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ABSTRACT 
 

One of the challenges of cloud programming is to achieve the right balance between the availability and 

consistency in a distributed database. Cloud computing environments, particularly cloud databases, are rapidly 

increasing in importance, acceptance and usage in major applications, which need the partition-tolerance and 

availability for scalability purposes, but sacrifice the consistency side (CAP theorem). In these environments, the 

data accessed by users is stored in a highly available storage system, thus the use of paradigms such as eventual 

consistency became more widespread. In this paper, we review the state-of-the-art database systems using 

eventual consistency from both industry and research. Based on this review, we discuss the advantages and 

disadvantages of eventual consistency, and identify the future research challenges on the databases using 

eventual consistency. 
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1  INTRODUCTION 
 

Cloud computing and big data have become 

increasingly popular and are changing our way of 

thinking about the world by providing new insights and 

creating new forms of value. The research of cloud data 

management is to address the challenges in managing 

large collections of data in the cloud computing 

environment, and in identifying information of value to 

business, science, government, and society. The huge 

volume of data in cloud computing environments poses 

major challenges, including data storage at Petabyte 

scale, massively parallel query execution, facilities for 

analytical processing, online query processing, 

resource optimization, data privacy and security. 

Consistency is an important area of study in 

distributed systems. A consistency model in distributed 

systems is a guarantee about the relation between an 

update to an object and the access to an updated object. 

In this paper, our focus will be on the eventual 

consistency model, which is particularly important in 

the RDBMS and "NoSQL" worlds.  

The literature of distributed systems defines several 

popular consistency models. They include: 

linearizability [33]; serializability [10, 30, 47] that 

ensures a global ordering of transactions; sequential 

consistency [50] that ensures a global ordering of 

operations [34]; causal consistency [3, 36] that ensures 

partial orderings between dependent operations; 

eventually consistent transactions [41, 49, 50] that 

ensure that different orders of updates in all copies 

eventually converge to the same value, and session 

consistency [44]. 
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Eventual consistency is a consistency model, which 

is used in many large distributed databases. Such 

databases require that all changes to a replicated piece 

of data eventually reach all affected replicas. 

Furthermore, the conflict resolution is not handled in 

these databases, and the responsibility is pushed up to 

the application authors in the event of conflicting 

updates. 

Eventual consistency is a specific form of weak 

consistency: the storage system guarantees that if no 

new updates are made to the object, eventually all 

accesses will return the last updated value [49]. If no 

failures occur, the maximum size of the inconsistency 

window can be determined based on the factors such as 

communication delays, the load on the system, and the 

number of replicas involved in the replication scheme. 

 

A few examples of eventually consistent systems 

are: 

 DNS  

 Asynchronous master/slave replication on an 

RDBMS, e.g. MariaDB (www.mariadb.org) 

 Memcached in front of MariaDB, which caches 

reads 

 

The most popular system that implements eventual 

consistency is DNS (Domain Name System). Updates 

to a domain name are distributed according to a 

configured pattern and time-controlled caches. 

Eventually, all clients will see the same state. Eventual 

consistency means that given enough time, over which 

no changes are performed, all updates will propagate 

through the system and all replicas will be 

synchronized. At any given point of time, there is no 

guarantee that the data accessed is consistent, thus the 

conflicts have to be resolved. 

 

In this paper, we make the following major 

contributions: 

1. We present the history of eventual consistency and 

define rigorously eventual consistency. 

2. Based on the literature, we review the databases 

using eventual consistency both from research and 

industry. To the authors’ knowledge, this is the 

first paper presenting a review on the databases 

using eventual consistency. 

3. We evaluate the database systems reviewed. To 

the authors’ knowledge, this is the first paper 

trying to evaluate the database systems using 

eventual consistency. 

4. Based on the research work above, we discuss the 

advantages and disadvantages of eventual 

consistency. 

5. Finally, we identify future research issues on 

eventual consistency. 

 

The rest of this paper is organized as follows. In 

Section 2, we present the history of eventual 

consistency and some related systems using eventual 

consistency. Based on the literature we review 

databases using eventual consistency in Section 3. 

Section 4 evaluates the reviewed systems, and Section 

5 identifies the advantages and disadvantages of 

eventual consistency. We present future research issues 

in Section 6, and conclusions of this paper are given in 

section 7. 

 

2  HISTORY OF EVENTUAL CONSISTENCY 
 

Eventual consistency states that in an updatable 

replicated database, eventually all copies of each data 

item converge to the same value. The origin of eventual 

consistency can be traced back to Thomas’ majority 

consensus algorithm [46]. The term was coined by 

Terry et al. [44] and later on popularized by Amazon in 

their Dynamo system, which supported only eventual 

consistency [26, 27, 43]. 

The CAP theorem, also called as Brewer's theorem 

by its author Dr. Erik A. Brewer, was introduced at 

PODC 2000 [14, 15]. The theorem was formally 

proven by Gilbert and Lynch [29]. Brewer introduced 

consistency, availability and partition tolerance as three 

desired properties of any shared-data system, and made 

the conjuncture that maximally two of them can be 

guaranteed in one time [16, 17]. 

In general, this theorem perfectly matches the needs 

of today's internet systems. Ideally, we expect a service 

to be available during the whole time period of network 

connection. Therefore, if a network connection is 

available, the service should be available as well [24, 

45, 48, 51]. If the number of servers is increased, the 

probability of server failure or of network failure is 

also increased. A system hence needs to take this into 

account and be designed in such a way that these 

failures are transparent for the client and the impact of 

such failure is minimized.  

The abbreviation of the CAP theorem comes from 

the following three properties: 

 Consistency: This property requires that each 

operation executed in a distributed system, where 

data is spread among many servers, ends with the 

same result as if executed on one server with all 

data. 

 Availability: This property requires that in a 

distributed system sending a request to any 

functional node should be enough for a requester 

to get the response. By complying with this 
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property, a system is tolerant to failure of any 

nodes, which are caused, for instance, by network 

throughput issues. 

 Partition Tolerance: A distributed system 

consists of many servers interconnected by a 

network. A frequent requirement is distributing 

the system across more data centers to eliminate 

the failure of one of them. During network 

communication, failures are frequent. Hence, a 

system needs to be fail-proof against an arbitrary 

number of failed messages among servers. 

Temporary communication interruption among a 

server set must not cause the whole system to 

respond incorrectly [29]. 

 

Next we define eventual consistency informally. 

 

DEFINITION 1: Eventual consistency. 

 Eventual delivery: An update executed at one 

node evenly executes at all nodes. 

 Termination: All update executions terminate. 

 Convergence: Nodes that have executed the 

same updates eventually reach an equivalent 

state (and stay). 

 

EXAMPLE 1: Consider a case where data item R=0 

on all three nodes. Assume that we have the following 

sequence of writes and commits: W(R=3) C W(R=5) C 

W(R=7) C in node 0. Now read on node 1 could return 

R=3 and read from node 2 could return R=5. This is 

eventually consistent as long as eventually read from 

all nodes return the same value. Note that this final 

value could be R=3. Eventual consistency does not 

restrict the order in which the writes must be executed. 

 

To understand eventual consistency deeper, we 

establish some precise terminology and we do this 

similarly as in [19]. For uniformness, we require that 

all operations are part of a transaction and thus all 

operations are inside the transactions. We can describe 

the interaction between transactions and the database 

by the following three types of operations (query-

update interface): 

 Updates u∈U  issued by the transactions 

 Pairs (q, v) representing a query q∈Q issued by 

the transaction together with a response v∈V by 

the database system. 

 The end of transaction operations issued by the 

transactions. 

 

Formally, we can represent the activity as a stream 

of operations, which form a history. 

 

DEFINITION 2:  A history H for a set of transactions 

T and a query-update interface (Q, V, U) is a map H, 

which maps each transaction t∈T and a client to a finite 

or infinite sequence H(t) operation from alphabet  

∑=U ∪(Q x V)∪{end}. 

 

Furthermore, we need to define a program order, 

i.e., the order in which operations are executed on a 

transaction. 

 

DEFINITION 3: Program order. For a given history 

H, we define a partial order ≺p over events in H such 

that e ≺p e' iff e appear before e' in some sequence  

H (t). 

 

Then we need to define an equivalence relation. 

 

DEFINITION 4: Factoring: We define an equivalence 

relation ∼t over events such that e ∼t e’ iff transaction 

(e) = transaction (e'). For any partial order ≺ over 

events, we say that ≺ factors over ∼t iff for any events 

x and y from different transactions x ≺ y implies x'≺ y' 

for any x, y such that x ∼t x' and y ∼t y'. This induces a 

corresponding partial order on the transactions. 

 

With the following formalization, we can specify 

the information about relationships between events 

declaratively, without referring to implementation-level 

concepts, such as replicas or messages. 

Eventual consistency relaxes other consistency 

models by allowing queries in a transaction t to see 

only a subset of all transactions that are globally 

ordered before t. It does so by distinguishing between a 

visibility order (a partial order that defines what 

updates are visible to a query), and an arbitration order 

(a partial order that determines the relative order of 

updates). 

 

DEFINITION 5:  A history H is eventually consistent 

if there exist two partial orders ≺v (the visibility order) 

and ≺a (the arbitration order) over events in H, such 

that the following conditions are satisfied for all events 

e1, e2, e ⊂ EH: 

1. Arbitration extends visibility: if e1≺v e2 then  
e1≺a e2. 

2. Total order on past events: if e1≺v e and  

e2≺v e, then either e1≺a e2 or e2≺a e1. 

3. Compatible with program order: if e1≺p e2 then 

e1≺v e2 

4. Consistent query results: for all (q, v) ∈EH, v=q# 

(apply ({e∈H) ∥e ≺v q}, ≺a, s0)). Thus the query 

returns the state as it results from applying all 

preceding visible updates (as determined by the 
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visibility order) to the initial state, in the order 

given by the arbitration order. 

5. Atomicity: Both ≺v and ≺a  factor over ∼t. 

6. Isolation: If e1∉committed (EH ) and e1≺v e2, then 
e1≺p e2. That is, events in uncommitted 

transactions are visible only to later events by the 

same client. 

7. Eventual delivery: For all committed transactions 

t, there exist only finitely many transactions  

t' ∈ TH such that t ≮v t'. 

 

The reason why eventual consistency can tolerate 

temporary network partitions is that the arbitration 

order can be constructed incrementally, i.e. it may 

remain only partially determined for some time after a 

transaction commits. This allows conflicting updates to 

be committed even in the presence of network 

partitions.  

Some database solutions support the Availability 

and Partition tolerance of Brewer’s CAP theorem. 

These database solutions do not support consistency in 

the same way as the relational database systems do, but 

they support eventual consistency where data is 

replicated to the remaining nodes at any given time, as 

Cassandra does. These systems, along with the others, 

mainly focus on achieving as low latency as possible 

by combined with as high performance as possible [35, 

45, 52]. 

There are other database solutions that focus on 

supporting Consistency and Partition tolerance, and 

partially supporting Availability. Their partition 

tolerance may often be obtained by mirroring database 

clusters between different data centers. The main 

advantage is the possibility to achieve quicker response 

by splitting the workload into different sub-tasks, and 

these sub-tasks are then executed simultaneously across 

all available nodes/servers [32, 40].  

The consistency level may be important for some 

systems like a stock market. The stock prices and 

number of stocks available will always have to be up to 

date. It is the same principle for an e-commerce 

website - it would not be good for the business if the 

customer finds out that the product is out of stock only 

after he or she submitted the payment. 

Eventual consistency means that writes to one 

replica will eventually appear at other replicas, and if 

all replicas have received the same set of writes, they 

will have the same values for all data. This weak form 

of consistency does not restrict the ordering of 

operations on different keys in any way, thus forcing 

programmers to reason about all possible orderings and 

exposing many inconsistencies to users. For example, 

under eventual consistency, after Alice updates her 

profile, she might not see that update after a refresh. 

Or, if Alice and Bob are commenting back-and-forth 

on a blog post, Carol might see a random non-

contiguous subset of that conversation. 

Burckhardt et al. [19, 20, 21] proposed a novel 

consistency model based on eventually consistent 

transactions, which are ordered by two order relations 

(visibility and arbitration) rather than a single order 

relation. The consistency model establishes a handful 

of simple operational rules for managing replicas, 

versions and updates, based on graphs called revision 

diagrams. These authors have also proved a theorem, 

which states that the revision diagram rules are 

sufficient to guarantee eventual consistency. 

Bailis et al. [8] stated that dozens of architects 

support eventual consistency, and this can be taken as a 

reference of that the eventual consistency had done a 

"good enough job". An application designer needs to 

know how database consistency is obtained and what 

the costs of each inconsistency or anomalies are, in 

order to decide if she/he needs to implement the 

eventual consistency with high availability in the 

application. Dealing with abnormalities, consistency is 

intuitive and depends on thinking in the correct 

sequence, and is therefore more difficult than high 

consistency. 

In [3] Abdallah et al. proposed a new atomic 

commitment protocol that contains single-phase and is 

non-blocking. However, this method requires that all 

participants are ruled by a rigorous concurrency 

control. Therefore, while sites are autonomous on 

decision, it assumes exactly the same method on all 

sites. Furthermore, rigorous concurrency control, where 

transaction does not release any locks until it commits 

or aborts, decreases the concurrency. 

In [13] Bermbach and Tai proposed a novel 

approach to benchmark staleness in distributed data 

stores. It was implemented in Amazon S3. The 

approach has one writer periodically writing a local 

timestamp plus a version number to the storage system, 

which considers the difference between the timestamp 

versions. This achieved satisfactory results.  The work 

provides a criterion for the application developer to 

determine if consistency in the data store eventually 

provides guarantees of acceptable consistency. 

However, they found that S3 frequently violates 

monotonic read consistency. 

In [25] Cooper et al. described PNUTS, a massively 

parallel and geographically distributed database system 

for Yahoo!’s web applications. PNUTS provides data 

storage organized as hashed or ordered tables, low 

latency for large numbers of concurrent requests 

including updates and queries, and novel per-record 

consistency guarantees. The consistency model is a 

per-record timeline consistency, i.e. all replicas of a 

given record apply all updates to the record in the same 



 

 
 

 

Open Journal of Databases (OJDB), Volume 1, Issue 1, 2014 

 
30 

 

order. This provides a consistency model that is 

between the two extremes of serialized transactions and 

eventual consistency. 

In [38] Merrel et.al. presented Bitbox, which is an 

application that synchronizes distributed repositories of 

data. It can be used as a backup or sharing application, 

similarly to popular cloud-based storage systems. 

Bitbox supports arbitrary and changing topologies, thus 

allowing residential gateways to be used as caches for 

synchronizing nomadic devices that connect only 

periodically. The Bitbox synchronization scheme 

achieves strong eventual consistency. 

In [6] Anderson et.al. presented Pahoehoe that is 

designed to support extreme availability, and offers a 

key-value-based get-put interface. Pahoehoe is 

composed of three main entities: proxies, key lookup 

servers (KLS), and fragment servers (FS). On a put, the 

proxy splits the value into multiple erasure-coded 

fragments. The FSs are responsible for storing the 

fragments, which form the bulk of the data. The KLSs 

maintain a mapping of the user-provided keys to the 

locations of corresponding fragments. In a typical 

setup, each data center has a few KLSs for availability 

and many FSs for reliability and scaling capacity. 

Currently, Pahoehoe only guarantees the eventual 

consistency and can tolerate temporary inconsistency, 

because the availability is paramount for our initial 

applications. Its protocols are eager in that they provide 

a useful result as soon as possible, thus offering a 

highest availability. For example, a put returns success 

as soon as it has updated any one of the KLSs and a 

minimum number of FSs, thus ensuring that the value 

is durable. The remainder of the put completes in the 

background. A get will try the list of values referenced 

by the first responding KLS, from newest to oldest, and 

will return as soon as it succeeds. If none of the 

referenced values is available, the get tries contacting 

other KLSs. Thus, puts can return success before they 

are complete and repeated gets may sometimes return 

earlier versions after newer ones. 

Pahoehoe is a partition-tolerant storage system, 

where key-value pairs can be kept in a redundant 

manner. The novelty with this system is that the 

redundancy is achieved using erasure-coding rather 

than normal replication. Eventual consistency is 

achieved by regularly trying to spread data items that 

do not have a satisfactory level of redundancy. 

Conflicts will not occur in the system since there are no 

integrity constraints, and concurrent put operations for 

the same key are ordered according to timestamps. 

However, Pahoehoe is not really a database system 

based on the authors’ categorization. 

 

 

 

3  DATABASES USING EVENTUAL CONSISTENCY 
 

In this section, we review the databases using eventual 

consistency. To the authors’ knowledge this review 

contains all currently available and published database 

systems supporting eventual consistency. 

 

3.1  MongoDB 
 

MongoDB [1, 37] is a document-oriented NoSQL 

DBMS written in C++ and developed by 10gen. The 

word mongo in its name comes from the word 

humongous [1]. MongoDB focuses on ease of use, 

performance and high scalability. MongoDB is 

available for Windows and Unix-like environments. 

MongoDB uses a binary form of JSON called 

Binary JSON, or BSON, to store data. BSON is 

designed to be easily and efficiently traversed and 

parsed. Users use regular JSON, which is then 

transformed into the BSON format. When data is 

retrieved, it is again transformed into regular JSON. A 

JSON document is zero or more key-value pairs, and a 

MongoDB document is simply a JSON document. 

Since MongoDB uses JSON, it is schema-less. This 

means that there is no grouping of documents, which 

has exactly the same keys, like in the relational model. 

Instead, similar documents with different key-value 

pairs are stored together in collections. A database, in 

its turn, can be seen as a collection of collections. 

MongoDB supports indexing on any attribute of a 

document, similar to how RDBMS offer indexing on 

any column. Indexes are implemented using  

B-Trees [3]. MongoDB indexes are created from 

JavaScript shell by using the ensureIndex() function. 

Indexes can be created on simple keys, embedded keys 

and entire documents. MongoDB uses JSON as its 

query languages. A JSON query is a JSON document, 

which describes what is to be searched for. 

In MongoDB, replica sets are used as the 

replication strategy, instead of the conventional master-

slave replication. Replica Sets improves master-slave 

replication with failover capabilities. A replica set is a 

cluster of MongoDB nodes, and consists of a primary 

node and multiple secondary nodes. The primary node 

is responsible for answering queries, and secondary 

nodes periodically update their data by reading logs 

from the primary node. 
If a primary node is down, one of the secondary 

nodes is chosen as new primary.  The secondary node 

calls for an election among secondary nodes, when it 

cannot reach the primary node. Nodes in the system are 

classified by a priority scheme that ranges from 1 

(high) to 0 (low). The priority setting affects elections, 

and nodes will prefer to vote for the nodes with the 

highest priority value. If the old primary comes back to 

http://docs.mongodb.org/manual/reference/glossary/#term-replica-set
http://docs.mongodb.org/manual/reference/replica-configuration/#local.system.replset.members[n].priority
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life, it will act as a secondary node and update its data 

according to the new primary’s log. 

Replicates can be used for scaling out reads and 

writes. In read scale out, secondary nodes will respond 

to requests for reading data. Because replication is 

asynchronous, and there is always a time interval 

between a write request reaching the primary node and 

the read request reaching a secondary node, data can be 

inconsistent. When scaling out writes, secondary nodes 

will accept conflicting operations without negotiating 

with the primary node. In this case, data replicated 

from the primary node will always take preference over 

the locally written data. Therefore, updates to 

secondary nodes might be unused due to replication. 

From the point of view of client applications, 

whether a MongoDB instance is running as a single 

server or a replica set is transparent, read operations to 

a replica set by default return results from the primary, 

and are consistent with the last write operation. 

Applications may configure the read preference based 

on a per-connection basis, and prefer that the read 

operations return the replicas on the secondary node. 

When reading from a secondary, a query may return 

data that reflects a previous state. This feature is 

sometimes characterized as the eventual consistency 

because the secondary member’s state will eventually 

reflect the primary’s state. MongoDB cannot guarantee 

strict consistency for read operations from secondary 

members. To guarantee the consistency for reads from 

secondary members, one can configure the client and 

driver to ensure that write operations succeed on all 

members before reads complete successfully.   

MongoDB uses a readers-writer lock, which allows 

concurrent read access to a database but exclusive write 

access to a single write operation. Before the version 

2.2 of MongoDB, this lock was implemented on a per-

MongoDB basis. Since the version 2.2, the lock is 

implemented at the database level. One approach to 

increasing concurrency is to use sharding.  In some 

situations, reads and writes will yield their locks. If 

MongoDB predicts that a page is unlikely to be in 

memory, operations will yield their lock while the 

pages load. The use of lock is expanded greatly in 2.2.  

MongoDB offers the following C-A tradeoff 

options: 

 For writes: 

 Write to a master, which may be the only 

master for the shard, is scalable. 

 For reads: 

 Read from the master guarantees consistency 

at the cost of performance. 

 Read from a slave may return old data but 

with higher performance. 

 

3.2  CouchDB 
 

CouchDB [5] is also a document-oriented NoSQL 

database management system, developed and 

maintained by the Apache Software Foundation. 

CouchDB is written in the functional programming 

language Erlang. The name CouchDB is derived from 

its developers' idea of it being easy to use. At 

CouchDB server startup, the phrase “It's time to relax" 

is outputted on the console. What makes CouchDB 

unique is its RESTful API, which supports the database 

access over HTTP. 

CouchDB stores JSON documents in a binary 

format, like MongoDB. CouchDB stores documents 

directly to its databases, and its database files have an 

extension .couch. Each document has a unique ID, 

which can be assigned manually when inserting 

documents, or automatically by CouchDB. There is no 

maximum number of key-value pairs for documents 

and there is no maximum size; the default max size is  

4 GB, but this can be changed by editing the CouchDB 

configuration file. 

CouchDB is normally queried by direct identifier 

lookups, or by creating MapReduce “views”, which 

CouchDB runs to create an index for querying or 

computing other attributes. In addition, the 

ChangesAPI of CouchDB shows documents in the 

order they were last modified. CouchDB replicates the 

document versions between nodes, thus making the 

CouchDB databses an eventually consistent system. 

Because of the CouchDB append-only value mutation, 

individual instances will not lock. When distributed, 

CouchDB will not allow updating the same document 

without a preceding version number, and conflicts must 

be manually resolved before concluding a write. 

CouchDB uses a B-tree storage engine for all 

internal data, documents, and views. In CouchDB, 

MapReduce is used to compute the results of a view. 

MapReduce makes use of two functions, “map” and 

“reduce,” which are applied to each document in 

isolation. The two functions produce key/value pairs, 

and CouchDB insert them into the B-tree storage 

engine. Documents and results in CouchDB are 

accessed and viewed by key or key range. CouchDB 

uses Multi-Version Concurrency Control (MVCC) to 

provide concurrent access to the database. CouchDB 

documents are versioned. Changing a document means 

that CouchDB creates an entirely new version of that 

document and saves it over the old one. After doing 

this, CouchDB ends up with two versions of the same 

document, one old and one new. 

Let us consider a set of requests wanting to access a 

document. The first request reads the document. While 

this is being processed, a second request changes the 

document. Since the second request includes a 
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completely new version of the document, CouchDB 

can simply append it to the database without having to 

wait for the read request to finish. When a third request 

wants to read the same document, CouchDB will point 

it to the new version that has just been written. During 

this whole process, the first request could still be 

reading the original version. 

Maintaining consistency inside a single database 

node is quite easy. On the contrary, maintaining 

consistency between multiple database servers is 

difficult. If a client performs a write operation on 

server A, how do we make sure that this is consistent 

with server B, or C, or D? For relational databases, this 

is a very complex problem, and whole books are 

needed for discussing its solutions. One could use 

multi-master, master/slave, partitioning, sharding, 

write-through caches, and all sorts of other complex 

methods for achieving consistency between multiple 

database servers. 

The operations of CouchDB take place within the 

context of a single document. CouchDB achieves 

eventual consistency between multiple databases by 

using incremental replication. Incremental replication 

is a process where document changes are periodically 

copied among servers. Considering a case where the 

same document is changed in two different databases 

and this change is synchronized with each other. For 

this situation, CouchDB’s replication system offers 

automatic conflict detection and resolution. When 

CouchDB detects that a document has been changed in 

both databases, it flags this document as being in 

conflict. 

When two versions of a document conflict during 

replication, the winning version is saved as the most 

recent version in the document’s history. The losing 

version is not deleted. Instead, CouchDB saves this as a 

previous version in the document’s history, so that it 

can be accessed. This happens automatically and 

consistently, and both databases will make exactly the 

same choice. It is up to the application to handle 

conflicts in a way that makes sense for your 

application. You can leave the chosen document 

versions in place, revert to the older version, or try to 

merge the two versions and save the result. 

 

3.3  Amazon SimpleDB 
 

Amazon [4] is a public cloud computing provider, and 

offers services (AWS) based on the IaaS approach. 

Amazon AWS (Amazon Web Services) is a set of Web 

Services (WS) [5], and relies on the cloud computing 

infrastructure for delivering its services. These services 

can be accessed using REST (Representational State 

Transfer) and SOAP (Simple Object Access Protocol) 

protocols.  

Within a number of services provided by Amazon, 

EC2 (Elastic Compute Cloud) and S3 (Simple Storage 

Service) are the most popular and well-known services. 

Other services have also been developed around these 

basic services such as EBS (Amazon Elastic Block 

Store), AWS Management Console, etc. one of the 

latest services provided by Amazon consists in Cloud 

watch for monitoring the applications that are running 

in the cloud.  

Amazon services are paid according to the user's 

consumption (number of requests, amount of 

bandwidth, etc.). However, in February 2011, Amazon 

released a free tier account for the developers in order 

to foster the creation of applications based on their 

cloud infrastructure. In the context of mobile 

technologies, Amazon provides support for Android. 

Amazon SimpleDB service works with S3 [2] and EC2 

[1], and provides the ability to store, process and query 

data sets in the cloud. Each dataset is organized into 

domains, and can run queries across all of the data 

stored in a particular domain. Domains are collections 

of items that are defined by attribute-value pairs 

Amazon SimpleDB stores multiple geographically 

distributed copies of each domain to offer high 

availability and data durability. A successful write 

means that all copies of the domain will durably 

persist. Amazon SimpleDB supports two read 

consistency options: eventually consistent reads and 

consistent reads. The Eventually Consistent option 

gives the best read performance and it is used by 

default. However, an eventually consistent read might 

not return the most recently completed write. 

Consistency across all copies of data is usually reached 

within a second; repeating a read after a short time 

should return the updated data. Amazon SimpleDB also 

provides the flexibility and control when requesting a 

consistent read. A consistent read returns a result, and 

this result reflects all writes that received a successful 

response prior to the read. 

Amazon SimpleDB is not a relational database and 

sacrifices complex transactions and relations (i.e., 

joins) in order to provide unique functionality and 

performance. However, Amazon SimpleDB does offer 

transactional semantics such as: Conditional put and 

conditional delete are new operations, which were 

added in February, 2010. They address a problem that 

arises when accessing SimpleDB concurrently. 

Considering a simple program that uses SimpleDB to 

store a counter, i.e. a number that can be incremented, 

the program must do three things: 

 Retrieving the current value of the counter from 

SimpleDB. 

 Adding one to the value. 
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 Storing the new value in the same place as the 

old value in SimpleDB. 

 

If this program runs while no other programs access 

SimpleDB, it will work correctly. However, it is often 

desirable for software applications (particularly web 

applications) to access the same data concurrently. 

When the same data is accessed concurrently, a race 

condition arises, which would result in a undetectable 

data loss. 

Consistent read was a new feature that was released 

at the same time as conditional put and conditional 

delete. As the name suggests, consistent read addresses 

problems that arise due to SimpleDB's eventual 

consistency model. Considering the following sequence 

of operations: 

1. Program A stores some data in SimpleDB. 

2. Immediately after that, A requests the data it just 

stored. 

 

SimpleDB's eventual consistency only guarantees 

that Step 2 reflects the complete set of updates in Step 

1, or none of those updates. Consistent read can be 

used to ensure that the data retrieved in Step 2 reflect 

changes in Step 1. 

The reason why inconsistent results can arise when 

the consistent read operation is not used is that 

SimpleDB stores data in multiple locations (for 

availability), and the new data in Step 1 might not be 

written at all locations when SimpleDB receives the 

data request in Step 2. In that case, it is possible that 

the data request in Step 2 is serviced at one of the 

locations where the new data has not been written. 

Amazon discourages the use of consistent read, 

unless it is required for correctness. The reason for this 

recommendation is that the rate, at which consistent 

read operations are serviced, is lower than for regular 

reads.  

 

3.4  DynamoDB 
 

DynamoDB [26, 27] is a NoSQL database service. All 

data items are stored on Solid State Drives (SSDs), and 

are replicated across 3 Availability Zones for high 

availability and durability. With DynamoDB, one can 

offload the administrative burden of operating and 

scaling a highly available distributed database cluster. 

DynamoDB is different from the traditional NoSQL 

solutions in that it maintains the relational model of 

tables. Availability is increased with multiple replicas 

distributed geographically across three different 

Availability Zones in order to maintain a fault-tolerant 

architecture.  

This is much like MongoDB's replica sets in order 

to ensure that, if one node goes down, the data is still 

available in another geographically distributed node. 

As a consequence, data along the network is increased. 

DynamoDB also uses a solid state storage method to 

further improve the performance. This increases the 

speed of reads and writes, and aims to minimize the 

amount of latency when performing operations on the 

server. 

DynamoDB stores multiple copies of each data 

item to ensure durability. When you receive an 

"operation successful" response to your write request, 

the server ensures that the write is durable on several 

servers. However, it takes time for the update to 

propagate to all copies. The data is eventually 

consistent, and this means that a read request 

immediately after a write operation might not show the 

latest version. However, DynamoDB offers the option 

to request the latest version of the data.  

When one reads data (GetItem, BatchGetItem, 

Query or Scan operations), the response might not 

reflect the results of the latest completed write 

operation (PutItem, UpdateItem or DeleteItem), and the 

response might include old versions of data. By default, 

the Query and GetItem operations use eventually 

consistent reads, but one can optionally request 

strongly consistent reads. BatchGetItem operations are 

eventually consistent by default, but one can specify 

strongly consistent on a per-table basis. Scan 

operations are always eventually consistent.  

When one client issues a strongly consistent read 

request, DynamoDB returns a response with the most 

up-to-date data that reflects the updates from all prior 

related write operations, to which DynamoDB returned 

a successful response. A strongly consistent read might 

be less available in the case of a network delay or 

outage. For the query or get item operations, you can 

request a strongly consistent read result by specifying 

optional parameters in your request. 

DynamoDB supports a "conditional write" where 

you specify a condition when updating an item. 

DynamoDB writes the item if and only if the specified 

condition is met; otherwise, it returns an error.  

DynamoDB also provides an "atomic counter" feature 

where you can send a request to add or subtract from 

an existing attribute value without interfering with 

another simultaneous write request. For example, a 

web application might want to maintain a counter per 

visitor to its site. In this case, the client only wants to 

increment a value regardless of what the previous value 

was.  
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3.5  Riak 
 

Riak (http://docs.basho.com/riak/latest/) is an open-

source, fault-tolerant key-value NoSQL database. It 

implements the principles from Amazon's Dynamo 

paper [26], and shows a heavy influence from Dr. Eric 

Brewer's CAP Theorem. Written in Erlang, Riak is 

known for its ability to distribute data across nodes by 

using consistent hashing in a simple key/value scheme 

in namespaces called buckets. 

Riak supports a REST API through HTTP and 

Protocol Buffers for basic PUT, GET, POST, and 

DELETE operators. Additional query choices are 

offered, including secondary indices, Riak Search using 

the Apache Solr Engine with Solr client query APIs, 

and MapReduce. MapReduce has native support for 

both JavaScript and Erlang. Riak evenly distributes 

data across nodes with consistent hashing and can 

provide an excellent latency profile, even in the case of 

multiple node failures. Key/Values can be stored in 

memory, disk, or a combination, depending on which 

pluggable backend one chooses.  

Riak also supports the feature of checking if the 

server is available. An instantiation of the client will 

automatically execute a “Client Ping” command to 

ensure that the node defined by the client is available 

for requests. This will provide some reference to the 

users about whether they need to check their 

installation before continuing. When multiple 

datacenters are used on replication, one cluster acts as a 

"primary cluster". The primary cluster handles 

replication requests from one or more "secondary 

clusters". If the datacenter with the primary cluster 

goes down, a secondary cluster can take over as the 

primary cluster. There are two modes of operation: 

fullsync and real-time. In fullsync mode, a complete 

synchronization occurs between primary and secondary 

cluster(s), by default every 360 minutes. In real-time 

mode, continual, incremental synchronization occurs - 

replication is triggered by new updates. 

Riak provides the highest degree of flexibility, and 

allows to trade off availability and consistency on a 

per-request basis. It achieves such a feature by 

allowing reads and writes with three different 

parameters: (N) for nodes, (W) for writes, and (R) for 

reads. N represents the number of nodes where data 

will be replicated. W is the number of nodes that must 

be written successfully before a response is returned. R 

is the number of nodes from which data must be read in 

order to reply to a request.  

Let us consider an example of a simple Riak cluster 

with five nodes and a default quorum of 3, which 

means every data item is stored on 3 nodes. In this 

setup, reads use a quorum of 2 to ensure at least two 

copies, and writes also use a quorum of 2 to enforce 

strong consistency. When data is written with a quorum 

of 2, Riak sends the write request to all three replicas 

anyway, but returns a successful reply when two of 

them respond with a successful write.  

Every key belongs to N primary virtual nodes 

(vnodes), which are running on the physical nodes 

assigned to them in the ring. Secondary virtual nodes 

are run on nodes, which are close to the primaries in 

the key space and stand in for primaries when they are 

unavailable (also called fallbacks). The basic steps of a 

request in Riak are as follows: 

1. Determining the vnodes responsible for the key 

from the preference list 

2. Sending a request to all the vnodes determined in 

the previous step 

3. Waiting until enough requests return the data to 

fulfill the read quorum (if specified) or the basic 

quorum 

4. Returning the value to the client 

 

In a typical failure scenario, at least one node fails 

and two replicas are intact in the cluster. Clients can 

expect that reads with an R of 2 will still succeed, until 

the third replica comes back up again.  

 

3.6 DeeDS 
 

DeeDS [7, 28, 31] is a prototype of a distributed, active 

real-time database system. It aims to provide a data 

storage for real-time applications, which may have hard 

or firm real-time requirements. As database, DeeDS 

uses OBST (Object Management system of  

STONE) [22] and TDBM (DBM with transactions), 

which replaces the OBST storage manager. One main 

reason for introducing TDBM is to add support of 

nested transaction into DeeDS. TDBM is a transaction 

processing data store with a layered architecture [18], 

and provides DeeDS with: 

 Nested Transactions  

 Volatile and persistent databases 

 Support for very large data items 

 

To meet real-time constraints, all operations 

supported by DeeDS have to be predictable. This is 

ensured by avoiding delays for disk access, network 

communication and distributed commit through main 

memory residency, full replication and local commit of 

transactions. Local commit means that transactions are 

allowed to commit on a node by updating only the local 

database of that node.  

The other nodes are informed eventually. This 

behavior not only avoids the unpredictable execution 

time of distributed commit protocols like the “Two 
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Phase Commit Protocol”, but also weakens global 

consistency. Instead of immediate global consistency, 

DeeDS supports eventual global consistency. Local 

commit also introduces some concurrency problems 

like concurrent updates of different replicas belonging 

to the same object.  

To handle these problems, DeeDS uses conflict 

detection and forward conflict resolution, which 

resolves conflicts without rolling back transactions [7]. 

Conflict resolution is done deterministically on all 

nodes so that global consistency is reached eventually, 

if there are no new updates to the database. Local 

consistency at each node is ensured at all times by the 

pessimistic concurrency control offered by 

OBST/TDBM.  

To achieve better portability, an extra layer called 

DOI (Deeds Operating systems Interface) is used 

between DeeDS and the operation system. This makes 

it possible to run Deeds not only on POSIX compliant 

systems like UNIX or LINUX, but also on real-time 

OSE Delta. 

 

3.7 Zatara 
 

The Zatara database [22] is a distributed database 

engine that features an abstract query interface and 

plug-in-able internal data structures. Zatara is designed 

for the framework, where it is flexible enough to be 

used by any software application, and guarantees data 

integrity and achieves high performance and 

scalability. 

In Zatara, nodes are organized in groups, each 

group contains at least two nodes, and the actual size of 

the group depends on the developer. A node has a 

NodeID and a GroupID.  NodeIDs are 32 bit integers, 

and GroupIDs are 16 bit integers. The developer 

chooses between two key storage caches: in the first 

cache, data is stored in a single node and is not resistant 

to single node failure; in the other cache, data is stored 

in persistent storage and is resistant to node failures, 

and the eventual consistency is used between nodes. 

The distributed database ZATARA also tries to address 

most of the limitations presented in other systems, and 

proves that it is technically possible to scale almost 

linearly as long as there are no ACID requirements. 

ZATARA uses the algorithm of the consistent 

hashing. With the algorithm, the client will read or 

write the information from/on a particular node. If a 

node is not accessible, a decision on what to do further 

is based on the class of the requested key.  The keys 

that are stored persistent can be read/write from another 

node in the group. Consistent hashing does not 

guarantee a fair data distribution across nodes. When 

adding new nodes, some keys must be redistributed. In 

order to perform the consistent hashing, the client 

should have an overview of the infrastructure. 

 

4  EVALUATION OF SYSTEMS 

 
MongoDB is a cross-platform document-oriented 

NoSQL database system, and uses BSON to store data. 

as its data mdoel. MongoDB is free and open source 

software, and has official drivers for a variety of 

popular programming languages and development 

environments. Web programming language Opa also 

has built-in support for MongoDB, and offers a type-

safety layer on top of MongoDB. There are also a large 

number of unofficial or community-supported drivers 

for other programming languages and frameworks.  
CouchDB is an open source NoSQL database, and 

uses JSON as its data mdoel, JavaScript as its query 

language and HTTP as API. CouchDB was first 

released in 2005 and later became an Apache project in 

2008. One of CouchDB’s distinguished features is 

multi-master replication. The features of MongoDB 

and CouchDB are summarized in the  

Table 1. 

Table 1: MongoDB and CouchDB features 

Feature MongoDB CouchDB 

Interface Custom HTTP/REST 

Data Model BSON, NOSQL JSON, NOSQL 

Storage Model Caching  

Consistency Strong +  

eventual 

Eventual 

Collection Collection  

Replication Master slave Multi master 

Concurrency Update in place MVCC 

Transactions No atomicity Atomicity 

Availability Open Open 

Query language Javascript Javascript, 

REST, Erlang 

 

Amazon SimpleDB is a distributed database written 

in Erlang by Amazon.com. It is used as a web service 

with Amazon Elastic Compute Cloud (EC2) and 

Amazon S3, and is part of Amazon Web Services. It 

was announced on December 13, 2007. 

Amazon DynamoDB is a fully managed proprietary 

NoSQL database service that is offered by 

Amazon.com as part of the Amazon Web Services 

portfolio. DynamoDB uses a similar data model as 

Dynamo, and derives its name also from Dynamo, but 

has a different underlying implementation: DynamoDB 

has a single master design. DynamoDB was announced 

by Amazon CTO Werner Vogels on January 18, 2012. 
Riak is an open-source, fault-tolerant key-value 

NoSQL database, and implements the principles from 
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Amazon's Dynamo. Riak uses the consistent hashing to 

distribute data across nodes, and buckets to store data. 

Both DeeDS and ZATARA are the result from 

research projects and not yet mature enough for 

production usage. The features of DynamoDB, 

SimpleDB and Riak are summarized in the Table 2. 

Table 2: DynamoDB, SimpleDB and Riak features. 

Feature DynamoDB SimpleDB Riak 

Interface Table REST, 

SOAP 

Erlang 

Data Model key-value  Key-value 

Storage 

Model 

API  backend 

Consistency strong + 

eventual 

strong + 

eventual 

configurable 

eventual 

Collection Collection 

of key-value 

  

Replication master slave master slave Master less 

multisite 

replication 

Concurrency Optimistic   

Transactions Atomicity   

Availability Commercial Commercial Open 

Query 

language 

API calls  Erlang 

Map-reduce 

 

We use the following criteria to evaluate the 

database systems that support the eventual consistency: 

 Popularity 

 Maturity 

 Consistency 

 Use cases 

 

4.1 Popularity 
 

We evaluate the popularity of the presented database 

systems based on DB-Engines ranking (http://db-

engines.com/en/ranking). The DB-Engines Ranking 

ranks database management systems according to their 

popularity. 

 At the beginning of 2014, MongoDB was ranked 

7th with a score of 96.1. In February 2014, it is 

ranked 5th with the score 195.17.  

 At the beginning of 2014, CouchDB was ranked 

16th. In February 2014, CouchDB is ranked 19th 

with the score 23.34. 

 At the beginning of 2014, Riak was ranked 27th. 

In February 2014, Riak is ranked 30th with the 

score 10.77. 

 At the beginning of 2014, DynamoDB was 

ranked 35th with a score of 7.20. In February 

2014 DynamoDB is ranked 33rd with the score 

8.36. 

 At the beginning of 2014, SimpleDB was ranked 

46th. In February 2014 SimpleDB, is ranked 

48th with the score 3.30. 

 

According to this ranking, MongoDB is clearly the 

most popular and widely known database system 

supporting the eventual consistency 

 

4.2 Maturity 
 

Based on the authors’ research, MongoDB is clearly 

the most mature database system using eventual 

consistency.  It has a large user and customer base and 

is actively developed. MongoDB has official drivers 

for several popular programming languages and 

development environments. There are also a huge 

number of unofficial or community-supported drivers 

for other programming languages and frameworks. 

Riak is available for free under the Apache 2 

License. In addition, Riak uses Basho Technologies to 

offer commercial licenses with subscription support 

and the ability for MDC (Multi Data Center) 

Replication. Riak has official drivers for Ruby, Java, 

Erlang, Python, PHP, and C/C++. There are also many 

community-supported drivers for other programming 

languages and frameworks. 

CouchDB is a NoSQL database. CouchDB uses 

JSON to store data, supports MapReduce query 

functions in JavaScript and Erlang. CouchDB was first 

released in 2005 and became an Apache project in 

2008. The replication and synchronization features of 

CouchDB make it ideal for mobile devices, where 

network connection is not guaranteed but the 

application must keep on working offline. CouchDB is 

also suited for applications with accumulating, 

occasionally changing data, on which pre-defined 

queries are to be run and where versioning is important 

(CRM, CMS systems, for example). The master-master 

replication is an especially interesting feature of 

CouchDB, which allows easy multi-site deployments. 

CouchDB is clearly a mature system and used in 

production environments. 

DynamoDB is a commercially managed NoSQL 

database service, offered by Amazon.com as part of the 

Amazon Web Services portfolio. There is also a local 

development version of DynamoDB, with which 

developers can test DynamoDB-backed applications 

locally. The programming languages with DynamoDB 

binding include Java, Node.js, .NET, Perl, PHP, 

Python, Ruby, and Erlang. Therefore, DynamoDB is a 

mature and production-quality service.  

Amazon SimpleDB is on the Beta phase and thus 

we do not suggest its use in production.  

ZATARA and DeeDS are in the research phase and 

there are no publicly available systems for testing.  
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Therefore, they are at most in the Alpha phase and we 

do not recommend their use in production as well. 

 

4.3 Consistency 
 

From earlier research, we know that  Amazon 

SimpleDB’s inconsistency window for eventually 

consistent reads was almost always less than 500ms 

[49], while another study found that Amazon S3’s 

inconsistency window lasted up to 12 seconds [2, 12]. 

However, to the author’s knowledge, there is not a 

widely known and accepted workload for the databases 

using eventual consistency. Therefore, the comparison 

of consistency or inconsistency must be based solely on 

system features. 

From a point of view of consistency, Riak offers the 

most configurable consistency feature, which allows 

selecting the consistency level. MongoDB, SimpleDB 

and DynamoDB offer the possibility to read the latest 

version of the data time, thus providing strong 

consistency as well as eventual consistency. All other 

systems offer only eventual consistency, and may 

return an old version of the data when performing read 

operations. 

 

4.4 Use cases 
 

MongoDB has been successfully used on operational 

intelligence, especially on storing log data, creating 

pre-aggregated reports and in hierarchical aggregation. 

Furthermore, MongoDB has been used on product 

management systems to store product catalogs, manage 

inventory and category hierarchy. In content 

management systems, MongoDB is used to store 

metadata, asset management and store user comments 

on content, like blog posts and media. 

Riak has been successfully used on simple high 

read-write applications for session storage, serving 

advertisements, storing log data and sensor data. 

Furthermore, Riak has been used in content 

management and social applications for storing user 

accounts, user settings and preferences, user events and 

timelines, and articles and blog posts. 

The replication and synchronization capabilities of 

CouchDB are well suited in mobile environment, 

where network connection is not guaranteed, but the 

application must keep on working offline. CouchDB is 

also ideal for the applications with accumulating, 

occasionally changing data, on which pre-defined 

queries are to be run, and where versioning is 

important. CRM, CMS systems are the examples of 

such applciations. CouchDB has an especially 

interesting feature: master-master replication, which 

allows easy multi-site deployments. 

SimpleDB is well suited for logging, online games, 

and metadata indexing. However, one cannot use 

SimpleDB for aggregate reporting: there are no 

aggregate functions such as SUM, AVERAGE, MIN, 

etc. in SimpleDB. Metadata indexing is a very good 

use case for SimpleDB. One can also have data stored 

in S3 and use SimpleDB domains to store pointers to 

S3 objects with more information about them. 

Another class of applications, for which SimpleDB 

is ideal, is sharing information between isolated 

components of an application. SimpleDB also provides 

a way to share indexed information, i.e., the 

information that can be searched. A SimpleDB item is 

limited in size, but one can use S3 for storing bigger 

objects, such as images and videos, and point to them 

from SimpleDB. This could be called the metadata 

indexing. 

 

5  ADVANTAGES AND DISADVANTAGES OF 

EVENTUAL CONSISTENCY 
 

5.1  Advantages 
 

Eventual consistency is easy to achieve and provides 

some consistency for the clients [11]. Building an 

eventually consistent database has two advantages over 

building a strongly-consistent database: (1) It is much 

easier to build a system with weaker guarantees, and 

(2) database servers separated from the larger database 

cluster by a network partition can still accept writes 

from applications. Unsurprisingly, the second 

justification is the one given by the creators of the first 

generation NoSQL [9] systems that adopted eventual 

consistency.  

Eventual consistency is often strongly consistent. 

Several recent projects have verified the consistency of 

real-world eventually consistent stores [12]. One study 

found that Amazon SimpleDB’s inconsistency window 

for eventually consistent reads was almost always less 

than 500ms [49], while another study found that 

Amazon S3’s inconsistency window lasted up to 12 

seconds [2, 12]. Other recent work shows similar 

results from Cassandra, where the inconsistency 

window is around 200ms [37]. 

 

5.1  Disadvantages 
 

While eventual consistency is easy to achieve, the 

current definition is not precise [8, 39]. Firstly, from 

the current definition, it is not clear what the state of 

eventually consistent databases is. A database always 

returning the value 42 is eventually consistent, even if 

42 were never written.  

One possible definition would be that eventually all 

accesses return the last updated value, and thus the 
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database cannot converge to an arbitrary value [49]. 

Even this new definition has another problem: what 

values can be returned before the eventual state of the 

database is reached?  

If replicas have not yet converged, what guarantees 

can be made on the data returned? In this case, the only 

possible solution would be to return the last known 

consistent value. The problem here is how to know 

what version of data item was converged to the same 

state on all replicas [4]. 

Eventual consistency requires that writes to one 

replica will eventually appear at other replicas, and that 

if all replicas have received the same set of writes, they 

will have the same values for all data. This weak form 

of consistency does not restrict the ordering of 

operations on different keys in any way, thus forcing 

programmers to reason about all possible orderings and 

exposing many inconsistencies to users. For example, 

under eventual consistency, after Alice updates her 

profile, she might not see that update after a refresh. 

Or, if Alice and Bob are commenting back-and-forth 

on a blog post, Carol might see a random non-

contiguous subset of that conversation. 

When an engineer builds an application on an 

eventually consistent database, the engineer needs to 

answer several tough questions every time when data is 

accessed from the database: 

 What is the effect on the application if a 

database read returns an arbitrarily old value? 

 What is the effect on the application if the 

database sees modification happen in the wrong 

order? 

 What is the effect on the application if a client is 

modifying the database as another tries to read 

it? 

 And what is the effect that my database updates 

have on other clients, which are trying to read 

the data? 

 

That is a hard list, and developers must work very 

hard in order to answer these questions. Essentially, an 

engineer needs to manually do the work to make sure 

that multiple clients do not introduce inconsistency 

between nodes. 

One way to address these questions at least partly is 

to use a stronger version of eventual consistency. Let 

us define the strong eventual consistency. 

 

DEFINITION 6: Strong Eventual consistency. 

 Eventual delivery: An update executed at one node 

evenly executes at all nodes. 

 Termination: All update executions terminate. 

 Strong Convergence: Nodes that have executed the 

same updates have equivalent state. 

To the authors’ knowledge, there is currently no 

database system that uses strong eventual consistency. 

This could be because it is harder to implement.  

Eventual consistency represents a clear weakening 

of the guarantees that traditional databases provide, and 

places a requirement for software developers. 

Designing applications, which maintain correct 

behavior even if the accuracy of the database cannot be 

relied on, is hard. In fact, Google addressed the pain 

points of eventual consistency in a recent paper on its 

F1 database [42] and noted:  

“We also have a lot of experience with eventual 

consistency systems at Google. In all such systems, we 

find developers spend a significant fraction of their 

time building extremely complex and error-prone 

mechanisms to cope with eventual consistency and 

handle data that may be out of date. We think this is an 

unacceptable burden to place on developers and that 

consistency problems should be solved at the database 

level.” 

 

6  RESEARCH ISSUES 
 

For the future research, one interesting direction is to 

design encapsulated solutions that offer good isolation 

for common scenarios. Examples are use of convergent 

and commutative replicated data types, and convergent 

merges for non-commutative operations. Another 

direction is scenario-specific patterns, such as 

compensations and queued transactions, which can be 

leveraged to achieve high availability, and provides 

consistency that applications can reason about.  

Based on this review, it is clear that there is a need 

for a stronger consistency level that can provide the 

most of the CAP features. Strong eventual consistency 

is a step in this direction, but in our opinion more 

research is needed. The most important research 

question is: What is the strongest consistency level that 

can provide the essence of CAP. This study could also 

be extended to find out what potential stronger 

consistency guarantees or isolation levels can be 

provided for transactions containing multiple 

statements. 

Another important research question is what kind of 

workload would best emulate and measure the 

performance and inconsistency window of eventual 

consistent databases. “Availability” in the CAP sense 

means that every node remains being able to read and 

write even when it is not able to communicate with the 

rest of the system. This is more than desirable, but it is 

easy to see the impossibility highlighted by the CAP 

theorem: If a node cannot communicate with anything 

else, of course it cannot remain consistent. 

There is an excellent alternative: A system, which 

keeps some, but not all, of its nodes being able to read 
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and write during a partition, is not available in the CAP 

sense, but is still available in the sense that clients can 

talk to the nodes that are still connected. In this way 

fault-tolerant databases with no single point of failure 

can be built without using eventual consistency.  

Developers should not have to deal with eventual 

consistency. Vendors should stop hiding behind the 

CAP theorem as a justification for eventual 

consistency. New distributed, consistent systems like 

Google Spanner concretely demonstrate the falsity of a 

trade-off between strong consistency and high 

availability. 

The next generation of commercial distributed 

databases with strong consistency will not be easy to 

build, but they will be much more powerful and usable 

than their predecessors. Like the first generation, they 

will have true shared-nothing distributed architectures, 

fault tolerance and scalability. However, rather than 

accepting weak eventual consistency, they will adopt 

far stronger models like ACID transactions or strong 

eventual consistency, making them more powerful and 

productive tools in the enterprise. 

 

7  CONCLUSIONS 
 

In this paper, we have presented a history of eventual 

consistency, and defined eventual consistency 

rigorously. We have reviewed several database systems 

that use eventual consistency and presented their 

significant features. Based on this review, we have 

evaluated these systems and discussed the advantages 

and disadvantages of eventual consistency and 

identified the future research issues. 

Clearly, there are several very mature and popular 

database systems using eventual consistency. Most of 

these are actively developed and there is a strong 

community behind them. We believe that we will see 

more database systems in the future using eventual 

consistency or strong eventual consistency. 
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