(© 2017 by the authors; licensee RonPub, Liibeck, Germany. This article is an open access article distributed under the terms and conditions of
the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).

Research
online
Publishing

www.ronpub.coim

Open Journal of Cloud Computing (OJCC)

Volume 4, Issue 1, 2017

http://www.ronpub.com/ojcc
ISSN 2199-1987

Performance Aspects of Object-based Storage
Services on Single Board Computers

Christian Baun, Henry-Norbert Cocos, Rosa-Maria Spanou

Faculty of Computer Science and Engineering, Frankfurt University of Applied Sciences,
Nibelungenplatz 1, 60318 Frankfurt am Main, Germany
christianbaun @fb2.fra-uas.de, cocos @stud.fra-uas.de, spanou@stud.fra-uas.de

ABSTRACT

When an object-based storage service is demanded and the cost for purchase and operation of servers, workstations
or personal computers is a challenge, single board computers may be an option to build an inexpensive system.
This paper describes the lessons learned from deploying different private cloud storage services, which implement
the functionality and API of the Amazon Simple Storage Service on a single board computer, the development of a
lightweight tool to investigate the performance and an analysis of the archived measurement data. The objective
of the performance evaluation is to get an impression, if it is possible and useful to deploy object-based storage

services on single board computers.

TYPE OF PAPER AND KEYWORDS

Regular research paper: single board computers, private cloud, object-based storage services, simple storage service

1 INTRODUCTION

A specific sort of cloud services, which belongs to the
Infrastructure as a Service (IaaS) delivery model, is the
object-based storage services. Examples for public cloud
offerings, which belong to this sort of services, are
the Amazon Simple Storage Service (S3) and Google
Cloud Storage, which also implements the S3-APIL.
Furthermore exist several free private cloud solutions,
which implement the S3-functionality and API.

For research projects, educational purposes like
student projects and in environments with limited
space and/or energy resources, single board computers
may be a useful alternative to commodity hardware
servers, because they require lesser purchase costs
and operating costs. In addition, such single board
computer systems can be constructed in a way that they
can easily be transported by the users [2] because of
their low weight and compact design. Single board

computer systems are not only well suited for many
cloud computing applications, but also for Internet of
Things (IoT) [19] [47] scenarios and more modern
distributed systems architecture paradigms like Fog
Computing [7] [25] and Dew Computing [39] [45].

The drawback of single board computers is the limited
hardware resources, which cannot compete with the
performance of higher-value systems [3]. For this work,
the Raspberry Pi 3 single board computer was selected
as hardware platform, because the purchase cost for
this device is just approximately 40€ and operating
system images of several different Linux distributions
exist for its architecture. The computer provides four
CPU cores (ARM Cortex AS8), 1 GB of main memory
and a 10/100 Mbit Ethernet interface. A microSD card is
used as local storage.

In [2] we already investigated the characteristics,
as well as the performance and energy-efficiency of a
mobile cluster of eight Raspberry Pi 1 Computers and

http://creativecommons.org/licenses/by/4.0/
http://www.ronpub.com/ojcc

Open Journal of Cloud Computing (OJCC), Volume 4, Issue 1, 2017

its single components. In this work we also mentioned
useful applications for such a system. In [3] we analyzed
and compared the performance and energy-efficiency
of different clusters of Single Board Computers with
the High Performance Linpack (HPL) [20] benchmark.
This work covered clusters of Raspberry Pi 1, BananaPi
and Raspberry Pi 2 nodes. For this work, several free
private cloud S3-reimplementations have been evaluated
and deployed on a Raspberry Pi 3 when it was possible.
The performance and energy efficiency have been
investigated among others with S3perf, a self-developed
tool that investigates the required time to carry out
typical storage service operations.

This paper is organized as follows. Section 2
contains a discussion of related work. In Section 3, the
deployment of different private cloud storage services
on the Raspberry Pi 3 is described. Section 4 presents
the development and implementation of the tool S3perf.
An analysis of the gained measurement data is done in
Section 5. Section 6 presents conclusions and directions
for future work.

2 RELATED WORK

In the literature, several works cover the topic of
measuring the performance of storage services with the
S3 interface.

Garfinkel [18] evaluated in 2007 the throughput via
HTTP GET operations which Amazon S3 can deliver
with objects of different sizes over several days from
several locations by using a self-written tool. The
work is focused on download operations and does not
analyze the performance of other storage service related
operations in detail. Unfortunately, this tool has never
been released by the author and the work does not
investigate the performance and functionality of private
cloud scenarios.

Palankar et al. [32] evaluated in 2008 the ability
of Amazon S3 to provide storage support to large-
scale science projects from a cost, availability, and
performance perspective. Among others, the authors
evaluated the throughput (HTTP GET operations) which
S3 can deliver in single-node and multi-node scenarios.
They also measured the performance from different
remote locations. No used tool has been released by the
authors and the work does not mention the performance
and functionality of private cloud scenarios.

Zheng et al. [50] described in 2012 and 2013 the Cloud
Object Storage Benchmark (COSBench) [12], which is
able to measure the performance of different object-
based storage services. It is written in Java and provides
a web-based user interface and helpful documentation
for users and developers. The tool supports not only

the S3 API, but also the Swift API and it can simulate
different sorts of workload. It is among others possible
to specify the number of workers, which interact with
the storage service, and the read/write ratio of the access
operations [49]. The complexity of COSBench is also
a drawback, because the installation and configuration
requires some effort.

McFarland [43] implemented in 2013 two Python
scripts, which make use of the boto [8] library to measure
the download and upload data rate of the Amazon S3
service offering for different file object sizes. Those
solutions offer only little functionality. They just allow
to measure the required time to execute upload and
download operations sequentially. Parallel operations
are not supported and also fundamental operations other
than the upload and download objects are not considered.
Furthermore, the solution does not support the Swift
APL

Land [26] analyzed in 2015 the performance of
different public cloud object-based storage services with
files of different sizes by using the command line tools
of the service providers and by mounting buckets of the
services as file systems in user-space. This work does
not analyze the performance and functionality of private
cloud scenarios. The author uploaded for his work a
file of 100 MB in size and a local git repository with
several small files into the evaluated storage services and
afterwards erased the files, but in contrast to our work, he
did not investigate the performance of the single storage
service related operations in detail.

Bjornson [6] measured in 2015 the latency — time
to first byte (TTFB) — and the throughput of different
public cloud object-based storage services by using a
self-written tool. Unfortunately, this tool has never been
released by the author. The work does not consider
the typical storage service related operations and it does
not analyze the performance and functionality of private
cloud scenarios.

In contrast to the related works in this section, we
evaluate the performance of private cloud solutions
on single board computers and not the performance
of one or few public cloud service offerings. In
addition, we developed and implemented a flexible and
lightweight solution to analyze the performance of the
most important storage service operations and not only
of the HTTP GET operation or of the latency. We used
this tool to analyze the performance of storage service
solutions, which has also been released as free software.

C. Baun, H.-N. Cocos, R.-M. Spanou: Performance Aspects of Object-based Storage Services on Single Board Computers

3 DEPLOYMENT OF PRIVATE CLOUD
STORAGE SERVICES WITH THE S3-
INTERFACE ON A SINGLE BOARD
COMPUTER

For this work, several free private cloud storage services,
which re-implement the functionality of the Amazon S3
and its API, have been taken into consideration. Table 1
presents an overview of the investigated storage services
and their characteristics.

Some of the investigated services (Cumulus, Fake
S3, S3ninja, S3rver, Scality S3 Server and Walrus)
support only single-node deployments, which limits the
reliability and scalability of these services in principle.
These services focus on providing lightweight solutions,
mainly for testing and development purposes. Ceph-
RGW, Minio, Riak CS and Swift are designed to
implement multi-node deployments.

The table among others highlights the programming
languages, in which the different storage service
solutions are implemented in. This information may
be important for application scenarios where additional
functions need to be implemented by the users.
Furthermore, in practice, not all systems provide all
compilers or runtime environments.

When implementing a single-node service, the
durability of the stored data depends entirely on the
storage system, which is used. It is possible to use these
services as a front end and via the S3 interface to access

e a folder inside a POSIX file system, which is
located on a local connected storage drive,

e a distributed file system, which spans via multiple
physical servers,

e anetwork attached storage (NAS) or even

e a storage area network (SAN).

When using a multi-node deployment with Ceph-
RGW, Minio, Riak CS or Swift, the data is replicated
over several nodes by the storage service itself.

Whenever possible, the services, described in this
work have been deployed on a Raspberry Pi 3 single
board computer. The operating system used was
Raspbian GNU/Linux 8.0 — which is a Debian Jessie
derivate — with release date 2017-03-02. The used Linux
kernel was revision 4.4.50. For this work, all deployed
storage services used a local folder on the microSD
card, which is connected to the Raspberry Pi 3, to store
the buckets and objects. In order to investigate the
performance of the services, the required time to carry
out a set of operations was measured.

3.1 Ceph-RGW

The distributed file system Ceph [46] supports among
others the Amazon S3 REST API [11]. This
functionality of Ceph is also called Ceph Object
Gateway or RADOS Gateway (RGW). Ceph is free
software and licensed according to the GNU Lesser
General Public License (LGPL).

Despite several success stories [1] [13] [14] [44] in
literature, which describe the deployment of Ceph on
Raspberry Pi 3 computers, our attempts to install and
configure Ceph inside the used Raspbian revision did not
result in a stable testbed. Therefore, for this work, Ceph
was not further evaluated.

3.2 Cumulus

The storage service Cumulus [9] has been developed in
the context of the Nimbus infrastructure project [24].
Cumulus is developed in Python and its source code is
licensed according to the Apache License 2.0 [30]. The
Cumulus service allows only single-node deployments.
Because Cumulus does not rely on any higher level
Nimbus libraries, it is possible to install it as a stand
alone storage service without the entire Nimbus IaaS
solution.

In order to install Cumulus, the operating system
must provide the Python interpreter 2.5 or a more
recent revision. The single installation steps are well
documented in the Cumulus documentation inside the
QUICKSTART. txt file, which can be found inside the
Cumulus source code repository.

In case of a Cumulus only installation, the
user management functionality of the Nimbus
infrastructure cannot be used. For such scenarios,
Cumulus provides a set of command line tools
(cumulus—-add-user, cumulus—-list—-users
and cumulus—-remove—user) to create, remove, and
print out a list of current users.

After the first start of the service, all relevant
configuration data is stored inside the file
“/cumulus/etc/cumulus.ini. Among others,
the following parameters are specified: The port number
of Cumulus, the path of the folder, which is used to store
the buckets and objects, the hostname, the path and file
name of the logfile and if HTTPS shall be used.

3.3 Fake S3

The Fake S3 service is developed in the programming
language Ruby and until revision v0.2.5, the source code
is licensed according to the MIT License [17]. Later
revisions are not licensed according to a software license
which complies with the open source definition of the

Open Journal of Cloud Computing (OJCC), Volume 4, Issue 1, 2017

Table 1: Storage services which implement the S3-API and their characteristics

Service Tested revision | Multi-node | Programming | License
deployment | language

Ceph-RGW v10.2.7 possible C++ LGPL

Cumulus v2.10.1 impossible Python Apache License 2.0

Fake S3 v1.0.0 impossible Ruby MIT License

Minio v2017-03-16 possible Go Apache License 2.0

Riak CS v2.1.1 possible Erlang Apache License 2.0

S3ninja v2.7 impossible Java MIT License

S3rver v0.0.7 impossible Node.js MIT License

Scality S3 Server v7.0.0 impossible Node.js Apache License 2.0

Swift (with the swift3 middleware) | v2.13.0 possible Python Apache License 2.0

Walrus v4.4.0 impossible Java GPLv3

Open Source Initiative (OSI). The service offers only
single-node deployments and no graphical user interface.
In order to deploy Fake S3, the programming language
Ruby and the package manager RubyGems need to be
installed first. The installation of Fake S3 is done via the
command gem install fakes3. Important service
related parameters like the port number and the path
of the S3 data folder are provided as command line
parameters when starting the Fake S3 service.

During the evaluation of Fake S3, some bugs have
been observed with this service. Buckets are still seen
by the service, even if they have been erased prior. With
the evaluated revisions, it was not possible to modify the
access key and the secret access key via command line
parameters or to specify them via environment variables.

3.4 Minio
The Minio service is developed in the programming
language Go and its source code is licensed according
to the Apache License 2.0 [28]. Minio provides a web
user interface, which allows to carry out all object and
bucket related tasks. The Minio project offers not only
the source code of the service, but also binaries for
the operating systems Mac OS X, Linux, FreeBSD and
Microsoft Windows. Linux binaries for x86-compatible
architectures and even ARM architectures are available.
When starting the service, the port number and a local
folder for the object data, are provided as command
line parameters. The user access key and secret access
key can be specified via the environment variables
MINTIO_ACCESS_KEY and MINIO_SECRET_KEY.
During the first start of the service, all
relevant configuration data is stored inside the file
“/.minio/config. json. Inside this file, among
others the following parameters are specified: The
user access key and secret access key, if the web user
interface shall be used, if the server shall print out

messages on command line and the logging level and if
the server shall write messages in a logfile and the file
name as well as the logging level.

Since November 2016, Minio provides multi-disk
support with internal replication on single node
deployments and across multiple nodes. To avoid a
single node being a bottleneck for requests, a tool like
the light-weight web server software nginx can be used
as a proxy [27].

3.5 Riak CS

Riak CS (Cloud Storage) implements a S3-like object
storage with the S3-API on top of Riak KV [29], which
is a distributed NoSQL key-value data store. Riak KV
implements the characteristics of Amazon Dynamo [15]
and has therefore a focus on multi-node scalability,
fault-tolerance and data durability thanks to internal
replication.

The evenly distribution of stored data is carried out by
Riak KV fully automatic. To achieve this characteristic,
Riak KV places the keys inside a Distributed Hash Table
(DHT) [23]. The DHT is split into partitions, circularly
distributed among the nodes, and replicas are always
placed in contiguous partitions [10].

To enforce the global uniqueness of entities, a Riak CS
storage system also requires the service Stanchion [41],
which serializes the requests that involve creation and
modification of the entities. When a user for instance
tries to create a bucket with an already existing bucket
name, this request is rejected by Stanchion. The same
result is caused by the attempt to create a user with the
Email address of an already existing user [22].

Riak KV, Stanchion and Riak CS are implemented in
the programming language Erlang and are free software.
The source code [34] is licensed according to the Apache
License 2.0. The installation of Riak KV, Stanchion
and Riak CS, as well as a compatible revision of the

C. Baun, H.-N. Cocos, R.-M. Spanou: Performance Aspects of Object-based Storage Services on Single Board Computers

Erlang compiler, requires a lot of effort, because no pre-
compiled packages were available for Raspbian and the
ARM architecture of the Raspberry Pi. Compiling all
required components requires more than an hour on a
Raspberry Pi 3. The services Riak KV, Stanchion and
Riak CS have their own configuration files and need to
be started in the correct order.

With Riak CS Control, a standalone web application
for the user management of Riak CS systems exists.
Equal to the other Riak components already described,
Riak CS Control is free software and implemented in
Erlang. Unfortunately, all attempts to deploy Riak CS
Control on the Raspberry Pi 3 failed in this work.

3.6 S3ninja

The S3 ninja service is developed in the programming
language Java and its source code is licensed according
to the MIT License [36]. The service offers only single-
node deployments. S3ninja provides a web user interface
which allows to carry out all object and bucket related
tasks.

From a perspective of operating system, S3ninja
requires just an installed Java runtime environment. In
effect, the deployment and start of this service solution
require little effort. An unexpected issue arose from the
interaction of S3ninja with s3cmd: The used s3cmd
revision v2.7 forces the API to be accessible at path /,
but S3ninja only permits the path /s3. This issue was
solved by installing nginx and using it as a proxy.

In the configuration file of the service
“/s3ninja/app/application.conf, the
user access key and the secret access key can be
specified. Also the path of the S3 data folder and the
port number is specified inside this file.

3.7 S3rver

The service S3rver is developed in the programming
language JavaScript and its source code is licensed
according to the MIT License [37]. The software is
executed on server-side by using Node.js. The service
offers only single-node deployments and no graphical
user interface.

In order to deploy S3rver, the Node.js run-time
environment and the package manager npm need to be
installed first. The installation of S3srver is done via the
command npm install s3rver -g. Important
service related parameters like the port number and the
path of the S3 data folder are provided as command
line parameters when starting the service. An unusual
characteristic of S3rver is, that the IP address also needs
to be specified as a command line parameter. If not

specified, the port number of the service only accepts
connections from localhost.

With the evaluated revisions, it was not possible
to modify the access key and the secret access key
via command line parameter or to specify them via
environment variables.

3.8 Scality S3 Server

The Scality S3 Server, which offers only single-node
deployments, is developed in the programming language
JavaScript and its source code is licensed according to
the Apache License 2.0 [38]. The software is executed
on server-side by using the Node.js JavaScript runtime
environment. If Node.js and the package manager npm
are already installed, the service can be deployed via the
command npm install.

One characteristic of Scality S3 Server is that its
main memory consumption exceeds the physical main
memory of the Raspberry Pi 3. In order to solve this
issue, a Swap partition of at least 1 GB of size or a Swap
file is required.

The user access key and secret access
key can be specified via the environment
variables SCALITY_ACCESS_KEY_ID and
SCALITY_SECRET_ACCESS_KEY or inside the
file /S3/conf/authdata. json. Further relevant
configuration parameters like the logging level and the
port number of the service are specified inside the file
~/S3/config. json.

3.9 Swift

Swift is a component of the IaaS solution OpenStack.
It is written in Python and licensed according to the
Apache License 2.0 [31]. The OpenStack project
was initiated in 2010 by Rackspace and NASA with
the objective to develop a scalable, durable and high-
available object storage, which can be deployed across
a large number of nodes. The swift service ensures data
replication and integrity across the connected nodes.

Although being an object-storage service like the
other services examined in this work, Swift implements
an API, which is different to the S3-API. For interaction
on command line, the python client [33] for the Swift
API is a working solution. If the S3-API is mandatory, a
middleware like swift3 [42] needs to be deployed.

The Swift service offers two options for
authentication. The first option requires the OpenStack
Keystone service installed and the second option
makes use of the TempAuth functionality, which is
implemented in Swift. The Keystone option was
discarded, because a lightweight solution was wanted.
The user credentials when using TempAuth are specified

Open Journal of Cloud Computing (OJCC), Volume 4, Issue 1, 2017

inside the file /etc/swift/proxy—-server.conf.
Further relevant configuration parameters, which are
also specified inside this file, are among others the
logging level and the port number of the swift service.

The deployment of Swift on the Raspberry Pi 3
needed much effort because of the several software
dependencies and the complex configuration. The
installation of the latest revision 2.14.0 was possible, but
because of a software bug or a configuration issue, it was
only possible to create buckets, but impossible to upload
objects into the service. Therefore, revision 2.2.0 of
the Swift service was installed, because packages of this
revision for the Raspbian operating system do already
exist.

3.10 Walrus

Walrus is a component of the IaaS solution
Eucalyptus [16]. It is written in Java and licensed
according to the GPLv3 license. The development is
mainly driven by Hewlett Packard Enterprise (HPE),
since HP acquired the company Eucalyptus Systems in
2014. Of all private cloud service solutions, mentioned
in this work, Walrus has the longest development period.
It is a part of Eucalyptus since revision 1.4 in 2009.

The developers support only the installation of
Eucalyptus inside the operating systems CentOS 7
and Red Hat Enterprise Linux 7. Installations on
different Linux distributions cause much effort because
of multiple dependencies. Walrus uses a folder inside
a POSIX file system to store the buckets as folders and
the object data as files. The durability of the stored data
depends entirely on the used storage system.

A stand alone installation of Walrus out of the box is
impossible because Walrus does not utilize the POSIX
file system for storing the metadata. These are stored in
the database, which is managed by the Cloud Controller
(CLC) - a different Eucalyptus component.

The service allows only single-node deployments.
Instead of adding multi-node functionality into Walrus,
the developers decided to support using Riak CS or
Ceph-RGW as object storage in Eucalyptus instead of
Walrus.

A stand-alone installation of Walrus is impossible
and the installation of Eucalyptus was not successful on
Raspbian GNU/Linux. Installation attempts with Ubuntu
16.04 LTS failed the same. Therefore, for this work,
Walrus was not further evaluated.

4 DEVELOPMENT OF S3PERF

An analysis of the existing testing solutions (see
section 2) resulted in the development of a new tool,
called S3perf [5]. Its focus was to be lightweight, be

Table 2: Description of the HTTP methods with
request-URIs that are used to interact with storage
services

Account-related Operations

GET List buckets
HEAD Retrieve metadata
Bucket-related Operations

GET /bucket List objects

PUT /bucket Create bucket

DELETE /bucket Delete bucket

HEAD /bucket Retrieve metadata
Object-related Operations

GET /bucket/object Retrieve object

PUT /bucket/object Upload object

DELETE /bucket/object Delete object

HEAD /bucket/object Retrieve metadata

POST /bucket/object Update object

compatible with the S3-API and the Swift API, have
only few dependencies, cause only little effort for the
installation and be simple to use.

One well-documented option to develop software,
which shall interact with AWS-compatible services, is
using the programming language Python together with
the boto [8] library. In order to even simplify the
implementation, the command line tools s3cmd [35]
and the Swift client [33] were selected to carry out
all interaction with the used storage services. These
preconditions led to the development of a bash script.

Once a storage service is registered in the
configuration file of s3cmd, S3perf can interact with
its S3-compatible REST API. REST is an architectural-
style that relies on HTTP methods like GET or PUT.
S3-compatible services use GET to receive the list of
buckets that are assigned to an user account, or a list
of objects inside a bucket or an object itself. Buckets
and objects are created with PUT and DELETE is used
to erase buckets and objects. POST can be used to
upload objects and HEAD is used to retrieve meta-data
from an account, bucket or object. Uploading files into
S3-compatible services is done via POST directly from
the client of the user. Table 2 gives an overview of
methods used to interact with S3-compatible storage
services. [4]

If the Swift API shall be used for the communication
with a storage service, S3perf does not use the command
line tool s3cmd, but the Swift client. In contrast to
s3cmd, the swift tool uses no configuration file to
store user credentials. The user of S3perf needs to

C. Baun, H.-N. Cocos, R.-M. Spanou: Performance Aspects of Object-based Storage Services on Single Board Computers

NetPIPE Bandwidth (logarithmic scaling of the x-axis and y-axis)

T LN B S B B L L B
= 4
)
)
Z
=
& 4
Q
<
o
3
e
=
= 4
) NetPIPE usi‘ng the enq-to-end pr‘otocol TCE —
0.01
1 10 100 1000 10000 100000 1x10® 1x107
Message (payload) size [Bytes]
NetPIPE Bandwidth (logarithmic scaling of the x-axis)
100 T T
80 |
v
i}
EA 60
5
Q
<
S 40
°
<
[
20 -
0 -+ : : ‘

1x107

.
1x106

1 10 100 1000 10000 100000

Message (payload) size [Bytes]

NetPIPE Latencies (logarithmic scaling of the x-axis and y-axis)

1F T T T =

0.1

Latency [s]
o
o
=

0.001

0.0001 1 L L L L L L
1 10 100 1000 10000 100000 1x106

Message (payload) size [Bytes]

1x107

NetPIPE Latencies (logarithmic scaling of the x-axis)
0.8 T T

0.7

0.6

0.5 -

0.4 -

Latency [s]

0.3 -

0.2 -

0.1 -

0 F—H-HHHH
1 10

A
100 1000 10000 100000
Message (payload) size [Bytes]

.
1x106 1x107

Figure 1: Analysis of the network performance of the Raspberry Pi 3 by using the NetPIPE benchmark

specify the endpoint of the used storage service, as
well as username and password inside the environment
variables ST_AUTH, ST_USER and ST_KEY.

A common assumption, when using storage services,
which implement the same API, is that all operations
cause identical results. But during the development of
S3perf, some challenges caused by non-matching service
behavior emerged. One issue is the encoding of the
bucket names. In order to be conforming to the DNS
requirements, bucket names should not contain capital
letters. To comply with this rule, the services Minio,
Riak CS, S3rver and Scality S3 do not accept bucket
names with capital letters. Other services like Nimbus
Cumulus and S3ninja only accept bucket names, which
are encoded entirely in capital letters. The service
offerings Amazon S3 and Google Cloud, as well as the
private cloud solutions Fake S3 and OpenStack Swift are
more generous in this case and accept bucket names,
which are written in lowercase and capital letters. In
order to be compatible with the different storage service
solutions and offerings, S3perf allows the user to specify
the encoding of the bucket names.

When doing a performance evaluation with S3perf,
the tool executes these six steps for a specific number
of objects of a specific size:

1. create a bucket
. Upload one or more objects into this bucket

. Fetch the list of objects inside the bucket

2
3
4. Download the objects from the bucket
5. Erase the objects inside the bucket

6

. Erase the bucket

The time, which is required to carry out these
operations, is individually measured and can be used
to analyze the performance of these commonly used
storage service operations.

Users of S3perf have the freedom to specify the
number of files via command-line parameters, which
shall be created, uploaded and downloaded, as well as
their individual size. The files are created via the tool dd
and contain pseudorandom data from /dev/random.

In order to be able to simulate different load scenarios,
the S3perf tool supports the parallel transfer of objects,
as well as requesting delete operations in parallel. If the
parallel flag is set, the steps 2, 4 and 5 are executed in
parallel by using the command line tool parallel.

Every time when S3perf is executed, the tool prints
out a line of data, which informs the user about the date

Open Journal of Cloud Computing (OJCC), Volume 4, Issue 1, 2017

and time when the execution was finished, the number of
created objects, the size of the single objects, as well as
the required time in seconds to execute the steps 1-6. The
final column contains the sum of all time values, which
is calculated by using the command line tool bc.

The structure of the output simplifies the analysis of
the performance measurements by using tools like sed,
awk and gnuplot.

5 PERFORMANCE ANALYSIS OF THE
DEPLOYED CLOUD STORAGE SERVICES

To generate a sufficient number of measurement data,
S3perf was executed for each storage service five times
with ten objects of sizes 512 Byte, 1 kB, 2 kB, 4 kB,
8 kB, 16 kB, 32 kB, 64 kB, 128 kB, 256 kB, 512 kB,
1 MB, 2 MB, 4 kB and 8 MB. This caused up to 75
test runs for each storage service. Few test runs failed
because the resources of the used single board computer
were fully utilized or because the service did not allow
to upload files of a specific size.

When analyzing the required time to upload or
download files, it must be kept in mind that the
Raspberry Pi 3 is equipped with a 10/100 Mbit Ethernet
controller, that is internally connected with the USB
hub. In practice, the network performance is less
than 100 Mbit. The network performance between two
Raspberry Pi 3 nodes was measured with the command-
line tool iperf v2.0.5 [21] and with the NetPIPE v3.7.2
benchmark [40]. According to iperf, the network
performance between the two nodes is approximately
94 Mbit per second.

A more detailed analysis of the network performance
is possible with the NetPIPE benchmark. It tests the
latency and throughput over a range of message sizes
between two processes. The benchmark was executed
between the two nodes by just using TCP as end-to-end
(transport layer) protocol. The results in Figure 1 show
that the smaller a message is, the more dominant the
transfer time by the communication layer overhead is.
For larger messages, the communication rate becomes
bandwidth limited by a component in the communication
subsystem. Examples are the data rate of the network
link, the utilization of the transmission medium or a
specific device between the sender and the receiver like
the used network switch.

5.1 Step 1: Create a Bucket

The creation of a single bucket (Step 1) cannot be
executed in parallel and it is not influenced by the
size of the objects, which are (in later steps) created
and transferred by S3perf. Therefore, the boxplot in
Figure 2, which presents the statistical distribution of the

Required Time to create a Bucket (50 Tests)

0.9
0.8 | . -
0.7 | -
0.6 | -
w 0.5 .
0.4 | . -
03 | -
0.2 %‘ i % .
= —

0.1

%) m o n © 5 > F=

=l wn c O c S = §

g ¢ = 3 c m S &

8 © - s n 0

Figure 2: Time to create a bucket inside the tested
storage services

required time [s], does not mention any object sizes. The
horizontal line inside each box is the median (second
quartile). The smallest 50% of the points are smaller
than or equal to the median value. 25% of the points are
smaller than or equal to the bottom box boundary (first
quartile) and 25% of the points are bigger than or equal
to the top box boundary (third quartile).

The size of the box is also called interquartile range
(IQR). It is calculated via QR = @3 — Q1) and used
to find outliers in the data. The whiskers extend from
the ends of the box to the most distant point whose y-
axis value has a maximum distant of 1.5 times the IQR.
Figure 2 does not show all outliers. In few cases, creating
a bucket with Riak CS and Swift required around 5
seconds.

Figure 2 shows that Riak CS and Swift require more
time to create a bucket compared with the other service
solutions. This is probably caused by their more complex
way to store the data with replicas, which consumes
additional resources, but in principle also offers the

C. Baun, H.-N. Cocos, R.-M. Spanou: Performance Aspects of Object-based Storage Services on Single Board Computers

option to build systems with a better level of reliability.

5.2 Step 2: Upload the Objects into the Bucket

The required time to upload ten objects sequentially and
in parallel into the tested storage services (Step 2) is
presented in Figure 3. The measurements show that the
parallel upload of the ten objects only in few cases lead to
a significant acceleration compared with the sequential
upload. In most cases, the period to upload the objects
in a parallel way is longer compared to the sequential
upload. The parallel upload is significant beneficial
when using Fake S3 with objects > 512kB, Minio with
objects > 1024 kB and < 8192 kB, Riak CS with objects
> 256 kB and S3ninja with objects > 32kB.

From the evaluated services, Riak CS is the most main
memory consuming one and it does not free the main
memory after an upload operation. After the upload
of ten objects in parallel with a size of 2048kB each,
only approximately 170 MB of main memory have been
available on the Raspberry Pi 3. The attempt to upload
ten objects in parallel with a size of 4096 kB crashed
the node. When trying to upload ten objects in serial
with a size of 8192kB, the main memory of the node
gets entirely filled and also the Swap storage is used. In
effect, the node also crashed during this attempt.

The upload of objects > 1024 kB into S3ninja failed
because nginx, which was used as a proxy, did
not permit the upload of such large files. Another
observation with S3ninja was, that the service consumed
one CPU core entirely at times, during the upload of ten
objects (in parallel and sequential operation mode).

Also Swift consumes a lot of main memory because
of the way, the objects, buckets and accounts are stored
in rings with replicas. When deploying Swift on server
resources, the replicas are distributed over multiple
physical storage devices. On the Raspberry Pi 3 node,
all replicas are stored on the microSD card, which is also
used to store the operating system.

5.3 Step 3: Fetch the List of Objects

Fetching a list of objects (Step 3) cannot be executed
in parallel and should not actually depend on the size
of the objects, but as presented in Figure 4, when using
S3ninja, the size of the objects has a strong influence on
the required time. The root cause for this behavior may
be the working method of the Java VM used.

It is also observed in this step that Riak CS and Swift
provide a lesser performance compared with the other
investigated solutions (except S3ninja) because Riak CS
and Swift both store the objects with replicas.

5.4 Step 4: Download the Objects

The required time to download ten objects sequentially
and in parallel into the tested storage services (Step 4)
is presented in Figure 5. The measurements show that
the parallel download of the ten objects does only in few
cases lead to a significant acceleration compared with the
sequential upload. In most cases, the period to download
the objects in a parallel way is longer compared to the
sequential download. The parallel upload is significant
beneficial when using Cumulus with objects > 1kB and
< 2048 kB and S3ninja with objects > 16 kB.

5.5 Step 5: Erase the Objects

The required time to erase ten objects sequentially and
in parallel with the tested storage services (Step 5) is
presented in Figure 6. The measurements show that
erasing the ten objects in parallel does only in few
cases lead to a significant acceleration compared with
the sequential upload. In most cases, the period to
erase the objects in a parallel way is longer compared
to the sequential operation mode. Erasing in parallel is
beneficial when using S3ninja with objects > 8 kB.

Erasing objects should not actually depend on the size
of the objects, but as presented in Figure 6, when using
S3ninja, the size of the objects has a strong influence on
the required time. The root cause for this observation
may be the working method of the Java VM used.

5.6 Step 6: Erase the Bucket

Erasing a single bucket (Step 6) cannot be executed in
parallel and because the bucket is already empty, the
performance of this operation is not be influenced by the
size of any objects. Therefore, the boxplot in Figure 7,
which presents the statistical distribution of the required
time [s], does not mention any object sizes.

The Figure does not show all outliers. In few cases,
erasing a bucket with Riak CS required around 8 seconds
and with Swift around 5 seconds.

6 CONCLUSIONS AND NEXT STEPS

The performance of single board computers like the
Raspberry Pi 3 cannot compete with higher-value
systems because the characteristics of their relevant
hardware components, especially the CPU, main
memory, storage and network interface. Regardless of
the performance, single board computers are useful for
academic purposes and research projects because of the
lesser purchase costs and operating costs compared with
commodity hardware server resources. The hardware
resources of a single Raspberry PI 3 node are sufficient
to deploy and use each one of the S3-API-compatible

Open Journal of Cloud Computing (OJCC), Volume 4, Issue 1, 2017

Time to upload 10 Objects
sequentially (Mean Time of 5 Tests)

Time to upload 10 Objects Time to upload 10 Objects
in parallel (Mean Time of 5 Tests)

sequentially (Mean Time of 5 Tests)

Time to upload 10 Objects
in parallel (Mean Time of 5 Tests)

T
6T vE 2618
8559'8T 9607

<
©
Obiject Size [kB]

10 | Fake S3

T
faZ: 4]

Obiject Size [kB]

10 | Fake S3 I

T
¥825°8

Obiject Size [kB]

10 [Cumulus I

Object Size [kB]

10 [Cumulus I

Time to upload 10 Objects
sequentially (Mean Time of 5 Tests)

Time to upload 10 Objects

in parallel (Mean Time of 5 Tests)

Time to upload 10 Objects
sequentially (Mean Time of 5 Tests)

Time to upload 10 Objects
in parallel (Mean Time of 5 Tests)

T
payseud apoN

3
Object Size [kB]

10k Riak CS

.
pauseid spoN | 2618
pauseld SpoN | 960
payse.d SpoN | 8¥02
20k
2ls

<
©
Object Size [kB]

10l Riak CS

Object Size [kB]

Object Size [kB]

10
8
6
4
2
0

Time to upload 10 Objects
sequentially (Mean Time of 5 Tests)

Time to upload 10 Objects Time to upload 10 Objects
in parallel (Mean Time of 5 Tests)

sequentially (Mean Time of 5 Tests)

Time to upload 10 Objects
in parallel (Mean Time of 5 Tests)

s S3rver

©
T T
8L9v°8 |
9]
2
)
(2]
. .
o @
T T
pajie} uonesado
pajie} uonesado
pajiey uonessdo
8098'9Z
996'ST
[96088
©
g
f=3
]
(2]
. .
o @
T T
pajie} uonesado
pajie} uonesado
pajiey uonesado
991921
88SL9
©
<
c
]
(2]
. .
o ©

Obiject Size [kB]

2618

960
8v02
veol
[43°]

<
©
Obiject Size [kB]

Object Size [kB]

2618
9607
8702
2ol
[45°]
9s¢
8¢t
9
43
9k

Object Size [kB]

Time to upload 10 Objects
sequentially (Mean Time of 5 Tests)

Time to upload 10 Objects

in parallel (Mean Time of 5 Tests)

Time to upload 10 Objects
sequentially (Mean Time of 5 Tests)

Time to upload 10 Objects
in parallel (Mean Time of 5 Tests)

9018'6€

(4534

Swift

Object Size [kB]

10 -

T T
pajiey uonesado | 2618

9180°6Z 960¥
16891 8y02
L9LTT ¥20l
LLTL] 2is
820'8 | 952
90699 48

80899

<
©
Object Size [kB]

T
CTLELT

2€28°01

vL08°L |

Scality 1

86T

Object Size [kB]

10
8

YIE9T

[zr0901

9820°L

Scality 1

Object Size [kB]

10
8

to upload ten objects sequentially and in parallel into the tested storage services

ime

T

Figure 3

10

C. Baun, H.-N. Cocos, R.-M. Spanou: Performance Aspects of Object-based Storage Services on Single Board Computers

Time to fetch a list of 10 Objects
(Mean Time of 5 Tests)

Time to fetch a list of 10 Objects
(Mean Time of 5 Tests)

Time to fetch a list of 10 Objects
(Mean Time of 5 Tests)

Time to fetch a list of 10 Objects
(Mean Time of 5 Tests)

Cumulus I Fake S3 I Minio Riak CS
10 F 1 10f 1 10f 1 10f 1
|
8 1 8r 1 8r 1 8r £1
9]
£
<
K]
—6r 1 =6 1 =6 1 -6 S
2 2] 2 0, =3
8, 8, A) o g
o)
2
4 1 4t 1 4r 1 4t N 5
m 3
(=i -1
o)
=2
2 2 2 2« oNsosmaol |y 8
F © o5 © 4 F © o N 4 F 4 r I C
S 8ReRBsRgsmaéda PEESMRNRRSR AR PRIl enBRllR33wd RIS E RIS] -
SENYLB8SRSINILSER PR R R B R RRERRERZBRREI®AR eoSndes3oSo| o,
NIRNRRNINRNSNRIN NNNNRIRNANANNNNAN R R - R R R B} 1mm 2 mnaann ooy
Ssccscc®cSc - Ss535° Scc®ccccc0c0SS S ccc65°Sccc0605°° s ©SS°S°SSSSSo o
0 0 0 0
N~ N < 0WOWANTDONTOON N~ N < 00WOWAN S OONTO0ON N~ N < 00©AN S ®OO©NTO0ON W~ < 00OANS®OO©NTD0ON
S THOAL-—ATOD = FHOOAL - AT DO = rHOAL-ANT DO S FHOAD-AT RO
FdbhoS32 FdbhoS32 FfdbhoS32 ~dbhoS32
- o . N <o . -« ¥ o . -« < o
Object Size [kB] Object Size [kB] Object Size [kB] Object Size [kB]

Time to fetch a list of 10 Objects
(Mean Time of 5 Tests)

Time to fetch a list of 10 Objects
(Mean Time of 5 Tests)

Time to fetch a list of 10 Objects
(Mean Time of 5 Tests)

Time to fetch a list of 10 Objects
(Mean Time of 5 Tests)

S3ninja . S3rver Scality 1 Swift T
10 ~=288 10r 1 10 1 10 1
MR
nn g g g
0o 5 o
bR
8r 2221 8 1 8 1 8 1
< p=lp)
Sl |38 3
~ £89 3
— 6 o 3881 61 1 =61 1 =6 ~ 1
@ 588 | =@ @ @ a
ccc
Rl
288
gey | L 1 L 1 L
¢ 2ee 4 4 4
bbb
Qo 99
SoE S Q
888
1 r © FEONNW©O®OTON©T o < o .
2 283 2Ny eTog938unaeag 2r3SNeB2IANeIINQTY 2ra
o543 Soo0oaEIaNSOQMmMAN CRoLONRN8IITINDT T S
[sxeNe} NArdAAAdZd AN YN ocMMANNNNNNNNNNNN
222 ccococococ®ococococ®ocoo ©Ococococococococococ®oco
e e e e e e e S e e ’—’_Vﬁ_v—v—ﬁﬁ—v—v—v—v—v—v—\
0 0 0 0
WO~ N < 0O©NST®OONT0ON D~ N <T0ONSTOONT0ON N~ N <0 ONSTOONT0ON
e FHIAB-AT R e FHIAB-AT 2> a CHIAB-IIRS
~TANWLOOO ~ALOOO T —AWLOOO T
. . -q < o . -q < o . - Q< o
Object Size [kB] Object Size [kB] Object Size [kB]

Figure 4: Time to fetch the list of objects (more detailed view)

storage service solutions, which have been examined in
this work.

In order to investigate the performance of the analyzed
storage services, a set of typical operations has been
picked out and a lightweight tool, called S3perf has been
developed and implemented. This tool was used to carry
out the set of operations and measure the required time.
Based on these measurements, the performance of the
storage services on a single board computer has been
analyzed.

Results are among others that the service solutions
Cumulus, Fake S3, Minio, S3ninja, S3rver and Scality
for most operations provide a better performance
compared with Riak CS and Swift. The reason for
this observation is probably caused by the way Riak
CS and Swift store the objects and bucket data with
replicas and organize them via Distributed Hash Tables.
Riak CS and Swift both focus to work efficiently
inside multi-node deployments and are not in first place
designed to provide a strong performance inside single
node scenarios. Another observation was that the
parallel execution of multiple upload, download and
erase operations just in few scenarios are beneficial
for the overall performance. Especially, when using

11

objects of 1 MB and more, the maximum throughput of
the network interface of the Raspberry Pi 3 becomes a
limiting factor. Furthermore, it has been observed that
when using S3ninja, the performance of list and delete
operations depend on the size of the objects.

Next steps are the deployment of Ceph-RGW,
Minio, Riak CS and Swift inside multi-node systems
of Raspberry Pi 3 nodes and an analysis of their
performance and robustness.

For future work, it is also useful to analyze the total
cost of ownership (TCO) of multi-node systems of single
board computers which host storage services. As proven
among others by Zhao et al. [48], the TCO of single
board computer clusters can be better compared with
higher-value systems.

Next steps also comprise an analysis of the maximum
workload and storage capacity of the described systems
in order to archive more information about the practical
usability of storage services which are deployed on
single board computer clusters.

Open Journal of Cloud Computing (OJCC), Volume 4, Issue 1, 2017

Time to download 10 Objects
sequentially (Mean Time of 5 Tests)

Time to download 10 Objects Time to download 10 Objects
in parallel (Mean Time of 5 Tests)

sequentially (Mean Time of 5 Tests)

Time to download 10 Objects
in parallel (Mean Time of 5 Tests)

T
8L0E'9T

<
©
Obiject Size [kB]

Fake S3 I

10
8
6
4
2
0

Object Size

Fake S3 I

10
8
6
4
2
0

0L6'8

Obiject Size [kB]

Cumulus N

10
8
6
4
2
0

116'8

Object Size [kB]

Cumulus N

10
8
6
4+
2
0

[s]

Time to download 10 Objects
sequentially (Mean Time of 5 Tests)

Time to download 10 Objects Time to download 10 Objects
in parallel (Mean Time of 5 Tests)

sequentially (Mean Time of 5 Tests)

Time to download 10 Objects
in parallel (Mean Time of 5 Tests)

T T T T
jdwany peojdn buunp paysetd apoN | 2618
9zzee | 9607
7889t 8v02
oe'e 2ok
cis m
8YE0'T 95z =
75180 8zl §
20280 9 @
T8LL0 € T
: 69L°0 9 2
¥82L°0 8 O
%) Lo 4
o 926L°0 4
s srizo L
i vvse0 [50
I I I I !
= @ © < o o
s]
T T T T
1dwany peojdn Bulnp paysed spoN | 2618
jdwany peojdn Buunp payseld spoN | 9601
1dwany peojdn Buunp payseld apoN | 8402
20l
cls @
95z =
8zl §
9 @
€ o
: 9 2
8 O
» 12
o 4
s L
i S0
I I
=

Object Size [ki

Minio [
Object Size [kB]

10
8
6
4
2
0

Time to download 10 Objects
sequentially (Mean Time of 5 Tests)

Time to download 10 Objects Time to download 10 Objects
in parallel (Mean Time of 5 Tests)

sequentially (Mean Time of 5 Tests)

Time to download 10 Objects
in parallel (Mean Time of 5 Tests)

Obiject Size [kB]

s S3rver

T T
2686'L |

2618

9601
8¥02
veol
[43°]

95¢ =

®
N
(2]
€ ©
ko)
o
[¢)

kB]

1ob S3rver

T T T T T
pajiey peojdn snexaq peojumop 03 193fdo ON
pajtey peojdn snexaq peojumop 03 193fqo ON
pajiey peojdn asnesaq peojumop 03 393[q0 ON

865E'CS

¥2E0'LT

626'vT

2688°L |

990€'Y
eee

S3ninja

Object Size [kB]

10 -
8
6
4
2

T T T T T
pajiey peojdn asnesaq peojumop 03 193[q0 ON
pajiey peojdn asnesaq peojumop 03 193[q0 ON
pajiey peojdn asnesaq peojumop 03 193[q0 ON

69'TT

98299

S3ninja

Object Size [kB]

10
8

Time to download 10 Objects
sequentially (Mean Time of 5 Tests)

Time to download 10 Objects Time to download 10 Objects
in parallel (Mean Time of 5 Tests)

sequentially (Mean Time of 5 Tests)

Time to download 10 Objects
in parallel (Mean Time of 5 Tests)

96808 | 2618
876t't 960%
8y02
$201
98L€'T s o
9LTT'T 95z =
Zv00° T 8zl §
SE6°0 Y9 @
916'0 € o
880 9 2
2216°0 8 O
: 60 14
= 81€6'0 2z
= 87€6'0 |
@ 71060 S0
. . . . |
° © © < o o
[s]
T T T T T
pajie} peojdn 3snedaq peojumop 03332[q0 ON | 2618
960%
8y02
$201
S @
95z =
8zl 9
9 @
€ B
9 2
8 O
| w
£ 2z
= L
@ S0

10 -

Scality 1

Object Size [ki

10
8

4+

Scality 1

Object Size [kB]

10
8

to download ten objects sequentially and in parallel into the tested storage services

Time

Figure 5

12

C. Baun, H.-N. Cocos, R.-M. Spanou: Performance Aspects of Object-based Storage Services on Single Board Computers

Time to erase 10 Objects
sequentially (Mean Time of 5 Tests)

Time to erase 10 Objects Time to erase 10 Objects
in parallel (Mean Time of 5 Tests)

sequentially (Mean Time of 5 Tests)

Time to erase 10 Objects
in parallel (Mean Time of 5 Tests)

Obiject Size [kB]

@
1]
m
©
w
.
o © o
[s]
T
9€0'T 2618
98Y5'T 9607
20€5'T 8102
7528’1 2ol
85160 s o
20L6'0 952 =
660 8zk §
Z0L6°0 9 @
27160 € ©
- 92£6°0 9 &
VELE'O 8 O
© 8LL6°0 4
@ 21860 2
2 2€86°0 L
w 9086°0 S0
. .
<0I © o o
[s]
T
¥18L°0 2618
9ZYL0 9607
97£8°0 8102
5580 veol
¥818'0 2Is @
¥89°0 96z =.
26,90 Il 82l §
8SSL°0 9 @
86€L°0 € ©
- seco il or 2
¥v69°0 8 O
) 926970 [l ¥
2 gozco il 2
£ 89Y6°0 L
3 8z89°0 [l S0
. .
4UI © o o
[s]
T
9SPT'T 2618
9515°T 9607
8SE'T 8102
6v'T 2ol
98LZ°T S o
zert 962 =.
ySOT'T szk §
8r1'T 9 0
Zv8T'T € B
- 1821 (T
vZ6T'T 8 O
) 8671'T 14
2 8960'T 4
€ T6IT'T 8
3 87€T'T S0
. .
° © o °
[s]

Time to erase 10 Objects
sequentially (Mean Time of 5 Tests)

Time to erase 10 Objects

in parallel (Mean Time of 5 Tests)

Time to erase 10 Objects
sequentially (Mean Time of 5 Tests)

Time to erase 10 Objects
in parallel (Mean Time of 5 Tests)

T T T T
1dwany peojdn Bulnp paysesd apoN

3
Object Size [kB]

(43
ﬁ o
8
%) 14
o 2
K] !
oc S0
I
=3 @ © < o~ o
s]
T T T T
1dwany peojdn buunp payseid spoN | 2618
1dwany peojdn buunp paysesd apoN | 960%

1dwany peojdn Buunp payseld apoN | 8402
20l
cls

<
©
Object Size [kB]

10l Riak CS

Object Size [kB]

w0b Minio

Object Size [kB]

w0b Minio .

Time to erase 10 Objects
sequentially (Mean Time of 5 Tests)

Time to erase 10 Objects Time to erase 10 Objects
in parallel (Mean Time of 5 Tests)

sequentially (Mean Time of 5 Tests)

Time to erase 10 Objects
in parallel (Mean Time of 5 Tests)

1zv'o [26i8
19g°0 [960¥
zL9g°0 || 8102
6z0 [| v2ot
98220 [| 2S5 oy
90£Z0 [] 952 =
vsszo [| 82k &
v6v20 [| ¥9 O
z8vzo [l 2e G
: vvzo] ob &
zszo [|8 O
- 6.0 [| ¥
g 8yvz o [| 2
5 9v9z°0 [| L
7] 69z°0 [| 50
.
<0I © © < o o
[s]
T
7566'0 2618
¥S6°0 9607
£€96'0 8102
786°0 ¥201
9€96°0 IS o
8156°0 95g =
€960 8k &
7SS6°0 9 @
9200°'T € ©
: 82v6°0 9 &
2LE6'0 8 O
- 960 4
g 8L6°0 4
5 21560 L
7] 8696°0 S0
.
<0I @ © < o o
[s]
T T T T T
pajie) peojdn asnedaq aseus 03 193Iq0 ON | 2618
pajie) peojdn asnedaq aseus 03 193[G0 ON | 960
pajie) peojdn asnedaq asels 03 93[O ON | 8702
8SLT VT 2ot
vLISZT 2IS o
8ES0L 95T =
ek g
9 0
€ B
: (T
8 O
g v
£ (4
c
S L
(7] S0
. .
4UI ©
T T T T T
pajie) peojdn asnedaq asels 01 123(q0 ON | 2618
pajie) peojdn asnedaq aseus 03 122(q0 ON | 9601
pajie) peojdn asnedaq asels 01 122(q0 oN | 8702
Z60T'T ¥20t
2430+ S o
jasis 95g =
9€ST'T 8zl §
8/80°T 9 0
8IT'T € B
: 980T'T (T
T0T'T 8 O
© ¥960°T 4
W 90vT'T 4
&S 8ZIT'T L
@« ¥Z0T'T S0
.
m @ © < Y o

Time to erase 10 Objects
sequentially (Mean Time of 5 Tests)

Time to erase 10 Objects
in parallel (Mean Time of 5 Tests)

Time to erase 10 Objects
sequentially (Mean Time of 5 Tests)

Time to erase 10 Objects
in parallel (Mean Time of 5 Tests)

Swift

Object Size [kB]

10 -

Swift

2618

960%
8¥02
20k
cis

<
©
Object Size [kB]

10 -

T
[447A

0 2618
86L°0 9607
LzLro 8702
99TL°0 ¥2ot
71780 S o
+0SL°0 96z =
2L A
vYYL0 Y9 @
8L9L°0 € o
: 7698°0 9 2
¥166°0 8 O
> 7958°0 14
3 9£06°0 4
3 2€L0'T L
YEOY'T S0
.
w © © < o o
[s]
T
yS8T'T 2618
TroT'T 9607
8567°T 8702
et ¥2ot
9LTT'T s o
965T'T 95z =
8EET'T 8z §
811Z'T 9 »
99ET'T € 3
: €811 o &
9€8T'T 8 O
> z62€'T 14
3 €07°T 4
7] 8ZvT'1 3
9TLE'T S0
.
e © © < o o
[s]

to erase ten objects sequentially and in parallel into the tested storage services

ime

T

.
.

Figure 6

13

Open Journal of Cloud Computing (OJCC), Volume 4, Issue 1, 2017

Required Time to erase a Bucket (50 Tests)

0.9
0.8 | —
0.7 —
0.6 b
w05 . s
0.4 —
03 b
0.2 % % . % 7]
== =

0.1

) m Ke) 0 © 5 > &

3 Y £ ¢ = :z = =

E ¥ £ 5 5§ o § ©

3 o 2 0 0

Figure 7: Time to erase the bucket

ACKNOWLEDGEMENTS

This work is funded by the Hessian Ministry of
Higher Education, Research, and the Arts (" Hessisches
Ministerium fiir Wissenschaft und Kunst’) in the
framework of research for practice (' Forschung fiir die
Praxis’).

Many thanks to Katrin Baun for her assistance in
improving the quality of this paper.

REFERENCES

[1] B. Apperson, “Building a ceph cluster on
raspberry pi,” http://bryanapperson.com/blog/
the-definitive- guide-ceph-cluster-on-raspberry-pi/,
accessed 12th August 2017.

[2] C. Baun, “Mobile clusters of single board
computers: an option for providing resources to
student projects and researchers,” SpringerPlus,
vol. 5, no. 1, 2016.

14

(3]

(4]

(5]

(6]

(71

(8]

(9]

[10]

[11]

[12]

[13]

[14]

[15]

C. Baun, “Performance and energy-efficiency
aspects of clusters of single board computers,”’
International Journal of Distributed and Parallel
Systems, vol. 7, no. 2/3/4, 2016.

C. Baun, M. Kunze, D. Schwab, and T. Kurze,
“Octopus-a redundant array of independent
services (rais).” in CLOSER 2013: Proceedings
of the 3rd International Conference on Cloud
Computing and Services Science. SCITEPRESS,
2013, pp. 321-328.

C. Baun and R.-M. Spanou, “s3-perf source code,”
https://github.com/christianbaun/s3perf, accessed
12th August 2017.

Z. Bjornson, “Aws s3 vs google cloud
Vs azure: Cloud storage performance,”’
http://blog.zachbjornson.com/2015/12/29/
cloud-storage-performance.html, accessed 12th
August 2017.

F. Bonomi, R. Milito, J. Zhu, and S. Addepalli,
“Fog computing and its role in the internet of
things,” in Proceedings of the first edition of
the MCC workshop on Mobile cloud computing.
ACM, 2012, pp. 13-16.

Boto, “Boto source code and documentation,”
https://github.com/boto/boto, accessed 12th
August 2017.

J. Bresnahan, K. Keahey, D. LaBissoniere, and
T. Freeman, “Cumulus: An Open Source Storage
Cloud for Science,” in Proceedings of the
2nd international workshop on Scientific cloud
computing. ACM, 2011, pp. 25-32.

N. Canceill, W. de Jong, and J. Saathof, “A study of
scalable storage systems,” SURF, Tech. Rep., 2014.

Ceph, “Ceph Object Gateway,” http://docs.ceph.
com/docs/master/radosgw/, accessed 12th August
2017.

COSBench, “Cloud object storage benchmark —
source code and documentation,” https://github.
com/intel-cloud/cosbench, accessed 12th August
2017.

J. Coyle, “Create a 3 node ceph storage
cluster,” https://www.jamescoyle.net/how-to/
1244-create-a-3-node-ceph-storage-cluster,
accessed 12th August 2017.

J. Coyle, “Small scale ceph replicated
storage,”’ https://www.jamescoyle.net/how-to/
2105-small-scale-ceph-replicated-storage,
accessed 12th August 2017.

G. DeCandia, D. Hastorun, M. Jampani,
G. Kakulapati, A. Lakshman, A. Pilchin,

http://bryanapperson.com/blog/the-definitive-guide-ceph-cluster-on-raspberry-pi/
http://bryanapperson.com/blog/the-definitive-guide-ceph-cluster-on-raspberry-pi/
https://github.com/christianbaun/s3perf
http://blog.zachbjornson.com/2015/12/29/cloud-storage-performance.html
http://blog.zachbjornson.com/2015/12/29/cloud-storage-performance.html
https://github.com/boto/boto
http://docs.ceph.com/docs/master/radosgw/
http://docs.ceph.com/docs/master/radosgw/
https://github.com/intel-cloud/cosbench
https://github.com/intel-cloud/cosbench
https://www.jamescoyle.net/how-to/1244-create-a-3-node-ceph-storage-cluster
https://www.jamescoyle.net/how-to/1244-create-a-3-node-ceph-storage-cluster
https://www.jamescoyle.net/how-to/2105-small-scale-ceph-replicated-storage
https://www.jamescoyle.net/how-to/2105-small-scale-ceph-replicated-storage

C. Baun, H.-N. Cocos, R.-M. Spanou: Performance Aspects of Object-based Storage Services on Single Board Computers

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

S. Sivasubramanian, P. Vosshall, and W. Vogels,
“Dynamo: amazon’s highly available key-value
store,” ACM SIGOPS operating systems review,
vol. 41, no. 6, pp. 205-220, 2007.

Eucalyptus, “Eucalyptus source code and
documentation,” https://github.com/eucalyptus/
eucalyptus, accessed 12th August 2017.

Fake S3, “Fake S3 source code and
documentation,” https://github.com/jubos/fake-s3,
accessed 12th August 2017.

S. Garfinkel, “An evaluation of amazon’s grid
computing services: Ec2, s3, and sqs,” Harvard
Computer Science Group Technical Report TR-08-
07, 2007.

D. Guinard and V. Trifa, Building the web of
things: with examples in node. js and raspberry pi.
Manning Publications Co., 2016.

HPL, “A Portable Implementation of the
High-Performance Linpack Benchmark
for Distributed-Memory Computers,”
http://www.netlib.org/benchmark/hpl/, accessed
12th August 2017.

Iperf, “Iperf source code and documentation,” http:
/Iwww.nwlab.net/art/iperf/, accessed 12th August
2017.

P. Jain, A. Goel, and S. Gupta, “Monitoring of
riak cs storage infrastructure,” Procedia Computer
Science, vol. 54, pp. 137-146, 2015.

D. Karger, E. Lehman, T. Leighton, R. Panigrahy,
M. Levine, and D. Lewin, “Consistent hashing
and random trees: Distributed caching protocols
for relieving hot spots on the world wide web,”
in Proceedings of the twenty-ninth annual ACM
symposium on Theory of computing. ACM, 1997,
pp- 654-663.

K. Keahey, M. Tsugawa, A. Matsunaga, and
J. Fortes, “Sky computing,” Internet Computing,
IEEE, vol. 13, no. 5, pp. 43-51, Sept 2009.

Y. N. Krishnan, C. N. Bhagwat, and A. P. Utpat,
“Fog computingnetwork based cloud computing,”
in Electronics and Communication Systems
(ICECS), 2015 2nd International Conference on.
IEEE, 2015, pp. 250-251.

L. Land, “Real-world benchmarking
of cloud storage providers: Amazon
s3, google cloud storage, and azure
blob storage,” https://1g.10/2015/10/25/

real-world-benchmarking-of-s3-azure-google-\
cloud-storage.html, accessed 12th August 2017.

15

[27]

(28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

R. McFarland, “s3-perf source code,” https://
github.com/ross/s3-perf, accessed 12th August
2017.

Minio, “Minio source code and documentation,”
https://github.com/minio/minio, accessed 12th
August 2017.

A. Nayak, A. Poriya, and D. Poojary, “Type
of nosql databases and its comparison with
relational databases,” International Journal of
Applied Information Systems, vol. 5, no. 4, pp. 16—
19, 2013.

Nimbus, “Nimbus source code and
documentation,” https://github.com/nimbusproject/
nimbus, accessed 12th August 2017.

OpenStack Storage (Swift), “Swift source code
and documentation,” https://github.com/openstack/
swift, accessed 12th August 2017.

M. R. Palankar, A. Iamnitchi, M. Ripeanu, and
S. Garfinkel, “Amazon s3 for science grids: a viable
solution?” in Proceedings of the 2008 international
workshop on Data-aware distributed computing.

ACM, 2008, pp. 55-64.

Python client for the Swift API, “Source code
and documentation,” https://github.com/openstack/
python-swiftclient, accessed 12th August 2017.

Riak CS, “Riak CS source code and
documentation,” https://github.com/basho/riak_cs,
accessed 12th August 2017.

s3cmd, “s3cmd source code and documentation,”
https://github.com/s3tools/s3cmd, accessed 12th
August 2017.

S3ninja, “S3ninja source code and documentation,”
https://github.com/scireum/s3ninja, accessed 12th
August 2017.

S3rver, “S3rver source code and documentation,”
https://github.com/jamhall/s3rver, accessed 12th
August 2017.

Scality S3 Server, “S3 Server source code
and documentation,” https://github.com/scality/S3,
accessed 12th August 2017.

K. Skala, D. Davidovic, E. Afgan, I. Sovic,
and Z. Sojat, “Scalable distributed computing
hierarchy: Cloud, fog and dew computing,’
Open Journal of Cloud Computing (OJCC),
vol. 2, no. 1, pp. 16-24, 2015. [Online].
Auvailable: http://nbn-resolving.de/urn:nbn:de:101:
1-201705194519

Q. O. Snell, A. R. Mikler, and J. L. Gustafson,
“Netpipe: A network protocol independent
performance evaluator,” in IASTED International

https://github.com/eucalyptus/eucalyptus
https://github.com/eucalyptus/eucalyptus
https://github.com/jubos/fake-s3
http://www.netlib.org/benchmark/hpl/
http://www.nwlab.net/art/iperf/
http://www.nwlab.net/art/iperf/
https://lg.io/2015/10/25/real-world-benchmarking-of-s3-azure-google-\ cloud-storage.html
https://lg.io/2015/10/25/real-world-benchmarking-of-s3-azure-google-\ cloud-storage.html
https://lg.io/2015/10/25/real-world-benchmarking-of-s3-azure-google-\ cloud-storage.html
https://github.com/ross/s3-perf
https://github.com/ross/s3-perf
https://github.com/minio/minio
https://github.com/nimbusproject/nimbus
https://github.com/nimbusproject/nimbus
https://github.com/openstack/swift
https://github.com/openstack/swift
https://github.com/openstack/python-swiftclient
https://github.com/openstack/python-swiftclient
https://github.com/basho/riak_cs
https://github.com/s3tools/s3cmd
https://github.com/scireum/s3ninja
https://github.com/jamhall/s3rver
https://github.com/scality/S3
http://nbn-resolving.de/urn:nbn:de:101:1-201705194519
http://nbn-resolving.de/urn:nbn:de:101:1-201705194519

Open Journal of Cloud Computing (OJCC), Volume 4, Issue 1, 2017

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

Conference on Intelligent Information
Management and Systems, vol. 6. USA,
1996.

Stanchion, “Stanchion source code and
documentation,” https://github.com/basho/

stanchion, accessed 12th August 2017.

Swift3, “Swift3 middleware for openstack swift -
source code and documentation.”

N. Tiwari, “Enterprise-grade cloud
storage with nginx plus and
minio,” https://www.nginx.com/blog/

enterprise- grade-cloud-storage-nginx-plus-minio/,
accessed 24th June 2017.

R. Vijayan, “Ceph on a raspberry
pi,’ https://www.linkedin.com/pulse/
ceph-raspberry-pi-rahul-vijayan, accessed 12th
August 2017.

Y. Wang, “Definition and categorization of dew
computing,” Open Journal of Cloud Computing
(0OJCC), vol. 3, no. 1, pp. 1-7, 2016. [Online].
Available: http://nbn-resolving.de/urn:nbn:de:101:
1-201705194546

S. A. Weil, S. A. Brandt, E. L. Miller, D. D.
Long, and C. Maltzahn, “Ceph: A scalable,
high-performance distributed file system,” in
Proceedings of the 7th symposium on Operating
systems design and implementation. ~ USENIX
Association, 2006, pp. 307-320.

C. W. Zhao, J. Jegatheesan, and S. C. Loon,
“Exploring iot application using raspberry pi,”
International Journal of Computer Networks and
Applications, vol. 2, no. 1, pp. 27-34, 2015.

Y. Zhao, S. Li, S. Hu, H. Wang, S. Yao,
H. Shao, and T. Abdelzaher, “An experimental
evaluation of datacenter workloads on low-power
embedded micro servers,” Proceedings of the
VLDB Endowment, vol. 9, no. 9, pp. 696-707,
2016.

Q. Zheng, H. Chen, Y. Wang, J. Duan, and
Z. Huang, “Cosbench: A benchmark tool for cloud
object storage services,” in Cloud Computing
(CLOUD), 2012 IEEE 5th International
Conference on. 1EEE, 2012, pp. 998-999.

Q. Zheng, H. Chen, Y. Wang, J. Zhang, and
J. Duan, “Cosbench: cloud object storage

16

benchmark,” in Proceedings of the 4th ACM/SPEC

International

Conference

on Performance

Engineering. ACM, 2013, pp. 199-210.

AUTHOR BIOGRAPHIES

Dr. Christian Baun is a
Professor at the Faculty
of Computer Science and

Engineering of the Frankfurt
University of Applied Sciences
in Frankfurt am Main, Germany.
He earned his Diploma degree in
Informatik (Computer Science)
in 2005 and his Master degree
in 2006 from the Mannheim
University of Applied Sciences.

In 2011, he earned his Doctor degree from the University
of Hamburg. He is author of several books, articles and
research papers. His research interest includes operating
systems, distributed systems and computer networks.

Henry-Norbert Cocos studies
computer science at the
Frankfurt University of Applied
Sciences. His research interest
includes distributed systems
and single board computers.
Currently, he constructs a 256
node cluster of Raspberry Pi 3
nodes which shall be used
to analyze different parallel
computation tasks. For this
work, he analyzes which

administration tasks need to be carried out during the
deployment and operation phase and how these tasks

can be automated.

Rosa-Maria Spanou studies
computer science at the
Frankfurt University of Applied
Sciences. Her research interest
includes distributed systems
and single board computers.
Currently, she constructs and

analyzes different multi-node
object-based cloud storage
solutions.

https://github.com/basho/stanchion
https://github.com/basho/stanchion
https://www.nginx.com/blog/enterprise-grade-cloud-storage-nginx-plus-minio/
https://www.nginx.com/blog/enterprise-grade-cloud-storage-nginx-plus-minio/
https://www.linkedin.com/pulse/ceph-raspberry-pi-rahul-vijayan
https://www.linkedin.com/pulse/ceph-raspberry-pi-rahul-vijayan
http://nbn-resolving.de/urn:nbn:de:101:1-201705194546
http://nbn-resolving.de/urn:nbn:de:101:1-201705194546

	Introduction
	Related Work
	Deployment of Private Cloud Storage Services with the S3-Interface on a Single Board Computer
	Ceph-RGW
	Cumulus
	Fake S3
	Minio
	Riak CS
	S3ninja
	S3rver
	Scality S3 Server
	Swift
	Walrus

	Development of S3perf
	Performance Analysis of the Deployed Cloud Storage Services
	Step 1: Create a Bucket
	Step 2: Upload the Objects into the Bucket
	Step 3: Fetch the List of Objects
	Step 4: Download the Objects
	Step 5: Erase the Objects
	Step 6: Erase the Bucket

	Conclusions and Next Steps

