testing Case
	Comparison with Other Systems

	Conclusion and Future Work

