
c© 2019 by the authors; licensee RonPub, Lübeck, Germany. This article is an open access article distributed under the terms and conditions of
the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).

Open Access

Open Journal of Big Data (OJBD)
Volume 5, Issue 1, 2019

http://www.ronpub.com/ojbd
ISSN 2365-029X

Compile-Time Query Optimization
for Big Data Analytics

Leonidas Fegaras

University of Texas at Arlington, CSE, 416 Yates Street, P.O. Box 19015, Arlington, TX 76019, USA,
fegaras@cse.uta.edu

ABSTRACT

Many emerging programming environments for large-scale data analysis, such as Map-Reduce, Spark, and Flink,
provide Scala-based APIs that consist of powerful higher-order operations that ease the development of complex
data analysis applications. However, despite the simplicity of these APIs, many programmers prefer to use
declarative languages, such as Hive and Spark SQL, to code their distributed applications. Unfortunately, most
current data analysis query languages are based on the relational model and cannot effectively capture the rich
data types and computations required for complex data analysis applications. Furthermore, these query languages
are not well-integrated with the host programming language, as they are based on an incompatible data model.
To address these shortcomings, we introduce a new query language for data-intensive scalable computing that
is deeply embedded in Scala, called DIQL, and a query optimization framework that optimizes and translates
DIQL queries to byte code at compile-time. In contrast to other query languages, our query embedding eliminates
impedance mismatch as any Scala code can be seamlessly mixed with SQL-like syntax, without having to add any
special declaration. DIQL supports nested collections and hierarchical data and allows query nesting at any place
in a query. With DIQL, programmers can express complex data analysis tasks, such as PageRank and matrix
factorization, using SQL-like syntax exclusively. The DIQL query optimizer uses algebraic transformations to
derive all possible joins in a query, including those hidden across deeply nested queries, thus unnesting nested
queries of any form and any number of nesting levels. The optimizer also uses general transformations to push
down predicates before joins and to prune unneeded data across operations. DIQL has been implemented on three
Big Data platforms, Apache Spark, Apache Flink, and Twitter’s Cascading/Scalding, and has been shown to have
competitive performance relative to Spark DataFrames and Spark SQL for some complex queries. This paper
extends our previous work on embedded data-intensive query languages by describing the complete details of the
formal framework and the query translation and optimization processes, and by providing more experimental results
that give further evidence of the performance of our system.

TYPE OF PAPER AND KEYWORDS

Regular research paper: big data, distributed query processing, query optimization, embedded query languages

1 INTRODUCTION

In recent years, we have witnessed a growing
interest in Data-Intensive Scalable Computing (DISC)
programming environments for large-scale data analysis.

One of the earliest and best known such environment
is Map-Reduce, which was introduced by Google in
2004 [15] and later became popular as an open-
source software with Apache Hadoop [5]. Map-

35

http://creativecommons.org/licenses/by/4.0/
http://www.ronpub.com/ojbd

Open Journal of Big Data (OJBD), Volume 5, Issue 1, 2019

reduce is a simple and powerful interface that enables
automatic parallelization and distribution of large-scale
computations on large clusters of commodity (low-end)
processors [15]. However, because of its simplicity,
it soon became apparent that the Map-Reduce model
has many limitations and drawbacks that impose a high
overhead to complex workflows and graph algorithms.
One of its major drawbacks is that, to simplify reliability
and fault tolerance, the Map-Reduce engine stores the
intermediate results between the map and reduce stages
and between consecutive Map-Reduce jobs on secondary
storage, rather than in memory. To address some of the
shortcomings of the Map-Reduce model, new alternative
frameworks have been introduced recently. Among
them, the most promising frameworks that seem to be
good alternatives to Map-Reduce while addressing its
drawbacks are Apache Spark [7] and Apache Flink [4],
which cache most of their data in the memory of the
worker nodes.

The Map-Reduce framework was highly inspired
by the functional programming style by requiring two
functions to express a Map-Reduce job: the map function
specifies how to process a single key-value pair to
generate a set of intermediate key-value pairs, while the
reduce function specifies how to combine and aggregate
all intermediate values associated with the same
intermediate key to compute the resulting key-value
pairs. Similarly, Spark and Flink provide a functional
programming API to process distributed data collections
that resembles the way modern functional programming
languages operate on regular data collections, such as
lists and arrays, using higher-order operations, such
as map, filter, and reduce. By adopting a functional
programming style, not only do these frameworks
prevent interference among parallel tasks, but they
also facilitate a functional style in composing complex
data analysis computations using powerful higher-order
operations as building blocks.

Furthermore, many of these frameworks provide a
Scala-based API, because Scala is emerging as the
functional language of choice for Big Data analytics.
Examples of such APIs include the Scala-based APIs for
Hadoop Map-Reduce, Scalding [31] and Scrunch [32],
and the Hadoop alternatives, Spark [7] and Flink [4].
These APIs are based on distributed collections that
resemble regular Scala data collections as they support
similar methods. Although these distributed collections
come under different names, such as TypedPipes in
Scalding, PCollections in Scrunch, RDDs in Spark,
and DataSets in Flink, they all represent immutable
homogeneous collections of data distributed across
the compute nodes of a cluster and they are very
similar. By providing an API that is similar to the
Scala collection API, programmers already familiar

with Scala programming can start developing distributed
applications with minimal training. Furthermore, many
Big Data analysis applications need to work on nested
collections, because, unlike relational databases, they
need to analyze data in their native format, as they
become available, without having to normalize these
data into flat relations first and then reconstruct the
data during querying using expensive joins. Thus,
data analysis applications often work on distributed
collections that contain nested sub-collections. While
outer collections need to be distributed to be processed
in parallel, the inner sub-collections must be stored
in memory and processed as regular Scala collections.
By providing similar APIs for both distributed datasets
and in-memory collections, these frameworks provide
a uniform way for processing data collections that
simplifies program development considerably.

Although DISC frameworks provide powerful APIs
that are simple to understand, it is hard to develop
non-trivial applications coded in a general-purpose
programming language, especially when the focus
is in optimizing performance. Much of the time
spent programming these APIs is for addressing the
intricacies and avoiding the pitfalls inherent to these
frameworks. For instance, if the functional argument
of a Spark operation accesses a non-local variable,
the value of this variable is implicitly serialized and
broadcast to all the worker nodes that evaluate this
function. This broadcasting is completely hidden from
the programmers, who must now make sure that there is
no accidental reference to a large data structure within
the functional parameters. Furthermore, the implicit
broadcasting of non-local variables is less efficient than
the explicit peer-to-peer broadcast operation in Spark,
which uses faster serialization formats.

A common error made by novice Spark programmers
is to try to operate on an RDD from within the functional
argument of another RDD operation, only to discover
at run-time that this is impossible since functional
arguments are evaluated by each worker node while
RDDs must be distributed across the worker nodes.
Instead, programmers should either broadcast the inner
RDD to the worker nodes before the outer operation or
use a join to combine the two RDDs. More importantly,
some optimizations in the core Spark API, such as
column pruning and selection pushdown, must be done
by hand, which is very hard and may result to obscure
code that does not reflect the intended application
logic. Very often, one may have to choose among
alternative operations that have the same functionality
but different performance characteristics, such as using
a reduceByKey operation instead of a groupByKey
followed by a reduce operation. Furthermore, the core
Spark API does not provide alternative join algorithms,

36

L. Fegaras: Compile-Time Query Optimization for Big Data Analytics

such as broadcast and sort-merge joins, thus leaving the
development of these algorithms to the programmers,
which duplicates efforts and may lead to suboptimal
performance.

In addition to hand-optimizing programs expressed
in these APIs, there are many configuration parameters
to adjust for better performance that overwhelm non-
expert users. To find an optimal configuration for a
certain data analysis application in Spark, one must
decide how many executors to use, how many cores
and how much memory to allocate per executor, how
many partitions to split the data, etc. Furthermore, to
improve performance, one can specify the number of
reducers in Spark operations that cause data shuffling,
instead of using the default, or even repartition the data
in some cases to modify the degree of parallelism or to
reduce data skew. Such adjustments are unrelated to the
application logic but affect performance considerably.

Because of the complexity involved in developing and
fine-tuning data analysis applications using the provided
APIs, most programmers prefer to use declarative
domain-specific languages (DSLs), such as Hive [6],
Pig [30], MRQL [18], and Spark SQL [8], to code
their distributed applications, instead of coding them
directly in an algorithmic language. Most of these DSL-
based frameworks though provide a limited syntax for
operating on data collections, in the form of simple joins
and group-bys. Some of them have limited support
for nested collections and hierarchical data, and cannot
express complex data analysis tasks, such as PageRank
and data clustering, using DSL syntax exclusively. Spark
DataFrames, for example, allows nested collections but
provides a naı̈ve way to process them: one must use
the ‘explode’ operation on a nested collection in a row
to flatten the row to multiple rows. Hive supports
‘lateral views’ to avoid creating intermediate tables when
exploding nested collections. Both Hive and DataFrames
treat in-memory collections differently from distributed
collections, resulting to an awkward way to query nested
collections.

One of the advantages of using DSL-based systems
in developing DISC applications is that these systems
support automatic program optimization. Such program
optimization is harder to achieve in an API-based
system. Some API-based systems though have found
ways to circumvent this shortcoming. The evaluation of
RDD transformations in Spark, for example, is deferred
until an action is encountered that brings data to the
master node or stores the data into a file. Spark collects
the deferred transformations into a DAG and divides
them into subsequences, called stages, which are similar
to Pig’s Map-Reduce barriers. Data shuffling occurs
between stages, while transformations within a stage are
combined into a single RDD transformation. Unlike Pig

though, Spark cannot perform non-trivial optimizations,
such as moving a filter operation before a join, because
the functional arguments of the RDD operations are
written in the host language and cannot be analyzed
for code patterns at run-time. Spark has addressed this
shortcoming by providing two additional APIs, called
DataFrames and Datasets [34].

A Dataset combines the benefits of RDD (strong
typing and powerful higher-order operations) with Spark
SQL’s optimized execution engine. A DataFrame is a
Dataset organized into named columns as in a relational
table. SQL queries in DataFrames are translated and
optimized to RDD workflows at run-time using the
Catalyst architecture. The optimizations include pushing
down predicates, column pruning, and constant folding,
but there are also plans for providing cost-based query
optimizations, such as join reordering. Spark SQL
though cannot handle most forms of nested queries and
does not support iteration, thus making it inappropriate
for complex data analysis applications. One common
characteristic of most DSL-based frameworks is that,
after optimizing a DSL program, they compile it to
machine code at run-time, using an optimizing code
generator, such as LLVM, or run-time reflection in Java
or Scala.

Our goal is to design a query language for DISC
applications that can be fully and effectively embedded
into a host programming language (PL). To minimize
impedance mismatch, the query data model must be
equivalent to that of the PL. This restriction alone
makes relational query languages a poor choice for
query embedding since they cannot embed nested
collections from the host PL into a query. Furthermore,
data-centric query languages must work on special
collections, which may have different semantics from
the collections provided by the host PL. For instance,
DISC collections are distributed across the worker nodes.
To minimize impedance mismatch, data-centric and
PL collections must be indistinguishable in the query
language, although they may be processed differently by
the query system.

In addition, the presence of null values complicates
query embedding because, unlike SQL, which uses 3-
valued logic to handle null markers introduced by outer
joins, most PLs do not provide a standardized way to
treat nulls. Instead, one would have to write explicit
code in the query to handle them. Thus, embedding PL-
defined UDF calls and custom aggregations in a query
can either be done by writing explicit code in the query
to handle nulls before these calls or by avoiding null
values in the query data model altogether. We adopt the
latter approach because we believe that nulls complicate
query semantics and query embedding, and may result
to obscure queries. Banning null values though means

37

Open Journal of Big Data (OJBD), Volume 5, Issue 1, 2019

banning outer joins, which are considered important
for practical query languages. In SQL, for example,
matrix addition of sparse matrices can be expressed as
a full outer join, to handle the missing entries in sparse
matrices.

In a data model that supports nested collections
though, outer joins can be effectively captured by a
coGroup operation (as defined in Pig, Spark, and many
other DISC frameworks), which does not introduce
any nulls. This implies that we can avoid generating
null values as long as we provide syntax in the
query language that captures any coGroup operation.
Furthermore, most outer semijoins, which are very
common in complex data-centric applications, can be
more naturally expressed as nested queries. Thus,
a query language must allow any arbitrary form of
query nesting, while the query processor must be
able to evaluate nested queries efficiently using joins.
Consequently, query unnesting (i.e., finding all possible
joins across nested queries) is crucial for embedded
query languages. Current DISC query languages have
very limited support for query nesting. Hive and Spark
SQL, for example, support very simple forms of query
nesting in predicates, thus forcing the programmers to
use explicit outer joins to simulate the other forms of
nested queries and write code to handle nulls.

We present a new query language for DISC systems
that is deeply embedded in Scala, called DIQL [20], and
a query optimization framework that optimizes DIQL
queries and translates them to Java byte code at compile-
time. DIQL is designed to support multiple Scala-
based APIs for distributed processing by abstracting
their distributed data collections as a DataBag, which
is a bag distributed across the worker nodes of a
computer cluster. Currently, DIQL supports three
Big Data platforms that provide different APIs and
performance characteristics: Apache Spark, Apache
Flink, and Twitter’s Cascading/Scalding. Unlike other
query languages for DISC systems, DIQL can uniformly
work on both distributed and in-memory collections
using the same syntax. DIQL allows seamless mixing of
native Scala code, which may contain UDF calls, with
SQL-like query syntax, thus combining the flexibility
of general-purpose programming languages with the
declarativeness of database query languages.

DIQL queries may use any Scala pattern, may access
any Scala variable, and may embed any Scala code
without any marshaling. More importantly, DIQL
queries can use the core Scala libraries and tools as
well as user-defined classes without having to add
any special declaration. This tight integration with
Scala eliminates impedance mismatch, reduces program
development time, and increases productivity, since it
finds syntax and type errors at compile-time. DIQL

supports nested collections and hierarchical data, and
allows query nesting at any place in a query. The query
optimizer can find any possible join, including joins
hidden across deeply nested queries, thus unnesting any
form of query nesting. The DIQL algebra, which is
based on monoid homomorphisms, can capture all the
language features using a very small set of homomorphic
operations. Monoids and monoid homomorphisms fully
capture the functionality provided by current DSLs for
DISC processing by directly supporting operations, such
as group-by, order-by, aggregation, and joins on complex
collections.

The intended users of DIQL are developers of DISC
applications who 1) have a preference in declarative
query languages, such as SQL, over the higher-order
functional programming style used by DISC APIs, 2)
want to use a full fledged query language that is
tightly integrated with the host language, combining the
flexibility of general-purpose programming languages
with the declarativeness of database query languages,
3) want to express their applications in a platform-
independent language and experiment with multiple
DISC platforms without modifying their programs, 4)
want to focus on the programming logic without having
to add obscure and platform-dependent performance
details to the code, and 5) want to achieve good
performance by relying on a sophisticated query
optimizer.

The contributions of this paper can be summarized as
follows:

• We introduce a novel query language for large-scale
distributed data analysis that is deeply embedded in
Scala, called DIQL (Section 3). Unlike other DISC
query languages, the query checking and code
generation are done at compile-time. With DIQL,
programmers can express complex data analysis
tasks, such as PageRank, k-means clustering,
and matrix factorization, using SQL-like syntax
exclusively.

• We present an algebra for DISC, called the monoid
algebra, which captures most features supported by
current DISC frameworks (Section 4), and rules
for translating DIQL queries to the monoid algebra
(Section 5).

• We present algebraic transformations for deriving
joins from nested queries that unnest nested queries
of any form and any number of nesting levels,
for pushing down predicates before joins, and for
pruning unneeded data across operations, which
generalize existing techniques (Section 6).

• We report on a prototype implementation of DIQL
on three Big Data platforms, Spark, Flink, and

38

L. Fegaras: Compile-Time Query Optimization for Big Data Analytics

Scalding (Section 7) and explain how the DIQL
type inference system is integrated with the Scala
typing system using Scala’s compile-time reflection
facilities and macros.

• We give evidence that DIQL has competitive
performance relative to Spark DataFrames and
Spark SQL by evaluating a simple nested query, a
k-means clustering query, and a PageRank query
(Section 9).

The DIQL syntax and some of the performance results
have been presented in an earlier work [20]. The work
reported in this paper extends our earlier work in four
ways: 1) it fully describes the monoid algebra, which
is used as the formal basis for our framework and as the
target of query translation, 2) it gives the complete details
of translating the DIQL syntax to algebraic terms, 3) it
fully describes the query optimization framework, and
4) it provides more experimental results that give further
evidence that our system has competitive performance
relative to Spark DataFrames and Spark SQL.

2 RELATED WORK

One of the earliest DISC frameworks was the Map-
Reduce model, which was introduced by Google
in 2004 [15]. The most popular Map-Reduce
implementation is Apache Hadoop [5], an open-source
project developed by Apache, which is used today by
many companies to perform data analysis. Recent
DISC systems go beyond Map-Reduce by maintaining
dataset partitions in the memory of the worker nodes.
Examples of such systems include Apache Spark [7] and
Apache Flink [4]. There are also a number of higher-
level languages that make Map-Reduce programming
easier, such as HiveQL [36], PigLatin [30], SCOPE [13],
DryadLINQ [37], and MRQL [18].

Apache Hive [36] provides a logical RDBMS
environment on top of the Map-Reduce engine, well-
suited for data warehousing. Using its high-level query
language, HiveQL, users can write declarative queries,
which are optimized and translated into Map-Reduce
jobs that are executed using Hadoop. HiveQL does not
handle nested collections uniformly: it uses SQL-like
syntax for querying data sets but uses vector indexing
for nested collections. Apache Pig [21] provides a user-
friendly scripting language, called PigLatin [30], on top
of Map-Reduce, which allows explicit filtering, map,
join, and group-by operations. Programs in PigLatin
are written as a sequence of steps (a dataflow), where
each step carries out a single data transformation. This
sequence of steps is not necessarily executed in that
order; instead, when a store operation is encountered,

Pig optimizes the dataflow into a number of Map-Reduce
barriers, which are executed as Map-Reduce jobs. Even
though the PigLatin data model is nested, its language
is less declarative than DIQL and does not support
query nesting, but can simulate it using outer joins and
coGroup.

In addition to the DSLs for data-intensive
programming, there are some Scala-based APIs
that simplify Map-Reduce programming, such as,
Scalding [31], which is part of Twitter’s Cascading [12],
Scrunch [32], which is a Scala wrapper for the Apache
Crunch, and Scoobi. These APIs support higher-
order operations, such as map and filter, which are
very similar to those for Spark and Flink. Slick [33]
integrates databases directly into Scala, allowing
stored and remote data to be queried and processed
in the same way as in-memory data, using ordinary
Scala classes and collections. Summingbird [11] is an
API-based distributed system that supports run-time
optimization and can run on both Map-Reduce and
Storm. Compared to Spark and Flink, the Summingbird
API is intentionally more restrictive to facilitate
optimization at run-time. The main shortcoming of all
these API-based approaches is their inability to analyze
the functional arguments of their high-level operations
at run-time to do complex optimizations.

Vertex-centric graph-parallel programming is a new
popular framework for large-scale graph processing. It
was introduced by Google’s Pregel [28] but is now
available by many open-source projects, such as Apache
Giraph and Spark’s GraphX. Most of these frameworks
are based on the Bulk Synchronous Parallelism (BSP)
programming model. VERTEXICA [26] and Grail [16]
provide the same vertex-centric interface as Pregel but,
instead of a distributed file system, they use a relational
database to store the graph and the exchanged messages
across the BSP supersteps. Unlike Grail, which can run
on a single server only, VERTEXICA can run on multiple
parallel machines connected to the same database server.
Such configuration may not scale out very well because
the centralized database may become the bottleneck of
all the data traffic across the machines. Although DIQL
is a general-purpose DISC query system, graph queries
in DIQL are expressed using SQL-like syntax since
graphs are captured as regular distributed collections.
These queries are translated to distributed self-joins over
the graph data. In [17], we proved that the monoid
algebra can simulate any BSP computation (including
vertex-centric parallel programs) efficiently, requiring
the same amount of data shuffling as a typical BSP
implementation.

DryadLINQ [37] is a programming model for large
scale data-parallel computing that translates programs
expressed in the LINQ programming model to Dryad,

39

Open Journal of Big Data (OJBD), Volume 5, Issue 1, 2019

which is a distributed execution engine for data-parallel
applications. Like DIQL, LINQ is a statically strongly
typed language and supports a declarative SQL-like
syntax. Unlike DIQL, though, the LINQ query syntax is
very limited and has limited support for query nesting.
DryadLINQ allows programmers to provide manual
hints to guide optimization. Currently, it performs static
optimizations based on greedy heuristics only, but there
are plans to implement cost-based optimizations in the
future.

Apache Calcite [9] is a widely adopted relational
query optimizer with a focus on flexibility, adaptivity,
and extensibility. It is used for query optimization by
a large number of open-source data-centric frameworks,
including many DISC systems, such as Hive, Spark,
Storm, and Flink. Although it can be adapted to work
with many different platforms, its data model is purely
relational with very little support for nested collections
(it only supports indexing on inner collections), while its
algebra is purely relational with no support for nested
queries, such as, a query in a filter predicate.

There are some recent proposals for speeding up query
plan interpretation in Volcano-style iterator-based query
processing engines, used by many relational database
systems, especially for main memory database systems
for which CPU cost is important. Some of these systems
are using a compiled execution engine to avoid the
interpretation cost of algebraic expressions in a query
plan. The HyPer database system [29], for example,
translates algebraic expressions in a query to low-level
LLVM code on the fly, so that the plan iterators are
evaluated in a push-based fashion using loops. Instead
of generating low-level code at once during the early
stages of compilation, LegoBase [27] produces low-level
C code in stages. It uses generative metaprogramming
in Scala to take advantage of the type system of the
language to check the correctness of the generated
code, and to allow optimization and recompilation of
code at various execution stages, including at run-
time. Compared to our work, which also generates
type-correct code at compile time, their focus is in the
relational model and SQL, while ours is in a nested data
model and complex nested queries, and their target is
relational engines, while ours is DISC APIs.

Our work on embedded DSLs has been inspired
by Emma [2, 3]. Unlike our work, Emma does not
provide an SQL-like query syntax; instead, it uses
Scala’s for-comprehensions to query datasets. These for-
comprehensions are optimized and translated to abstract
dataflows at compile-time, and these dataflows are
evaluated at run-time using just-in-time code generation.
Using the host language syntax for querying allows
a deeper embedding of DSL code into the host
language but it requires that the host language supports

meta-programming and provides a declarative syntax
for querying collections, such as for-comprehensions.
Furthermore, Scala’s for-comprehensions do not provide
a declarative syntax for group-by. Emma’s core primitive
for data processing is the fold operation over the union-
representation of bags, which is equivalent to a bag
homomorphism. The fold well-definedness conditions
are similar to the preconditions for bag homomorphisms.
Scala’s for-comprehensions are translated to monad
comprehensions, which are desugared to monad
operations, which, in turn, are expressed in terms of fold.
Other non-monadic operations, such as aggregations,
are expressed as folds. Emma also provides additional
operations, such as groupBy and join, but does not
provide algebraic operations for sorting, outer-join
(needed for non-trivial query unnesting), and repetition
(needed for iterative workflows). Unlike DIQL, Emma
does not provide general methods to convert nested
correlated queries to joins, except for simple nested
queries in which the domain of a generator qualifier is
another comprehension.

The syntax and semantics of DIQL have been
influenced by previous work on list comprehensions with
order-by and group-by [39]. Monoid homomorphisms
and monoid comprehensions were first introduced as
a formalism for OO queries in [19] and later as a
query algebra for MRQL [18]. Our monoid algebra
extends these algebras to include group-by, coGroup,
and order-by operations. Many other algebras and
calculi are based on monads and monad comprehensions.
Monad comprehensions have a number of limitations,
such as inability to capture grouping and sorting on
bags. Monads also require various extensions to capture
aggregations and heterogeneous operations, such as,
converting a list to a bag. Monoids on the other
hand can naturally capture aggregations, ordering, and
group-by without any extension. Many other algebras
and calculi in related work are based on monad
comprehensions [38]. In an earlier work [17], we have
shown that monoid comprehensions are a better formal
basis for practical DISC query languages than monad
comprehensions.

The syntax of DIQL is based on the syntax of
MRQL [18], which is a query language for large-scale,
distributed data analysis. The design of MRQL, in
turn, has been influenced by XQuery and ODMG OQL,
although it uses SQL-like syntax. Unlike MRQL, DIQL
allows general Scala patterns and expressions in a query,
it is more tightly integrated with the host language, and it
is optimized and compiled to byte code at compile-time,
instead of run-time.

40

L. Fegaras: Compile-Time Query Optimization for Big Data Analytics

3 DIQL: A DATA-INTENSIVE QUERY
LANGUAGE

This section presents the detailed syntax of DIQL.
As an example of a DIQL query evaluated on Spark,
consider matrix multiplication. We can represent a
sparse matrix M as a distributed collection of type
RDD[(Double,Int,Int)] in Spark, so that a triple (v, i, j)
in this collection represents the matrix element v =
Mij . Then the matrix multiplication between two sparse
matrices X and Y can be expressed as follows in DIQL:

Query A:
select (+/z, i, j)
from (x, i, k) <− X, (y, k , j) <− Y, z = x ∗ y
where k == k
group by (i, j)

where X and Y are embedded Scala variables of type
RDD[(Double,Int,Int)]. This query retrieves the values
Xik ∈ X and Ykj ∈ Y for all i, j, k, and sets z = Xik ∗
Ykj . The group-by operation lifts each pattern variable
defined before the group-by (except the group-by keys)
from some type t to a bag of t, indicating that each
such variable must now contain all the values associated
with the same group-by key value. Consequently, after
we group the values by the matrix indexes i and j, the
variable z is lifted to a bag of numerical valuesXik∗Ykj ,
for all k. Hence, the aggregation +/z will sum up all the
values in the bag z, deriving

∑
kXik ∗ Ykj for the ij

element of the resulting matrix.
As another example, consider the matrix addition

between the two sparse matrices X and Y . Given
that missing values in sparse matrices correspond to
zero values, matrix addition should be expressed in a
relational query as a full outer join, not an inner join.
Instead, this operation is specified as follows in DIQL:

Query B:
select (+/(x++y), i, j)
from (x, i, j) <− X group by (i, j)
from (y, i , j) <− Y group by (i , j)

Each of the two group-by clauses in this query groups
only the variables in their associated from-clause: X
values are grouped by (i, j) and Y values are grouped by
(i , j). Furthermore, the two group keys are implicitly
set to be equal, (i, j) = (i , j). That is, after X
is grouped by (i, j) and Y is grouped by (i , j), the
resulting grouped datasets are joined over their group-
by key. That is, this query is equivalent to a coGroup
operation found in many DISC APIs. The semantics of
this double group-by query is very similar to that of the
single group-by: The first (resp. second) group-by lifts
the variable x (resp. y) to a bag of Double, which may

be either empty or singleton. That is, the concatenation
x++y may contain one or two values, which are added
together in +/(x++y). In contrast to a relational outer
join, this query does not introduce any null values since
it is equivalent to a coGroup operation.

Many emerging Scala-based APIs for distributed
processing, such as the Scala-based Hadoop Map-
Reduce frameworks Scalding and Scrunch, and the
Map-Reduce alternatives Spark and Flink, are based
on distributed collections that resemble regular Scala
data collections as they support similar methods. Many
Big Data analysis applications need to work on nested
collections, because, unlike relational databases, they
need to analyze data in their native format, as they
become available, without having to normalize these data
into flat relations first. While outer collections need
to be distributed in order to be processed in parallel,
the inner sub-collections must be stored in memory and
processed as regular Scala collections. Processing both
kinds of collections, distributed and in-memory, using
the same syntax or API simplifies program development
considerably. The DIQL syntax treats distributed
and in-memory collections in the same way, although
DIQL optimizes and compiles the operations on these
collections differently. The DIQL data model supports
four collection types: a bag, which is an unordered
collection (a multiset) of values stored in memory, a
DataBag, which is a bag distributed across the worker
nodes of a computer cluster, a list, which is an ordered
collection of values stored in memory, and a DataList,
which is an ordered DataBag.

For example, let R and S be two distributed
collections in Spark of type RDD[(Long,Long)] and
RDD[(Long,Long,Long)], respectively. Then the
following Scala code fragment that contains a DIQL
query joins the datasets R and S using a nested query:

Query C:
q(”””

select (x, +/(select b
from (a,b,) <− S

where a==y))
from (x,y) <− R

”””)

In SQL, this query would have been written as a left-
outer join between R and S, followed by a group-by with
an aggregation. The DIQL syntax can be embedded in a
Scala program using the Scala macro q(” ” ” ... ” ” ”), which
is optimized and compiled to byte code at compile-
time. This byte code in turn is embedded in the byte
code generated by the rest of the Scala program. That
is, all type errors in the DIQL queries are captured at
compile-time. Furthermore, a query can see any active
Scala declaration in the current Scala scope, including

41

Open Journal of Big Data (OJBD), Volume 5, Issue 1, 2019

Table 1: The DIQL syntax

pattern: p ::= any Scala pattern, including a refutable pattern

qualifier: q ::= p <− e generator over a dataset
| p <−− e generator over a small dataset
| p = e binding

qualifiers: q ::= q1, . . . , qn sequence of qualifiers

aggregation: ⊕ ::= + | ∗ | && | || | count | avg | min | max | . . .

expression: e ::= any Scala functional expression
| select [distinct] e′ from q [where ep] select-query

[group by p [: e] [cg] [having eh]]
[order by es]

| repeat p = e step e′ [where ep] [limit n] repetition
| some q : ep existential quantification
| all q : ep universal quantification
| let p = e1 in e2 let-binding
| e1 opr e2 opr is a set operation: union,

intersect, minus, or member
| ⊕/e aggregation

co-group: cg ::= from q [where ep] group by p [: e] the right branch of a coGroup

the results of other queries if they have been assigned to
Scala variables.

The DIQL syntax is Scala syntax extended with
the DIQL select-query syntax (among other things), as
is described in Table 1. It uses a purely functional
subset of Scala, which intentionally excludes blocks,
declarations, iterations (such as while loops), and
assignments, because imperative features are hard to
optimize. Instead, DIQL provides special syntax for
let-binding and iteration. DIQL queries can use any
Scala pattern to pattern-match and deconstruct data. The
qualifier (x,y)<− R in Query C traverses the dataset R
one element at a time and matches the element with the
Scala pattern (x,y), which binds the pattern variables x
and y to the first and second components of the matched
element. That is, x and y have type Long. The qualifier
(a,b,)<− S in the inner select-query, on the other hand,
traverses the dataset S one element at a time and matches
the element with the Scala pattern (a,b,), which binds
the pattern variables a and b to the first and second
components of the matched element. The underscore
in the pattern matches any value but the matched value
is ignored. That is, Query C joins R with S on their
second components using a nested query so that the
query result will have exactly one value for each element

in R even when this element has no match in S. The
aggregation +/(. . .) in the outer query sums up all the
values returned by the inner query. The query result is
of type RDD[(Long,Long)] and can be embedded in any
place in a Scala program where a value of this type is
expected.

The Scala code for Query C generated by the DIQL
compiler is equivalent to a Spark cogroup method call
that joins the R with S:

R.map{ case r@(x,y) => (y,r) }
.cogroup(S.map{ case s@(a,b,) => (b,s) })
.flatMap{ case (k,(rr ,ss))

=> rr.map{ case (x,y)
=> (x, ss.map{ case (a,b,) => b }

.reduce(+)) } }

where the Scala pattern binder x@pmatches a value with
the pattern p and binds x to that value. The map calls
on R and S prepare these datasets for the cogroup join
by selecting the second component of their tuples as the
join key. The flatMap call after cogroup computes the
query result from the sequences rr and ss of all values
from R and S that are joined over the same key k. This
query cannot be expressed using a Spark join operation
because it will loose all values from R that are not joined
with any value from S.

As another example, consider the following Scala

42

L. Fegaras: Compile-Time Query Optimization for Big Data Analytics

class that represents a graph node:

case class Node (id: Long, adjacent: List [Long])

where adjacent contains the ids of the node’s neighbors.
Then, a graph in Spark can be represented as a distributed
collection of type RDD[Node]. Note that the inner
collection of type List[Long] is an in-memory collection
since it conforms to the class Traversable. The following
DIQL query constructs the graph RDD from a text file
stored in HDFS and then transforms this graph so that
each node is linked with the neighbors of its neighbors:

Query D:
let graph = select Node(id = n, adjacent = ns)

from line <− sc.textFile(”graph.txt ”),
n ::ns = line . split (” , ”). toList

.map(.toLong)
in select Node(x, ++/ys)

from Node(x,xs) <− graph,
a <− xs,
Node(y,ys) <− graph

where y == a group by x

In the previous DIQL query, the let-binding binds the
new variable graph to an RDD of type RDD[Node],
which contains the graph nodes read from HDFS, mixing
DIQL syntax with Spark API methods. The DIQL type-
checker will infer that the type of sc.textFile(”graph.txt”)
is RDD[String], and, hence, the type of the query variable
line is String. Based on this information, the DIQL type-
checker will infer that the type of n:ns in the pattern
of the let-binding is List[Long], which is a Traversable
collection. The select-query in the body of the let-
binding expresses a self-join over graph followed by a
group-by. The pattern Node(x,xs) matches one graph
element at a time (a Node) and binds x to the node id and
xs to the adjacent list of the node. Hence, the domain of
the second qualifier a<− xs is an in-memory collection
of type List[Long], making ‘a’ a variable of type Long.
The graph is traversed a second time and its elements
are matched with Node(y,ys). Thus, this select-query
traverses two distributed and one in-memory collections.

In general, as we can see in Table 1, a select-query
may have multiple qualifiers in the ‘from’ clause of the
query. A qualifier p<− e, where e is a DIQL expression
that returns a data collection and p is a Scala pattern
(which can be refutable - i.e., it may fail to match),
iterates over the collection and, each time, the current
element of the collection is pattern-matched with p,
which, if the match succeeds, binds the pattern variables
in p to the matched components of the element. The
qualifier p<−− e does the same iteration as p<− e but it
also gives a hint to the DIQL optimizer that the collection
e is small (can fit in the memory of a worker node) so that
the optimizer may consider using a broadcast join. The
binding p = e pattern-matches the pattern p with the

value returned by e and, if the match succeeds, binds the
pattern variables in p to the matched components of the
value e. The variables introduced by a qualifier pattern
can only be accessed by the remaining qualifiers and the
rest of the query. The group-by syntax is explained next.

Unlike other query languages, patterns are essential
to the DIQL group-by semantics; they fully determine
which parts of the data are lifted to collections after the
group-by operation. The group-by clause has syntax
group by p:e. It groups the query result by the key
returned by the expression e. If e is missing, it is taken to
be equal to p. For each group-by result, the pattern p is
pattern-matched with the key, while any pattern variable
in the query that does not occur in p is lifted to an in-
memory collection that contains all the values of this
pattern variable associated with this group-by result. For
our Query D, the query result is grouped by x, which is
both the pattern p and the group-by expression e. After
group-by, all pattern variables in the query except x,
namely xs, y, and ys, are lifted to collections.

In particular, ys of type List[Long] is lifted to a
collection of type List[List[Long]], which is a list that
contains all ys associated with a particular value of the
group-by key x. Thus, the aggregation ++/ys will merge
all values in ys using the list append operation, ++,
yielding a List[Long]. In general, the DIQL syntax ⊕/e
can use any Scala operation ⊕ of type (T, T) → T to
reduce a collection of T (distributed or in-memory) to
a value T . The same syntax is used for the avg and
count operations over a collection, e.g., avg/s returns the
average value of the collection of numerical values s.
The existential quantification some q : ep is syntactic
sugar for ||/(select ep from q), that is, it evaluates the
predicate ep on each element in the collection resulted
from the qualifiers q and returns true if at least one result
is true. Universal quantification does a similar operation
using the aggregator &&, that is, it returns true if all the
results of the predicate ep are true.

The Scala code for the second select-query of Query D
generated by the DIQL compiler is equivalent to a call to
the Spark cogroup method that joins the graph with itself,
followed by a reduceByKey:

graph.flatMap{case n@Node(x,xs) => xs.map{a => (a,n)}}
.cogroup(graph.map{ case m@Node(y,ys) => (y,m) })
.flatMap{ case (,(ns,ms))

=> ns.flatMap{ case Node(x,xs)
=> xs.flatMap{ a => ms.map{ case Node(y,ys)

=> (x,ys) } } } }
.reduceByKey(++).map{ case (x,s) => Node(x,s) }

The co-group clause cg in Table 1 represents the
right branch of a coGroup operation (the left branch is
the first group-by clause). As explained in Query B
(matrix addition), each of the two group-by clauses
lifts the pattern variables in their associated from-clause

43

Open Journal of Big Data (OJBD), Volume 5, Issue 1, 2019

qualifiers and joins the results on their group-by keys.
Hence, the rest of the query can access the group-by keys
from the group-by clauses and the lifted pattern variables
from both from-clauses. The co-group clause captures
any coGroup operation, which is more general than a
join. That is, using the co-group syntax one can capture
any inner and outer join without introducing any null
values and without requiring 3-value logic to evaluate
conditions.

The order-by clause of a select-query has syntax
order by es, which sorts the query result by the sorting
key es. One may use the pre-defined method desc to
coerce a value to an instance of the class Inv, which
inverts the total order of an Ordered class from ≤ to ≥.
For example,

select p
from p@(x,y) <− S
order by (x desc, y)

sorts the query result by major order x (descending) and
minor order y (ascending).

Finally, to capture data analysis algorithms that
require iteration, such as data clustering and PageRank,
DIQL provides a general syntax for repetition:

repeat p = e step e′ where ep limit n

which does the assignment p = e′ repeatedly, starting
with p = e, until either the condition ep becomes false
or the number of iterations has reached the limit n. In
Scala, this is equivalent to the following code, where x
is the result of the repetition:

var x = e
for (i <− 0 to n)

x match { case p if ep => x = e′

case => break }

As we can see, the variables in p can be accessed in e′,
allowing us to calculate new variable bindings from the
previous ones. The type of the result of the repetition
can be anything, including a tuple with distributed and
in-memory collections, counters, etc.

For example, the following query implements the k-
means clustering algorithm by repeatedly deriving k new
centroids from the previous ones:

Query E:
repeat centroids = Array(...)
step select Point(avg/x, avg/y)

from p@Point(x,y) <− points
group by k: (select c from c <− centroids

order by distance(c,p)). head
limit 10

where points is a distributed dataset of points on the X-Y
plane of type RDD[Point], where Point is the Scala class:

case class Point (X: Double, Y: Double)

centroids is the current set of centroids (k cluster
centers), and distance is a Scala method that calculates
the Euclidean distance between two points. The initial
value of centroids (the ... value) is an array of k initial
centroids (omitted here). The inner select-query in the
group-by clause assigns the closest centroid to a point p.
The outer select-query in the repeat step clusters the data
points by their closest centroid, and, for each cluster, a
new centroid is calculated from the average values of its
points. That is, the group-by query generates k groups,
one for each centroid.

For a group associated with a centroid c, the variable
p is lifted to a Iterable[Point] that contains the points
closest to c, while x and y are lifted to Iterable[Double]
collections that contain the X- and Y -coordinates of
these points. DIQL implements this query in Spark
as a flatMap over points followed by a reduceByKey.
The Spark reduceByKey operation does not materialize
the Iterable[Double] collections in memory; instead, it
calculates the avg aggregations in a stream-like fashion.
DIQL caches the result of the repeat step, which is an
RDD, into an array, because it has decided that centroids
should be stored in an array (like its initial value).
Furthermore, the flatMap functional argument accesses
the centroids array as a broadcast variable, which is
broadcast to all worker nodes before the flatMap.

4 THE MONOID ALGEBRA

The main goal of our work is to translate DIQL queries
to efficient programs that can run on various DISC
platforms. Experience with the relational database
technology has shown that this translation process can be
simplified if we first translate the queries to an algebraic
form that is equivalent to the query and then translate
the algebraic form to code consisting of calls to API
operations supported by the underlying DISC platform.

Our algebra consists of a very small set of operations
that capture all the DIQL features and can be translated
to efficient byte code that uses the Scala-based APIs of
DISC platforms. We intentionally use only one higher-
order homomorphic operation in our algebra, namely
flatMap, to simplify normalization and optimization of
algebraic terms. The flatMap operation captures data
parallelism, where each processing node evaluates the
same code (the flatMap functional argument) in parallel
on its own data partition. The groupBy operation, on
the other hand, re-shuffles the data across the processing
nodes based on the group-by key, so that data with the
same key are sent to the same processing node. The
coGroup operation is a groupBy over two collections,
so that data with the same key from both collections

44

L. Fegaras: Compile-Time Query Optimization for Big Data Analytics

Table 2: Some collection monoids

~ T (α) 1~ U~(x) properties
list ++ [α] [] [x]
bag] {{α}} {{ }} {{x}} commutative
set ∪ {α} { } {x} commutative

and idempotent

are sent to the same node to be joined. By moving
all computations to flatMap, our algebra detaches data
distribution (specified by groupBy and coGroup) from
parallel data processing (specified by flatMap). This
separation simplifies program optimization considerably.
For example, as we will see in Section 6.2, query
unnesting can be done using just one rule, because there
is only one place where a nested query can occur: at the
flatMap functional argument.

This section extends our previous work on the monoid
algebra [17] by improving the semantics of some
operations (such as, orderBy and repeat) and introducing
more operations (such as, the cross product).

Collection monoids and homomorphisms. In
abstract algebra, a monoid is an algebraic structure
equipped with a single associative binary operation and
a single identity element. More formally, given a set S,
a binary operator ⊗ from S × S to S, and an element
e ∈ S, the structure (S,⊗, e) is called a monoid if ⊗ is
associative and has an identity e:

x⊗ (y ⊗ z) = (x⊗ y)⊗ z for all x, y, z ∈ S
x⊗ e = x = e⊗ x for all x ∈ S

Monoids may satisfy additional algebraic laws. The
monoid (S,⊗, e) is commutative if x ⊗ y = y ⊗ x, for
all x, y ∈ S. It is idempotent if x ⊗ x = x, for all
x ∈ S. Given that a monoid (S,⊗, e) can be identified
by its operation ⊗, it is simply referred to as ⊗, with 1⊗
to denote its identity e. Given two monoids ⊗ and ⊕, a
monoid homomorphism from⊗ to⊕ is a functionH that
respects the monoid structure:

H(X ⊗ Y) = H(X) ⊕ H(Y)

H(1⊗) = 1⊕

A data collection, such as a list, a set, or a bag, of type
T (α), for some type α, can be captured as a collection
monoid ~, which is a monoid equipped with a unit
injection function U~ of type α→ T (α). Table 2 shows
some well-known collection types captured as collection
monoids.

For example, {{1}}] {{2}}] {{1}} constructs the bag
{{1, 2, 1}}. A collection homomorphism is a monoid
homomorphism H(⊕, f) from a collection monoid ⊗ to

a monoid ⊕ defined as follows, for H = H(⊕, f):

H(X ⊗ Y) = H(X) ⊕ H(Y)

H(U⊗(x)) = f(x)

H(1⊗) = 1⊕

For example, H(+, λx. 1)X over the bag X returns
the number of elements in X . Not all collection
homomorphisms are well-behaved; some may actually
lead to contradictions. In general, a collection
homomorphism from a collection monoid⊗ to a monoid
⊕ is well-behaved if ⊕ satisfies all the laws that
⊗ does (the laws in our case are commutativity and
idempotence). For example, converting a list to a bag
is well-behaved, while converting a bag to a list and set
cardinality are not. For example, set cardinality would
have led to the contradiction: 2 = H(+, λx. 1) ({a} ∪
{a}) = H(+, λx. 1) {a} = 1.

All unary operations in the monoid algebra are
collection homomorphisms. To capture binary equi-
joins, we define binary functions that are homomorphic
on both inputs. A binary homomorphism H from the
collection monoids ⊕ and ⊗ to the monoid � satisfies,
for all X , X ′, Y , and Y ′:

H(X ⊕X ′, Y ⊗ Y ′) = H(X,Y) � H(X ′, Y ′)

One such function is

H(X,Y) = H(�, fx)(X)�H(�, fy)(Y)

for some functions fx and fy that satisfy:

fx(x)� fy(y) = fy(y)� fx(x) for all x and y

The Monoid Algebra. The DIQL data model
supports four collection types: a bag, which is an
unordered collection (a multiset) of values stored in
memory, a DataBag, which is a bag distributed across
the worker nodes of a computer cluster, a list, which
is an ordered collection in memory, and a DataList,
which is an ordered DataBag. Both bags and lists
are implemented as Scala Traversable collections, while
both DataBags and DataLists are implemented as RDDs
in Spark, DataSets in Flink, and TypedPipes in Scalding.
The DIQL type inference engine can distinguish bags
from lists and DataBags from DataLists by just looking
at the algebraic operations: the orderBy operation always
returns a list or a DataList, while the order is destroyed
by all DIQL algebraic operations except flatMap. To
simplify the presentation of our algebra, we present only
one variation of each operation, namely one that works
on bags. The flatMap, for example, has many variations:
from a bag to a bag using a functional that returns a
bag, from a list to list using a functional that returns a

45

Open Journal of Big Data (OJBD), Volume 5, Issue 1, 2019

list, from a DataBag to a DataBag using a functional
that returns a bag, etc, but some combinations are not
permitted as they are not well-behaved, such as a flatMap
from a bag to a list.

The flatMap operation. The first operation, flatMap,
generalizes the select, project, join, cross, and unnest
operations of the nested relational algebra. Given two
arbitrary types α and β, the operation flatMap(f,X)
over a bag X of type {{α}} applies the function f of
type α → {{β}} to each element of X , yielding one bag
for each element, and then merges these bags to form a
single bag of type {{β}}. It is expressed as follows as
a collection homomorphism from the monoid] to the
monoid]:

flatMap(f,X) , H(], f)X

which is equivalent to the following equations:

flatMap(f,X] Y) = flatMap(f,X)
]flatMap(f, Y)

flatMap(f, {{a}}) = f(a)
flatMap(f, {{ }}) = {{ }}

Many common distributed queries can be written using
flatMaps, including the equi-join X ./p Y :

flatMap(λx. flatMap(λy. if p(x, y) then {{(x, y)}}
else {{ }},

Y),
X)

The flatMap operation is the only higher-order
homomorphic operation in the monoid algebra. Its
functional argument can be any Scala function,
including a partial function with a refutable pattern. In
that case, the second flatMap equation becomes a pattern
matching that returns an empty bag if the refutable
pattern fails to match.

flatMap(λp. e, {{a}})
= amatch { case p => e; case => {{ }} }

where λp. e is an anonymous function, expressed as p⇒
e in Scala, where p is a Scala pattern and e is a Scala
expression.

The groupBy operation. Given a type κ that
supports value equality (=), a type α, and a bag X of
type {{(κ, α)}}, the operation groupBy(X) groups the
elements of X by their first component (the group-by
key) and returns a bag of type {{(κ, {{α}})}} (a key-value
map, also known as an indexed set). It can be expressed
as follows as a collection homomorphism:

groupBy(X) , H(m, λ(k, v). {{(k, {{v}})}})X

which is equivalent to the following equations:

groupBy(X] Y) = groupBy(X) m groupBy(Y)
groupBy({{(k, v)}}) = {{(k, {{v}})}}

groupBy({{ }}) = {{ }}

The monoid m, called indexed set union, is a full outer
join that merges groups associated with the same key
using bag union. More specifically, X m Y is a full outer
join between X and Y that can be defined as follows
using a set-former notation on bags:

X m Y
= { (k, a] b) ||| (k, a) ∈ X, (k′, b) ∈ Y, k = k′ }
] { (k, a) ||| (k, a) ∈ X, ∀(k′, b) ∈ Y : k′ 6= k }
] { (k, b) ||| (k, b) ∈ Y, ∀(k′, a) ∈ X : k′ 6= k }

The first term joins X and Y on the group-
by key and unions together the groups associated
with the same key, the second term returns the
elements of X not joined with Y , and the third
term returns the elements of Y not joined with X .
For example, groupBy({{(1, “a”), (2, “b”), (1, “c”)}})
returns {{(1, {{“a”, “c”}}), (2, {{“b”}})}}.

The orderBy operation. Given a type κ that supports
a total order (≤), a type α, and a bagX of type {{(κ, α)}},
the operation orderBy(X) returns a list of type [(κ, α)]
sorted by the order-by key κ. It is expressed as follows
as a collection homomorphism:

orderBy(X) , H(⇑, λ(k, v). [(k, v)])X

which is equivalent to the following equations:

orderBy(X] Y) = orderBy(X) ⇑ orderBy(Y)
orderBy({{(k, v)}}) = [(k, v)]

orderBy({{ }}) = []

The monoid ⇑ merges two sorted sequences of type
[(κ, α)] to create a new sorted sequence. It can be
expressed as follows using a set-former notation on lists
(list comprehensions):

(X1++X2) ⇑ Y = X1 ⇑ (X2 ⇑ Y)

[(k, v)] ⇑ Y = [(k′, w) ||| (k′, w) ∈ Y, k′ < k]
++ [(k, v)]
++ [(k′, w) ||| (k′, w) ∈ Y, k′ ≥ k]

[] ⇑ Y = Y

The second equation inserts the pair (k, v) into the sorted
list Y , deriving a sorted list.

The reduce operation. Aggregations are captured
by the collection homomorphism reduce(⊕, X), which
aggregates a bagX of type {{α}} using the non-collection
monoid ⊕ of type α:

reduce(⊕, X) , H(⊕, λx. x)X

46

L. Fegaras: Compile-Time Query Optimization for Big Data Analytics

For example, reduce(+, {{1, 2, 3}}) = 6.
The coGroup operation. Although general joins

and cross products can be expressed using nested
flatMaps, we provide a binary homomorphism that
captures lossless equi-joins and outer joins. The
operation coGroup(X,Y) between a bag X of type
{{(κ, α)}} and a bag Y of type {{(κ, β)}} over their first
component of type κ (the join key) returns a bag of type
{{(κ, ({{α}}, {{β}}))}}. It is homomorphic on both inputs
as it satisfies the law:

coGroup(X1]X2, Y1] Y2)
= coGroup(X1, Y1) l coGroup(X2, Y2)

where the monoid lmerges pairs of bags associated with
the same key.

X l Y = { (k, (a1] b1, a2] b2))

||| (k, (a1, a2)) ∈ X, (k′, (b1, b2)) ∈ Y, k = k′ }
] { (k, p) ||| (k, p) ∈ X, ∀(k′, q) ∈ Y : k′ 6= k }
] { (k, q) ||| (k, q) ∈ Y, ∀(k′, p) ∈ X : k′ 6= k }

For example, coGroup({{(1, 10), (2, 20), (1, 30)}},
{{(1, 40), (2, 50), (3, 60)}}) = {{(1, ({{10, 30}}, {{40}})),
(2, ({{20}}, {{50}})), (3, ({{ }}, {{60}}))}}.

The cross product operation, cross(X,Y) is the
Cartesian product betweenX of type {{α}} and Y of type
{{β}} that returns {{(α, β)}}. Unlike coGroup, it is not a
monoid homomorphism:

cross(X1]X2, Y1] Y2)
= cross(X1, Y1)] cross(X1, Y2)
] cross(X2, Y1)] cross(X2, Y2)

The repeat operation. Given a value X of type
α, a function f of type α→ α, a predicate p of
type α→ boolean, and a counter n, the operation
repeat(f, p, n,X) returns a value of type α. It is defined
as follows:

repeat(f, p, n,X) , if n ≤ 0 ∨ ¬p(X)
then X
else repeat(f, p, n− 1, f(X))

The repetition stops when the number of remaining
repetitions is zero or the result value fails to satisfy the
condition p.

5 TRANSLATION OF DIQL TO THE MONOID
ALGEBRA

Table 3 presents the rules for translating DIQL queries
to the monoid algebra. The form QJ e K translates the
DIQL syntax of e (defined in Table 1) to the monoid
algebra. The notation λp.e, where p is a Scala pattern, is
an anonymous function f defined as f(p) = e. Although

the rules in Table 3 translate join queries to nested
flatMaps, in Section 6.2, we present a general method
for deriving joins from nested flatMaps.

The order that select-queries are translated in Table 3
is as follows: the distinct clause is translated first, then
the order-by clause, then the group-by/having clauses,
then the ‘from’ clause (the query qualifiers), then the
‘where’ clause, and finally the select header (the query
result). Rule (1) translates a distinct query to a group-
by that removes duplicates by grouping the query result
values by the entire value. Rule (2) translates an order-by
query to an orderBy operation.

Rules (3) and (4) translate group-by queries. Recall
that, after group-by, every pattern variable in a query
except the group-by pattern variables, are lifted to a
collection of values to contain all bindings of this
variable associated with a group. To specify these
bindings, we use the notation Vp

q to denote the flat tuple
that contains all pattern variables in the sequence of
qualifiers q that do not appear in the group-by pattern
p. It is defined as Vp

q = (v1, . . . , vn) (the order of
v1, . . . , vn is unimportant), where vi ∈ (VJ q K−PJ p K)
and V is defined as follows:

VJ p <− e, q K = PJ p K ∪ VJ q K
VJ p <−− e, q K = PJ p K ∪ VJ q K
VJ p = e, q K = PJ p K ∪ VJ q K

where PJ p K is the set of pattern variables in the pattern
p. As a simplification, we lift only the variables that are
accessed by the rest of the query, since all others are
ignored. The query select (e,Vp

q) from q in Rules (3)
and (4) is the query before the group-by operation that
returns a collection of pairs that consist of the group-
by key and the non-group-by variables Vp

q . Hence,
after groupBy, the non-group-by variables are grouped
into a collection to be used by the rest of the query.
The operation lift((v1, . . . , vn), s, e), where s is the
collection that contains the values of the non-group-by
variables in the current group, lifts each variable vi to a
collection by rebinding it to a collection derived from s
as flatMap(λ(v1, . . . , vn). {{vi}}, s).

Rule (5) translates a generator p <− e to a flatMap.
Rule (6) is similar, but embeds the annotation ‘small’
(which is the identity operation), to be used by the
optimizer as a hint about the collection size. Rule (7)
gives the translation of a let-binding for an irrefutable
pattern p. For a refutable p, the translation is:

QJ e K match { case p => QJ select e from q K
case => {{ }} }

Rules (8) and (9) are the last rules to be applied
when all qualifiers in the query have been translated,
and hence, the ‘from’ clause is empty. Rule (8)

47

Open Journal of Big Data (OJBD), Volume 5, Issue 1, 2019

Table 3: DIQL query translation rules

QJ select distinct e′ from . . . K = flatMap(λ(k, s). {{k}}, groupBy(QJ select (e′, ()) from . . . K)) (1)

QJ select e′ from . . . order by e K = flatMap(λ(k, v). {{v}}, orderBy(QJ select (e, e′) from . . . K)) (2)

QJ select e′ from q group by p : e
having eh K

= flatMap(λ(p, s). lift(Vp
q , s, if (QJ eh K) then {{QJ e′ K}} else {{ }}),

groupBy(QJ select (e,Vp
q) from q K)) (3)

QJ select e′ from q group by p : e K = flatMap(λ(p, s). lift(Vp
q , s, {{QJ e′ K}}),

groupBy(QJ select (e,Vp
q) from q K)) (4)

QJ select e′ from p <− e, q K = flatMap(λp.QJ select e′ from q K, QJ e K) (5)

QJ select e′ from p <−− e, q K = flatMap(λp.QJ select e′ from q K, small(QJ e K)) (6)

QJ select e′ from p = e, q K = let p = QJ e K inQJ select e′ from q K (7)

QJ select e′ from where ep K = if (QJ ep K) then {{QJ e′ K}} else {{ }} (8)

QJ select e′ from K = {{QJ e′ K}} (9)

QJ repeat p = e step e′

where ep limit n K
= repeat(λp.QJ e′ K, λp.QJ ep K, n, QJ e K) (10)

QJ some q : ep K = reduce(||, QJ select ep from q K) (11)

QJ all q : ep K = reduce(&&, QJ select ep from q K) (12)

QJ⊕/e K = reduce(⊕,QJ e K) (13)

QJ let p = e1 in e2 K = let p = QJ e1 K in QJ e2 K (14)

QJ e1 union e2 K = QJ e1 K] QJ e2 K (15)

QJ e1 intersect e2 K = QJ select x from x<− e1 where some y<− e2 : x == y K (16)

QJ e1 minus e2 K = QJ select x from x<− e1 where all y<− e2 : x != y K (17)

QJ e1 member e2 K = QJ some y<− e2 : y == e1 K (18)

translates the ‘where’ clause of a query with an empty
‘from’ clause. Rule (10) translates the repeat syntax
to the repeat operation. Rules (11) through (13)
translate accumulations to reduce operations. Rule (14)
translates a DIQL let-binding to a Scala let-binding.
Finally, Rules (15) through (18) translate bag union, bag
intersection, bag difference, and bag membership to a
select query.

For example, in Query A (matrix multiplication), the
only variable that needs to be lifted after group-by is z,
since it is the only one used by the rest of the query.
That is, Vp

q = (z). Hence, the matrix multiplication is
translated as follows:

QJ select (+/z, i, j)
from (x, i, k)<−X, (y, k , j)<−Y, z = x ∗ y
where k == k group by (i, j) K

= flatMap(λ((i, j), s). let z = flatMap(λz. {{z}}, s)
in {{QJ (+/z, i, j) K}}

groupBy(join))
= flatMap(λ((i, j), s). {{(reduce(+, s), i, j)}},

groupBy(join))

where join is:

QJ select ((i, j), z)
from (x, i, k)<−X, (y, k , j)<−Y, z = x ∗ y
where k == k K

= flatMap(λ(x, i, k).
flatMap(λ(y, k , j).

let z = x ∗ y
in if (k == k) then {{((i, j), z)}}

else {{ }},
Y), X)

= flatMap(λ(x, i, k).
flatMap(λ(y, k , j).

if (k == k) then {{((i, j), x ∗ y)}}
else {{ }},

Y), X)

We will see in Section 6.2 that join-like queries such as
this, expressed with nested flatMaps, are optimized to
coGroups.

Finally, Table 3 does not show the rules for translating
a co-group clause cg defined in Table 1. These double

48

L. Fegaras: Compile-Time Query Optimization for Big Data Analytics

group-by clauses are translating to coGroups using the
following rule:

QJ select e′ from q1 group by p1 : e1
from q2 group by p2 : e2 K

= flatMap(λ((p1, p2), (s1, s2)).
lift(Vp1

q1
, s1, lift(Vp2

q2
, s2, {{QJ e′ K}})),

coGroup(QJ select (e1,Vp1

q1
) from q1 K,

QJ select (e2,Vp2

q2
) from q2 K))

For example, for Query B (matrix addition), we have
Vp1

q1
= (x) and Vp2

q2
= (y). Consequently, Query B is

translated as follows:

flatMap(λ(((x, i, j), (y, i , j)), (s1, s2)).
let x = flatMap(λ(x, i, j). {{x}}, s1),
y = flatMap(λ(y, i , j). {{y}}, s2)

in {{(+/(x++y), i, j)}},
coGroup(A,B))

where A = QJ select ((i, j), x) from (x, i, j) <− X K
= flatMap(λ(x, i, j). {{((i, j), x)}}, X) and, similarly,
B = QJ select ((i , j), y) from (y, i , j) <− Y K
= flatMap(λ(y, i , j). {{((i , j), y)}}, Y).

6 QUERY OPTIMIZATION

Given a DIQL query, our goal is to translate it into
an algebraic form that can be evaluated efficiently in a
DISC platform. Current database technology has already
addressed this problem in the context of relational
databases. The DIQL data model and algebra though
are richer than those of a relational system, requiring
more general optimization techniques. The relational
algebra, for instance, as well as the algebraic operators
used by current relational engines, such as Calcite [9],
cannot express nested queries, such as a query inside a
selection predicate, thus requiring the query translator
to unnest queries using source-to-source transformations
before the queries are translated to algebraic terms. This
limitation may discourage language designers to support
nested queries, although they are very common in DISC
data analysis (for example, the k-means clustering query
(Query E)).

Currently, our optimizations are not based on any
cost model; instead, they are heuristics that take into
account the hints provided by the user, such as using
a <-- qualifier to traverse a small dataset. That is,
our framework tries to identify all possible joins and
convert them to broadcast joins if they are over a small
dataset, but currently, it does not optimize the join
order. In this section, we present the normalization rules
that put DIQL terms to a canonical form (Section 6.1),
a general method for query unnesting (Section 6.2),
pushing down predicates (Section 6.3), and column
pruning (Section 6.4).

6.1 Query Simplification

Cascaded flatMaps can be fused into a single nested
flatMap using the following law that is well-known in
functional PLs:

flatMap(f, flatMap(g, S))

→ flatMap(λx. flatMap(f, g(x)), S) (19)

If S is a distributed dataset, this normalization rule
reduces the number of required distributed operations
from two to one and eliminates redundant operations
if we apply further optimizations to the inner flatMap.
It generalizes well-known algebraic laws in relational
algebra, such as fusing two cascaded selections into
one. If we apply this transformation repeatedly, any
algebraic term can be normalized into a tree of groupBy,
coGroup, and cross operations with a single flatMap
between each pair of these operations. There are many
other standard normalization rules, such as projecting
over a tuple, (e1, . . . , en). i = ei, and rules that are
derived directly from the operator’s definition, such as
flatMap(f, {{a}}) = f(a).

6.2 Deriving Joins and Unnesting Queries

The translation rules from the DIQL syntax to the
monoid algebra, presented in Section 5, translate join-
like queries to nested flatMaps, instead of coGroups. In
this section, we present a general method for identifying
any possible equi-join from nested flatMaps, including
joins across deeply nested queries. (An equi-join is
a join between two datasets X and Y whose join
predicate takes the form k1(x) = k2(y), for x ∈ X
and y ∈ Y , for some key functions k1 and k2.) It
is exactly because of these deeply nested queries that
we have introduced the coGroup operation, because, as
we will see, nested queries over bags are equivalent to
outer joins. Translating nested flatMaps to coGroups is
crucial for good performance in distributed processing.
Without joins, the only way to evaluate a nested flatMap,
such as flatMap(λx. flatMap(λy. h(x, y), Y), X), in
a distributed environment, where both collections X
and Y are distributed, would be to broadcast the entire
collection Y across the processing nodes so that each
processing node would join its own partition of X with
the entire dataset Y . This is a good evaluation plan if
Y is small. By mapping a nested flatMap to a coGroup,
we create opportunities for more evaluation strategies,
which may include the broadcast solution. For example,
one good evaluation strategy for large X and Y that are
joined via the key functions k1 and k2, is to partition
X by k1, partition Y by k2, and shuffle these partitions
to the processing nodes so that data with matching keys
will go to the same processing node. This is called a

49

Open Journal of Big Data (OJBD), Volume 5, Issue 1, 2019

distributed partitioned join. While related approaches
for query unnesting [19, 23] require many rewrite rules
to handle various cases of query nesting, our method
requires only one rule and is more general as it handles
nested queries of any form and any number of nesting
levels.

Consider the following DIQL query over X and Y :

Query F:
select b
from (a,b) <− X
where b > +/(select d from (c,d) <− Y

where a==c)

One efficient method for evaluating this nested query is
to first group Y by its first component and aggregate:

Z = select (c,+/d) from (c,d) <− Y group by c

and then to join X with Z:

Query G:
select b
from (a,b) <− X, (c,sum) <− Z
where a==c && b>sum

This query though is not equivalent to the original
Query F; if an element of X has no matches in Y, then
this element will appear in the result of Query F (since
the sum over an empty bag is 0), but it will not appear in
the result of Query G (since it does not satisfy the join
condition). To correct this error, Query G should use a
left-outer join between X and Z. In other words, using the
monoid algebra, we want to translate query Query F to:

flatMap(λ(k, (xs, ys)).flatMap(λb.

if (b > reduce(+, ys))

then {{b}} else {{ }}, xs)
coGroup(flatMap(λ(a, b). {{(a, b)}}, X),

flatMap(λ(c, d). {{(c, d)}}, Y)))

That is, the query unnesting is done with a left-outer join,
which is captured concisely by the coGroup operation
without the need for using an additional group-by
operation or handling null values.

We now generalize the previous example to convert
nested flatMaps to joins. We consider patterns of
algebraic terms of the form:

flatMap(λp1. g(flatMap(λp2. e, e2)), e1) (20)

for some patterns p1 and p2, some terms e1, e2, and
e, and some term function g. (A term function is an
algebraic term that contains its arguments as subterms.)
For the cases we consider, the term e2 should not depend
on the pattern variables in p1, otherwise it would not
be a join. This algebraic term matches most pairs of
nested flatMaps on bags that are equivalent to joins,

including those derived from nested queries, such as the
previous DIQL query, and those derived from flat join-
like queries. Thus, the method presented here detects
and converts any possible join to a coGroup.

We consider the following term function (derived from
the term (20)) as a candidate for a join:

F (X,Y) =

flatMap(λp1. g(flatMap(λp2. e, Y)), X) (21)

We require that g({{ }}) = {{ }}, so that F (X,Y) = {{ }} if
either X or Y is empty. To transform F (X,Y) to a join
between X and Y , we need to derive two terms k1 and
k2 from e (these are the join keys), such that k1 6= k2
implies e = {{ }}, and k1 depends on the p1 variables
while k2 depends on the p2 variables, exclusively. Then,
if there are such terms k1 and k2, we transform F (X,Y)
to the following join:

F ′(X,Y) =

flatMap(λ(k, (xs, ys)). F (xs, ys), (22)
coGroup(flatMap(λx@p1. {{(k1, x)}}, X),

flatMap(λy@p2. {{(k2, y)}}, Y)))

(Recall that the Scala pattern binder x@pmatches a value
with the pattern p and binds x to that value.) The proof
that F ′(X,Y) = F (X,Y) is given in Theorem A.1
in the Appendix. This is the only transformation rule
needed to derive any possible join from a query and
unnest nested queries because there is only one higher-
order operator in the monoid algebra (flatMap) that can
contain a nested query.

For example, consider Query F again:

select b
from (a, b)<−X
where b > +/(select d from (c, d)<−Y

where a == c)

It is translated to the following algebraic term Q(X,Y):

flatMap(λ(a, b). if (b > reduce(+,flatMap(N, Y))
then {{b}} else {{ }}, X)

where N = λ(c, d). if (a == c) then {{d}} else {{ }}.
This term matches the term function F (X,Y)
in Equation (21) using g(z) = if (b >
reduce(+, z)) then {{b}} else {{ }} and e = if (a ==
c) then {{d}} else {{ }}. We can see that k1 = a and
k2 = c because a 6= c implies e = {{ }}. Thus, from
Equation (22), Q(X,Y) is transformed to:

flatMap(λ(k, (xs, ys)). Q(xs, ys),
coGroup(flatMap(λx@(a, b). {{(a, x)}}, X),

flatMap(λy@(c, d). {{(c, y)}}, Y)))

50

L. Fegaras: Compile-Time Query Optimization for Big Data Analytics

The biggest challenge in applying the transformation
in Equation (22) is to derive the join keys, k1 and k2,
from the term e. If flatMaps are normalized first using
Equation (19), then the only place these key functions
can appear is in a flatMap functional argument. Then, the
body of the flatMap functional argument can be another
flatMap, in which case we consider the latter flatMap, or
a term if p then e′ else {{ }}, in which case we derive the
keys from p, such that k1 6= k2 ⇒ ¬p. If p is already
in the form k1 == k2, then, in addition to deriving the
keys k1 and k2, we can simplify the term F (xs, ys) in
Equation (22) by replacing the term if p then e′ else {{ }}
with e′.

Finally, the term F ′(X,Y) in Equation (22) assumes
that we can derive a pair of keys, k1 and k2, such that
k1 depends only on p1, and k2 depends only on p2.
But, often, such keys do not exists because they depend
on variable bindings introduced inside the term function
g and the term e. In such cases, calculating the keys
before coGroup using flatMap(λx@p1. {{(k1, x)}}, X)
and flatMap(λy@p2. {{(k2, y)}}, Y), would be incorrect
because the terms k1 and k2 would depend on additional
variables. To compensate, we collect all operations in g
and e that introduce new bindings, namely flatMaps, into
two corrective term functions, mx and my , to bind the
variables used by the keys k1 and k2, respectively. More
specifically, the coGroup in Equation (22) will become:

coGroup(flatMap(λx@p1.mx({{(k1, x)}}), X),
flatMap(λy@p2.my({{(k2, y)}}), Y))

Starting with an initial set of variables Vx = PJ p1 K and
mx = λx. x for X , and Vy = PJ p2 K and my = λy. y
for Y , we consider every flatMap(λp. b, e) in the terms
g and e that leads to the keys k1 and k2. If the term e
depends on the variables in Vx only, then Vx ← Vx ∪
PJ p K and mx ← λx. flatMap(λp.mx(x), e). If the
term e depends on the variables in Vy only, then Vy ←
Vy ∪ PJ p K and my ← λy.flatMap(λp.my(y), e).
Otherwise, if the term e depends on the variables in
both Vx and Vy , then it is impossible to derive a
coGroup because we cannot calculate each one of the
keys separately.

6.3 Pushing Down Predicates

One important optimization technique used in relational
databases is pushing selections before joins. We have
generalized this technique to apply to nested data
collections and complex queries. This technique uses the
function split that splits a predicate into two predicates:
given a predicate c and a set of variables V , splitJ c KV
returns a pair (c1, c2) such that c1 ∧ c2 ⇒ c and c1 may
depend on the variables in V while c2 must not.

The first optimization is pushing filters before a
groupBy:

flatMap(λ(k, s). g(flatMap(λp. h(if c then e′

else {{ }}, s))),
groupBy(e))

= flatMap(λ(k, s). g(flatMap(λp. h(if c2 then e′

else {{ }}, s))),
groupBy(flatMap(λ(k, x@p). if c1 then {{x}}

else {{ }},
e)))

where g and h are term functions with g({{ }}) =
h({{ }}) = {{ }}. That is, part of the filter’s condition c1
after the groupBy was applied before the groupBy. Here,
(c1, c2) = splitJ c KV where V = PJ p K∪{k}, that is, c1
may depend on k or the variables in p only. As in the join
derivation algorithm, if g and h introduce new bindings
through flatMaps, the flatMap before groupBy should
be wrapped with a corrective term function to bind the
variables used by these flatMaps.

Pushing a filter into the left input of a coGroup
is done using the following transformation (a similar
transformation exists for the right input):

flatMap(λ(k, (xs, ys)).
g(flatMap(λp. h(if c then e′

else {{ }}, xs)),
coGroup(e1, e2))

= flatMap(λ(k, (xs, ys)).
g(flatMap(λp. h(if c2 then e′

else {{ }}, xs)),
coGroup(flatMap(λ(k, x@p). if c1 then {{x}}

else {{ }},
e1),

e2))

where, here, c1 may depend on k or the variables in p
only.

For example, consider the following query:

Query H:
select (b,d)
from (a,b) <− X, (c,d) <− Y
where a==c && b>3

which is translated and optimized to a coGroup based on
the transformations in Section 6.2:

flatMap(λ(k, (xs, ys)).
flatMap(λx@(a, b).flatMap(λy@(c, d).

if (b > 3) then {{(b, d)}} else {{ }},
ys), xs),

coGroup(flatMap(λx@(a, b). {{(a, x)}}, X)
flatMap(λy@(c, d). {{(c, y)}}, Y))

51

Open Journal of Big Data (OJBD), Volume 5, Issue 1, 2019

Then, using the previous transformation, the (b > 3)
condition is pushed into the left input of the coGroup:

flatMap(λ(k, (xs, ys)).
flatMap(λx@(a, b).flatMap(λy@(c, d).
{{(b, d)}}, ys), xs),

coGroup(flatMap(λx@(a, b). if (b > 3)
then {{(a, x)}}
else {{ }}, X)

flatMap(λy@(c, d). {{(c, y)}}, Y))

6.4 Column Pruning

Column pruning is an important optimization for
relational database queries because it reduces the size
of intermediate results between operations. It is even
more important for DISC frameworks since it reduces
the amount of shuffled data, which is the prominent cost
factor for distributed processing. We have developed a
general data pruning method that removes unneeded data
from complex data, which may be nested in arbitrary
ways. Earlier work on complex data pruning [1] has used
a holistic approach to analyze Spark programs written
in Scala to identify unneeded data components and to
transform these programs in such a way that they prune
these data early. Unlike this earlier work, our work
uses compositional rules to introduce a flatMap before
each groupBy and coGroup that prunes only the parts of
the data that are not used by the next operation. This
newly introduced flatMap is then fused with the existing
flatMap in the groupBy or coGroup input. By applying
this transformation top-down, starting from the query
result, we minimize the amount of shuffled data, one
operation at a time.

We consider terms of the form:

flatMap(f, groupBy(e))

Terms with a coGroup can be handled in a similar way.
We want to embed a flatMap before the groupBy that
prunes all the data not used by the function f . Let
{{(k, tp)}} be the type of e. We want to find all the
components of the type tp that are not accessed by
the function f (the group-by key of type k cannot be
pruned). We are using a heuristic method that works
well for most cases. We construct a simple instance of
the type tp, using IJ tp K, defined as follows:

IJ {{t}} K = {{IJ t K}}
IJ (t1, . . . , tn) K = (IJ t1 K, . . . , IJ tn K)

IJ t K = vt a basic type

where vt is a new variable of type t. There are more
cases that are not included here. If we optimize the
term f((k, IJ {{tp}} K)) using the normalization rules

presented in Section 6.1, then, if the variable vt
associated with a type t does not occur in the resulting
normalized term, then it is not accessed by f . In that
case, we call this type t an unused type. For example, let

f = λ(k, s). reduce(+,flatMap(λ(x, y).{{y}}, s))

and let the type tp be (int, int). Then, IJ {{tp}} K =
{{(v1, v2)}}, where v1 corresponds to the first int and v2
to the second. The normalized term f((k, {{(v1, v2)}}))
is reduce(+, {{v2}}), which means that only the second
int from the type (int, int) is used.

Based on the type annotations on the terms that
represent basic types in tp (used or unused), we annotate
all the subterms of the term tp: a type List[t] is unused
if t is unused, and a type (t1, . . . , tn) is unused if all
t1, . . . , tn are unused. Given that every subterm in tp is
marked as used or unused, we generate code (a function)
that prunes all unused data from the input:

C1J t K = λx. () if t is unused
C1J {{t}} K = λx. flatMap(λz. {{C1J t K(z)}}, x)
C1J (t1, . . . , tn) K

= λ(v1, . . . , vn). (C1J ti1 K(vi1), . . . , C1J tim K(vim))
for the used types ti1 , . . . , tim

C1J t K = λx. x otherwise

and a similar function C2J t K (not shown) that converts
the pruned data to a t value by embedding the value
() in the place of the unused components, so that
C1J t K(C2J t Kx) = x, for every x of type t. Then, C1
is used to deeply prune data before the groupBy, while
C2 is used to insert () values after groupBy:

flatMap(f, groupBy(e))
= flatMap(f, flatMap(λ(k, s). {{(k, C2J {{tp}} K s)}},

groupBy(flatMap(λ(k, x). {{(k, C1J tp Kx)}},
e))))

After the top two flatMap operations are fused using
Equation (19), these () values are eliminated since they
are not used by f . Based on the previous example,
C1J (int, int) K = λ(v1, v2). v2 and C2J {{(int, int)}} K =
λx. flatMap(λv2. {{((), v2)}}, x). Thus, the data
pruning is flatMap(λ(k, x). {{(k, C1J tp Kx)}}, e) before
groupBy, which is equal to flatMap(λ(k, (v1, v2)).
{{(k, v2}}, e), for x = (v1, v2). That is, it prunes the
first column before groupBy.

7 IMPLEMENTATION

DIQL generates Scala code, which is translated to JVM
byte code at compile-time using Scala’s compile-time
reflection facilities. This code generation is vastly
simplified with the use of quasiquotes, which allow one

52

L. Fegaras: Compile-Time Query Optimization for Big Data Analytics

to construct internal Scala abstract syntax trees (ASTs)
by just embedding Scala syntax in quotes. After a DIQL
query is parsed, it is translated to an AST. DIQL ASTs
are a subset of Scala’s ASTs for expressions and patterns,
since they need to capture Scala’s purely functional
syntax only, but are extended with special nodes to
capture our algebraic operators. Figure 1 shows the
query translation process at compile time.

The DIQL data model extends Scala’s types with four
collection types: bag, list, DataBag, and DataList. The
DIQL code generator needs to know which collection
types are used by the algebraic operations to decide
which API to use for each operation. In addition,
many optimizations apply only when the operations
involved are over distributed datasets, which requires
knowledge about the types. To determine the kind
of collections used by the algebraic operations, the
DIQL type inference system uses the Scala type checker.
All Scala Traversable objects (that is, instances of
classes that conform to the type Traversable, such
as a List) are in-memory collections (bags or lists).
Instances of distributed collection classes supported by
the underlying distributed framework are distributed
collections (DataBags or DataLists). For Spark, for
example, instances of classes that conform to the class
RDD (such as, an RDD or any subclass of RDD) are
taken to be distributed collections. Furthermore, the
DIQL type inference engine distinguishes bags from
lists and DataBags from DataLists by just looking at
the algebraic operations: the orderBy operation always
returns a list or a DataList, while the order is destroyed
by all monoid algebraic operations except flatMap. A
bag (resp. a DataBag) is more restricted than a list
(resp. a DataList) as it does not permit certain operations
that depend on order, such as indexing.

In Section 4, to simplify the presentation, we
presented only one variation of each algebraic operation,
namely one that works on bags. But there are multiple
variations of some operations. The flatMap, for example,
has many variations: from a bag to a bag using a
functional that returns a bag, from a list to list using
a functional that returns a list, from a DataBag to a
DataBag using a functional that returns a bag, etc, but
some combinations are not permitted as they are not
well-behaved, such as a flatMap from a bag to a list.

The DIQL type inference system extends the Scala
type inference system using a very simple trick: DIQL
generates Scala code and the code is type-checked
using Scala’s compile-time reflection facilities. More
specifically, the DIQL type-checker uses a typing
environment that binds Scala patterns to Scala types.
When type-checking a DIQL algebraic term e under a
typing environment that consists of the bindings p1 :
t1, . . . , pn : tn, which bind the patterns pi to their types

ti, it calls the DIQL code generator to generate a Scala
AST c from the term e and then it calls the Scala type-
checker to get the type of the Scala code

(p1 : t1) => · · · (pn : tn) => c

which will derive a functional type t1 → · · · tn → t,
for some type t, provided that the code c is type-correct.
This type t is then the type of e. The typing environment
is extended during the type-checking of a DIQL query
and of the algebraic operators derived from the query.
In Spark, for instance, the type t of the term e2 in
flatMap(λp. e1, e2) must conform to the class RDD[t′]
or to the class Traversable[t′], for some type t′. Then
the functional body e1 is type-checked using the current
typing environment extended with the binding p : t′.

The DIQL optimizer finds all possible joins and cross
products, optimizes the algebraic terms, then factors out
all common terms (so that their value is cached at run-
time), and finally generates broadcast operations for the
in-memory operations that are accessed in the functional
parameter of a flatMap over a DataBag. CoGroups
and cross products between a distributed DataBag and
a ‘small’ DataBag (as defined by the<−− qualifier) or
an in-memory bag, are translated to broadcast joins and
cross products, which broadcast the small dataset to all
workers.

Not all nested flatMaps on DataBags can be translated
to coGroups and cross products. For example, DIQL
evaluates the following query on the DataBags S and R:

select (x, +/(select w from (z,w) <− R where z<y))
from (x,y) <− S

by broadcasting R to all worker nodes.
DIQL abstracts a DISC platform using an abstract

class that is parameterized by a type constructor DataBag
(these are called higher kinded types in Scala, and are
type constructors that take type constructors as type
parameters):

abstract class DistrCodeGen[DataBag[]]

which defines an abstract method for each DIQL
operator:

def flatMap[A,B](f : (A) => Traversable[B], S: DataBag[A])
(implicit tag: ClassTag[B]): DataBag[B]

where the implicit tag is required by all DISC Scala APIs
to allow run-time reflection. For example, the Spark code
generator binds DataBag to RDD:

class SparkCodeGenerator extends DistrCodeGen[RDD]

and implements the abstract methods based on RDDs.
That way, the DIQL code generator is modularized and
is very easy to extend to multiple DISC platforms. Out
of the 4560 lines of the DIQL implementation, the code
generator for Spark is 468 lines, for Flink is 570 lines,
and for Scalding is 386 lines.

53

Open Journal of Big Data (OJBD), Volume 5, Issue 1, 2019

Figure 1: The DIQL query translation process

8 LIMITATIONS

Currently, the DIQL query optimizer is not cost-based;
instead, it uses a special syntactic hint in a query to
indicate that a traversed dataset is small enough to
fit in a worker’s memory so that the optimizer may
consider broadcasting this dataset to worker nodes.
But, as we know from relational databases, cost-based
optimizations are more effective at run-time, when
there is statistical information available on the input
and intermediate datasets. Other statically-typed query
systems, such as DryadLINQ [37] and Emma [3],
perform both static and dynamic optimizations; they
perform static optimizations using greedy heuristics to
generate a query graph, which is further optimized at
run-time based on cost. Dynamic query optimization
introduces a run-time overhead, which may become
substantial if the query is embedded in a loop. More
importantly, generating a static query representation to
be staged for execution at run-time complicates query
embedding. In DryadLINQ, for example, embedded
values are serialized to a resource file, which is broadcast
to workers at run-time. This broadcasting may be a
suboptimal solution if we want to embed the results of an
earlier query, since these results can be processed more
efficiently as a distributed collection.

We believe that generating byte code at compile-
time does not prevent us from implementing cost-
based optimizations. Our plan, which we leave for
a future work, is to generate conditional byte code
at compile-time that considers many dynamic choices
that a cost-based optimizer would consider at run-time.
For join ordering, for example, the optimizer could
select a few viable choices at compile-time based on
greedy heuristics and generate conditional code that
looks at statistical information available at run-time.
In the programming language research, this process is
equivalent to partial evaluation, where the static input
of the query optimizer is precomputed at compile time,
deriving a residual specialized program that runs more
efficiently than the original program. If the statistical
information is available at compile-time and assuming
that the data does not change too much, then there
will be only one choice derived at compile-time that
does not look at statistical data at run-time, with the

understanding that the compiled code will eventually be
suboptimal. Another idea that we are planning to explore
in a future work, which comes from LegoBase [27],
is to make the query plan available at run-time, along
with the generated code, to be used for generating byte-
code at run-time when the generated code turns out to be
suboptimal based on the statistics collected at run-time.

9 PERFORMANCE EVALUATION

The DIQL source code is available at https:
//github.com/fegaras/DIQL. This web site
includes the directory benchmarks, which contains all
the source files and scripts for running the experiments
reported in this section. The first set of experiments is to
evaluate a nested query on the three different platforms
supported by DIQL. The purpose of these experiments
is to show that DIQL can efficiently evaluate a nested
query that cannot be expressed as such in Hive and Spark
SQL. In the second and third sets of experiments the
DIQL system is compared with the Spark DataFrames
and Spark SQL frameworks [34] using two algorithms:
k-means clustering and PageRank. The purpose of these
two experiments is to show that DIQL has competitive
performance relative to Spark DataFrames and Spark
SQL, although it does not use cost-based optimizations.

The platform used for our evaluations is a small
cluster built on the XSEDE Comet cloud computing
infrastructure at the SDSC (San Diego Supercomputer
Center). Each Comet node has 24 Xeon E5 cores at
2.5GHz, 128GB RAM, and 320GB of SSD for local
scratch memory. For our experiments, we used Apache
Hadoop 2.6.0, Apache Spark 2.1.0 running in standalone
mode, Apache Flink 1.2.0 running on Yarn, and Scalding
0.17.0 in Map-Reduce mode on Yarn. The HDFS file
system was formatted with the block size set to 128MB
and the replication factor set to 3. Each experiment was
evaluated 4 times under the same data and configuration
parameters. Each data point in the plots in in this section
represents the mean value of 4 experiments.

9.1 Evaluation of a Nested Query

Our first set of evaluations uses the following simple
nested query:

54

https://github.com/fegaras/DIQL
https://github.com/fegaras/DIQL

L. Fegaras: Compile-Time Query Optimization for Big Data Analytics

 0

 20

 40

 60

 80

 100

 120

 140

 2 4 6 8 10 12

T
o
ta

l
T

im
e
 (

s
e

c
s
)

(A) A Nested Query on Spark & Flink: Total Data Size (GB)

DIQL on Spark
DIQL on Flink

 0

 500

 1000

 1500

 2000

 2 4 6 8 10 12

T
o
ta

l
T

im
e
 (

s
e

c
s
)

(B) A Nested Query on Scalding: Total Data Size (GB)

DIQL on Scalding

Figure 2: A nested query evaluation

select c.name from c <− customers
where c.account < +/(select o.price

from o <− orders
where o.cid == c.cid)

It finds all customers whose account is less than the total
price of their orders. Our system translates this query to
a simple coGroup, which is implemented as a distributed
partitioned join. Hive and Spark SQL do not support
this kind of query nesting (they support IN and EXIST
subqueries in predicates only), thus requiring to express
this query as a left outer join.

The Customer and Order datasets used in our first
experiments contained random data. We used 8 pairs
of datasets Customer-i and Order-i, for i = 1 . . . 8,
where Customer-i has i ∗ 4 ∗ 106 tuples and Order-i has
i∗4∗107 tuples so that each customer is associated with
an average of 10 orders. The total size of Customer-i and
is Order-i is i ∗ 1.41 GB. That is, the largest input has a
total size 11.28GB. For the nested query evaluation, we
used 4 Comet nodes. The results of the nested query
evaluation are shown in Figure 2.A for Spark and Flink,
and in Figure 2.B for Scalding on Map-Reduce. These
two figures have been separated because both Spark and
Flink are many times faster than Hadoop Map-Reduce
used in Scalding. From these figures, we can see that
the previous nested query is evaluated efficiently as a
regular join, since it is translated to a coGroup. Other
DISC query systems, such as Hive and Spark SQL,
support very simple forms of query nesting in predicates,
which do not include the evaluated query, thus forcing
the programmers to use explicit outer joins to simulate
the other forms of nested queries and write explicit code
to handle the nulls generated by the outer joins.

9.2 Evaluation of K-Means Clustering

Our second set of evaluations are based on the k-means
clustering algorithm, evaluated on Spark in three ways:

 0

 200

 400

 600

 800

 1000

 0 1 2 3 4 5 6

T
o
ta

l
T

im
e
 (

s
e
c
s
)

K-Means: Data Size (GB)

DIQL
DataFrames

Spark SQL

Figure 3: K-means clustering evaluation

as a DIQL query, as a hand-optimized Spark DataFrames
program, and as a Spark SQL query. The DIQL query
that implements the k-means clustering algorithm was
described in Section 3 (Query E) and is repeated here:

repeat centroids = initial centroids
step select Point(avg/x, avg/y)

from p@Point(x,y) <− points
group by k: (select c

from c <− centroids
order by distance(c,p)). head

limit iterations

which repeatedly derives k new centroids from the
previous ones, starting from initial centroids. The Scala
method distance in this query calculates the Euclidean
distance between two points. The dataset points is read
from an HDFS file and contains random points on the
X-Y plane. It is of type RDD[Point], where Point is the
Scala class:

case class Point (X: Double, Y: Double)

The dataset initial centroids used in the DIQL query is
read from an HDFS file and then stored in memory as

55

Open Journal of Big Data (OJBD), Volume 5, Issue 1, 2019

a Scala array of Point. DIQL translates the select-query
inside the repeat loop to the following Spark code:

points.map{ case p@Point(x,y)
=> (centroids.map{ c => (distance(c,p),c) }

.minBy(. 1). 2,
(x,1,y,1)) }

.reduceByKey(f)

.map{ case (k,(s1,c1,s2,c2)) => Point(s1/c1,s2/c2) }

. collect ()

That is, the inner order-by query followed by head was
optimized to a map followed by minBy, which retrieves
the min of a list without sorting. The tuple (x,1,y,1)
consists of the two sum-count pairs for the point p to help
compute avg/x and avg/y. The function f in reduceByKey
sums up the sums and counts for avg/x and avg/y, while
the final map divides each sum-count pair to derive an
average.

The equivalent hand-optimized Spark DataFrames
program used in our experiments is as follows:

var centroids = initial centroids
val pointsDF = points.toDF()
for (i <− 1 to iterations)

centroids
= pointsDF.groupBy(closest centroid(col(”X”),col(”Y”)))

.agg(avg(”X”),avg(”Y”))

.rdd.map { case Row(,x,y) => Point(x,y) }

. collect ()

where, closest centroid is a UDF that finds the closest
centroid to a point (x,y):

val closest centroid
= udf((x: Double, y: Double)

=> { val p = new Point(x,y)
centroids.map(c => (distance(p,c),c))

.sortBy(. 1). head. 2 })

where the method udf registers anonymous functions in
DataFrames. The use of a UDF was necessary because
neither DataFrames nor SQL can express nested queries
or traverse in-memory arrays using SQL syntax only.

The equivalent Spark SQL query used in our
experiments is:

for (i <− 1 to iterations)
centroids = spark.sql(”””

SELECT AVG(p.X), AVG(p.Y)
FROM points p
GROUP BY closest centroid (p.X,p.Y)

”””). rdd.map { case Row(x,y) => Point(x,y) }
. collect ()

where the SQL table points has been derived from the
points RDD:

points.createOrReplaceTempView(”points”)

The DataFrames program and the Spark SQL query
generate the same physical plan (as seen using
the DataFrames method explain(extended=true)),
which is the sequence of the physical operations:
ExternalRDDScan, SerializeFromObject,

HashAggregate, Exchange hashpartitioning, and
HashAggregate. The first HashAggregate calls the
UDF closest centroid and partially aggregates the
sums and counts locally on each worker node, the
Exchange hashpartitioning distributes these partial
aggregates across the worker nodes, and finally the last
HashAggregate calculates the averages from the sums
and counts. This evaluation plan requires the same
amount of data shuffling across the worker nodes as our
Spark code, which is equal to the k centroids.

The datasets used in our experiments are random
points on a plane in a 10×10 grid of squares, where each
square has a top-left corner at (i ∗ 2 + 1, j ∗ 2 + 1) and
bottom-right corner at (i∗2+2, j∗2+2), for i ∈ [0, 9] and
j ∈ [0, 9]. That is, there should be 100 centroids, which
are the square centers (i∗2+1.5, j ∗2+1.5). The initial
centroids were set to be the points (i∗2+1.2, j∗2+1.2).
We used 8 datasets of X-Y points. Each dataset had size
i ∗ 705MB and contained i ∗ 2 ∗ 107 points, for i ∈ [1, 8].
That is, the largest dataset used was 5.8GB and had 160
million points. The k-means clustering algorithm was
evaluated using DIQL, Spark DataFrames, and Spark
SQL. For the PageRank evaluation, we used 10 Comet
nodes, which were organized into 42 Spark executors,
where each executor had 5 cores and 24GB memory.
That is, these 42 executors used a total of 42 ∗ 5 =
210 cores and 1TB memory. Each dataset used in our
experiments was stored in HDFS in a single HDFS file.
The number of iterations was set to 10.

The results of the k-means clustering evaluation on
Spark are shown in Figure 3. First notice that the run
time for all three evaluation modes is independent of the
dataset size. This is because all three modes perform
partial aggregations at each worker node before they
shuffle the partial aggregations across the worker nodes.
Hence, these shuffled data require constant space since
they correspond to the new 100 centroids. If the group-
by with aggregation were implemented as a groupBy
followed by a reduction, instead of using a reduceBy,
then the shuffled data (and run time) would have been
proportional to the dataset size. We can also see from
Figure 3 that DIQL has better performance than the
equivalent Spark DataFrames and Spark SQL code. The
DataFrames code optimization takes 3.1 secs (a total of
31 secs for 10 iterations), while Spark SQL optimization
takes 8.2 secs (a total of 82 secs for 10 iterations), which
does not account for the performance difference. We
believe that the reason for the performance difference
is that both DataFrames and Spark SQL impose an
overhead for interpreting the physical plans at run-time
and for dispatching UDF calls, while DIQL does not do
any interpretation and calls functions directly using Scala
method calls.

56

L. Fegaras: Compile-Time Query Optimization for Big Data Analytics

9.3 Evaluation of PageRank

We used the following Scala case classes to represent the
graph edges and the PageRank entries:

case class Edge (src: Int , dest: Int)
case class Rank (id: Int , degree: Int , rank: Double)

The DIQL query for PageRank used in our evaluations is
as follows:

repeat nodes = select Rank(id = s,
degree = (count/d). toInt ,
rank = 1−alpha)

from Edge(s,d) <− edges
group by s

step select Rank(id, m.degree, nr)
from (id,nr)

<− (select (key, (1−alpha)+alpha
∗(+/rank)/(+/ degree))

from Rank(id,degree,rank) <− nodes,
e <− edges

where e.src == id
group by key: e.dest),

m <− nodes
where id == m.id

limit 10

where edges is a dataset of type RDD[Edge] read from
HDFS and alpha = 0.85 is the damping factor. The
equivalent DataFrames program used in our experiments
is as follows:

def rank (sums: Long, counts: Long): Double
= (1−alpha)+alpha∗sums/counts

val es = edges.toDF()
var nodes = es.groupBy(”src”).agg(count(”dest”).as(”degree”))

.withColumn(”rank”, lit (1−alpha))

.withColumnRenamed(”src”,”id”)
for (i <− 1 to 10) {

val nr = nodes.join(es.nodes(”id”)===es(”src”))
.groupBy(”dest”).agg(udf(rank)
.apply(sum(”rank”),sum(”degree”)).as(”nr”))

nodes = nr.join (nodes,nodes(”id”)===nr(”dest”))
.drop(”rank”, ”dest”)
.withColumnRenamed(”nr”,”rank”)

}

The Spark SQL code that is equivalent to the above
DataFrames program initializes the nodes to the result
of the following query:

SELECT src as id, count(dest) as count, 0.15 as rank
FROM edges
GROUP BY src

and then, inside a loop, reassigns nodes to the result of
the following query:

SELECT n.id, n.count, 0.15+0.85∗m.rank as rank
FROM nodes n JOIN

(SELECT e.dest, sum(n.rank/n.count) as rank
FROM nodes n JOIN edges e ON n.id=e.src
GROUP BY e.dest) m

ON m.dest=n.id

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 0 0.5 1 1.5 2 2.5

T
o
ta

l
T

im
e
 (

s
e

c
s
)

PageRank: Graph Size (GB)

DIQL
DataFrames

Spark SQL

Figure 4: PageRank evaluation

Initially, after the first few iterations, both the
DataFrames and the Spark SQL programs were filtering
most of the PageRank data from the nodes and were
returning very few results.

The problem turned out to be that it was very hard to
force DataFrames to cache the fixpoint of the iteration
(nodes) in memory. Instead, DataFrames accumulated
all operations from all iteration steps, and, since nodes
was used twice at each iteration, there was an explosion
of operations that were pipelined to be executed when
the final result was written to HDFS. The resulting plan
had bugs, which was understandable since it consisted
of hundreds of operations. Applying cache() to nodes
did not help because, unlike Spark, cache() is lazy in
DataFrames. Also, applying an action, such as count(), to
nodes did not help either, because DataFrames use stored
statistics to calculate these aggregations. Our solution
was to convert the nodes to an RDD at each iteration
step, cache the RDD, and then convert this RDD back to
a DataFrame.

The graphs used in our PageRank experiments
were synthetic data generated by the RMAT Graph
Generator [14] using the Kronecker parameters a=0.30,
b=0.25, c=0.25, and d=0.20. The number of distinct
edges generated were 10 times the number of graph
vertices. We used 8 datasets of size i ∗ 288MB,
with i ∗ 2 ∗ 106 vertices and i ∗ 2 ∗ 107 edges, for
i ∈ [1, 8]. That is, the largest dataset used was
2.25GB. The PageRank algorithm was evaluated using
DIQL, Spark DataFrames, and Spark SQL. For the
PageRank evaluation, we used 10 Comet nodes, which
were organized into 42 Spark executors, where each
executor had 5 cores and 24GB memory. That is, these
42 executors used a total of 42 ∗ 5 = 210 cores and
1TB memory. Each dataset used in our experiments
was stored in HDFS in 42 ∗ 2 = 84 partitions (HDFS
files). The spark.sql.shuffle.partitions in DataFrames was

57

Open Journal of Big Data (OJBD), Volume 5, Issue 1, 2019

set to 84 to match the number of files. The results of
the PageRank evaluation are shown in Figure 4. We can
see that the DIQL run time is between the run times of
the DataFrames code (best) and the Spark SQL query
(worst).

10 CONCLUSION AND FUTURE WORK

We have presented a powerful SQL-like query language
for large-scale data analysis that is deeply embedded
in Scala and a query optimization framework that
generates efficient byte code at compile-time. In our
quest to eliminate the impedance mismatch between
the query and host programming languages, we have
found compile-time reflection to be a very valuable tool.
It simplifies query validation and translation by giving
the query compiler access to the host type-checking
engine, thus seamlessly integrating the host with the
query binding environments. This integration is harder
to achieve at run-time because some information on
declarations and types is lost at run-time and can only
be recovered by reconstructing parts of the symbol table
at run-time. We have also found that Scala’s quasiquotes
and macros simplify code generation because they allow
us to generate byte code using the host language syntax,
instead of constructing host ASTs, which are often
complex and may change in the future, or using a special
code generation language, such as LLVM, which is
harder to integrate with the host binding environment.
Furthermore, the code generated from quasiquotes is
highly optimized by the host Scala compiler and may be
of better quality and more efficient than that of LLVM
since it is specific to the host language. Unfortunately,
currently, very few programming languages support
compile-time reflection and macros, with the notable
exceptions of Scala, Haskell, and F#. On the other hand,
LLVM is platform independent and can by used as a
target architecture by most programming languages.

The work reported in this paper extends our
previous work on compile-time code generation [20]
by providing an effective optimization framework
based on the monoid algebra. Our new performance
evaluation results give further evidence that our query
optimization framework produces high-quality code
that has competitive performance relative to Spark
DataFrames and Spark SQL, although it does not use
cost-based optimizations. The effectiveness of our
query optimization framework can be contributed to
its effective formal basis, the monoid algebra, which
consists of a small set of operations that capture most
functionality supported by current DISC languages and
APIs. Due to the generality of our algebraic operations,
we were able to solve hard optimization problems using

a small number of powerful rules, such as using a single
rule to identify all opportunities for joins, including those
hidden across deeply nested queries.

Currently, DIQL is a prototype system with plenty
of room for improvements. As a future work, we
are planning to implement cost-based optimizations
by generating optimization choices statically to be
evaluated dynamically based on statistics. In addition
to the existing relational database optimizations, we
are planning to introduce platform-specific cost-based
optimizations, such as adjusting the number of reducers
in operations that cause data shuffling (such as the join
and group-by operations) based on the total number of
available workers and the generated workflow. Finally,
our framework allows API code from the underlying
DISC platform to be freely mixed with the query syntax
but treats this API code as a black box. As a future work,
we will translate such API method calls to the monoid
algebra so that they too can be optimized along with the
rest of the query.

ACKNOWLEDGMENTS

The author wishes to thank the anonymous reviewers
for their time, comments, and suggestions that helped
improve this paper.

REFERENCES

[1] S. Ackermann, V. Jovanovic, T. Rompf,
and M. Odersky, “An Embedded DSL for
High Performance Big Data Processing”,
in International Workshop on End-to-end
Management of Big Data, 2012.

[2] A. Alexandrov, A. Katsifodimos, G. Krastev, and
V. Markl, “Implicit Parallelism through Deep
Language Embedding”, in SIGMOD Record,
45(1): 51–58, 2016.

[3] A. Alexandrov, A. Salzmann, G. Krastev,
A. Katsifodimos, and V. Markl, “Emma in Action:
Declarative Dataflows for Scalable Data Analysis”,
in ACM SIGMOD International Conference on
Management of Data, pp 2073–2076, 2016.

[4] Apache Flink. Available: http://flink.
apache.org/, 2018.

[5] Apache Hadoop. Available: http://hadoop.
apache.org/, 2018.

[6] Apache Hive. Available: http://hive.
apache.org/, 2018.

58

http://flink.apache.org/
http://flink.apache.org/
http://hadoop.apache.org/
http://hadoop.apache.org/
http://hive.apache.org/
http://hive.apache.org/

L. Fegaras: Compile-Time Query Optimization for Big Data Analytics

[7] Apache Spark. Available: http://spark.
apache.org/, 2018.

[8] M. Armbrust, R. S. Xin, C. Lian, Y. Huai,
D. Liu, J. K. Bradley, X. Meng, T. Kaftan,
M. J. Franklin, A. Ghodsi, and M. Zaharia,
“Spark SQL: Relational Data Processing in Spark”,
in ACM SIGMOD International Conference on
Management of Data, pp 1383–1394, 2015.

[9] E. Begoli, J. Camacho-Rodriguez, J. Hyde,
M.J. Mior, and D. Lemire, “Apache Calcite:
A Foundational Framework for Optimized Query
Processing Over Heterogeneous Data Sources”,
in ACM SIGMOD International Conference on
Management of Data, pp 221–230, 2018.

[10] D. Battre, S. Ewen, F. Hueske, O. Kao,
V. Markl, and D. Warneke, “Nephele/PACTs: A
Programming Model and Execution Framework for
Web-Scale Analytical Processing”, in 1st ACM
Symposium on Cloud Computing (SOCC’10), pp
119–130, 2010.

[11] O. Boykin, S. Ritchie, I. O’Connell, and J. Lin,
“Summingbird: A Framework for Integrating
Batch and Online MapReduce Computations”, in
PVLDB, 7(13): 1441–1451, 2014.

[12] Cascading, “Application Platform for
Enterprise Big Data”, Available: http:
//www.cascading.org/, 2018.

[13] R. Chaiken, B. Jenkins, P.-A. Larson, B. Ramsey,
D. Shakib, S. Weaver, and J. Zhou, “SCOPE: Easy
and Efficient Parallel Processing of Massive Data
Sets”, in PVLDB, 1(2): 1265–1276, 2008.

[14] D. Chakrabarti, Y. Zhan, and C. Faloutsos, “R-
MAT: A Recursive Model for Graph Mining”, in
SIAM International Conference on Data Mining
(SDM), pp 442–446, 2004.

[15] J. Dean and S. Ghemawat, “MapReduce:
Simplified Data Processing on Large Clusters”,
in Symposium on Operating System Design and
Implementation (OSDI), 2004.

[16] J. Fan, A. Gerald, S. Raj, and J. M. Patel, “The Case
against Specialized Graph Analytics Engines”, in
Seventh Biennial Conference on Innovative Data
Systems Research (CIDR), 2015.

[17] L. Fegaras, “An Algebra for Distributed Big Data
Analytics”, Journal of Functional Programming,
Special Issue on Programming Languages for Big
Data, Volume 27, 2017.

[18] L. Fegaras, C. Li, and U. Gupta, “An Optimization
Framework for Map-Reduce Queries”, in
International Conference on Extending Database
Technology (EDBT), pp 26–37, 2012.

[19] L. Fegaras and D. Maier, “Optimizing Object
Queries Using an Effective Calculus”, in ACM
Transactions on Database Systems (TODS), 25(4):
457–516, 2000.

[20] L. Fegaras and M. H. Noor, “Compile-Time Code
Generation for Embedded Data-Intensive Query
Languages”, in IEEE BigData Congress, 2018.

[21] A. F. Gates, O. Natkovich, S. Chopra, P. Kamath,
S. M. Narayanamurthy, C. Olston, B. Reed,
S. Srinivasan, and U. Srivastava, “Building a High-
Level Dataflow System on top of Map-Reduce: the
Pig Experience”, in PVLDB, 2(2): 1414—1425,
2009.

[22] M. Grabowski, J. Hidders, and J. Sroka,
“Representing MapReduce Optimisations in
the Nested Relational Calculus”, in British
National Conference on Big Data (BNCOD), pp
175–188, 2013.

[23] J. Holsch, M. Grossniklaus, and M. H. Scholl,
“Optimization of Nested Queries using the NF2

Algebra”, in ACM SIGMOD International
Conference on Management of Data, pp 1765–
1780, 2016.

[24] M. Isard, M. Budiu, Y. Yu, A. Birrell, and
D. Fetterly, “Dryad: Distributed Data-Parallel
Programs from Sequential Building Blocks”, in
EuroSys, 2007.

[25] M. Isard and Y. Yu, “Distributed Data-Parallel
Computing Using a High-Level Programming
Language”, in ACM SIGMOD International
Conference on Management of Data, pp 987–994,
2009.

[26] A. Jindal, P. Rawlani, E. Wu, S. Madden,
A. Deshpande, and M. Stonebraker, ‘‘Vertexica:
Your Relational Friend for Graph Analytics!” in
PVLDB, 7(13): 1669–1672, 2014.

[27] Y. Klonatos, C. Koch, T. Rompf, and H. Chafi,
“Building Efficient Query Engines in a High-Level
Language”, in PVLDB, 7(10): 853–864, 2014.

[28] G. Malewicz, M. H. Austern, A. J.C Bik,
J. C. Dehnert, I. Horn, N. Leiser, and
G. Czajkowski, “Pregel: A System for Large-
Scale Graph Processing”, in ACM SIGMOD

59

http://spark.apache.org/
http://spark.apache.org/
http://www.cascading.org/
http://www.cascading.org/

Open Journal of Big Data (OJBD), Volume 5, Issue 1, 2019

International Conference on Management of Data,
pp 135–146, 2010.

[29] T. Neumann, “Efficiently Compiling Efficient
Query Plans for Modern Hardware”, in PVLDB,
4(9): 539–550, 2011.

[30] C. Olston, B. Reed, U. Srivastava, R. Kumar,
and A. Tomkins, “Pig Latin: a not-so-Foreign
Language for Data Processing”, in ACM SIGMOD
International Conference on Management of Data,
pp 1099–1110, 2008.

[31] Scalding, “Building Map-Reduce Applications
with Scala”, Available: http://www.
cascading.org/projects/scalding/,
2018.

[32] Scrunch, “A Scala Wrapper for the Apache
Crunch”, Available: http://crunch.
apache.org/scrunch.html, 2018.

[33] Slick, “Functional Relational Mapping for Scala”,
Available: http://slick.lightbend.
com/, 2018.

[34] Apache, “Spark SQL, DataFrames,
and Datasets Guide”, Available: http:
//spark.apache.org/docs/latest/
sql-programming-guide.html, 2018.

[35] A. K. Sujeeth, K. J. Brown, H. Lee, T. Rompf,
H. Chafi, M. Odersky, and K. Olukotun, “Delite:
A Compiler Architecture for Performance-Oriented
Embedded Domain-Specific Languages”, in ACM
Transactions on Embedded Computing Systems,
13(4s) article 134, 2014.

[36] A. Thusoo, J. S. Sarma, N. Jain, Z. Shao, P. Chakka,
S. Antony, H. Liu, P. Wyckoff, and R. Murthy,
“Hive: A Warehousing Solution over a Map-
Reduce Framework”, in PVLDB, 2(2): 1626–1629,
2009.

[37] Y. Yu, M. Isard, D. Fetterly, M. Budiu,
U. Erlingsson, P. K. Gunda, and J. Currey,
“DryadLINQ: A System for General-Purpose
Distributed Data-Parallel Computing Using a High-
Level Language”, in Symposium on Operating
Systems Design and Implementation (OSDI), 2008.

[38] P. Wadler. “Comprehending Monads”, in
Proceedings of the ACM Symposium on Lisp and
Functional Programming, pp 61–78, 1990.

[39] P. Wadler and S. Peyton Jones, “Comprehensive
Comprehensions (Comprehensions with ‘Order by’
and ‘Group by’)”, in Haskell Symposium, 2007.

[40] M. Zaharia, M. Chowdhury, T. Das, A. Dave,
J. Ma, M. McCauley, M. J. Franklin, S. Shenker,
and I. Stoica, “Resilient Distributed Datasets: A
Fault-Tolerant Abstraction for In-Memory Cluster
Computing”, in USENIX Symposium on Networked
Systems Design and Implementation (NSDI), 2012.

APPENDIX A: CORRECTNESS PROOF OF THE
JOIN DERIVATION ALGORITHM

Theorem A.1 (Nested flatMaps to coGroup) Let k1
and k2 be two subterms of the term e such that k1 6= k2
implies e = {{ }}, then the term function:

F (X,Y) = flatMap(λp1. g(flatMap(λp2. e, Y)), X)

is equal to:

flatMap(λ(k, (xs, ys)). F (xs, ys),

coGroup(flatMap(λx@p1. {{(k1, x)}}, X),

flatMap(λy@p2. {{(k2, y)}}, Y)))

provided that g({{ }}) = {{ }}, k1 depends only on p1, and
k2 depends only on p2.

Proof: First, it is easy to prove that

X = flatMap(λ(k, (xs, ys)).

flatMap(λx. {{(k, x)}}, xs),
coGroup(X,Y)) (23)

Y = flatMap(λ(k, (xs, ys)).

flatMap(λy. {{(k, y)}}, ys),
coGroup(X,Y)) (24)

The coGroup inputs in the theorem are:

X ′ = flatMap(λx@p1. {{(k1, x)}}, X)
Y ′ = flatMap(λy@p2. {{(k2, y)}}, Y)

Then, we have:

F (X,Y) = flatMap(λp1. g(flatMap(λp2. e, Y)), X)

= flatMap(λ(k, p1). g(flatMap(λ(k′, p2). e, Y ′)), X ′)

From Equations (23) and (19), the outer flatMap
becomes:

flatMap(λ(k, p1). g(G), X ′)

= flatMap(λ(k, p1). g(G),

flatMap(λ(k, (xs, ys)).flatMap(λx. {{(k, x)}}, xs),
coGroup(X ′, Y ′)))

= flatMap(λ(k, (xs, ys)).flatMap(λx@p1. g(G), xs),

coGroup(X ′, Y ′))

60

http://www.cascading.org/projects/scalding/
http://www.cascading.org/projects/scalding/
http://crunch.apache.org/scrunch.html
http://crunch.apache.org/scrunch.html
http://slick.lightbend.com/
http://slick.lightbend.com/
http://spark.apache.org/docs/latest/sql-programming-guide.html
http://spark.apache.org/docs/latest/sql-programming-guide.html
http://spark.apache.org/docs/latest/sql-programming-guide.html

L. Fegaras: Compile-Time Query Optimization for Big Data Analytics

where G, from Equations (24) and (19), is:

G = flatMap(λ(k′, p2). e, Y ′)

= flatMap(λ(k′, p2). e,

flatMap(λ(k, (xs, ys)).flatMap(λy. {{(k, y)}}, ys),
coGroup(X ′, Y ′)))

= flatMap(λ(k′, (xs′, ys′)).flatMap(λy@p2. e, ys
′),

coGroup(X ′, Y ′))

which is equal to flatMap(λy@p2. e, ys) because, for
k 6= k′, they are both equal to {{ }} since e = {{ }}, and
for k = k′, we have xs = xs′ and ys = ys′, since they
come from the same input coGroup(X ′, Y ′). �

AUTHOR BIOGRAPHIES

Leonidas Fegaras is an
Associate Professor in
the Computer Science &
Engineering department at the
Univ. of Texas at Arlington
(UTA). Prior to joining UTA, he
was a Senior Research Scientist
at the OGI School of Science
and Engineering. Fegaras
graduated with a B.Tech in EE

from the National Technical Univ. of Athens, Greece in
1985, an MS in ECE from the Univ. of Massachusetts-
Amherst in 1987, and a PhD in Computer Science from
Univ. of Massachusetts-Amherst in 1992. His research
interests include Big Data management, distributed
computing, Web data management, data stream
processing, and query processing and optimization.

61

	Introduction
	Related Work
	DIQL: A Data-Intensive Query Language
	The Monoid Algebra
	Translation of DIQL to the Monoid Algebra
	Query Optimization
	Query Simplification
	Deriving Joins and Unnesting Queries
	Pushing Down Predicates
	Column Pruning

	Implementation
	Limitations
	Performance Evaluation
	Evaluation of a Nested Query
	Evaluation of K-Means Clustering
	Evaluation of PageRank

	Conclusion and Future Work
	Correctness Proof of the Join Derivation Algorithm

