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ABSTRACT

Existing knowledge bases, including Wikipedia, are typically written and maintained by a group of voluntary editors.
Meanwhile, numerous web documents are being published partly due to the popularization of online news and social
media. Some of the web documents, called “vital documents”, contain novel information that should be taken into
account in updating articles of the knowledge bases. However, it is practically impossible for the editors to manually
monitor all the relevant web documents. Consequently, there is a considerable time lag between an edit to knowledge
base and the publication dates of such vital documents. This paper proposes a realtime detection framework of web
documents containing novel information flowing in massive document streams. The framework consists of two-
step filter using statistical language models. Further, the framework is implemented on the distributed and fault-
tolerant realtime computation system, Apache Storm, in order to process the large number of web documents. On a
publicly available web document data set, the TREC KBA Stream Corpus, the validity of the proposed framework is
demonstrated in terms of the detection performance and processing time.
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1 INTRODUCTION

Nowadays, large knowledge bases, such as Wikipedia,
are widely used as a quick reference tool to find all
kinds of information in our daily lives. Here, knowledge
bases are defined as collaborative online encyclopedias
edited and maintained by their users. Such knowldege
bases can be utilized to improve the performance of var-
ious information processing tasks, such as query expan-
sion [9, 24], entity linking [18], question answering [6]
and entity retrieval [3]. For these applications, maintain-
ing the quality of the knowledge bases in a timely man-
ner is crucial. Knowledge bases should be updated when

information about the current state, actions, or situation
of the topic of any existing article becomes available. We
define such timely information as novel information and
an article’s topic as entity. Entity can be a person, facil-
ity, organization, or concept, such as “Barack Obama”,
“White House”, and “Democratic Party”.

Knowledge bases typically contain a large number of
articles. For example, the English version of Wikipedia
has over 4.5 million articles and they are maintained by
small workforces of humans, i.e., about 1,300 editors1.
If those articles are evenly split among the editors, an

1http://en.wikipedia.org/wiki/List of Wikipedias
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editor would be responsible for maintaining about 3,500
articles. In the meantime, the amount of web docu-
ments continues to grow due to the exploding popularity
of social networking service (SNS), such as Twitter and
Facebook, across the world. Currently, editors manu-
ally monitor relevant document streams and edit articles
when they happen to notice novel information. Conse-
quently, there is a considerable time lag between the date
of an edit to knowledge base and the publication date of
vital documents. It is reported that the length of the time
lag often become a year [11].

In this paper, we propose a realtime detection frame-
work of such documents containing novel information
flowing in massive document streams. The Text RE-
trieval Conference (TREC) Knowledge Base Accelera-
tion (KBA) track [10, 12] targeted this particular prob-
lem, referred to as the “vital filtering” task. Here, vital
documents are those containing novel information which
would motivate an update to the entity’s article of knowl-
edge base at the time it is published. On the other hand,
useful documents are those containing information re-
lated to a target entity but not contain novel informa-
tion, e.g., background biography, primary or secondary
source. For instance, the document “Today, Obama an-
nounced a new policy.” is a vital document because this
document describes timely information about the cur-
rent actions of Obama. On the other hand, the docu-
ment “Obama was inaugurated as president on January
20, 2009.” is an useful document because this document
describes an event from the past. Vital and useful docu-
ments are collectively called relevant documents.

Participants of the track developed a variety of sys-
tems. However, they are generally suffered from the fol-
lowing issues: (1) no consideration of poor training data,
(2) poor performance of detection of web documents
containing novel information in relevant documents, and
(3) no consideration as to how to process massive doc-
ument streams in realtime. To deal with these issues,
we take advantage of a pseudo relevance feedback model
for non-relevant documents and use two distinct statisti-
cal language models to represent documents containing
novel information. Furthermore, our proposed frame-
work is implemented on the distributed and fault-tolerant
realtime computation system, Apache Storm2, in order
to process massive document streams in realtime. The
present work is based on our previous work [13] and ex-
tends it by combining the two language models.

The remainder of this paper is structured as follows:
Section 2 reviews representative approaches devised for
the TREC KBA vital filtering task. Section 3 briefly
introduces Apache Storm and its components and de-
scribes our proposed framework. Section 4 evaluates our

2http://storm.apache.org/

framework by reporting the results of empirical experi-
ments, and Section 5 concludes this paper with a brief
summary and possible future directions.

2 RELATED WORK

In recent years, much attention has been paid to filter-
ing massive web documents and detecting information
related to the topic. The TREC KBA vital filtering task
has investigated the challenge of detecting relevant doc-
uments about a specific entity (e.g., a person, an organi-
zation, and a facility) since 2012. In 2013, the vital filter-
ing task required participants to distinguish between rel-
evant documents containing novel information and those
are relevant but not containing novel information. Var-
ious approaches to detecting novel information in text
streams have been thus developed for the TREC KBA
vital filtering task in 2013. The proposed approaches fall
into two categories.

The first category of approaches tackled the task as a
ranking problem [8, 15]. Dietz and Dalton [8] proposed
a feature expansion technique using topic information re-
lated to the target entity. Liu et al. [15] ranked documents
that match the entity by leveraging the number of occur-
rences and weights of related topics collected from the
Wikipedia page of the topic.

The second category tackled the task as a classifica-
tion problem [1, 2, 4, 22] by classifying input documents
as vital or useful. Abbes et al. [1] employed such a clas-
sifier with a number of features, including where key-
words related to the target entity occur in a document,
whether the document title mentions the keywords, etc.
Balog et al. [2] proposed two multi-step classification ap-
proaches that use four types of features: (1) document
features such as document length and document source;
(2) topic features such as the number of related topics;
(3) document-topic features such as the number of oc-
currences of the topic in the document; and (4) temporal
features such as average hourly Wikipedia page views.
Bellogı́n et al. [4] and Wang et al. [22] also trained classi-
fiers using aforementioned features [2]. While Bellogı́n
et al. [4] trained a unique classifier for each target entity,
Wang et al. [22] trained a general classifier for the whole
target entities, achieving the best performance at TREC
KBA 2013 [10]. The main reason why the general classi-
fier outperformed per-entity classifiers is that the number
of training instances was relatively small and thus insuf-
ficient if split across entities.

This study takes advantage of pseudo relevance feed-
back using non-relevant documents so as to remedy the
problem of small training data and build a unique lan-
guage model for each target entity. Most proposed ap-
proaches in vital filtering reported high recall and low
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precision [10, 12], which means that there are a plenty
of negative feedback documents that can be exploited in
our proposed framework.

Despite the various approaches to vital filtering as
summarized above, there is much room to improve for
the performance in detecting web documents containing
novel information. In fact, all the approaches in KBA
2013 [10] and 2014 [12] did not make a significant dif-
ference from a rather simple baseline [10]. It is pre-
sumably due to the fact that there were no features sub-
section representing documents containing novel infor-
mation. For instance, while term-based cosine similarity
between a document and the target entity would be an
effective feature for identifying documents related to the
entity [2], it has nothing to do with novelty.

In the present work, we propose statistical lan-
guage modeling approach along the line of our previous
work [13]. A statistical language model [20] is a prob-
ability distribution over sequences of words. There are
some types of models, e.g., unigram language models,
n-gram language models, and neural network language
models. We use unigram language models in the present
work for simplicity. We build two statistical language
models describing documents containing novel informa-
tion. One is built from a knowledge base article corre-
sponding to the target entity. Then, a document is judged
to contain novel information when the similarity between
the language model and the document is lower. Note
that lower similarity means a small overlap between the
language model and the document, which potentially in-
dicates the existence of novel information. Another lan-
guage model is built from a collection of documents con-
taining novel information. This model is intended to cap-
ture the common features (terms) to be used with novel
information. Based on the model, a document is judged
to contain novel information when the similarity between
the language model and the document is higher.

In addition, those previous works mentioned above do
not consider the processing time. In order to recommend
web/social media documents to the editors of knowledge
bases, it is important to achieve not only high accuracy
in detecting novel information but also to process input
data in realtime. To this end, our proposed framework
is implemented on the distributed realtime computation
system, Apache Storm, and is evaluated for its scalabil-
ity.

3 PROPOSED FRAMEWORK

The aim of this study is to detect web documents con-
taining novel information related to a given entity. To
this end, our proposed framework is developed on Storm,
consisting of multiple filters using statistical language
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Figure 1: An illustration of Storm topology.

models. The next sub-sections first introduce Apache
Storm and then our proposed framework and other de-
tails are presented.

3.1 Apache Storm

Apache Storm is a distributed realtime computation sys-
tem, processing unbounded streams of data. McCreadie
et al. [17] proposed online event detection approach from
high volume social streams using Storm. [21] describes
the use of Storm at Twitter Inc.

To use Storm, one needs to define “topologies” illus-
trated in Figure 1. A topology is a graph of computation
and each node in a topology has processing logic and
edges between nodes indicate how data should be passed
around between nodes.

There are two types of nodes, called “spouts” and
“bolts”. A spout is a source of streams (sequences of
tuples) and a tuple is a unit of data processed in Storm.
In case of our proposed framework, a spout would read
document data from the provided corpus and emit them
as a stream. A bolt receives any number of input streams,
does any processing (e.g., running functions, filtering,
and streaming aggregations), and may emit new streams.
For our framework, bolts would determine whether in-
bound documents from the streams are relevant. Each
node in a Storm topology executes in parallel and one
can specify how much parallelism he/she wants for each
node.

3.2 Overview of Framework

Figure 2 depicts the topology of our proposed frame-
work, where input spout reads documents from a data
source and sends them to surface form name (sfn) fil-
ter bolt, followed by relevant filter bolt, vital filter bolt,
and so on. These bolts process the input stream of doc-
uments in parallel for a given target entity. Our frame-
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Figure 2: Topology of proposed vital filtering frame-
work.

work consists of two-step filter: relevant filter detects rel-
evant documents in input documents, vital filter detects
vital documents in relevant documents. The following
paragraphs provide brief descriptions of the each type of
nodes of the topology.

First, input spout reads individual documents from
the input stream and sends them to sfn filter bolts. Note
that each document is preprocessed as described in Sec-
tion 3.3.

Second, sfn filter bolt checks if each input document
contains any surface form names of a given target entity.
Only the documents containing the surface form name(s)
are sent to the succeeding processes. There may be more
than one surface form name for each entity. For instance,
the surface form names of the entity “Barack Obama” are
“Barack Obama”, “Barack Hussein Obama”, “Barack H
Obama”, and so on.

Third, relevant filter bolt judges whether an input
document is relevant (i.e., vital or useful). If judged to
be relevant, the document is sent to vital filter bolt. For
this purpose, a negative language model built from a set
of non-relevant documents for the target entity is used.
More details are found in Section 3.4.

Fourth, vital filter bolt judges if a relevant document
detected by our framework is vital or useful. The pre-
dicted class (i.e., vital or useful) are sent to output bolt.
In addition, only the document judged to be vital is sent
to model update bolt (see Section 3.6 for more details).
The classification between vital or useful is based on two
alternative language models; one is built from an article
of knowledge base for the target entity, and another is
built from a set of vital documents. The details are de-
scribed in Section 3.5.

Lastly, output bolt collects and outputs the results
of the preceding vital filter bolts. The following sub-
sections give more details of the main components of the
system as well as document preprocessing.

3.3 Document Preprocessing

Since our framework use statistical language models, all
the input documents also need to be converted into statis-
tical language models. For this reason, before processing
documents with our framework, we preprocess all the in-
put documents as follows:

• Uncapitalize words.

• Remove stop words and symbols.

• Apply the Porter stemmer [19] to deal with data
sparseness.

• Build a document language model p(w|d) for each
document d with Dirichlet smoothing [25]:

p(w|d) =
c(w, d) + µp(w|C)

|d|+ µ
(1)

where w denotes a word and Google-Ngram3 (uni-
grams) is used to calculate the background language
model p(w|C). The value of µ is set to 2,000 follow-
ing Zhai and Lafferty [25].

3.4 Relevant Filter Bolt

Relevant filter bolt judges whether an input document is
relevant (i.e., vital or useful) or not. For this purpose,
we use a negative language model (NLM) built from
non-relevant documents for the target entity in question
adopting the concept of MultiNeg [23], which has been
shown effective for difficult queries where the search re-
sults are poor.

MultiNeg is a model to improve ad-hoc retrieval by
negative relevance feedback, which takes advantage of
pseudo feedback of non-relevant documents. More
specifically, according to the similarity between the lan-
guage models built from non-relevant documents and an
input document, the relevance score of the document is
adjusted. The non-relevant documents here mean those
irrelevant to search intention within the initial search re-
sult. For example, consider the case where a user would
like to search for information regarding Apple Inc. and
used a query “apple”. The search results would con-
tain documents regarding apples (fruit), which are non-
relevant in this case.

MultiNeg builds an NLM, Θ = {θ1, ..., θf}, for each
of such irrelevant documents L = {l1, ..., lf} using the
standard EM algorithm [7]. In MultiNeg, the relevance
score of the document, S(q, d), is defined by the KL-
divergence retrieval model [14], computed based on the

3http://googleresearch.blogspot.jp/2006/08/all-our-n-gram-are-
belong-to-you.html
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negative KL-divergence between query model θq and
document model θd, i.e.,

S(q, d) = −D(θq||θd) = −
∑
w∈V

p(w|θq) log
p(w|θq)

p(w|θd)

(2)

where V is a vocabulary of the language models. Then,
adjusted relevance score is defined as follows:

S(q, d)− S(NLM, d) (3)

where S(NLM, d) is penalty term indicating the simi-
larity between document d and non-relevant documents
as defined in Eq. (4).

S(NLM, d) = −min(

f⋃
i=1

{D(θi||θd)}) (4)

This study uses Eq. (4) to filter out irrelevant docu-
ments. Specifically, our framework judges document d
as relevant when Eq. (5) is satisfied:

S(NLM, d) < tr (5)

where tr is predefined threshold.

3.5 Vital Filter Bolt

Vital filter bolt judges if an input document is vital or
useful using two alternative language models, that is,
Knowledge base Article Language Model (KALM) and
Vital Language Model (VLM). KALM is a unigram lan-
guage model, built from an article of knowledge base
for the target entity. In addition, known vital documents
(i.e., training data) for the target entity are used in build-
ing KALM because the information in those vital doc-
uments should be included in the corresponding article.
VLM is also a unigram language model, built from a set
of known vital documents.

To build VLM, we first identify the terms character-
izing vital documents based on chi-square statistic [16]
using a vital document set vs. a useful document set in
the training data. Chi-square statistic is often used for
identifying good features (i.e., feature selection) in clas-
sification. Table 1 shows the contingency table, where
V+ (V−) denotes the number of documents when a term
w in question appeared (did not appear) in the vital doc-
ument set. Similarity, U+ (U−) are the number of doc-
uments when w appeared (did not appear) in the useful
document set. Chi-square statistic χ2 is calculated for
each term w for each entity as in Eq. (6).

χ2 =
∑

i∈{+,−}

(Vi − EV
i )2

EV
i

+
∑

i∈{+,−}

(Ui − EU
i )2

EU
i

(6)

Table 1: Notation for computing chi-square statistic.

Vital Useful Sum
Appear V+ U+ N+

Not appear V− U− N−
Sum V U N

where EV
i = Ni · V/N and EU

i = Ni ·U/N . The result
of chi-square test shows whether or not the frequency of
w is significantly different between vital document set
and useful document set. If different, w can be seen as a
good feature to distinguish between vital and useful doc-
uments. Among the terms with high chi-square statistic,
those satisfying Eq. (7) are excluded.

V+ < V
N+

N
∩ χ2 < 3.84 (7)

where 3.84 is the chi-square statistic at the significance
level of 5% for one-degree-of-freedom. The remaining
terms are used as the vocabulary of VLM, and VLM is
built as the same processes as the input document (see
Section 3.3). Note that chi-square statistic cannot be
computed when there is no useful document. In such
cases, all the terms in vital documents are used as the
vocabulary.

In filtering, the similarity between the language mod-
els and input documents are computed as the negative
KL-divergence as in Eq. (2), from which the document
is judged to be vital or not (i.e., useful). For KALM,
the document is judged as vital if the similarity is lower
than a predefined threshold tvk. The rationale behind is
that a document more different from an article of knowl-
edge base would contain more, and possibly relevant, in-
formation not described in the article. For VLM, con-
versely, the document is judged as vital if the similarity
is greater than a predefined threshold tvv . The assump-
tion here is that the vocabularies often found in vital doc-
uments, and the language model built from it, would cap-
ture some patterns of words characteristic to vital docu-
ments. Hence, a document similar to it would be also
vital.

3.6 Model Update Bolt

Model update bolt receives a document which is judged
as vital in the preceding vital filter bolt and updates
KALM or VLM. Specifically, the number of occur-
rences, denoted as c′(w, d), of each term w in the re-
ceived document d′ is added to the current statistics,
c(w, d) in Equation (1), of KALM/VLM. Note that terms
with low chi-square statistic are not used to update VLM.
The updated model is sent back to vital filter bolt and will

20



S. Kawahara, K. Seki, K. Uehara: Detecting Vital Documents in Massive Data Streams

be used afterwards. This process simulates the editing of
knowledge base articles in the light of new information
related to the target entities.

4 EVALUATION

This section empirically evaluates our proposed frame-
work by conducting a set of experiments. The exper-
iments were designed to examine the detection perfor-
mance and processing time of the framework. The next
sub-sections first describe the experimental settings and
then provide and discuss the results of the experiments.

4.1 Experimental Settings

We follow the evaluation methodology adopted at the
TREC 2014 KBA vital filtering task [12]. The KBA
track provided its participants with a large corpus, called
the TREC KBA Stream Corpus 20144. This corpus cov-
ers the time period from October 2011 to April 2013,
containing 20,494,260 documents, including blogs, fo-
rum posts, and web pages. Each document in the corpus
is associated with a time-stamp corresponding to its date
of publication. Documents within the predefined time
range is available as training data. The number of target
entities is 67. The macro-averaged F1 (harmonic mean
between precision and recall) was used as the evaluation
metric.

F1 =
2 · Pave ·Rave

Pave +Rave
(8)

Pave =
1

|E|
∑
e∈E

P (e) (9)

Rave =
1

|E|
∑
e∈E

R(e) (10)

where P (e) and R(e) are precision and recall for entity
e, respectively, and E denotes the set of 67 target en-
tities. Note that low recall and high precision leads to
less documents to manually inspect but it may miss im-
portant documents. On the other hand, high recall and
low precision leads to more documents to review, which
may not be feasible if the number of editors is limited.
Since which scenario is preferable depends on the num-
ber of editors for each entity, the evaluation in this paper
focuses on F1.

We used canonical names as the surface form names
of target entities. The canonical names were provided
along with the Stream Corpus by the TREC KBA orga-
nizers. In addition, for those entities which have their
Wikipedia articles, redirect5 information extracted from

4http://s3.amazonaws.com/aws-publicdatasets/trec/kba/index.html
5http://en.wikipedia.org/wiki/Wikipedia:Redirect

the Wikipedia dump on 1/4/20126 were also utilized.
To estimate NLM, θi, our system used non-relevant

documents in the training data in the Stream Corpus.
We considered documents which contain surface form
name(s) of a target entity but do not have a “vital” or
“useful” label as non-relevant documents. Note that
if the number of documents containing a surface form
name is too large (>100k for our experiments), the name
is unlikely informative and thus was not utilized. Also, if
a target entity did not have non-relevant documents, rele-
vant filter bolt was disabled for the entity. The threshold
tr was tuned to the smallest value among the thresholds
based on which vital or useful documents in the training
data would be judged to be relevant.

To build KALM, we used the articles in the Wikipedia
dump on 1/4/2012 for entities which have Wikipedia ar-
ticles. The same preprocessing described in Section 3.3
was applied to the extracted articles. Vital and useful
documents in the training data were used as known vi-
tal/useful document set to build VLM. The threshold tvk
and tvv were set for each entity using the vital and useful
documents in the training data such that F1 is maximized
based on their similarity scores with the language model.

It should be mentioned that the results to be shown in
the next sections are not exactly the same as the results
reported in the TREC KBA official report [12] although
we used the data from the KBA track. The difference is
due to how unlabeled data were treated. The KBA data
are incomplete, meaning that not all documents are la-
beled and the KBA official results ignored them in com-
puting precision, where simply judging all documents as
positives results in the perfect precision. A more realistic
scenario would be treating unlabeled documents as nega-
tives since almost all documents are negatives. By adopt-
ing this scenario, unlabeled documents were treated as
negatives in the following experiments.

4.2 Results and Discussion

This section first discusses the effect of the relevant filter
bolt, then the effect of the vital filter bolt with/without
model updates. In addition, processing time is examined
to evaluate the proposed framework for realtime stream
data processing.

Table 2 shows the result of relevant documents de-
tection, where “NLM” is the negative language model-
based filter described in Section 3.4 and “Exact Match”
simply treated the documents which went through sfn fil-
ter bolt as vital. That is, the documents containing sur-
face form name(s) of the target entities were uncondi-
tionally judged as vital. Exact Match was used as the

6http://s3.amazonaws.com/aws-publicdatasets/trec/kba/enwiki-
20120104/index.html
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Table 2: Performance of relevant documents detec-
tion where bold figures indicate better results.

Setting Precision Recall F1

Exact Match 0.285 0.995 0.443
NLM 0.313 0.978 0.474

Table 3: Performance of vital documents detection
where bold figures indicate best results.

Setting Precision Recall F1

Exact Match 0.106 0.993 0.192
KALM (w/o update) 0.117 0.884 0.206
KALM 0.120 0.876 0.211
VLM (w/o update) 0.153 0.428 0.225
VLM 0.139 0.641 0.228

baseline in the KBA vital filtering task [10, 12]. Al-
though Exact Match is simple, it was reported to be quite
difficult to beat the simple baseline. Notice that the dif-
ference of NLM and Exact Match directly indicates the
effect of our relevant filter.

The additional filter implemented by NLM decreased
recall by 1.7% (= 1 − 0.978/0.995), whereas precision
increased by 9.8% (= 0.313/0.285 − 1). As a result,
F1 improved from 0.443 to 0.474 (+7.0%). The im-
provement of F1 was found statistically significant at the
1% significance level by pair-wise t-test, which demon-
strates the effectiveness of our filter based on negative
language models built from irrelevant documents.

Then, Table 3 shows the performance of vital doc-
uments detection, where “KALM” used the language
model based on knowledge base article and “VLM” used
the language model based on vital documents in vital fil-
ter bolts (see Section 3.5). Note that “w/o updates” indi-
cates that the system did not use the model update bolt,
where KALM or VLM was static at runtime.

As Table 3 shows, both KALM and VLM improved on
the baseline, suggesting the effectiveness of our language
model-based filters. The model update also brought
small but consistent positive effects for KALM and VLM
in F1. To be more precise, KALM has higher preci-
sion and lower recall, whereas VLM shows lower pre-
cision and higher recall after model update. The oppo-
site behaviors of KALM and VLM are due to the fact
that the similarity between KALM/VLM and a docu-
ment tend to be higher because of the new terms added to
KALM/VLM by model update. Consequently, the num-
ber of documents judged as vital decreases for KALM
and increases for VLM. Remember that, for KALM, a

document is judged as vital if the similarity is lower than
a threshold, and the opposite is true for VLM.

VLM with model update yielded the best result on av-
erage among the different system settings. However, sig-
nificant difference was found only between Exact Match
and KALM (p < 0.05), that is, there was no significant
difference between Exact Match and VLM.

On investigation, it was found that the result was
due to the larger variance of the performance of VLM
than that of KALM as contrasted in Figure 3 and Fig-
ure 4. The bar graphs show the difference of F1 be-
tween KALM/VLM and Exact Match for each target
entity. For KALM, the performance improved on the
baseline (Exact Match) for the majority of the entities,
even though around a half are marginal. On the other
hand, while VLM’s improvement is more noticeable than
that of KALM, it also showed strong negative effects for
some entities (the most noticeable two in Figure 4 are
“Lizette Graden7” and “Corisa Bell8”). We will discuss
this issue in the next sub-section to circumvent the prob-
lem.

4.3 Hybrid Model

As mentioned above, VLM’s performance is greater than
that of KALM on average but VLM is suffered from a
few target entities on which VLM has severe negative
effects. We looked into the problem and found that it
was caused by the fact that the size of training data is
largely different from entities to entities.

Specifically, there exist eight target entities for which
there is no useful documents. Remember that vital docu-
ments and useful documents are used in computing chi-
square statistic in order to determine the vocabulary of
VLM (see Section 3.5). When there is no useful docu-
ments, the statistic cannot be computed. Therefore the
previous experiment used as the vocabulary all the terms
occurring in vital documents for those target entities.

To deal with the problem, we constructed a simple but
effective hybrid model incorporating KALM into VLM.
To be precise, the hybrid model primarily used VLM as
the vital filter and switched to KALM only when the tar-
get entity in question had no useful document. Table 4
summarizes the result.

As a result, the hybrid vital filter achieved the best F1

score of 0.245. This time, the improvement was statisti-
cally significant at the 1% significance level when com-
pared with Exact Match.

7Lizette Graden is a chief curator at Nordic Heritage Museum.
8Corisa Bell is a councillor in Maple Ridge, Canada.
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Figure 3: Per-topic difference of F1 measures between KALM and Exact Match for each entity.
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Figure 4: Per-topic difference of F1 measures between VLM and Exact Match for each entity.

Table 4: Performance comparison of the hybrid
model and other models where bold figures indicate
the best results.

Setting Precision Recall F1

Exact Match 0.106 0.993 0.192
KALM 0.120 0.876 0.211
VLM 0.139 0.641 0.228
Hybrid 0.147 0.724 0.245

4.4 Realtime Processing

Lastly, we evaluated the performance of our proposed fil-
tering framework from the viewpoint of processing time.
As mentioned, our goal was to process unbound data
streams flooding on the Web to find vital documents for
a given target entity, where it is critical that it is able to

process the data streams in realtime. To this end, Fig-
ure 5 shows the processing time required to process a
sample (around 16GB) of the TREC KBA Stream Cor-
pus 2014 with a different number of relevant filter bolts,
where relative speed-up is also shown for information. It
should be mentioned that we ignored vital filter bolts in
this experiment because it has little effect on the process-
ing time.

We can observe that when the number of bolts was in-
creased, the processing time became smaller. Then, it
became flat at around six minutes (360 seconds), where
the number of relevant filter bolts was around five to
six. As for relative speed-up, the processing speed al-
most linearly increased with the number of relevant filter
bolts until the number of bolts reached five, above which
there appears to be a ceiling effect. However, this is due
to not the limitation of our proposed framework but the
limitation of input data sources. We measured the pro-
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Figure 5: Processing time and relative speed-up with
an increasing number of relevant filter bolts.

cessing time of only input spout for reading and sending
all the documents in the input data, which took about
six minutes. In other words, the processing time in Fig-
ure 5 can never be lower than six minutes. This fact and
the nearly linear scalability mentioned above suggest that
our framework would scale out to an even greater amount
of input data by simply adding more bolts.

5 SUMMARY AND CONCLUSIONS

In this paper, we proposed a framework to detect vital
Web documents containing novel information in massive
document streams. Our framework employed a language
model-based approach and used irrelevant documents for
identifying relevant (vital or useful) documents and arti-
cles of knowledge base and known vital documents for
further identifying vital documents. The language mod-
els, KALM and VLM were updated every time a vital
document was identified. The framework was imple-
mented as a distributed realtime processing system, im-
proving on the strong baseline using surface form names
of the target entities. Moreover, when the language mod-
els, KALM and VLM, were jointly used, the perfor-
mance measured in the macro-averaged F1 for detect-
ing vital documents outperformed the individual mod-
els. Furthermore, we demonstrated that our proposed
framework would be able to process massive document
streams in realtime by increasing the number of bolts.

There are several directions to improve our frame-
work. One is to incorporate time-aware features, which
have been considered effective to detect vital docu-
ments [2, 5]. We are planning to combine time-aware
features with textual features used in our framework.
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