

A. Ceravola, F. Joublin: From JSON to JSEN through Virtual Languages

1

From JSON to JSEN through

Virtual Languages

Antonello Ceravola, Frank Joublin

Honda Research Institute Europe GmbH, Carl Legien Str. 30, Offenbach/Main, Germany,

{Antonello.Ceravola, Frank.Joublin}@honda-ri.de

ABSTRACT

In this paper we describe a data format suitable for storing and manipulating executable language statements

that can be used for exchanging/storing programs, executing them concurrently and extending homoiconicity of

the hosting language. We call it JSEN, JavaScript Executable Notation, which represents the counterpart of

JSON, JavaScript Object Notation. JSON and JSEN complement each other. The former is a data format for

storing and representing objects and data, while the latter has been created for exchanging/storing/executing

and manipulating statements of programs. The two formats, JSON and JSEN, share some common properties,

reviewed in this paper with a more extensive analysis on what the JSEN data format can provide. JSEN extends

homoiconicity of the hosting language (in our case JavaScript), giving the possibility to manipulate programs in

a finer grain manner than what is currently possible. This property makes definition of virtual languages (or

DSL) simple and straightforward. Moreover, JSEN provides a base for implementing a type of concurrent

multitasking for a single-threaded language like JavaScript.

TYPE OF PAPER AND KEYWORDS

Regular Research Paper: JSEN, JSON, executable data structures, homoiconic languages, metaprogramming,

virtual languages, concurrency, threading

1 INTRODUCTION

There is a large variety of data formats available for

storing or transferring information between different

software systems. Some of them are focused on

specific domains while others are general purpose and

can be easily used cross-domain. In this second group,

XML is one of the most well-known data formats,

designed in 1996 by the XML Working Group [7] [36]

with the target of being a general-purpose data format,

easy to read and usable on Internet applications. XML

received a lot of attention from different communities

[33] leading to its usage in domains such as

government, chemistry, telecommunication,

astronomy, and several others. However, along its wide

usage, XML has been criticized for its verbosity and

complexity [33][35], consequently giving space for

other data formats to emerge [34]. One of the most

used alternatives is JSON [15][16]. Considered lighter,

simpler, and more readable than XML [27][37]; JSON

belongs to the family of general-purpose data formats,

and continues gaining space in new domains,

particularly among Internet applications.

We use JSON data structures for storing and

transmitting data across different subsystems in one of

our projects, a web-based, client-server avatar system.

It is implemented with HTML, CSS and JavaScript,

used in both client and server side [32]. For some

 Open Access

Open Journal of Web Technology (OJWT)

Volume 8, Issue 1, 2021

www.ronpub.com/ojwt

ISSN 2199-188X

© 2021 by the authors; licensee RonPub, Lübeck, Germany. This article is an open access article distributed under the terms and conditions

of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).

Open Journal of Web Technology (OJWT), Volume 8, Issue 1, 2021

2

specific functionalities we came across the requirement

of storing and manipulating code programmatically, in

ways not possible with JavaScript. We had to

programmatically control function’s execution, in some

cases we had to execute functions in a concurrent way,

as well as injecting or removing code statements on

them. This type of code manipulation is supported by

homoiconic languages: “In a homoiconic language, the

primary representation of programs is also a data

structure in a primitive type of the language itself”

[4][25].

JavaScript provides a degree of homoiconicity [6]

allowing introspection of classes, prototypes, and

members. It allows dynamic changes like adding/

removing or redefining members in classes/objects.

JavaScript gives access to functions, by allowing

access to their names, parameters, or their full source

code (as a single string by applying the method

“.toString()” to a function identifier). However,

JavaScript homoiconicity do not go beyond this; for

instance, it is not possible to have access to function’s

individual statements or parts of them. A greater level

of introspection/manipulation, instead, can be found in

homoiconic languages like Lisp [31], SmallTalk [11] or

Tcl [28] and in the JavaScript macro language of

Majaho [14], as well as EsLisp [19]. In particular, the

latter implements a Lisp based e-expression syntax for

JavaScript, where programs are natively stored in data

structures fully accessible in a programmatic way by

programs themselves.

In this paper, we describe a data structure that

allows a finer degree of access to function statements.

We called this format JSEN, JavaScript Executable

Notation (name inspired by the symmetric relations

between JSEN and JSON). Where JSON is a data

format for storing and manipulating objects (data),

JSEN is a format for storing and manipulating

executable code. Furthermore, with JSEN we can

easily handle asynchronous functions without falling

into the callback-hell pattern. In this paper, we describe

the JSEN format, giving a glimpse on some of the

interesting features we could derive from that. JSEN is

available as Open-Source Software in GitHub at

https://github.com/HRI-EU/JSEN. All necessary

libraries are present, with examples and all source

snippet mentioned in this paper. We will now draw the

reasons that led us to introduce JSEN before we give an

overview of the structure of the paper.

1.1 MOTIVATION

Our experience with JavaScript has put in light several

limitations that JSEN is trying to overcome. The

starting point for us has been the needs to

programmatically control function’s execution, to

manage asynchronous code as well as the need to

easily implement concurrent processing particularly

important in artificial intelligence systems. On the way

to the proposed solution, we discovered that object

oriented and functional programming provided by

JavaScript was not sufficient for the problem we were

tackling and therefore we needed language extensions

which were not easily possible in JavaScript. For

example, our applications had the needs to model event

based concurrent programs which, through JSEN

became easily implementable.

In the next paragraph we are going to describe the

structure of this paper, touching the different concepts

that will be elaborated in the different sections.

1.2 OVERVIEW

In this paper we start the introduction of JSEN, in the

paragraph 2, by first looking at JSON. The two data

formats are similar and complementary. This is an

important relation that facilitate the introduction of this

work. In the paragraph 2.2, by describing JSEN, we

introduce its core principles on which it is based:

closure and heterogenous multi-dimensional arrays. At

that stage we explain the syntax, we describe how

JSEN extends JavaScript homoiconicity, we introduce

the concept of JSEN virtual machine and virtual

languages. In the paragraph 2.3 we show how to go

from the definition of a JSEN data structure to its

execution. Looking at JSEN as a storage format, in the

paragraph 2.4 we show how, similarly as JSON, JSEN

can be used to transfer programs across systems.

We then describe, in the paragraph 3, the

architecture of JSEN, to understand how JSEN can be

used in applications. The paragraph 3.1, goes deeper

into virtual languages, introducing how JSEN data

structures can be executed. In the paragraph 3.2 we

then investigate more details on the memory

representation of JSEN by stepping into the stages of

JSEN definition, compilation, and execution. Existing

concurrent/asynchronous methods available in

JavaScript are then compared with JSEN in the

paragraph 3.3. The paragraph 3.4 describes in more

details how a JSEN virtual machine works and how it

can execute JSEN data structures in a concurrent way.

We complete our analysis in the paragraph 4 by

showing the main properties of JSEN like extended

homoiconicity for the hosting language, introduction of

code serialization, execution performance of JSEN vs

native code, virtual language support/extension and

execution of concurrent code. We close the paper with

the paragraph 5 by shortly describing what has been

intentionally left out from this paper, which will then

be addressed in follow up papers, and we give a

A. Ceravola, F. Joublin: From JSON to JSEN through Virtual Languages

3

summary and conclusions in the paragraph 6. Let us

start now with the origin of the name.

2 FROM JSON TO JSEN

For a more gradual introduction we show here how

JSEN can be easily understood by looking at its

relations with JSON.

2.1 JSON

JSON is a human readable data format based on the

JavaScript language, shaped around the syntax of

JavaScript object literals [18]. It has been defined with

the purpose of encapsulating data that could be used or

manipulated in a program as well as used as data

exchange/storage format. The elements of a JSON data

structure are simple types like numbers, strings,

Booleans, null values together with complex types like

arrays and objects. The inclusion of arrays and objects

introduce the possibility to create hierarchies. In

Listing 1 we show an example of a JSON data structure

describing a business card:

Listing 1: Example of JSON data structure

(business card)

The usage of object literals, acting as associative

arrays, gives no limits to the complexity of the data

structures that can be represented in JSON. This data

format is used in many different domains, it became an

open standard [17] and many different languages [15]

and applications support it. One of the major key

factors for the success of JSON is its simplicity and its

readability.

2.2 JSEN

Similarly, to JSON, JSEN is a simple human readable

format based on the JavaScript language, shaped

around the concept of JavaScript arrays. It has been

defined with the purpose of encapsulating algorithms,

programs or functions that could be executed or

manipulated in a program or that could be used as

exchange/storing format. Elements of JSEN can be

anonymous functions, pure JSEN statements, strings,

arrays and objects. In Listing 2 we show an example of

a JSEN data structure for a program that implements

the computation of prime numbers.

The choice of using arrays as supporting structure

for JSEN, comes from the needs of representing

sequences of statements of a program: arrays elements

are ordered and can represent a sequence. Programs are

also constituted of blocks and sub-blocks; similarly,

arrays in JavaScript can be nested. In this way, it is

possible, in JSEN, to express any algorithm with

arbitrary nesting and complexity.

Let us look at JSEN from a closer perspective. The

example (1) in Listing 3 shows an empty JSEN data

structure (empty array): empty program. The example

(2) in Listing 3 shows how to specify a comment. In

JSEN comments are defined through strings, allowing

persistence of them into JSEN data structures.

Listing 2: Example of JSEN program (computation

of prime numbers)

The example (3) in Listing 3 shows the

encapsulation of a JavaScript statement. In JSEN, this

is done through JavaScript anonymous functions,

allowing the storage of valid JavaScript statements,

which can be evaluated at a later point in time.

Moreover, thanks to JavaScript closures, such

statements have access to global or local variables

defined in the context around them. This way of

defining statements gives JSEN data structures access

to the full JavaScript language.

Anonymous functions are used here to get “pointers

to statements”. These pointers are stored in a JSEN

data structure together with the context on which they

are defined. The creation of such “statement-pointers”

is done through JavaScript anonymous function

1 [
2 ()=> result = '',
3 'Start finding prime numbers from startNumber',
4 ()=> number = startNumber,
5 'Compute till next 100 numbers',
6 JSEN.for('i', 1, 100),
7 [
8 ()=> { countDivisors = 0;
9 nTest = number; },
10 JSEN.while(()=> nTest <= 1), // Check divisors
11 [
12 JSEN.if(()=> i%nTest == 0),
13 ()=> ++countDivisors,
14 ()=> --nTest,
15],
16 'Prime number found if it has only 2 divisors',
17 JSEN.if(()=> countDivisors == 2),
18 ()=> result = result+i+' ',
19 ()=> ++number, // Go to next number
20],
21 ()=> console.log('Prime numbers found '+result),
22]

1 {
2 “Name”: “James”,
3 “Surname”: “Bond”,
4 “Position”: “IO - Intelligence Officer”,
5 “Company”: “MI6”,
6 “Address”: {
7 “Street”: “Albert Embankment, Vauxhall”,
8 “Number”: 85,
9 “PO”: “SE11 5AW”,
10 “City”: “London, UK”
11 }
12 “Telephone”: +007
13 }

Open Journal of Web Technology (OJWT), Volume 8, Issue 1, 2021

4

definition p = ()=>{}. Dereferencing such “pointers” is

done via function call p(). JSEN makes an extensive

use of anonymous functions and closure.

Listing 3: Basic JSEN data structure

Example (4) in Listing 3 shows how to define

blocks and sub-block in JSEN, where the root block of

the example has two elements: the first element with

()=> console.log(‘First message’) and the second

element with an array containing the statement ()=>

console.log(‘Second message’). Thanks to the way

JavaScript handles heterogeneous multidimensional

arrays, it is possible to have arrays that contain arrays

with different sizes and different data types. JSEN

comes with a small set of pure JSEN statements giving

the possibility to perform a set of basic language

control statements and few other operations in a

“JSEN-way”. We will explore the reasons for that at a

later stage. Example (5) in Listing 3 shows the usage of

pure JSEN statements: JSEN.if(). It should be noted

that the argument of JSEN.if() is an anonymous

function that returns the value of the condition,

evaluated only when the JSEN.if() statement is

executed.

Let us come back to the way JSEN encapsulates

JavaScript statements. Listing 4 shows an example of a

JavaScript code with a JSEN data structure (jsenTest).

The first lines (1, 2, 3) contains the definition of

JavaScript variables. Line 4 contains the definition of a

JSEN data structure encapsulating two statements:

()=> output[0] = input[position] and ()=>

console.log(output). Those statements make use of the

variables defined before.

Listing 4: Encapsulation of JavaScript statements

into JSEN data structures

This is possible thanks to the fact that such

statements are anonymous functions, able to access

variables through closure [2]. It is important to note

here that a JSEN data structure (i.e. jsenTest) contains

only functions definition, therefore the statement

console.log() in line 8, once executed, will print the

variable output with the value assigned in line 3 (empty

string). Execution of the JSEN data structure is done in

line 9, through the call JSENVM.run(jsenTest). This

function triggers the execution of the statements in

lines 5 and 6, which will print to the console the value

of output: ‘a’. The JSENVM.run() function is a static

function provided by JSENVM, the JSEN virtual

machine (described in the next paragraphs). This

function is available for a handy execution of JSEN

data structures.

Execution of JSEN data structures looks very

similar to execution of normal functions. Let us now

compare the previous JSEN example with an

equivalent in pure JavaScript. Here in Listing 5 we can

make a direct comparison.

Listing 5: Comparison of JSEN example with a

pure JavaScript equivalent

1 let position = 0;
2 let input = ‘aabbb’;
3 let output = ‘’;
4 let jsenTest = [
5 ()=> output[0] = input[position],
6 ()=> console.log(output),
7];

8 console.log(output);
9 JSENVM.run(jsenTest);

1 let position = 0;
2 let input = ‘aabbb’;
3 let output = ‘’;
4 function jsenTest() {

5 output[0] = input[position];
6 console.log(output);
7 }
8 console.log(output);
9 jsenTest();

1 let position = 0;
2 let input = ‘aabbb’;
3 let output = ‘’;
4 let jsenTest = [
5 ()=> output[0] = input[position],
6 ()=> console.log(output),
7];
8 console.log(output);
9 JSENVM.run(jsenTest);

(1) Empty JSEN
[]

(2) JSEN Comment
[‘this is a comment’]

(3) Statement
[()=> console.log(“Hello World”)]

(4) JSEN sub-block
[
 ()=> console.log(‘First message’),
 [
 ()=> console.log(‘Second message’),
],
]

(5) JSEN Statement
[
 JSEN.if(()=> a > 1),
 [
 ()=> console.log(“Condition true’),
],
]

A. Ceravola, F. Joublin: From JSON to JSEN through Virtual Languages

5

Both examples implement the same functionality,

however, there are a few differences to be considered

between the JSEN example and the pure JavaScript

one. Writing JSEN data structures requires keeping in

mind the following notions:

 JSEN statements are stored into arrays.

 JSEN JavaScript statements should always be

encapsulated into anonymous functions (in order

to be executed only once a JSEN data structure is

executed), therefore they should start with ‘()=>’

and end with a comma.

 Exception on the previous point is when using

pure JSEN statements, which starts with “JSEN.”.

Such statements are in the form of

“JSEN.<statementName>(<parameters>)”. Like

the one we have seen in Listing 2: JSEN.while(),

JSEN.if() and JSEN.else(). Such statements are

necessary to model control flow at the level of

JSEN code. This is important for ensuring a deep

level of homoiconicity, opening the possibility to

operate programmatically on control statement

(metaprogramming) and allowing time-sharing

execution of different JSEN threads (see the

paragraph 3.4).

 Declaration of variables should not be done into

JSEN statements (e.g. ()=> let a = 1,), since such

variable would be (according to JavaScript

semantic) only visible in the related anonymous

function and would not be accessible by other

JSEN JavaScript statements. Therefore variables,

as shown in our examples, should be declared

before the definition of JSEN data structures;

Nevertheless, pre-declared variables can be

modified into JSEN statements.

 To execute a JSEN data structure, it is possible to

use the public static function

JSENVM.run(<jsenDataStructure>) available in

the JSENVM virtual machine (however the API

provide other ways to execute JSEN data

structures; refer to the Git repository for more

information on that).

One important difference between JSEN and pure

JavaScript code, in terms of homoiconic capabilities, is

the granularity at which function’s body can be

accessed. In pure JavaScript, the full body is returned

as a string using jsenTest.toString(). JSEN, instead,

gives access to each individual statement (Listing 5).

This property contributes to extend the capability of

JavaScript metaprogramming [23]. Let us look now at

the definition of a JSEN data structure and its

execution.

2.3 Definition vs. Execution Time

In the evaluation of a JSEN statement it is important to

notice that there is a difference between definition and

execution time. Let us take the example in Listing 6

where there is a variable ‘a’ declared with the value 0

in line 1. When JavaScript parse the variable jsenTest

defined in line 2, it will instantiate an array in memory,

evaluating each element of the array. We call this phase

definition-time. It is important to notice the difference

of the evaluation of line 4 and line 6. In both lines there

is the execution of the function JSEN.if(), in line 4 the

parameter is ‘a == 0’ while in line 6 the parameter is

‘()=> a == 1’. The former parameter is evaluated at

Figure 1: JSEN Architecture

User Application

JSEN Concurrency

JSEN Execution

JSEN Statements

HL Statements

Hosting Language

• Concurrent Applications

• JSEN Thread Base Class

• JSEN Threading API

• JSEN Virtual Machine

• JZEN Micro Machine

• Objects

• Multidimensional Arrays

• Closure

• Anonymous Functions

• JavaScript

• Browser or NodeJS

Open Journal of Web Technology (OJWT), Volume 8, Issue 1, 2021

6

definition-time therefore it will be evaluated with the

value of the variable at line 1 (resulting in the value

‘true’). The latter is evaluated as an anonymous

function pointer at definition-time. Therefore the value

will be evaluated only when JSENVM.run() will

execute it. We call this phase execution-time. The

parameter of the JSEN.if() at line 6 is therefore

evaluated with the value of the variable modified at

line 3 (resulting in the value ‘true’).

This is an important difference that should be

considered every time a parameter is passed to a JSEN

statement. To give a parallel with the C languages, the

definition-time correspond to the preprocessor, while

the execution-time correspond to run-time. Let see now

how JSEN data structures can be serialized.

2.4 Serializing JSEN

In JavaScript, an object in memory can be sent to

another program through JSON serialization function.

JSON.stringify(object) transforms an object into a

string which can be sent and re-instantiated by using

JSON.parse(jsonString). The same can be done with

JSEN by using JSEN.stringify(jsenData) and

JSEN.parse(jsenString).

In the same way as JSON deserialization requires

knowledge about the expected received data, JSEN

deserialization requires a context of free variables used

in the received JSEN program. For instance, in

transmitting the JSEN data structure shown in Listing

6, the receiving program should have a variable ‘a’ in

its receiving context. Let us turn now to the way JSEN

is hosted in JavaScript and how a programmer can

access it by looking at its architecture.

3 JSEN ARCHITECTURE

We have introduced JSEN in the context of the

JavaScript language; however, JSEN is based on a set

of computer language principles that can be found in

other languages too. JSEN can be easily ported to

languages which provides the necessary principles. Let

us drill down further and look at the architecture of

JSEN described in Figure 1.

At the core of the architecture, in this figure, we

find the hosting language (HL), JavaScript in our case.

On top of that, JSEN uses hosting language’s

anonymous functions and closure to define statements

(case (3) of Listing 3). JSEN then makes use of objects

and multidimensional arrays. Objects are used to

represent pure JSEN statements (e.g. JSEN.if()) while

multidimensional arrays are used to represent

blocks/sub-blocks of statements. This is the base for

defining JSEN data structures to represent algorithms,

programs, or functions. As already mentioned, the

execution of JSEN data structures is implemented in

JSENVM, a virtual machine that implements the logic

for executing JSEN data structures with all its

statements. A smaller version of the JSEN virtual

machine, named JZENVM, with a minimal set of

functionalities, has been created for the implementation

of tests for JSENVM API.

The concept of JSEN gives the possibility to

implement, through the JSEN virtual machine, a form

of concurrent multitasking. The JSENVM provides an

API for handling concurrent tasks, together with an

additional JSENThreadClass base class, allowing

creation of active-objects [20]. By using

JSENVM/JZENVM and JSENThreadClass developers

can make use of concurrency in their applications in a

very simple way. JSEN’s concurrency is very similar to

the concept of coroutines [24], available to several

languages. Let us have a look now on how JSEN gives

the possibility to extend the hosting language via

virtualization.

3.1 Virtual Language

Virtualization, in the computer science domain,

provides a new level of flexibility for handling

computers, operating systems, file systems or complete

sets of applications. For instance, through the usage of

virtual machines it is possible to host, on the same

hardware, different machines with different resource

configurations, operating systems, and devices,

together with an easy way to start/stop and control

them, even in a programmatic way. The same can be

done with virtual file systems and containers, where a

portion of a file system can be added/removed

programmatically, giving access to storage, without

any persistent change in the hosting file system. In

relation to the concept of virtual languages proposed by

[3], JSEN act as a platform for virtual languages for the

host language on which it runs (JavaScript in our case).

JSEN introduces a set of new language statements that

give additional control mechanisms for programs,

extending but not interfering with the hosting language.

The JSEN statements shown in Listing 7 are some of

the ones we currently defined.

1 let a = 0;
2 const jsenTest = [
3 ()=> a = 1,
4 JSEN.if(a == 0),
5 JSEN.print(‘a is 0’),
6 JSEN.if(()=> a == 1),
7 JSEN.pring(‘a is 1’),
8];
9 JSENVM.run(jsenTest);

Listing 6: Definition vs. execution time

A. Ceravola, F. Joublin: From JSON to JSEN through Virtual Languages

7

Listing 7: JSEN Virtual Language Statements

The main motivation for defining such control

statements and synchronization primitives comes from

the needs of having a tight control on how programs

(implemented as JSEN data structures) are executed.

For instance, we want to have the possibility to create a

JavaScript program which runs with a specific rate of

execution. The statements in Listing 7 allowed us to

write programs in a natural way, similar to writing

plain JavaScript programs. Additionally, by using

statements in Listing 7 we can insert synchronization

statements with some events (triggered by other JSEN

programs or pure JavaScript one). This gives us the

possibility to design and implement a JSEN execution

engine that handles JSEN programs like concurrent

threads, giving a form of multitasking not available in

JavaScript. This choice leads to the implementation of

some synchronization primitives as shown in Listing 7.

For instance, JSEN.on() is a pure JSEN statement that

suspends the execution of a JSEN program until a

condition is met.

Listing 8: Example of usage of jsen_on()

In the example in Listing 8, once the execution of

jsenTest reaches line 5, it will log 1 to the console, then

execute the JSEN.on() at line 6. This statement

suspends the execution of the jsenTest until the value

of var1 becomes greater than var2. Once the condition

is met, the execution will continue by logging 2 as in

line 7. This is an example of how the JSEN virtual

language can provide new language statements for the

implementation of synchronized algorithms.

We now can investigate how JSEN data structure are

represented in memory to better understand how they

are executed.

3.2 Memory Representation of JSEN data

Since JSEN is defined through a data structure, JSEN

programs follows a slightly different process than

JavaScript programs (or, in general, JSEN hosting

languages). Let us use the example in Listing 9 to see

this process.

Listing 9: Example of JSEN with usage of inner and

outer functions

In the example of Listing 9 we have the following

elements:

 In line 1 the function strConcat is defined as

static JavaScript function

 In line 4 a variable i is defined

 In line 5 a JSEN data structure jsenTest is

defined

The jsenTest data structure is defined within lines 5

and 12. Once we load in JavaScript the source code in

Listing 9, the interpreter loads the full source code,

and, at the same time performs a sort of compilation

step for the JSEN data structure. Once the source is

loaded, if we inspect the jsenTest variable, it will look

like in Listing 10.

Listing 10: Example of 'compiled' JSEN code

As we can see from Listing 10, the ‘compiled’

JSEN data structure contains the following types of

elements:

 Lines 1, 3 and 6 contains JavaScript statements

in form of anonymous functions

 Lines 2 and 5 contains pure JSEN statements.

These statements are in the form of JavaScript

objects with properties that refer to the name of

the JSEN statement (‘name’) and its parameters

(‘params’)

1 jsenTest[0]: ()=> console.log(‘Start’)
2 jsenTest[1]: { ‘name’: ‘if’, ‘params’: ()=> i > 1 }
3 jsenTest[2]: ()=> console.log(strConcat(‘Condition’, ‘ is true’)),
4 jsenTest[3]: ‘This is a string in two parts’
5 jsenTest[4]: { ‘name’: ‘sleep’, ‘params’: 1 }
6 jsenTest[5]: ()=> console.log(‘End’)

1 function strConcat(str1, str2) {
2 return str1+str2;
3 }
4 let i = 10;
5 let jsenTest = [
6 ()=> console.log(‘Start’),
7 JSEN.if(()=> i > 1),
8 ()=> console.log(strConcat(‘Condition’, ‘ is true’)),
9 strConcat(‘This is a string’, ‘ in two parts’),
10 JSEN.sleep(1),
11 ()=> console.log(‘End’),
12]

1 let var1 = …
2 let var2 = …
3 let jsenTest = [
4 …
5 ()=> console.log(1),
6 JSEN.on(()=> var1 > var2),
7 ()=> console.log(2),
8 …
9]

Control Statements

JSEN.if
JSEN.else
JSEN.loop
JSEN.while
JSEN.for
JSEN.foreach
JSEN.until
JSEN.switch
JSEN.case
JSEN.label
JSEN.goto
JSEN.break

JSEN.continue

State Primitives
JSEN.set
JSEN.get

Synchronization Primitives

JSEN.on
JSEN.getOnStatus
JSEN.forceCheckOn
JSEN.sleep

Logging Function

JSEN.print

Open Journal of Web Technology (OJWT), Volume 8, Issue 1, 2021

8

 Line 4 contains a JSEN comment

Note that the jsenTest data structure in Listing 9

makes use of the function strConcat in two lines, line 8

and line 9. Those lines are respectively stored in the

elements of the array at position 3 and 4 (see Listing

10). It is important to note that at the stage of loading

the source in Listing 9, the array jsenTest still contains

a reference to the function strConcat at line 3, since

this call is part of the body of an anonymous function.

While at line 4 in Listing 10, the function strConcat (in

line 8 of Listing 9) has been executed by the JavaScript

interpreter and therefore the array contains its

execution result (a string, as a JSEN comment).

This is something to be considered when coding

JSEN structures. Functions directly called in a JSEN

data structure like at line 9 of Listing 9 are executed

once the JavaScript source code is loaded. This second

way of using functions in JSEN data structure can be

used for having a sort of macro language, where

manipulation of the content of a JSEN data structure

can be done at loading time before a JSEN structure is

executed. This is one of the different ways in which

JSEN could be used for metaprogramming, where the

actual content of the JSEN data structure depends on

the execution of some functions, executed at loading of

the code, or injected at a later time.

Now that the JSEN data structure jsenTest is

loaded, it can be executed as in the Listing 11.

Listing 11: Execution of a JSEN data structure

This is one possible way to execute JSEN data

structures. JSEN is very suited for handling sequential

as well as asynchronous code. In the next section we

compare different asynchronous methods available in

JavaScript with alternatives in JSEN.

3.3 Comparison of Asynchronous Methods

As already mentioned, JavaScript is a single threaded

language, a limitation that caused the proposal of

different methods for managing asynchronous/

concurrent and parallel computation. The most used

choices are callback, Promise, Async/Await statements

or workers. The usage of callback [10] is quite

straightforward. A function providing an asynchronous

execution just needs a parameter which is the callback

function to be invoked once the asynchronous

execution is completed. Even if this method is

particularly simple and easy to implement, code written

in this form loses readability and structure. Usage of

callback forces developers to split sequential execution

into several different functions, making the

computational flow difficult to follow. In Listing 15

case 1) we show an example where we want to execute

sequentially the following functions: moveObject,

rotateObject and then displayMsg. These functions are

asynchronous, therefore provide a parameter for a

callback (last parameter). Execution is started by

action1. In Listing 12 case 2, we show an example

code that uses anonymous functions. Here the flow

looks closer to a sequential flow, however, the code

looks more complex to read and maintain due to the

different function nesting and brackets.

Listing 12: Example usage of callback compared to

JSEN

Through the usage of JSEN it is possible to avoid such

problems, keeping the execution flow sequential and

minimizing the usage of callbacks (see Listing 12 case

3).

The difference from the case 1 and 2 in Listing 12

compared to case 3 is that with JSEN it is possible to

write sequential code that executes asynchronous calls,

each one after the other. In JSEN we can use JSEN.on()

to suspend execution until the condition specified as

parameter becomes true. We then use the callbacks of

asynchronous functions (moveObject, rotateObject) to

change the value of the condition used in JSEN.on() to

continue computation. Here, the contribution of JSEN

is the possibility to write sequential code that controls

asynchronous calls at the same time.

In JavaScript, usage of Promises [29] is an

alternative way for dealing with asynchronous calls

1) Callback with functions

1 function action1() {
2 moveObject(x, y, onMoveDone);
3 }
4 function onMoveDone() {
5 rotateObject(angle, onRotationDone);
6 }
7 function onRotationDone() {
8 displayMsg(‘Action1 done’);
9 }

2) Callback with anonymous functions

1 function action1() {
2 moveObject(x, y, ()=> {
3 rotateObject(angle, ()=> {
4 displayMsg(‘Action1 done’);
5 });
6 });
7 }

3) With JSEN

1 let done = false;
2 const action1 = [
3 ()=> moveObject(x, y, ()=> done = true),
4 JSEN.on(()=> done == true), // Suspend until condition true
5 ()=> done = false,
6 ()=> rotateObject(angle, ()=> done = true),
7 JSEN.on(()=> done == true), // Suspend until condition true
8 displayMsg(‘Action1 done’),
9];

1 JSENVM.run(jsenTest);

A. Ceravola, F. Joublin: From JSON to JSEN through Virtual Languages

9

while keeping a more readable flow. Promises act as

proxy for callbacks, which create the possibility of

expressing asynchronous calls into a more readable and

sequential way. Promises tries to solve the problems

we found with callback (readability, nesting of

functions, …). The example of case 1 in Listing 12,

with the usage of Promises, can be written as in Listing

13.

Listing 13: Example usage of Promises

However, note that now, both asynchronous

functions moveObject and rotateObject must be

rewritten, to make them return a Promise as result. This

allows to call the “.then()” method for continuing

computation. This is possible when we are the owners

of the functions, otherwise (in case of 3rd party

libraries) a wrapper function using Promises must be

written for each function we want to use. Moreover, in

this new scenario, we should always check if a function

we want to use implements Promises or not. Here the

contribution of JSEN is in the possibility to use

asynchronous functions as they are, just calling them

inside a JSEN program in a sequential way as shown in

Listing 12.

Listing 14: Example usage of Async/Await

A recently added set of statements to JavaScript are

the Async/Await [9]. These two statements are based

on Promises. This means they should be applied to

functions that returns Promises, if not, JavaScript will

generate a default Promise to be returned by the

function. This makes execution of asynchronous code

much cleaner from a syntactical point of view. Here in

Listing 14 we show a code based on the example of

Listing 13.

Usage of Async/Await improves substantially

readability and maintainability. However, here also, it

is necessary to modify every function that needs to use

such statements, particularly because the usage of

‘await’ can only be done in a function declared as

‘Async’. Moreover, in both usage of Promises and

Async/Await, it is easily possible to lose control over

the functions that need synchronization and the ones

that do not, introducing bugs not easy to locate [1]. One

of the main difficulties here is to decide when to use

‘async’, a choice that may have to be taken line per line

in some cases. Another consequence of the usage of

Async/Await is that the main JavaScript thread is

suspended for the execution of each Async function. In

this case the contribution of JSEN is that it does not

require to modify functions. More importantly, JSEN

does not suspend the execution of the JavaScript main

thread in handling asynchronous code. This allows

JavaScript to still use the main thread for execution of

other JavaScript code.

A true parallel execution can be reached by the

usage of workers [12]. In JavaScript, a worker is a

program executed in a separate thread, running in

parallel to the caller context. In terms of coding,

maintainability, and parallelization, this is the best

solution among the one we reviewed. Programs

executed in workers are just normal JavaScript

programs, and do not interfere with computation done

in caller contexts. However, usage of workers

introduces some limitations in terms of

communication, data and library sharing. Workers are

executed in a separated context than the calling

program, therefore they cannot access data instances

available in the caller’s context and cannot use libraries

that depend on such data. Communication between a

worker and its calling context is done via messages.

On the one side this can be considered a good

practice for protecting mutual access on data, however,

on the other side it introduces a strong limitation on

how a worker and its calling context can interact. In

this case, JSEN does not provide true parallelism

(JSEN execution is done in time sharing with calling

context). However, JSEN provides the possibility to

access any data structure or library of the calling

context. Moreover, JSEN runs in time sharing with

JavaScript and the execution of each single JSEN

statements is atomic. Atomicity comes from JavaScript

being single threaded. Therefore, handling of mutual

access of data becomes easy compared to the usage of

mutex/semaphores/locks.

In the next paragraph we see other ways which also

includes the possibility for concurrent execution of

multiple JSEN programs.

3.4 Concurrency with JSEN

The granularity at which JSEN data structures stores

statements gives the possibility of implementing a form

of concurrent multitasking among JSEN programs.

This concurrency is particularly useful in JavaScript,

since JavaScript is a single threaded language and

therefore, beside the usage of “workers” [12], parallel

execution of functions (within the same process) is not

possible. In the community, this limitation has been

circumvented by the usage of several methods for

asynchronous programming [22], as we have just seen

1 async function action1() {
2 await moveObject(x, y);
3 await rotateObject(angle);
4 displayMsg(‘Action1 done’);
5 }

1 function action1() {
2 moveObject(x, y)
3 .then(()=> rotateObject(angle))
4 .then(()=> displayMsg(‘Action1 done’));

5 }

Open Journal of Web Technology (OJWT), Volume 8, Issue 1, 2021

10

with the use of callback, implementation of Promise, or

the Async/Await statements.

With JSEN we provide an alternative way to handle

asynchronous and concurrent tasks. In our view, the

usage of JSEN data structures makes creation and

maintenance of asynchronous and concurrent tasks

easy to write and to maintain. Concurrency in JSEN is

achieved through a virtual machine. Such a machine

can take several JSEN data structures and executes

them according to a concurrent policy. To illustrate this

concept, we have implemented JZENVM, a small

virtual machine that implements the core concepts,

supporting a basic set of pure JSEN statements (a sub-

set of the ones showed in Listing 7).

In Listing 15 we give the pseudocode of the

JZENVM virtual machine. The JZENVM_run function

in Listing 15 takes a variable number of parameters.

Each parameter should be a JSEN data structure. The

function starts by creating an execution context for

each parameter where the attribute ‘code’ points to the

n-th parameter (JSEN data structure). The

JZENVM_runContext function takes the created

contexts and executes each of them until they all

terminate their execution. Execution of contexts uses a

round-robin scheduler [21] and rely on a timer for

waking-up execution in case contexts are suspended

(e.g. through JSEN.sleep, JSEN.on, …).

Listing 15: Pseudo code for the JZENVM virtual

machine

The usage of a scheduler in the runContext

function, allows concurrent execution of different

JSEN data structures in time-sharing. If no statement of

JSEN data structures implements an infinite loop, the

runContext function can execute one statement from

each context at a time, giving the possibility to all

JSEN data structures, step by step, to progress their

computation.

This simple and compact version of a JSEN virtual

machine is a good example for understanding how

JSEN data structures can be executed concurrently. We

also implemented JSENVM, a more complete JSEN

virtual machine supporting all statements shown in

Listing 7.

Here in Listing 16 an example of three JSEN

threads: printNumbers, printUpLetters,

printLowLetters. Each of them computes different

values, printing them to the console. This example

shows how the JSENVM_run() method executes them

concurrently.

Listing 16: Example of different JSEN threads

executed by JSENVM

JSENVM beside the run() method (used for an handy

execution of threads), provides a more complete API

for handling JSEN threads. Listing 17 shows an excerpt

of the API exposed by JSENVM.

1 const JSEN = require(‘JSEN’);
2 const JSENVM = require(‘JSENVM’);
3 let number;
4 const printNumbers = [
5 JSEN.for('i', 0, 3),
6 [
7 JSEN.get('i', (value)=> number = value),
8 ()=> console.log(number),
9],
10];
11 let upLetter = 'A'.charCodeAt(0);
12 const printUpLetters = [
13 JSEN.for('i', 0, 3),
14 [
15 ()=> console.log(String.fromCharCode(upLetter)),
16 ()=> ++upLetter,
17],
18];
19 let lowLetter = 'a'.charCodeAt(0);
20 const printLowLetters = [
21 JSEN.for('i', 0, 3),
22 [
23 ()=> console.log(String.fromCharCode(lowLetter)),
24 ()=> ++lowLetter,
25],
26];
27 JSENVM.run(printNumbers, printUpLetters,

printLowLetters);

> node concurrentExample1.js
A
a
0
B
b
1
C
c
2

1 function JZENVM_run(all parameter) {
2 for each parameter
3 create new context
4 set properties: executionStatus, code, pc, caller
5 JZENVM_runContext(all context);
6 }
7 function JZENVM_runContext(all context) {
8 while not all context are terminated
9 for each context
10 if context is not terminated or suspended
11 get next context’s statement and increment pc
12 switch(type of statement)
13 case anonymous function  call it
14 case array  switch context code to array (sub-block)
15 and store current code in caller
16 case object  this is a JSEN.* statement
17 switch(object.name)
18 case ‘if’  check condition and update pc
19 case ‘sleep’  set context to suspended
20 and start timer for wakeup
21 case ‘label’  assign pc to label value
22 case ‘goto’  set pc to label value
23 case ‘print’  print parameter to console
24 otherwise
25 skip statement
26 if context is terminated and caller context is not empty
27 restore caller context code, pc, …
28 }

A. Ceravola, F. Joublin: From JSON to JSEN through Virtual Languages

11

Listing 17: Extract of part of JSENVM API

The JSENVM virtual machine implements the

following functionalities for managing JSEN threads:

 Set and handle JSEN threads life cycle

(creation, execution, …)

 Check JSEN thread status (ready, running, …)

 Handle thread-join functions

 Debugging functions (step-by-step,

breakpoints, …)

 Supports of several pure JSEN statements (see

Listing 7)

The next section describes now the most important

properties exposed by JSEN.

4 Properties of JSEN

Given the close similarities between JSEN and JSON,

JSEN carries several properties and capabilities of

JSON. JSEN, as JSON, is a text-based data format, it is

compact and lightweight (in relation to the data

content) and JSEN has a relatively strong connection

with the hosting language, enabling a full reuse of the

hosting language. Because of that, unlike JSON, JSEN

is language specific. Looking at JSEN from a

JavaScript perspective, it exposes the following

properties:

Extended Homoiconicity: JSEN extends the concept

of “code as data”; algorithms/functions in a program

implemented in JSEN provides itself as a data structure

suitable for storing code, execute code and/or

manipulate it programmatically by the program itself.

This is an extension of the homoiconic [6] and

metaprogramming [23][5] capabilities of JavaScript,

bringing it closer to what languages like Lisp [26],

SmallTalk [7] or Tcl [28] can do. It introduces a finer

grain control of JavaScript language statements as well

as it enables the creation of virtual languages. This

opens the possibility of symbolic programming [30],

self-modifying code, learning and other

metaprogramming paradigms.

1 newThread(name, code, …)
2 startThread(nameOrList)
3 stopThread(nameOrList)
4 suspendThread(nameOrList)
5 wakeupThread(nameOrList)
6 renewThread(nameOrList)
7 removeThread(nameOrList)
8 isThreadReady(name)
9 isThreadRunning(name)
10 isTreadSuspended(name)
11 isThread…
12 setBreakPoint(name, condition, action)
13 addThreadJoin(nameOrList, joinFunction)
14 removeThreadJoin(joinFunction)
15 …

Table 2: How JSEN improve JavaScript

Desirable properties Pure JavaScript JSEN

Homoiconicity Very limited Extended

Serialization of code Limited Extended

Virtual Language No Yes

Concurrency Webworker (data transfer) JSENVM (full data access)

Asynchronicity Nested code Linear code

Metaprogramming Limited Extended

Performance High Low

Table 1: Performance of JSEN compared to

pure JavaScript algorithms

Task

Javascript

execution

time

(1000 iter.)

JSEN

execution

time

(1000 iter.)

Factor

slower

20x20 Matrix

multiplication
42,0ms 3.915,5ms 93x

Bubble sort of array

of 60 elements
6,7ms 1.103,5ms 164x

Prime factor of 100x

 2-digit numbers
13,2ms 1.065,8ms 79x

Simple search of a 20-

string in a 100-string
6,3ms 137,4ms 22x

Multiplication of 2

numbers
2,8ms 38,0ms 14x

Open Journal of Web Technology (OJWT), Volume 8, Issue 1, 2021

12

Serialization: similarly to JSON.stringify()/parse(),

JSEN structure can be serialized into a single string

with JSEN.stringify()/parse(). However, at the moment,

we did not implemented a safe parse() function. We are

still parsing JSEN strings through the JavaScript eval()

system function. Nevertheless, like in JSON, it is

possible to serialize a JSEN data structure, send it to

another program, which can deserialize and continue

the computation in another context.

Performance: we have been benchmarking the

executions of algorithms written in JSEN and their

equivalent in pure JavaScript. The results are

summarized in Table 1. We used JavaScript on a

Windows 10 machine with Node.js Version 12.16.1 on

an IntelCore i7 2.5GHz. As expected, JSEN

implementations are much slower than pure JavaScript

ones. This is a direct consequence of JSEN being built

on top of JavaScript and making extensive use of

functions and anonymous functions. herefore, JSEN is

best used for what it was designed for, namely

readability of code in asynchronous tasks, easy

parallelization using time sharing, virtualization or

metaprogramming. However, it is always possible to

convert back and forth between JSEN and pure

JavaScript. Moreover, the computationally expensive

part of an algorithm should be written in pure

JavaScript and called from JSEN if needed. The

slowdown factor is, as can be observed in the 3 first

algorithms of Table 1, mostly impacted by the number

of nested loop and the total number of iterations.

In the cases where performance of a JSEN program

is an issue, it is possible to either transpile JSEN code

into native JavaScript code or to compile it to WASM.

As we mention in section 5 this topic is not covered

here in this introductory paper but is possible.

Virtual Languages Support: JSEN introduces a data

structure that makes the creation of new JSEN

statements very easy. In this way, new language-like

features (virtual language [3]), control execution flow

or macro languages can be created using the same

hosting language. Even full embedded domain specific

languages (DSL [13]) could be implemented with that.

Advantages in terms of domain analysis, rapid

prototyping, portability, and maintenance can be easily

provided. For instance, the creation of a virtual

language for a specific project can offer a more

expressive way for encoding it. Moreover, when

necessary, porting the resulting code to different

languages may become a relatively easy code

generation task (thanks to metaprogramming).

Concurrency: JSEN introduces a new way to execute

concurrent functions (time sharing) together with the

main JavaScript thread (hosting language). This allows

the execution of several asynchronous functions as they

would be running in parallel threads. Unlike the case of

workers (see the previous paragraph), JSEN functions

have access to all data structures and libraries used in

the calling context. Furthermore, each single statement

of a JSEN data structures is executed atomically

(cannot be interrupted). This makes handling of

synchronization between different JSEN functions

much easier than threading done at a lower level,

where, each single statement could be suspended in the

middle of its execution, leading to the needs of a more

explicit handling of atomicity by developers.

The previous list show some of the properties of

JSEN and it not meant to be exhaustive. The next

section will briefly summarize other important aspects

of JSEN not covered in this paper.

5 Further Concepts in JSEN

This paper is meant as a JSEN introduction by covering

some of its basic characteristics and properties. We

showed it as a data structure as well as how it can be

used to execute functions, and how it can be used to

handle asynchronous computation in the scope of the

JavaScript language. JSEN is meant to be used in any

scope where these characteristics are relevant. For

instance, where a more expressive language than

JavaScript is necessary, JSEN can be used to create

appropriate language extensions (see JSEN.on() as one

of those cases). In the scope of concurrent or

asynchronous execution of code, JSEN provides a

flexible alternative (avoid JavaScript call-back hell).

Several additional topics of JSEN on which we have

been working have not been covered in this paper:

 The manipulation of JSEN data structures

(metaprogramming).

 A description of all pure JSEN statements and

how to use them.

 The usage of JSENThreadClass and active-

objects.

 A more in-depth review on how standard

JavaScript code can be transpiled into JSEN

and vice versa.

 The conditions on which JSEN can be

transferred between processes.

 The portability of JSEN to other languages

(we already tested on Java, Python, Matlab,

see examples in the Git repository).

 How to extend/redefine virtual languages.

 A closer analysis on JSENVM API and ways

to manage concurrent tasks.

 Debugging with JSENVM and a web-based

debugger.

A. Ceravola, F. Joublin: From JSON to JSEN through Virtual Languages

13

6 SUMMARY AND CONCLUSIONS

In this article, we introduce JSEN as a new data format

for representing executable code (as counter part of

JSON data format). We have shown how it can be used

to store algorithms/functions/programs, which could be

exchanged between processes or used to be executed

like functions. We summarized the properties of JSEN

in Table 2. We have shown how JSEN introduces a

higher level of homoiconicity in the hosting language,

enhancing the possibility of manipulating code in the

context of metaprogramming.

As we have seen JSEN introduces the possibility to

create virtual languages. In that scope we have shown

how a JSEN data structure gets ‘compiled’ and how

execution can be done via a virtual machine. We

reviewed JZENVM, a basic virtual machine that shows

the main principle of JSEN concurrent execution and

introduced JSENVM, a more complete virtual machine.

Given that concurrent and asynchronous computation

are important in JavaScript we have compared how

asynchronous and concurrent functions can be done in

JSEN compared to other available alternative for

asynchronous programming like callback, Promises,

Async/Await and workers. Clearly there are certain

advantages in using JSEN.

In terms of metaprogramming, it gives a finer grain

access to statements of a function, which can be more

easily introspected and manipulated in a programmatic

way. As well, using JSEN as a mean to create

concurrent computation in a single threaded language,

JSEN has its advantages in approaching several issues

that appears in handling asynchronous code. Similarly,

as workers, it is possible with JSEN to execute

functions concurrently, avoiding blocking the

JavaScript main thread.

ACKNOWLEDGEMENT

This work was financed by Honda Research Institute

GmbH. The authors want to thank all the reviewers for

the very constructive and rich comments as well as

Kálmán Graffi, Cristian Sandu, Andrei Huțucă for

early discussions on the concept and comments on the

paper, Cătălina Ioan, for her review and help on the

development of the virtual language and debugging

tool, and Siddhata Naik for her support on open-

sourcing JSEN.

REFERENCES

[1] A. Agarwal, “How to escape async/await hell”,

https://www.freecodecamp.org/news/avoiding-

the-async-await-hell-c77a0fb71c4c/, Accessed 29

April, 2021

[2] M. Bolin, “Closure: The definitive guide: Google

tools to add power to your JavaScript”, O'Reilly

Media, Inc, 2010

[3] H. Chafi, Z. DeVito, A. Moors, T. Rompf, A. K.

Sujeeth, P. Hanrahan, K. Olukotun, “Language

virtualization for heterogeneous parallel

computing”, ACM Sigplan Notices, pp. 835-847,

45(10), 2010

[4] W. Cunningham, “Homoiconic languages”,

https://wiki.c2.com/?HomoiconicLanguages,

Accessed 29 April, 2021

[5] R. Damaševičius, V. Štuikys, “Taxonomy of the

fundamental concepts of metaprogramming”,

Information Technology and Control, 37(2), pp.

124-128, 2008

[6] T. Davies, “Homoiconicity, Lazyness and First-

Class Macros”, CiteSeerX, pp. 2-6, 2009

[7] W. De Meuter, (Ed.), “Advances in Smalltalk:

14th International”, Smalltalk Conference, ISC

2006, Prague, Czech Republic, September 4-8,

2006, Revised Selected Papers, vol. 4406, pp. 14-

17, 2006

[8] B. Dias, “Callback hell, promises, and asynch/

await”, https://blog.avenuecode.com/callback-

hell-promises-and-async/await, Accessed 29

April, 2021

[9] I. Elliot, “JavaScript async: Events, callbacks,

promises and async await”, I/O Press, 2017

[10] K. Gallaba, A Mesbah, and I. Beschastnikh,

“Don't call us, we'll call you: Characterizing

callbacks in JavaScript”, ACM/IEEE International

Symposium on Empirical Software Engineering

and Measurement (ESEM), pp. 1-10, October

2015

[11] A. Goldberg, R. David, “Smalltalk-80: The

language and its implementation”, Addison-

Wesley Longman Publishing Co., Inc., 1983

[12] I. Green, “Web workers: Multithreaded programs

in javascript”, O'Reilly Media, Inc., 2012.

[13] F. Hermans, M. Pinzger, a. van Deursen,

“Domain-specific languages in practice: A user

study on the success factors”. In: Schürr A., Selic

B. (eds) Model Driven Engineering Languages

and Systems. MODELS 2009. Lecture Notes in

Computer Science, vol 5795, pp. 1-13, Springer,

Berlin, Heidelberg, 2009

[14] E. M. Hvidevold, “Majaho”, https://github.com/

emnh/majaho, Accessed 29 April, 2021

Open Journal of Web Technology (OJWT), Volume 8, Issue 1, 2021

14

[15] JSONIntro, “Introducing JSON”, http://www.

json.org, Accessed 29 April, 2021

[16] JSONRef, “The JSON data interchange format”,

ECMA International, October 2013

[17] JSONSyntax, “Standard ECMA-404 -The JSON

data interchange syntax”, 2nd edition, December

2017, https://www.ecma-international.org/

publications/standards/Ecma-404.htm, Accessed

29 April, 2021

[18] JSSyntax, “JavaScript Object Literal Syntax”,

https://developer.mozilla.org/en-US/docs/Web/

JavaScript/Guide/Grammar_and_types#Object_lit

erals, Accessed 29 April, 2021

[19] A. Korpi, C. Meadows, W. Pimenta, “EsLisp”,

https://github.com/anko/eslisp, Accessed 29 April

2021

[20] R. G. Lavender, D. C. Schmidt, “Active object -

An object behavioral pattern for concurrent

programming”, CiteSeerX, pp. 2-8, 1995

[21] P. G. López, J. S. V. Martínez, G. D. and Reyes,

“Concurrent real-time task schedulers: A

classification based on functions and set theory”,

Computacion y Sistemas, pp.809-820, 2015

[22] M. C. Loring, M. Mark, L. Daan, "Semantics of

asynchronous JavaScript.", In Proceedings of the

13th ACM SIGPLAN International Symposium

on Dynamic Languages, pp. 51-62., 2017

[23] A. Ludwig, D. Heuzeroth,, “Metaprogramming in

the Large”, In International Symposium on

Generative and Component-Based Software

Engineering, pp. 179-188, October 2000,

[24] S. R. Maxwell, “Experiments with a coroutine

execution model for genetic programming”, In

Proceedings of the First IEEE Conference on

Evolutionary Computation. IEEE World Congress

on Computational Intelligence, pp. 413-417, 1994

[25] C. N. Mooers, L. P. Deutsch, R. W. Floyd, R.

“Programming languages for non-numeric

processing-1: TRAC, a Text Handling Language”,

in Association for Computing Machinery, NY,

USA, pp. 229-246, August 1965.

[26] J. Newton, D. Verna, M. Colange, “Programmatic

manipulation of common Lisp type specifiers”, In

European Lisp Symposium, pp. 1-3, 2017.

[27] N. Nurseitov, M. Paulson, R. Reynolds, C.

Izurieta, “Comparison of JSON and XML data

interchange formats: A case study”, Caine, pp.

157-162, Nov. 2009

[28] J. K. Ousterhout, “Tcl: An embeddable command

language”, University of California, Berkeley,

Computer Science Division, 1989.

[29] D. Parker, “JavaScript with Promises: Managing

asynchronous Code”, O'Reilly Media, Inc., 2015

[30] N. Rochester, “Symbolic programming”,

Transactions of the IRE Professional Group on

Electronic Computers, EC-2(1), pp. 10-15, 1953

[31] G. Steele, G., “Common LISP: the language”,

Elsevier, 1990

[32] C. Wang, S. Hasler, M. Mühlig, F. Joublin, C.

Ceravola, J. Deigmöller, F. Fischer, “Designing

interaction for multi-agent cooperative system in

an office environment”, ACM/IEEE International

Conference on Human-Robot Interaction, pp.

668-669, March 8, 2021.

[33] XMLApp, “XML applications and initiatives”,

http://xml.coverpages.org/xmlApplications.html,

Accessed 29 April, 2021

[34] XMLAlternative, “XML Alternatives”, http://

web.archive.org/web/20060325012720/www.paul

t.com/xmlalternatives.html, Accessed 29 April,

2021

[35] XMLCritics, “XML: The angle bracket tax”,

https://blog.codinghorror.com/xml-the-angle-

bracket-tax/, Accessed 29 April, 2021

[36] XMLRef, “Extensible Markup Language (XML)

1.0”, https://www.w3.org/TR/1998/REC-xml-

19980210, Acessed 29 April, 2021

[37] S. Zunke, V. D’Souza, “JSON vs XML: A

comparative performance analysis of data

exchange formats”, IJCSN International Journal

of Computer Science and Network, 3(4), pp. 257-

261, 2014

A. Ceravola, F. Joublin: From JSON to JSEN through Virtual Languages

15

AUTHOR BIOGRAPHIES

Antonello Ceravola: He

studied Computer Science at

the University of Pisa, Italy.

He worked in the field of IT

software for five years dealing

with multimedia systems, large

scale software infrastructure for

telecommunication systems,

multi-tier applications and

workflow engine for process management systems.

From 2001 he joined Honda Research Institute

Europe, Germany, currently Principal Scientist. His

research interest includes software components,

middleware, languages, large-scale systems, integration

environments, autonomous driving system and artificial

intelligence.

Frank Joublin: He received

a European Ph.D. degree in

neurosciences from the

University of Rouen

(France), in 1993. From 1994

to 1998 he was postdoctoral

research fellow at the Institute

für Neuroinformatik,

university of Bochum,

Germany. From 1998 to 2001

he was customer project manager at Philips Speech

Processing Aachen. Since 2001, he is principal scientist

at the Honda Research Institute Europe, Germany.

His research interests include developmental

robotics, semantic acquisition, data mining and

artificial intelligence.

