

Open Journal of Cloud Computing (OJCC), Volume 3, Issue 1, 2016

8

Doing More with the Dew:

A New Approach to Cloud-Dew Architecture

David Edward Fisher, Shuhui Yang

Purdue University Northwest, Department of Mathematics, Statistics, and Computer Science,

2200 169th St. Hammond, IN 46323, USA, {fisherdavidedward, yangshuhui}@gmail.com

ABSTRACT

While the popularity of cloud computing is exploding, a new network computing paradigm is just beginning. In

this paper, we examine this exciting area of research known as dew computing and propose a new design of cloud-

dew architecture. Instead of hosting only one dew server on a user’s PC — as adopted in the current dewsite

application — our design promotes the hosting of multiple dew servers instead, one for each installed domain.

Our design intends to improve upon existing cloud-dew architecture by providing significantly increased freedom

in dewsite development, while also automating the chore of managing dewsite content based on the user’s interests

and browsing habits. Other noteworthy benefits, all at no added cost to dewsite users, are briefly explored as well.

TYPE OF PAPER AND KEYWORDS

Visionary paper: Dew computing, cloud-dew architecture, dewsite, dew analytics, dew virtual machine, DVM

hypervisor, dew resource registry, dew server, artificial intelligence, evaporation

1 INTRODUCTION

It is hardly a surprise that the cloud has grown to become

a prominent element in modern network architecture.

However, as the cloud continues to evolve, the precise

definition of what it exactly entails continues to be

debated. While the National Institute of Standards and

Technology (NIST) of U.S. Department of Commerce

(www.nist.gov) describes cloud computing as “a model

for enabling convenient, on-demand network access to a

shared pool of configurable computing resources (e.g.,

networks, servers, storage, applications, and services)

that can be rapidly provisioned and released with

minimal management effort or service provider

interaction” [16], many other definitions have also been

provided [1, 6, 7]. For clarity, in our following

discussion we have chosen to use a simplified definition

of the cloud — Cloud as the collection of remote servers,

which provide the resources necessary to support the

Internet’s various applications and operations.

The convenience that the cloud offers has certainly

swept the world by storm. Not only does the cloud

provide the user with near unlimited storage space and

processing power [1], it has also redefined how we use

our personal computers today. For example, millions of

users have already abandoned the traditional way of

storing data — that is, on their local devices — and have

opted to use cloud services such as Google Drive

(drive.google.com) or iCloud (www.icloud.com)

instead [7, 14]. By storing their data on remote servers,

users can access their photos, messages, and documents

wherever and whenever they want and on whatever

device they happen to be using at the time.

It seems like the cloud is the winning solution to all

of our computer needs, but it is not quite perfect. For

instance, it is certainly great to have the cloud, but only

 Open Access

Open Journal of Cloud Computing (OJCC)

Volume 3, Issue 1, 2016

www.ronpub.com/ojcc

ISSN 2199-1987

© 2016 by the authors; licensee RonPub, Lübeck, Germany. This article is an open access article distributed under the terms and conditions

of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).

D. E. Fisher, S. Yang: Doing More with the Dew: A New Approach to Cloud-Dew Architecture

9

if one can access it. Unfortunately, by providing services

at a remote location, the cloud introduces a single-point-

of-failure in that a stable Internet connection is

absolutely required to interact with it [1, 6, 7]. If a cloud-

dependent user happens to have her/his connection to the

Internet disrupted or if cloud servers go offline (as has

happened in the past [1, 7]), the user’s PC essentially

becomes crippled and data-starved. It must be noted that

even if a connection to the cloud is available, network

latency must always be considered in cloud operations

and any human-perceivable latency is often considered

a significant inconvenience to cloud users [18]. Due to

the above concerns, rushing toward a future where PCs

have a total dependence on the cloud is unadvised.

On the other hand, personal computers are becoming

increasingly faster, more powerful, and cheaper as we

delve deeper into the digital era. However, the

prevalence of the cloud is diminishing the impact of

such progress. Nowadays it is common for the cloud to

perform more work than a user’s own device. As a

result, a new trend is emerging where PCs frequently

find themselves waiting idle with a significant portion of

their storage space going unused [15, 17, 18]. While

many see this as a process of technological evolution,

we view it as an opportunity for innovation. In

particular, we believe a newly conceived computing

paradigm, known as “dew computing”, appears

exceptionally promising.

In this paper, we will discuss the definition of dew

computing, examine the current design of the dewsite

application, and propose an improved cloud-dew

architecture. Detailed implementation issues will also be

analyzed. We expect this work to shed some insights on

the future development of dew computing.

The remainder of this paper is organized as follows.

Section 2 begins by providing a brief overview of dew

computing and the dewsite application, followed by a

short description of our concerns and proposed

improvements to cloud-dew architecture. Section 3

discusses each component of the proposed architecture

in detail. Finally, Section 4 features a brief summary.

2 ORIGINS OF DEW COMPUTING

The concept of dew computing was first proposed in

2015 [28]. At the time, fog computing was just

beginning to gain traction among computer scientists.

Although the details of fog computing are outside the

scope of this paper, the idea was certainly revolutionary

— Fog computing reduces latency in time-critical

applications by bringing cloud services physically closer

to devices on a network [2]. Unfortunately, fog

computing is intended to appeal to a computationally-

weak and fully automated audience, such as sensors and

Internet of Things (IoT) devices, and not humans

casually using their PCs [21, 31]. The dew computing

paradigm was devised in order to address this issue and

extend the cloud metaphor even further. While the cloud

is “up in the sky” far away from our computers and the

fog is “hovering just above the ground” near our IoT

devices, the dew is “on the ground” and actually part of

our PCs [20].

Of course, this begs the question of “What does dew

computing actually mean?” Many researchers have

attempted to answer such question [20, 28, 29].

However, a consensus has not yet been reached. As

such, we provide the initially proposed definition,

followed by our interpretation.

“Dew Computing is a personal computer

software organization paradigm in the age of

Cloud Computing. Its goal is to fully realize the

potentials of personal computers and cloud

services. In this paradigm, software on a personal

computer is organized according to the Cloud-

dew Architecture; in this paradigm, a local

computer provides rich functionality independent

of cloud services and also collaborates with cloud

services.” [30]

Although the definition is somewhat vague, we

interpret it as introducing a tighter coupling between the

cloud and a user’s PC in order to provide some form of

additional functionality. Rather than being two disjoint

systems, we expect dew computing to blur the line

between cloud and PC, drastically increasing their

collaboration with one another.

2.1 The Dewsite Application

A novel application of dew computing has been

proposed by Wang in [28]. The main idea of this

application is creating locally a special form of web

server, a “dew server”, by using a portion of a PC’s

memory. This dew server would essentially host scaled-

down variants of websites, full of pre-downloaded

content, which the user could access without requiring

an Internet connection. The idea of a “cached” Internet

is not new and RSS technology [27] has been using it for

years. However, Wang takes it a step further by

describing that a website stored on a user’s dew server,

what he dubs as a “dewsite”, would be much more

interactive and contain a built-in mechanism to

automatically synchronize with the cloud [28]. With this

dewsite concept, for example, a user could browse

Facebook, upload photos, and even post messages all

without an Internet connection. Once the user reobtains

a connection to the Internet, any actions or changes the

user made on the dewsite would be synchronized with

the cloud. When the user returns to the Facebook

Open Journal of Cloud Computing (OJCC), Volume 3, Issue 1, 2016

10

website, the user would find his/her profile updated

accordingly.

Indeed, the dewsite application appears promising

— not only does it provide a significant incentive for

users by allowing offline web browsing while

eliminating network latency, but it also appeals to

developers since it can be implemented without any

additional hardware. In fact, dew servers could be

implemented entirely via software using excess, unused

memory on a PC.

2.2 Areas of Improvement

The proposed dewsite application is certainly

revolutionary, but we believe it can be explored further.

We took note that dew servers make excellent use of

excess memory that PCs have, but we also noticed that

their current definition does not account for utilizing

unused CPU cycles. Modern PCs are known for their

powerful CPUs in addition to their large hard drives and

RAM, after all. In order to maximize PC efficiency, we

need to find a way to keep the CPU busy with some kind

of meaningful tasks. Such tasks not only need to have

purpose, but also must be able to operate in an Internet-

deficient environment as well. The current dewsite

application as defined today fails to meet this demand,

but we expect there to be a way for the dew to harness

the power of an idle CPU. Note that when we mention

“the dew”, we are implying the entire dew computing

aspect of a PC as a whole.

Furthermore, in [28], it is stated that “a reasonable

design is to run only one dew server on the local

computer and the dew server will provide all services of

these dewsites”. However, we do not completely agree

with this being the best approach. Websites around the

world are built on various platforms, in various

operating environments, using various database

management systems. Wang’s proposed solution is to

define a set of platforms and database management

systems that are “dew-capable” and instruct dewsite

developers to use only those technologies [28], but this

may complicate things and hinder progress in dew

development. For instance, it could cost several

thousands of dollars for a website to completely revamp

what it was originally built with in order to be hosted on

a dew server. Instead, we expect there to be a way for

developers to use whatever technology they deem fit, yet

still cohabitate in a single, cohesive dew entity. Indeed

this will be a challenge, but the possibility must be

explored further.

2.3 The Proposed Improvements

Now that we have addressed a few of our concerns we

have with the current design of the dewsite application,

we provide our ideas on how to solve them.

 In order to meet the demand of idle-CPU utilization,

we propose a modified web analytics system that is

specifically crafted to operate on data generated

from activity on dewsites. Big Data is a massive

market nowadays [9], and we believe that there is a

significant way to involve the dew in Big Data

analysis. Not only could the dew aid in performing

analytics, but it could also learn from it. Imagine the

dew dynamically downloading new content based

on the user’s interests that it has learned — we

believe this is possible.

 In order to provide more freedom in dewsite

development, we suggest scrapping the idea of

hosting only one dew server and instead provide

each domain stored on the dew with its own isolated

environment. This could be accomplished by

adding another layer, a virtual machine layer, to the

cloud-dew architecture proposed in [28].

3 THE PROPOSED CLOUD-DEW

ARCHITECTURE

In this section, we discuss our design of cloud-dew

architecture. For convenience and readability, we have

separated each component into its own subsection.

Please note that the proposed design does not require

any additional hardware components. In fact, the design

is intended to be applicable to any average PC, entirely

via software.

A visualization of the proposed cloud-dew

architecture as a whole is demonstrated in Figure 1.

Notice that each domain is isolated from the others via

its dedicated DVM. Each DVM itself contains three

components — a dew server, a dew analytics server, and

an AID — which collaborate with one another to

provide automated dewsite services to the user.

Although each DVM operates independently of the

others, the DVM hypervisor and dew resource registry

provide coordination among installed domains such that

the entire system functions as a cohesive entity. The

detailed design of each component, as well as their

interoperability with one another, will be discussed in

the following.

D. E. Fisher, S. Yang: Doing More with the Dew: A New Approach to Cloud-Dew Architecture

11

3.1 Dew Virtual Machines (DVMs)

As we mentioned in Section 2.2, the original cloud-dew

architecture was built on the idea that only one dew

server would exist and all downloaded domains would

cohabitate within it. In order to allow such cohabitation,

dewsites would have to be created using only a small set

of “dew-capable” technologies. We also mentioned that

a better implementation of cloud-dew architecture is

expected to alleviate the significant limitations and

added burden on dewsite development.

Instead of having one giant dew server containing

every downloaded dewsite on the user’s PC, we propose

the idea of having multiple small dew servers instead.

Not only would this greatly simplify management of the

dew by breaking it into smaller, more manageable

chunks, it would also allow each domain to have its own

dew server built on whatever technologies it deems fit.

In other words, the ability to support multiple dew

servers running concurrently would mean that a new

dew server could be created and designated to each new

domain stored on a user’s PC. As a result, each dew

server could be governed by its respective domain

without requiring cooperation from any other domain

stored on the machine. For example, if two domains, say

Facebook.com and YouTube.com, exist on a user’s PC,

then there would be two dew servers — one for

Facebook.com and one for YouTube.com. In this

scenario, if Facebook prefers to implement MySQL as

its DBMS, but YouTube prefers to implement Oracle,

there would be no issue whatsoever since neither one

would require interaction with the other.

In order to support hosting multiple dew servers on

a single PC, we believe that dew servers could be

operated in designated virtual machines — what we

have dubbed “dew virtual machines” (DVMs). Just as

standard virtual machines provide an isolated

environment for various applications to be executed

[17], DVMs would allow dew servers to be hosted in

isolated environments as well. Not only would this setup

allow for implementation independence amongst the

various installed domains, it would also drastically

simplify organization and management of the dew in

general.

3.1.1 An Approach to Retaining a Fixed-Size

DVM: Evaporation

It must be noted that as dew servers pre-download more

and more content as time goes on, logic dictates that they

Figure 1: The Proposed Cloud-Dew Architecture

Open Journal of Cloud Computing (OJCC), Volume 3, Issue 1, 2016

12

will eventually run out of available storage space within

their DVMs. In order to solve this issue, we recommend

gradually removing the least desirable content in a

process we like to call “evaporation”. As a homage to

the cloud/fog/dew metaphor, dew evaporation could

essentially serve as the primary mechanism to retain a

fixed-size DVM in a setting where new content gets

added daily.

Perhaps this is best illustrated with a simple

example. Imagine a user who has a Yahoo dew server

installed on his or her PC, with 1GB of available storage

remaining in the Yahoo DVM. Every morning at 6:00

a.m., the latest news articles and images, approximately

100MB of data, are fetched from Yahoo’s remote web

server. With some simple math, we can foresee that the

DVM will be at its capacity within two weeks if we

permanently store all the data — herein lies the problem.

However, evaporation could provide a solution to this

issue, for example, by removing any content older than

a week. If we utilize the one-week evaporation concept

in the above example, there would never be more than

around 700MB of content at any given time.

Note the similarity between evaporation and the

removal process in cache replacement [3]. Caches have

a fixed-size memory in much the same way that DVMs

do. Consequently, we expect we can adopt and/or extend

cache replacement algorithms to suit evaporation as

well. It is no coincidence that the above example uses a

very primitive time-based algorithm comparable to the

LRU algorithm commonly used in replacing cache

content [8]. In fact, we believe that other, more complex

cache replacement algorithms could also be used when

deciding what dewsite content should be periodically

deleted. One such algorithm that appears particularly

promising was developed by Jarukasemratana and

Murata [8], which incorporates web usage mining into

the replacement decision.

One might wonder if periodic deletion of old content

would trouble users, but we believe that the majority of

users will not mind given they have the newest content

available. It must be noted that PCs simply do not have

the vast storage capacity that the cloud offers, after all.

For users who find evaporation undesirable, we

recommend a mechanism to flag content to keep

permanently. Some dewsites may not be suitable for

evaporation at all, but we offer our solution nonetheless.

In the end, the majority of dewsites will find it necessary

to use evaporation at some point or another in order to

continue operating in a fixed-size DVM.

3.2 Dew Virtual Machine (DVM) Hypervisor

As with any architecture involving virtual machines,

there must be a component to create, delete, and

otherwise manage them [17]. Our system is no

exception, thus we introduce the DVM hypervisor. The

DVM hypervisor will be primarily responsible for:

 Providing a method of sending dew requests to

domains (i.e., asking the domains to install their

dew services on the user’s PC);

 Creating new DVMs for domains when dew

requests are accepted;

 Managing DVM operation, such that all DVMs can

run concurrently without issue; and

 Providing a method of removing or uninstalling

unwanted domains.

3.2.1 DVM Instantiation Process

We envision the following steps to take place when

installing a new domain (also illustrated in Figure 2):

1) When the user decides he/she wants to install a new

domain in his/her dew, he/she accesses a function

of the DVM hypervisor, which prompts the user to

input a domain name.

2) Once the prompt appears, the user inputs the

domain name he/she wishes to install (e.g.,

facebook.com).

3) After the user submits his/her desired domain name,

the DVM hypervisor checks to see if it is already

installed on the user’s PC.

4) If the domain does not exist on the user’s PC, the

DVM hypervisor sends a request to the domain’s

remote (cloud) server and asks it to install its dew

services on the user’s PC.

5) If the domain agrees to the request, the DVM

hypervisor creates a new (empty) dew virtual

machine and labels it with the domain name (e.g.,

facebook.com).

6) Once the new DVM is created, the domain is given

control of it.

7) The new DVM is now dedicated solely to the new

domain, so the domain installs all components of its

dew system (e.g., operating system, database

management system, other dew server files, dew

analytics server, AID, etc.) inside its DVM.

8) Once installation is complete, the domain registers

all available URLs and their associated file

locations with the dew resource registry.

After successfully completing the above steps, the user

will be able to access the new domain’s dewsite.

D. E. Fisher, S. Yang: Doing More with the Dew: A New Approach to Cloud-Dew Architecture

13

3.3 Dew Resource Registry (DRR)

With potentially thousands of files located throughout

numerous dew servers stored on a user’s PC, it is

essential to create a dedicated component of the dew

tasked solely with keeping track of what is available and

where to find it. The “dew resource registry” (DRR) is

the component responsible for mapping URLs to their

associated file locations in much the same way that DNS

servers map URLs to their associated IP addresses.

We envision that after a new dew server has been

installed on a user’s PC, it should be required to

communicate with the DRR and specify what URLs are

able to be accessed, what file is associated with each

URL, and where to find that file on the user’s PC. There

are two particular benefits to this approach: users, or

more specifically browsers, will know what content is

available for access and where to quickly find it; and any

irrelevant or sensitive files (such as dew server

installation files) can be hidden from users via omission

from the registry process. The DRR could be

implemented as a simple table (such as the example in

Figure 1), but tree data structure variants (e.g., B-Trees)

and customized hash tables could certainly be applicable

as well due to their increased searching/retrieval speed.

We leave such topic open for debate.

3.4 Dew Servers

We have frequently mentioned dew servers thus far;

however, we have yet to adequately define them outside

of Section 2.1. In essence, a dew server is a web server

hosted locally but with three important differences. First

of all, while web servers are designed to serve numerous

clients concurrently, dew servers are intended to serve

only one client — the hosting PC itself. Secondly, dew

servers have an added responsibility in that they must

periodically synchronize with the cloud, and therefore

must also handle out-of-synch-related issues. Finally,

web servers always have to deal with network-related

issues, but dew servers only have to interact with the

network during synchronization, not all the time. Other

than the above differences, dew servers and web servers

are surprisingly similar — both store various content and

both must provision content to users when it is

requested.

3.4.1 An Approach for Accessing Dewsite Files

as Host: Shared Folders

Since our design involves hosting dew servers inside of

virtual machines, accessing dewsite files from the host

becomes a tad more complicated. Thankfully this topic

has been extensively debated by the virtual machine
Figure 2: DVM Instantiation Flow

Open Journal of Cloud Computing (OJCC), Volume 3, Issue 1, 2016

14

community and one solution already exists — shared

folders. A shared folder is a dedicated directory that can

be accessed and modified by both the host and virtual

machines running on the same machine [4, 22]. If a dew

server were to place files (in particular, files that are

intended for access by the user) into a shared folder, a

browser running on the host OS could easily retrieve

them without issue. Note that solutions other than shared

folders may also exist.

3.4.2 An Approach to Preserving Proprietary

Technology: Encryption in Key Areas

When a domain installs its dew system on a user’s PC,

we expect the domain will have some amount of

proprietary technology it will not want to openly

disclose — that is simply the business of IT. In an effort

to protect the intellectual property of domain owners, we

believe that DVMs could support partial encryption,

such that areas of concern (for example, proprietary

scripts) could be encrypted while the remainder of DVM

content remains freely accessible. Encryption would

have to be used with extreme caution, however, since it

is likely that the majority of dew users will not want a

remote entity (e.g., Facebook) using their PCs in

unknown ways. A middle-ground of sorts would have to

be found, such that intellectual property is adequately

protected while dew users still feel comfortable

entrusting a portion of their PCs to an outside source.

Politics aside, we believe that encryption could have a

significant role to play in dew development.

3.4.3 An Approach to Navigating to Dewsite

URLs: “mmm” Indicator

As we mentioned in Section 2.1, the term “dewsite”

refers to a website hosted locally. In [28], the author

describes an important issue regarding how to

differentiate a dewsite from its website counterpart. In

essence, he asks his readers to consider: if a user has

Facebook installed in his/her dew and enters

“facebook.com” into his/her browser, how will the

browser know if it should retrieve Facebook’s website

or Facebook’s dewsite? The author’s solution was

simple, yet extremely effective — by using a small

indicator attached to the beginning of the URL —

“www” indicates the website version while “mmm”

indicates the dewsite version. We believe this is a

fantastic approach and have chosen to use this idea in

our cloud-dew design as well. For example, if a user

enters “www.facebook.com” into his/her browser’s

navigation bar, the browser should load Facebook’s

website; if a user enters “mmm.facebook.com”, the

browser should load Facebook’s dewsite instead; if a

user enters only “facebook.com”, the browser could be

configured to load either one by default, perhaps

depending on if an Internet connection is available or

not. All in all, we believe it is best to designate the

browser as the entity in charge of examining given

URLs and choosing what to load accordingly.

Given a URL, determining where a dewsite file is

located is surprisingly similar to determining which IP

address to contact. When given a URL corresponding to

a website (i.e., beginning with “www”), the browser

must refer to a DNS server and discover the proper IP

address before loading the page. Comparatively, when

given a URL corresponding to a dewsite (i.e., beginning

with “mmm”), the browser must refer to the dew

resource registry and discover the proper file location

before loading the page. Figure 3 features a side-by-side

comparison of these two processes.

3.5 Dew Analytics Servers

Few can deny the notion that an idle CPU is wasted

potential, so we decided to explore an application where

the dew could utilize unused cycles for the benefit of

both the user and the cloud. What we ended up

conceiving is a new component we have dubbed a “dew

analytics server”, which is intended to preprocess

various forms of analytic data. Analogous to web

analytics servers, dew analytics servers are a very

similar idea. While web analytics servers operate on data

generated when users browse and interact with websites,

dew analytics servers operate on data generated when

users browse and interact with dewsites. Although dew

analytics and web analytics are more alike than

different, there are three significant differences between

them:

1) Dew analytics servers receive data generated from

a single user; web analytics servers receive data

generated from any number of users.

2) Dew analytics data is preprocessed before it leaves

the user’s PC and is sent to the cloud; web analytics

data is sent in raw form.

3) In addition to being used by the cloud, dew

analytics data is also used by the dew itself in order

to better serve the user; web analytics data is used

by the cloud only.

D. E. Fisher, S. Yang: Doing More with the Dew: A New Approach to Cloud-Dew Architecture

15

3.5.1 Motivation

The motivation for creating dew analytics is as follows:

 PCs frequently find themselves waiting idle

[15, 17]. As a result, CPU cycles are essentially

wasted by going unused.

 We believe developers will want to implement an

analytics system into dewsites for the same reason

they implement analytics systems into websites —

to learn about their users and enhance their sites to

best suit the users’ needs.

 Since an Internet connection is not guaranteed to be

always available, we cannot assume that raw

analytic data can immediately be sent to a remote

server, as is done with web analytics [13]. Instead,

analytic data generated from dewsites must remain

local, where it will continue to “pile up” as time

goes on, until the next cloud synchronization

occurs.

 Data suitable for analysis often originates as

unstructured, and is therefore difficult to work with

[9]. In order to be considered usable, the data must

first be preprocessed and converted into a structured

format; however, this preprocessing step takes

considerable time and computational effort

[5, 10, 11].

We expect dew analytics servers to effectively

utilize unused CPU cycles by preprocessing the user’s

own analytic data before sending it to the cloud. Please

note that we acknowledge that the cloud’s immense

computational power could quickly preprocess a single

user’s data. However, if millions of dew PCs

preprocessed their analytic data before sending it to the

cloud, the cloud’s time and processing savings would be

extraordinary.

3.5.2 A Briefing on Unstructured Data and the

Need to Structure It

For completeness, we briefly review the concept of

structured versus unstructured data in the following.

Structured data is data which generally resides in

databases consisting of a number of columns and rows,

where it is grouped into relations or classes based on

shared characteristics [19]. Each piece of data typically

has one or more associated attributes which allow the

data set to be easily queried, sorted, and otherwise

manipulated in various ways. The attributes themselves

are most commonly composed in a predefined format

such as an integer or a fixed-length string [19].
Figure 3: Dew Resource Registry

and DNS Server Comparison

Open Journal of Cloud Computing (OJCC), Volume 3, Issue 1, 2016

16

Unstructured data is pretty much everything else.

Daniel Senter provides the following definition:

“Unstructured data is a generic term used to

describe data that doesn't sit in databases and is

a mixture of textual and non-textual data.

Unstructured non-textual data generally relates

to media such as images, video and audio files…

Slightly less unwieldy are unstructured textual

data made up of media files (documents,

spreadsheets, presentations), email messages and

an array of other [text-based] files.” [19]

According to IBM, more than eighty percent of all

information is unstructured [5]. In fact, the amount of

unstructured data is growing so rapidly that companies

such as Facebook and Twitter are absolutely drowning

in it [10, 11, 19]. Unstructured data is far from useless,

but it provides a significant hurdle to analytics systems

as the vast majority of them cannot directly work with it

[10, 23]. In order to be deemed usable (i.e., analyzable),

unstructured data must be put through an extra step in

the analysis process — conversion to a structured format

[5, 10, 11, 23]. Dew analytics servers are the perfect

candidates to perform that step.

Dew analytics servers are not limited to operating

only on unstructured data either. Structured data can also

be preprocessed, albeit in a more trivial manner. For

instance, we expect that other sources of analytic data —

such as data generated from page tagging and server logs

[13] — will also be prime candidates for valuable

information about the user. Dew analytics servers are

designed to operate on a wide variety of data types as a

result.

3.5.3 A Note on Privacy in Dew Analytics Data

Since dew analytics servers will likely come across

sensitive user information such as browsing activity,

messages, photos, and other multimedia content,

preserving user privacy is of the utmost importance. One

method of preserving privacy is to have dew analytics

servers remove all personally-identifiable information

from analytic data before sending it to the cloud [12].

This way, users can feel comfortable transmitting their

data since it will be entirely anonymized. Of course,

some users may still feel uncomfortable with

anonymous data, therefore domain owners should give

users the option to opt out of sending their analytic data

to the cloud entirely [12]. In this case, only AID (will be

discussed in Section 3.6) will receive the data and it will

remain entirely local on the user’s PC.

3.6 Artificial Intelligence of the Dew (AID)

A keen reader may note a significant issue with dew

analytics servers as defined so far — that they provide a

significant benefit for the cloud, but not for the users

who own the machines they run on. Why would users

want the cloud to use their PCs for something that does

not benefit them, after all? We answer such a question

by introducing the “artificial intelligence of the dew”

(AID). Instead of sending the user’s preprocessed dew

analytics data only to the cloud, we can directly benefit

the user by also sending a copy to AID. Just as its

acronym implies, AID’s purpose is to aid the user by

using data gathered from dew analytics to learn about

the user’s habits/preferences and to pre-download web

content before the user needs it.

AID would be a powerful feature that would make

the dew appealing to all PC users, even novice

individuals. By automating the “chore” of updating and

managing dewsite content, owning a dew computer

would be entirely hassle-free. AID would also promote

more efficient utilization of DVM memory since

dewsite content would be much more relevant to the

user. In fact, we expect AID and the evaporation process

introduced in Section 3.1.1 to form an effective content-

management team, such that AID facilitates the

intelligent gathering of new dewsite content while

evaporation facilitates the intelligent removal of old

dewsite content. To take things a step further, if we

establish a communication channel between AID and

the evaporation process, the two could actually learn

from each other’s actions, further improving the

relevancy of content stored in a domain’s dew server.

This collaboration will ultimately allow for the best user

experience while occupying the least amount of

memory.

Please note that AID cannot simply be “one-size-

fits-all”; we expect that each domain will want to design

AID to best match the content of their service. For

example, social media sites such as Facebook might

focus on learning which friends the user most frequently

interacts with, while video hosting sites such as

YouTube might focus on learning which genre of videos

the user prefers to watch. Regardless of what kind of

data AID chooses to learn from, it will always have the

same goal in mind — to dynamically learn what kinds

of content each user desires and to pre-download such

content before the user actually requests it him/herself.

We imagine that AID will be based on one or more of

the many versions of machine learning [26], such as

artificial neural networks (ANNs) [24] or deep learning

[25]; however, due to the wide variety of potential

dewsite services, we leave the actual implementation

details for domain developers to decide themselves.

D. E. Fisher, S. Yang: Doing More with the Dew: A New Approach to Cloud-Dew Architecture

17

3.6.1. A Mutually-Beneficial Relationship

Now that we have introduced AID, we hope that we

have made it evident that dew analytics servers will be

just as beneficial to the user as they are to the cloud.

Preprocessing analytic data is no small task, but it is an

excellent way to take advantage of CPU cycles that

would have otherwise gone unused. If dew analytics

servers, AID, and evaporation were to be successfully

implemented, we believe the following benefits could be

a reality — all at no extra cost to the user or the cloud.

The benefits for the user are:

 Fully automated dewsite content management.

 Personalized content selection tailored to individual

browsing habits and preferences.

 Enhanced privacy via the removal of personally-

identifiable information from dew analytics data.

The benefits for the cloud are:

 Free, yet incredibly valuable, structured dew

analytics data.

 Significant time and computational savings via

delegating the preprocessing step to end users.

4 CONCLUSION

Dew computing is a powerful new network paradigm

that provides elegant solutions to common issues with

the cloud. Not only does it drastically increase

accessibility of user data, it also significantly reduces

latency when browsing the web. However, we noticed

that the current state of cloud-dew architecture has two

significant drawbacks: it does not allow for much

freedom in dewsite development; and it does not take

advantage of an idle CPU. We addressed these issues by

proposing a new version of cloud-dew architecture, one

that gives domains ultimate development freedom (via

dedicated DVMs coordinated by the DVM hypervisor

and dew resource registry) and utilizes unused CPU

cycles to automate the process of managing dewsite

content (via dew analytics servers, AID, and

evaporation). Other noteworthy benefits, such as a

simplified user experience and cloud

time/computational savings, were briefly discussed as

well.

REFERENCES

[1] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R.

Katz, A. Konwinski, G. Lee, D. Patterson, A.

Rabkin, I. Stoica, and M. Zaharia, “A View of

Cloud Computing,” Communications of the ACM,

vol. 53, no. 4, pp. 50–58, Apr. 2010.

[2] F. Bonomi, R. Milito, J. Zhu, and S. Addepalli,

“Fog Computing and Its Role in the Internet of

Things,” in Proceedings of the First Edition of the

MCC Workshop on Mobile Cloud Computing, pp.

13–16, 2012

[3] B. D. Davison, “A Web Caching Primer,” IEEE

Internet Computing, vol. 5, no. 4, pp. 38–45, 2001.

[4] A. Everard, “VirtualBox/SharedFolders,” Ubuntu

Documentation, 26-Sep-2014. [Online]:

https://help.ubuntu.com/community/virtualbox/sh

aredfolders. [Accessed: 04-Jun-2016].

[5] T. Franklin, “The State of Content

Analytics,” EContent, vol. 38, no. 1, pp. 26–27,

2015.

[6] R. Goldsborough, “Computing in the

Cloud,” Tech Directions, vol. 70, no. 5, p. 14, Dec.

2010.

[7] Y. Han, “On the Clouds: A New Way of

Computing,” Information Technology &

Libraries, vol. 29, no. 2, pp. 87–92, Jun. 2010.

[8] S. Jarukasemratana and M. Tsuyoshi, “Web

Caching Replacement Algorithm Based on Web

Usage Data,” New Generation Computing, vol.

31, no. 4, pp. 311–329, Oct. 2013.

[9] J. Lamont, “Big data: expediting and validating

analyses,” KM World, vol. 25, no. 1, pp. 30–32,

Jan. 2016.

[10] J. Lamont, “Delving into customer thoughts: Text

Analytics Provides Insights,” KM World, vol. 23,

no. 7, pp. 12–20, 2014.

[11] J. Lamont, “Text analytics: versatile and

growing,” KM World, vol. 22, no. 7, pp. 8–22,

2013.

[12] K. Marek, “Chapter 1: Web Analytics

Overview,” Library Technology Reports, vol. 47,

no. 5, pp. 5–10, Jul. 2011.

[13] K. Marek, “Chapter 2: Getting to Know Web

Analytics,” Library Technology Reports, vol. 47,

no. 5, pp. 11–16, Jul. 2011.

Open Journal of Cloud Computing (OJCC), Volume 3, Issue 1, 2016

18

[14] D. Mohammed, “Security in Cloud Computing:

An Analysis of Key Drivers and

Constraints,” Information Security Journal: A

Global Perspective, vol. 20, no. 3, pp. 123–127,

2011.

[15] G. Newsham and D. Tiller, “The Energy

Consumption of Desktop Computers:

Measurement and Savings Potential,” IEEE

Transactions on Industry Applications, vol. 30, no.

4, pp. 1065–1072, 1994.

[16] NIST, “Cloud Computing,” NIST, 15-Nov-2010.

[Online]: http://www.nist.gov/itl/cloud/index.cfm.

[Accessed: 04-Jun-2016].

[17] M. Pearce, S. Zeadally, and R. Hunt,

“Virtualization: Issues, Security Threats, and

Solutions,” ACM Computing Surveys, vol. 45, no.

2, pp. 17–39, Feb. 2013.

[18] N. K. Sehgal, S. Sohoni, X. Ying, D. Fritz, W.

Mulia, and J. M. Acken, “A Cross Section of the

Issues and Research Activities Related to Both

Information Security and Cloud

Computing,” IETE Technical Review (Medknow

Publications & Media Pvt. Ltd.), vol. 28, no. 4, pp.

279–291, 2011.

[19] D. Senter, “Transforming Unstructured into

Structured Data,” Process Excellence Network,

July 15, 2012. [Online]: http://www.process

excellencenetwork.com/innovation/columns/trans

forming-unstructured-into-structured-data/.

[Accessed: 25-May-2016].

[20] K. Skala, D. Davidović, E. Afgan, I. Sović, and Z.

Šojat, “Scalable Distributed Computing

Hierarchy: Cloud, Fog and Dew

Computing,” Open Journal of Cloud Computing

(OJCC), vol. 2, no. 1, pp. 16–24, 2015. [Online]:

http://www.ronpub.com/publications/ojcc/OJCC_

2015v2i1n03_Skala.html

[21] I. Stojmenovic and S. Wen, “The Fog Computing

Paradigm: Scenarios and Security Issues,”

in Proceedings of the 2014 Federated Conference

on Computer Science and Information Systems,

pp. 1–8, 2014

[22] VMware, “Using Shared Folders,” VMware, 2016.

[Online]. https://www.vmware.com/support/ws5/

doc/ws_running_shared_folders.html. [Accessed:

04-Jun-2016].

[23] G. Vohra, “Analytics on Unstructured data –

Twitter, Facebook and Social Media,” Data

Science Central, 18-Oct-2012. [Online]:

http://www.datasciencecentral.com/profiles/blogs

/analytics-on-unstructured-data-twitter-facebook-

and-social-media. [Accessed: 25-May-2016].

[24] Wikipedia, “Artificial neural

network,” Wikipedia. [Online]:

https://en.wikipedia.org/wiki/artificial_

neural_network. [Accessed: 04-Jun-2016].

[25] Wikipedia, “Deep learning,” Wikipedia. [Online]:

https://en.wikipedia.org/wiki/Deep_learning.

[Accessed: 04-Jun-2016].

[26] Wikipedia, “Machine learning,” Wikipedia.

[Online]: https://en.wikipedia.org/wiki/Machine_

learning. [Accessed: 04-Jun-2016].

[27] Wikipedia, “RSS,” Wikipedia. [Online]:

https://en.wikipedia.org/wiki/RSS. [Accessed: 01-

Jun-2016].

[28] Y. Wang, “Cloud-dew architecture,” International

Journal of Cloud Computing, vol. 4, no. 3, pp.

199–210, 2015.

[29] Y. Wang, “Definition and Categorization of Dew

Computing,” Open Journal of Cloud Computing,

vol. 3, no. 1, pp. 1–7, 2016. [Online]:

http://www.ronpub.com/publications/ojcc/OJCC_

2016v3i1n02_YingweiWang.html

[30] Y. Wang, “The Initial Definition of Dew

Computing,” Dew Computing Research, 10-Nov-

2015. [Online]: http://www.dewcomputing.org/

index.php/2015/11/10/the-initial-definition-of-

dew-computing/. [Accessed: 04-Jun-2016].

[31] S. Yi, C. Li, and Q. Li, “A Survey of Fog

Computing: Concepts, Applications and Issues,”

in Proceedings of the 2015 Workshop on Mobile

Big Data, pp. 37–42, 2015.

D. E. Fisher, S. Yang: Doing More with the Dew: A New Approach to Cloud-Dew Architecture

19

AUTHOR BIOGRAPHIES

David Edward Fisher received

his BS degree in computer

science from Purdue University

Northwest in May 2016. His

interest in dew computing first

emerged during the final

semester of his undergraduate

career, when he was searching

for a topic for his senior design

project. For several months, he

worked closely with his project mentor, Dr. Yang, and

this paper is a result of their ongoing research into cloud-

dew architecture. Other research interests of his include

information security, networking, communication, and

system design. David recently accepted a software

engineer position at Cisco Systems, Inc. and is currently

enjoying work at the company’s San José, California

headquarters.

Dr. Shuhui Yang received her

BS and MS degrees in 2000 and

2003, respectively, from

Jiangsu University, Zhenjiang

and Nanjing University,

Nanjing, China, and her PhD

degree in computer science

from Florida Atlantic

University in 2007. She is an

associate professor in the

Department of Mathematics, Statistics, and Computer

Science at Purdue University Northwest. Her current

research focuses on the design of localized routing

algorithms in wireless ad hoc and sensor networks and

distributed systems. She is the guest editor for

the EURASIP Journal on Wireless Communications and

Networking, Special issue on Wireless Network

Security. She serves as program committee member for

many conferences, such as IEEE INFOCOM and IEEE

MASS. Professor Yang received the US National

Science Foundation EAGER grant and REU grant in

2009 and 2015, respectively. She is also a member of

the IEEE and the IEEE Computer Society.

