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ABSTRACT

Nowadays, the Internet of Things (IoT) represents an important topic and research domain with multiple objectives.
However, most IoTs communicate poorly across the multitude of network interfaces. It should be preferably used a
single universal application layer protocol for the devices and services interconnection, regardless of how they are
physically connected. The IoT paradigm boosts the device connectivity and the user accessibility benefits of services
introduced within the network of connected objects associated with a context-awareness. Within this frame of
reference, Web service is the appropriate technological approach to exhibit a set of related IoT functionalities loosely
coupled with other services discovered or composed through the Web. In this work, we consider the heterogeneity of
connecting technologies for IoT and the applications and devices integration in a single interoperable framework as
a research objective. With this in mind, we introduce a five layers multigraph model for Web Services discovery and
recommendation, and we address Web services-based applications for IoT data integration. The launched service
discovery process permits the interaction between the user/application and the IoT environment. In this context, the
choice of suitable services represents a challenge that covers the functionality and the required quality to combine
composite services, namely mashups for IoT data management and interconnection. For proof of concept, we test a
RESTful Web Services framework as an experimental platform to animate a graph-based approach for dynamic IoT
services discovery. We develop a recommender system that performs graph analytics to produce a set of services
according to the user’s request. The quality of the recommendation process is evaluated by analyzing the correlation
of user satisfaction.
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1 INTRODUCTION

There is a large number of devices that make a
connection between the digital and the physical world.
To sense the activity in the surrounding area services
are provided in different domains, e.g., smart homes,
smart cities, industrial assembly machinery, intelligent
transport, and even health care services. Devices

providing sensing, actuation, control, and monitoring
activities are defined in [39] as the Internet of Things
(IoT) ecosystem.

Wireless technologies offer significant opportunities
to facilitate data exchange between connected devices
and related applications in an independent manner.
It is a simplification for sensors, controllers, and
actuators installation. In such domains, services-based
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applications are developed or discovered to collect and
process data issued from IoT devices.

In this work, we consider Web service as a type
of M2M (Machine-to-Machine) software application
providing a platform for IoT interconnections via
RFID1, Wi-Fi2, Li-Fi3, IP4, etc. Web services manage
the information gathered by IoT devices via network
connections.

As argued in [10], Web service discovery is a
process that facilitates the implementation of complex
and reconfigurable applications in a service-oriented
architecture. However, most of the applied approaches
for IoT device management are designed in a centralized
way, whose efficiency recently meets challenges because
of the large scale of heterogeneous device modules
and highly dynamic essence of the networks, as noted
in [20]. It is especially true for cloud-based services [2].
However, due to an increase in the number of proposed
cloud services, users feel difficulties in finding needed
services in real-time with the desired relevance and
identifiable provenance.

Today, most IoT communicate poorly across the
multitude of network interfaces, and it is preferable to
rely on a single application layer protocol for the devices
and services interconnection, regardless of how they
are physically connected. Instead of creating a newer
one from scratch, it is preferable to reuse a protocol
that is already widely applied for building scalable
and interactive applications, such as the Web family
application protocols. In this case, the Web service
is in charge of the communication complexity of any
heterogeneous connected object and webcast their data.

As many Web services could be available for an IoT
environment, the Web service discovery process takes a
leading role in ensuring a suitable choice. A context-
aware and adaptive Web services discovery approach
can be applied to an IoT scenario with an access
control mechanism. From a technical point of view,
Web services for IoT applications can be based on the
HTTP5 compatible REST6 architectural style. The IoT
intrinsic features are heterogeneous, and this impacts the
semantic composition of the Web service discovery and
composition process.

In this paper, we consider every physical and
logical entity as a resource in a defined state that
can be manipulated via an appropriated service. To
achieve this, we present a Web services discovery
and recommendation approach for an interoperable and

1 Radio Frequency IDentification
2 Wireless Fidelity
3 Light Fidelity
4 Internet Protocol
5 HyperText Transfer Protocol
6 Representational State Transfer

distributed IoT ecosystem. Our objective is to perform
online service discovery and recommendations when
the user expresses requests. For this, a graph-based
system is queried to determine services that can meet
the needs of a connected object. The recommender
system performs graph analytics to produce a set of
recommended services or mashups7, according to the
user’s request.

The contributions in this paper focus the heterogeneity
of proprietary technologies and the integration of
applications and devices in a single interoperable
framework. With this in mind, we address Web Services
for IoT applications, and we introduce a five layers
multigraph semantic model for Web Services discovery
and recommendation. The service discovery process
permits the interaction between user requirements and
the IoT environment. In this context, the choice
of suitable services represents a challenge that covers
the functionality and the required quality to combine
services as a composite one, namely mashups for IoT
data management and interconnection. For proof of
concept, we test a RESTful Web Services framework
as an experimental platform to animate a graph-based
approach for dynamic IoT services discovery in users’
spaces. We develop a recommender system that
performs graph analytics to produce a set of services,
according to the user’s request. The quality of the
recommendation process is evaluated by analyzing the
correlation of user satisfaction.

The rest of this paper is organized as follows. We
present our motivation and some related works in Section
2. The research approach and some technical details are
presented in Section 3. The settings for the graph-based
services discovery and recommendation are discussed in
Section 4, the experimental environment, and evaluation
in Section 5. Finally, we discuss some conclusion notes
in Section 6.

2 MOTIVATION AND RELATED WORKS

2.1 IoT System Architecture

The IoT ecosystem represents a wide range of devices
from simple tagged products such as QR codes8, NFC9,
and RFID tags to sensors, actuators, computation, and
communication interfaces. It’s a smart network of
devices (Things) that can be interconnected through
Internet protocols and can be processed via applications
and services with identified provenance.

7 Application created by combining data or functionality from
different sources

8 Quick Response Code
9 Near Field Communication
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As argued in [13], a single universal application
layer protocol is recommended to simplify Things
interconnections. At first sight, this seems probably
unrealistic to achieve. However, devices and applications
can talk to each other regardless of the nature of their
physical interconnection. As an illustration, we can
note the echo-dot device (Alexa). It’s a cloud-based
service supported by Amazon that can play some music,
tell about news, weather forecast, and much more.
This gadget can also interfere with other Internet-based
technologies at home and beyond. For instance, if at
home a set of smart light bulbs and smart speakers
are installed, a dedicated service-application can control
them to turn on/off the lights or speakers in a room
and synchronize them for all rooms at home. In
this case, web service-based applications ensure the
interconnection between the echo-dot device and the
setting-up of the smart-home device (IoT).

Indoor geolocation is another example that reinforces
our motivation with a solution based on a graph-path
exploration. In this case, the graph vertices are presented
by IoT devices (e.g., Li-Fi lights, Wi-Fi spots, NFC and
RFID tags, Bluetooth devices, BLE10, etc.), all of them
TCP-IP/HTTP/REST compatible. Then, the edge (path)
can be recommended by a service.

Today, many incompatible protocols co-exist in
the IoT domain (e.g. XMPP11, CoAP12, MQTT13,
AMQP14) [11]. It forms a truly set of competitive
application-layer communication protocols developed to
satisfy the IoT ecosystem’s intrinsic features. As detailed
in [21], each communication protocol is designed for
a specific set of application requirements, such as
low power operation, service discovery, bootstrapping,
etc. Consequently, the process of data and services
integration for various devices becomes highly complex
and costly. A part of the proposed solutions that target
IoT interoperability requires all communications to be
routed through a centralized server that speaks all IoT
communication protocols.

Nowadays, it is obvious that building a single global
ecosystem of IoT that can communicate with each other
flawlessly is a difficult or even impossible task. We
notice that today most IoT can’t communicate across
the many available networking interfaces through the
fault of a unique and universal application protocol. To
address this issue, it is preferable to rely on a single
universal application layer protocol for the devices and
applications interconnection, regardless of how they
are physically connected. Instead of creating a newer

10 Bluetooth Low Energy
11 Extensible Messaging and Presence Protocol
12 Constrained Application Protocol
13 Message Queuing Telemetry Transport
14 Advanced Message Queuing Protocol

protocol from scratch, it is technically possible to reuse
a protocol that is already widely applied for building
scalable and interactive applications, such as the Web
family application protocols. The transition from an
Internet of Things (IoT) to Web of Things (WoT) is
informal if any device can be accessed using standard
Web protocol and can offer a standard Web API and a
dedicated/appropriated Web service. The Web service
can take charge of the communication complexity of any
heterogeneous object (IoT/WoT) and webcast their data.

Several papers [4] [26] [20] [13] propose the REST
approach for IoT or WoT data and parameter processing.
Our analysis points to the poor software support of the
application development that should benefit from REST
technology advantages. In [4], the authors propose a
developer’s support for WoT modeled as Web Services.
The main idea is to exposing connecting objects through
RESTful APIs that may facilitate the implementation of
the application on top of them.

To dynamically interconnect IoT and WoT objects,
authors in [28] describe a process with embedded
RESTful Web services. Their suggestion focuses on
interoperable communication between objects based on
Web Services technology. As depicted in [35], the
Web services feature promotes the ability to deal with
heterogeneous sources of information, as well as the
service discovery and composition. We argue for
embedding Web Services into IoT and WoT objects
to facilitate the dynamic integration of distributed
processes. Based on the RESTful style software
architecture cited in [28], the embedded Web services
are considered as physical information servers for
distributed systems in constrained nodes.

2.2 IoT Semantics

In [4] and [35], the authors discuss the multitude
of ontologies developed to describe concepts and
relationships for IoT applications. They conclude: the
proposed semantic techniques increase the complexity
and processing time; they are unsuitable for dynamic
and responsive IoT environments. In this context,
a lightweight ontology is developed by W3C [5] to
describe IoT resources, entities, and services. In [32],
authors develop IoT-Lite ontology to represent key
IoT concepts. This IoT-Lite ontology is, in fact, an
instantiation of the Semantic Sensor Network Ontology
(SSN) [35]. The main issue in their approach is allowing
interoperability and data discovery in heterogeneous IoT
platforms. In [4], the authors proposed ten rules for
scalable semantic model design and implementation for
the IoT-Lite ontology. A demonstration of scalability is
provided with an experimental analysis and assessment.

As presented in [7], the SSN ontology is a significant
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model to describe sensors and IoT-related concepts. This
ontology provides a concept describing sensors, outputs,
observation value, and data with detailed properties.
Authors argue that this enables flexible processing over
a wide range of applications. However, for many use
cases, this ontology is complex for querying and data
processing because it includes a lot of non-essential
components.

In [35], two projects are compared as an extension
of SSN ontology. The IoT-A and IoT.est are two
semantic models to represent services and objects in
sensor devices. Authors present IoT-A as a base for
IoT project development. We notice that the IoT-A
model is a bit complex for user adaptation in dynamic
environments. The authors also present the IoT.est model
as an extension of the IoT-A model with additional
service and test concepts.

The Sensor Web Enablement (SWE) group, part of
the Open Geospatial Consortium (OGC), has developed
a set of standards and languages that described sensors
and associated data, as presented in [7]. For instance,
SensorML is an XML-based language that provides
syntactic descriptions for sensors. However, it lacks
expressibility compared to more powerful ontology
languages such as OWL (Web Ontology Language).
The Semantic Sensor Observation Service (SemSOS) is
introduced in [18] as a Web service. It’s a standardized
effort in the direction of the sensor’s parameters and data
discovering and processing on the Web. The Web service
maps the XML tags into OWL concepts as described
in [18] to represent observations over IoT with limited
related notions.

A literature overview in applying Semantic Web
technologies to IoT is presented in [17]. The
Resource Description Framework (RDF) is cited as a
predominant technique for representing IoT semantics.
RDF represents knowledge as triples (subject, predicate,
object). A set of triples forms a graph where subjects
and objects are vertices, and predicates are the edges. To
express the domain knowledge, OWL is often used with
RDF to define ontologies on the Web.

In [24], authors proceeded with a combination
of two technologies, namely the REST architecture
style and JSON15 Schema/JSON Meta Schema. This
approach permits the construction of knowledge graphs
for a RESTful Web services composition. JSON-
LD16 is presented in [20] as a lightweight serialization
syntax to express RDF in JSON format. Authors
argue that this is an ideal data format for Web-based
programming environments, RESTful Web services, and

15 JavaScript Object Notation
16 JavaScript Object Notation for Linked Data

unstructured (NoSQL17) databases such as MongoDB18.
A lightweight vocabulary for describing RESTful Web
services using the OpenAPI Specification is presented
in [9]. In our work, we adopt and develop this technical
approach.

As argued in [17], Web APIs provide an efficient
way of interacting between Web applications ensuring
so operation and dealing with the IoT integration. This
approach aims to IoT applications in smart cities, smart
homes, enterprise solutions, all based on Web services.
The technical contribution of this paper is based on this
concept.

2.3 Web Service Discovery Process

In general, a Web-service discovery process refers to
the ability to promote relevant and related resources,
and in some particular cases, according to metadata
collected from a historical activity. In this context,
a service discovery process, based on search criteria,
can allow retrieving accessible resources. Then, these
resources should be described in an unambiguous,
machine-interpretable way to overcome their potential
heterogeneity. To act in this direction, the authors
in [12] propose a solution named ForwarDS-
IoT. They discuss a federated “discovery service
based on multiple attributes, range queries, and
synchronous/asynchronous operations”. This approach
also includes an ontology-based model for semantically
describing resources dedicated to IoT services.

In [19], the authors argued that the service
discovery process uses information from retrieval-
based techniques. The Web services discovery
process attached to the IoT management has certain
particularities linked to the nature of deployed service,
such as non-semantic or semantic Web services, as
argued in [9] .

In Figure 1, a non-semantic Web service is depicted
with details about service functionalities, data types,
and access protocols generally in WSDL (Web Service
Description Language) [6]. On the other hand,
ontology-based languages are used to describe Semantic
Web Services, where the discovery process is based
on matchmaking approaches [9], further divided into
semantic-based, syntax-based, and context-aware. For
both, an XML-based document is used to construct
the basic blocks of communication protocols, such
as Simple Object Access Protocol (SOAP) [34] and
Representational State Transfer (REST) [7].

The RESTful Web Services-based technology has
certain advantages in IoT / WoT context over SOAP-
based Web Services technology, such as reduced parsing

17 Not only SQL
18 https://www.mongodb.com/
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Figure 1: Web service description and
implementation in IoT ecosystem

complexity and more efficient integration with HTTP
protocol. Besides, as considered in [22], REST-based
applications perform better on the wireless sensors as
well as they are easier to implement.

In the state of implementation, there are two cases in
point:

1. Devices with embedded native Wi-Fi/Bluetooth
support and embedded HTTP server;

2. Devices with Web service integration through
a software bridge (reverse-proxies) when native
TCP/IP and HTTP support is not available as
suggested in [14].

It is not realistic to consider that all devices will
be powerful enough to host a Web service stack, so
we argue that a bridge-based approach will be a useful
complement solution. To better define the scope of our
research work, we introduce a simplistic functional WoT
architecture with four layers, as shown in Figure 2.

As mentioned in [3], the Device Driver Layer (DDL),
presented in Figure 2, may contain two types of devices:

1. Smart sensors and appliances with embedded
TCP/IP connection that can exchange data
directly through RESTful Web service with user’s
application;

2. Devices that are too resource-constrained to be
directly connected to RESTful Web Service Layer
by itself.

Therefore, an additional Smart Gateway Layer (SGL)
is required as an intermediate to translate and to convert
the device-based protocol to RESTful Web Service
protocol and vice versa.

The SGL presented in [14] is built on four levels of
functionality:

Figure 2: Smart WoT architecture

1. Device Drivers to communicate with low-level
things,

2. Core Services for Web-APIs creation,

3. Pluggable Services to offer additional functionality
and a Web server.

4. Application layer for user’s interactions

2.4 Web Service Recommender System

Recommender systems are adopted to ease Web services
discovery by information filtering before suggesting
service items according to users’ interests, past
experiences, and recommendations. Web Service
Recommender Systems (WSRS) can help actors (clients
and applications) to discover the service that meets
specified needs in the set of accessible Web services.
So, the main task of WSRS is to recommend the
optimal Web service, which best meets the requirements,
and when two or more Web services have the same
functionalities but different QoS performance. Web
service technologies create an environment where actors
can search and compose services automatically and
seamlessly.

A short survey about the WSRS is presented in [27].
The authors classified WSRS into three categories:

1. Content-based,

2. Collaborative filtering,

3. Hybrid
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The Content-based recommendation is performed by
analyzing the similarity between artifacts (items) and
the user’s profile (set of interest). The more similar
items to the user’s profile are suggested first. The
similarity identification process depends on the specified
parameters in the user request.

The Collaborative Filtering (CF) is presented as the
base method for the identification of similar user needs
and recommends related Web services. A CF algorithm
starts a process of filtering based on the association of a
group of similar users with a group of similar services.
A user-service matrix is introduced to evaluate the QoS
retained by users.

The Hybrid Web Service Recommender Systems
(HWSRS) proposes a combination of two methods
(i.e., content-based and collaborative filtering
recommendations) to address the limitations of
each recommendation type. As noted by authors, it
arises many approaches to combine WSRS techniques,
but a complex study does not exist that states which
combination approach is more dominant than another.
They conclude that the existing studies show that hybrid
WSRS provides statistically better results.

On the other hand, authors in [29] note the
insufficiency of the semantics and syntax approaches
to discover a service that best suits the user’s needs.
The reviewed recommender approaches are developed
essentially for service discovery in centralized registries.

In this work, we argue for an HWSRS approach,
and we aim at the discovery in a distributed registry
environment based on user ratings and a set of similarity
factors, presented in a multigraph structure discussed
below.

3 CONTRIBUTIONS

In this work, we analyze how IoT’s intrinsic features
impact the proposed Web service discovery and
composition process in the context of existing Web
service technologies. We note that there is a trend of
wrapping anything (like IoT) into services and then,
to adopt existing service technologies for discovery,
composition, etc. Our approach is different in three
elements.

1. A Web-based unified communication protocol;

2. A process of discovering and composing services
based on a multigraph semantics;

3. A “light” technical solution developed that takes
advantage of Web technologies.

In this paper, we consider the similarity between
connected objects and linked Web services, and we argue

for the use of Web services discovery methods in the IoT
context, where the interoperability raises problems with
the description of connected objects, as well as that of
services.

Even if all the suppliers offer an API for each
connected object, it’s obvious that for comparable
objects (e.g., two smarts LED bulbs of distinct brands),
APIs can have disparities. To overcome this, one
possible solution is to abstract the interface of the service
by adding a semantic aspect to their descriptions. This
can allow access to the functions, not more by the
name, but by the description carrying meaning on the
name. So, services can be interpreted automatically
without having to consider the model or the brand
of the object. Based on this context, we exploit
the semantic descriptions of the object to discover an
appropriate service. Our semantic approach consists
of a graph of connected objects. Relationships are
a function of several parameters: similarity between
semantic descriptions of objects, geographical location,
composition (common uses of objects), etc.

In this paper, we also propose a Web services-
based communication approach for an interoperable
and distributed IoT ecosystem. Our approach enables
seamless interaction between homogeneous things that
speak similar languages as well as heterogeneous things
that speak different communication languages. Such an
approach takes account of the distributed and dynamic
nature of IoT and associated resources. Therefore, this is
merely to reuse the existing network infrastructure with
the associated popular protocols instead of creating yet
another one. We argue the use of Web technologies
for their interoperability, scalability, interactivity, and
distributed applications.

Web technologies make simpler the system and
application integration when a service-based approach
is associated with connecting heterogeneous devices.
As an experimental platform, we propose a RESTful
Web Services framework animated by a graph-based
approach for dynamic IoT/WoT services discovery in
users’ spaces.

As a complement of contribution, from reviewed
related works, two aspects can be highlighted :

1. The semantic annotation of sensor data,

2. The smart objects’ functionalities annotation.

In [23], a concise paper, we presented further defining
the issues involved and setting out some proposed
functional and architectural principles around which
the Web services-based recommender system might
coalesce.

In the evolution of the presented concept, we analyze
IoT’s semantic. We denote that semantic annotation

6



Ivan Madjarov, Fatma Slaimi: A Graph-Based Web Services Discovery Framework for IoT EcoSystem

concerns either data or functionalities. So we argue
that it is more useful to have both annotations together
to perform complex remote operations. For instance,
to switch on/off a light bulb and to activate an air
conditioning system. To address this concern, we
opt for a light service-based platform (LSP) that can
bring annotations together to perform more complex
operations. To annotate IoT’s data and functionalities
semantically in a unified syntax, we apply a JSON-LD
serialization format. This data format presentation is
exploited natively by RESTful Web services from any
NoSQL database.

To better define the scope of our research work,
we introduce a simplistic functional WoT architecture
with four layers, presented in the previous section,
by adopting the SGL framework to manage RESTful
Web Services, as depicted in Figure 2. The user’s
application addresses a smart device (e.g., smarts LED
Lamps, air-conditioning system, smarts speakers) in
the function of embedded Web-services characteristics
correlated to users’ needs or profiles. With this
functional architecture, we argue that any connected
device (Thing) can be accessed through Web technology
and so be managed (data and parameters) via a RESTful
type service, either by a smart gateway or by a native WS
support.

4 IOT ECOSYSTEM DATA MANAGEMENT

In [40], the authors suggest a scenario for IoT/WoT
device-management that requires the discovery of
appropriate Web services. They consider a smart
environment in an interconnected IoT world. So, when a
user departs from work, his car can provide information
about his geolocation. The integrated GPS service can
verify, using traffic data, that the destination is home and
the arrival time can be estimated. Using this data, heating
and air conditioning systems can be activated to obtain a
comfortable temperature in the house. Meanwhile, along
the way, the user can quest for the nearest parking to
have the facility to buy flowers, or to book a table in
a restaurant nearby, or to order pizzas to be delivered
at home. On its way, the traffic conditions can change
at any time. This context suggests changes: (1) in
estimated arrival on the destination, and (2) changes in
real-time for some parameters for the concerned IoT
units. In this case, the process of Web services discovery
and proposal should be adjusted to the new required
IoT parameters and functionalities. This extended use
case scenario, shown in Figure 3, can be easily fitted
into a RESTful Web Service-based Information System
(ReWSIS).

The set of generated data from IoT opens interaction

Figure 3: WoT use case scenario managed by
RESTful Web Services

with Databases and Information Systems (IS).
Nevertheless, the emergence of IoT within IS leads
to multiple challenges. Among these challenges, we
can find the management of the resulting data and their
integration with existing IS. To integrate our extended
scenario in an IS, we propose a system based on a graph
of services and parameters of connected objects (IoT
profiles). A query is sent by the system to determine the
services that can meet the needs of a connected object.
We argue that an approach of personalization can build
profiles of connected objects which can evolve in time
as the technologies evolve. The profiling improves the
process to recommend services by adapting itself to the
environmental and technological changes.

4.1 The Graph Components

The use case scenario presented in Figure 3, although
it is not entirely new, fits into a secured framework
based on Web services with the scalability and data
privacy core in the IoT context. A graph-based approach
is applied to confirm the extended scenario, presented
schematically in Figure 4, where a device connected
to a sensor produces data managed by a service. This
network is modeled as a heterogeneous multigraph
based on users/services, sensors, devices, and mashups
relationships. The multigraph, presented in Figure 5,
is organized into five levels according to the different

7
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Figure 4: Theoretical approach

Figure 5: Model for heterogeneous multigraph

nodes:

1. Devices level,

2. Sensors level,

3. Services level,

4. Mashups level,

5. Users levels

We introduce below our definition for a multigraph
and the relationships with services and mashups.

Definition 1. An IoT multigraph MG=<U,S,M,D,E>
is an directed heterogeneous multigraph where:

U = u1, u2, . . . , uN is a set of users (vertices),
S = s1, s2, . . . , sM is a set of services (vertices),
M = m1, m2, . . . , mL is a set of mashups,
D = d1, d2, . . . , dL is a set of devices,
and:
E = (ui, uj) | user ui is similar to a user uj

∪ (ci, sk) | service sk belongs to a category ci
∪ (ui, sk) | user ui uses a service sk
∪ (sk, sl) | service sk is similar to service sl
∪ (sk, ml) | service sk belongs to a mashup ml

∪ (ui, mk) | user ui tracks a mashup mk

∪ (ci, mk) | mashup mk belongs to a category ci
∪ (mk, ml) | mashup mk is similar to a mashup

ml

Figure 6: The user/device/service interaction

are a set of edges that materialize oriented relations
between vertices
Services Relationships. In the real world, several
services could be equivalent. A relationship can
be defined between each pair of functionally similar
services [29]. By comparing service items (e.g., URI,
name, description, and tags) the similarity can be
established.
Mashups Relationships. We also consider the mashup
component. A mashup [32] in IoT/WoT is an application
that retrieves information from multiple devices and uses
several Web services related to these things (devices).
In our model, we connect each object to the mashups
that use it for several reasons. In the first step, it allows
us to have information about the objects that can be
used together. In a second step, we will have a way
to recommend to the user things or mashups. So, two
mashups m1 and m2 are connected if they share one
service. The similarity is measured according to the
number of common services.
Sensor-Sensor Relationships: For example, sensors
related to identical things (IoT/WoT) or used together are
connected. If two things t1 and t2 are managing two
sensors s1 and s2 and t1 and t2 was used together, a
relation is created between s1 and s2. The localization
of things (sensor devices) is taken into account.
Device-Device Relationships: Things used together
or that manage the same sensor and/or service are
connected.
User-User Relationships: We also consider similarity
relationships between users. The similarity relationship
between users is determined if two users used the same
services or device or invoked the same service to manage
a sensor or a smart device. A relationship is then referred
to as a similar relationship between these two users.

Figure 6 showed the user’s interaction with smart
devices and services. The number of services and
connected objects that users have in common determines
the users’ similarity relationship. Users with similar
requests could be considered as similar in that addressing
several common services. The similarity between
two users ui and uj is expressed using the following
function [31].
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Sim(ui, uj) =
| Hui ∩Huj |
| Hui |

(1)

where Hui and Huj are the recent histories of users
ui and uj respectively.

4.2 Graph-based Approach for Service and
Mashup Recommender

If all WoTs are abstracted as resources, then they become
addressable, searchable, and accessible via the Web
family protocols. The developer can use a uniform Web
standard (API) to integrate all the abstracted resources
needed as well as existing virtual Web service (e.g.,
Google Map) to create a mashup [39], [33].

Our objective is to perform online service discovery
and recommendations when the user expresses a request.
To achieve this, the graph-based system is queried to
determine services that can touch a connected object.
We leverage the multigraph by exploring users/similarity
relationships and to come up with a set of Web services
(or mashups) that would satisfy the requester needs
(based on his preferences and/or the object profile stored
in the services repository).

For a query, the search process consists of retrieving
the most relevant services or mashups to manage the
smart device that interacts with sensor data. The process
returns the top k-similar relevant Web services. The
query is keyword-based and may include one (or more)
service name, tags, and protocol. This method is scalable
but challenged by accuracy and timeliness.

The graph-based discovery process is introduced in
Figure 7 to exploit interconnections between users,
services, and smart devices. The discovery process
selects services on the user’s query from the service
layer (Figure 5). A filtering step is applied to keep only
services associated with the request. The queried device
functionality is compared to the services’ description.
The most similar services to this query are selected and
returned to the user. If no atomic services19 could satisfy
the required needs, a mashup is proposed to the user. As
mentioned previously, mashups are applications/services
created by composing various original services from
disparate or even competing providers. For involved
smart devices, a set of mashups and services are
proposed to the user depend on similarity relations in
the WoT graph. A list of mashups is proposed based
on the required functionalities in the user’s query. When
looking just for a service, the list of mashups containing
this service is recommended.

So, the discovery engine analyzes users request based
on things that the current user uses and then, select the

19 The Atomic Service provides very specific functionality for raw data

Figure 7: Schema for graph-based service
composition

Algorithm 1 For k-similar services
Input: SM // Requested service
Output: Ss or Ms // Suggested service or

mashup
1: while (i ≤ SM .N ) do
2: Insert SM .si to SetMG //MultiGraph
3: while (k ≤ Ss.N ) do
4: if (Ss.sk = SM .si) then
5: return Ss.sk
6: else
7: k ← k + 1
8: end if
9: end while

10: while (l ≤Ms.L) do
11: if (Ms.sl = ML.si) then
12: return Ms.sl
13: else
14: l← l + 1
15: end if
16: end while
17: i← i+ 1
18: end while

service corresponding the most to the query. A set of
similar and complementary services is recommended in
the function of services relationships in the graph. If a
user needs change, the system can dynamically adjust
and propose services or mashups based on the new
submitted query.

The matching20 process is formalized in Algorithm 1
as illustration of the Definition 1. Let SM be the Web
service that is requested, and Ss be the Web service that
is recommended. If no matching service occurred, a Ms

mashup as a similar service is proposed.
The dynamic mashups adaptation to satisfy user’s

needs according to context changes may involve many
services. The service composition process involves

20 The problem of finding a similarity in a graph
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selection and coordination. In an IoT context, let
us return to the scenario of someone who launched
a process of a set of services (GPS, turn on the air
conditioning, etc.). In his way, the person decides
to go and take dinner outside. So the first launched
process becomes obsolete. In this case, an adaptation
(service modification) is needed. To do so, we proceed
to generate a new mashup based on extracted information
from sensors/user’s request. The newest discovery
process is performed to find out services that can satisfy
the user’s request. According to discovered services, the
mashups are modified. The modification consists of the
first level, adds new services to the initial mashup, and
then reinvokes already existing service with new user
input parameters. This process is performed to discover
the best services according to the user’s previous uses, as
depicted in Figure 7, while Listing 1 shows a graph as an
output in adapted format.

5 IOT SYSTEM ARCHITECTURE FOR REST
STYLE WEB SERVICES

In this section, the recommender system architecture
is discussed, the architecture analytics, the data store
model, and the technical contributions of this paper are
also presented.

5.1 The WoT System Architecture

Figure 8 illustrates the different layers for accessing,
discovering, sharing, and composing resources as
depicted in [8]. Besides, we compare WoT functional
layers and IoT models with the ISO model to create
a better understanding of the functional model of Web
services interaction.

• The Thing layer manages hardware and data
processing of connected objects to upper layers.

• The Accessing layer transforms WoT/IoT into
programmable devices (smart devices) as it ensures
to have a Web API that exposes services through a
RESTful API either directly or through a gateway.

• The Discovering layer provides a way to locate
WoT/IoT based on his semantic description and/or
the associated services.

• The Sharing layer ensures that data generated by
WoT/IoT can be shared efficiently and securely
across services.

• The Composing layer integrates services and data
from devices (things) into more complex Web tools
such as analytics software, mashup applications,
and virtual Web services.

Figure 8: WoT model and layers vs IoT model and
ISO model

According to the presented model, data and WoT
parameters are accessible via a REST approach. REST
is a light architectural style that uses simple HTTP
commands (GET, POST, PUT, and DELETE), then
makes it a particularly attractive candidate to interact
with the Web of Objects [20]. In [25], authors cite REST
as a preferred candidate to build APIs of connected
objects. In this way, the connected objects obtain URIs
and can then be exchanged and referenced according
to their features. So, RESTful based services can
manipulate resources in the Thing Layer, which can
include physical objects (e.g., temperature sensors, light
sensors, smart lamps), abstract concepts (e.g., collection
of objects), dynamic and transient concepts (e.g., state of
objects).

5.2 Database Architecture for Recommender
System

Structured data are already in a required form
for a relational database and are stored as is it.
Relational databases can also manage semi-structured
and unstructured data, but data-normalization and
compromises are required to achieve efficient storage.

NoSQL databases represent an alternative to relational
databases where rigid schemes and many other
limitations concerning raw (no structured) data are
avoided. The NoSQL databases support horizontal
scalability, and managing them is simpler where the
relational databases perform the vertical scalability with
the complexity that this approach entails.

The data management model for our recommender
system is based on a multigraph, and usually, this could
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suggest the involvement of a graph database. The key
concept in a graph database is the data representation
in the store as a collection of nodes and edges in order
to customize the relationships between nodes. Other
NoSQL storage mechanisms use a key-value store (i.e.,
dictionary or hash table) or document-oriented database
(e.g., BSON21, JSON, XML) to represent the graph data
model.

In [16] NoSQL databases are categorized into four
major classifications, which are:

1. Key-value stores (e.g., ArangoDB22, also supports
graph database model),

2. Graph databases (e.g., Neo4j23),

3. Wide column stores (e.g., Cassandra24 certain
similarity with MongoDB),

4. Document stores (e.g., MongoDB),

A survey over the published benchmark25 denotes
MongoDB as better performances than Neo4J
in aggregation over a single collection, memory
consumption over tests, neighbors with profile data, and
fewer performances in single read and write data.

While authors in [32] used Neo4j to store a
multigraph, in this work, we opt for the MongoDB
database platform where the multi-level graph is
represented in JSON format to manipulate and modeling
the Web services ecosystem.

An analytics comparison between these two
approaches is presented below.

Neo4j is a native graph database with several utilities
to provide data visualization (e.g., Web browser tool)
and other features such as the relationships between
the data models and graphs. Neo4j offers the query
language Cypher. It is much similar to structured
query language for performing database operations.
SQL database operations such as INSERT, CREATE,
SELECT, UPDATE, SET, DELETE, ORDER BY, SKIP,
LIMIT, MATCH, and WHERE clause can be applied.
Besides, Neo4j supports importing data from external
sources. It requires the Java development kit (JDK) to
run Neo4j.

MongoDB is a data store collection, especially well-
suited for JSON-style documents. A collection of
MongoDB documents can have varying sets of fields,
with different types for each field, including objects.
MongoDB allows graph manipulation faster comparing
21 Binary JavaScript Object Notation
22 https://www.arangodb.com/
23 https://neo4j.com/blog/iot-graphs-business- requirements
24 https://cassandra.apache.org/
25 https://www.arangodb.com/2018/02/nosql-performance-

benchmark-2018-mongodb-postgresql-orientdb-neo4j-arangodb/

to Neo4j. Besides, it offers navigation between the graph
nodes to ensure a global view of the graph. MongoDB
supports dynamic queries without requiring the database
format to be fixed in a schema before running the query.
MongoDB indexes the documents to speed up the query
extraction time. This accelerates process execution time
on the database.

Neo4j is a graph-based NoSQL database, while
MongoDB, although it is also NoSQL, is a schemaless
database with a holistic view of the data. In opposition to
Neo4j, MongoDB does not create relationships between
the data collections. Each data set stored in the database
is disaggregated and independent as a native data
collection. While Neo4J enables navigation through the
graphs as a tree, MongoDB cannot provide visualization
of the collection stores as graphs. Optionally, the use
of Postman26 API as a REST client allows the fastest
interrogation of the graph based on a “GET” request,
which is an advantage of using JSON format for graph
representation compared to Neo4j.

As we are using a multigraph-based schema for our
recommender system, it would make sense to integrate
associated data in a graph database. Nevertheless,
such a choice risks moving away from light and
portable technical solution that takes advantage of Web
technologies. So, we opt for an LSP that can bring
together more complex operations.

To conclude this section and to support the use case
presented in this work, we argue that IoT/WoT is a
typical application scenario for using the MongoDB
database. In opposition to relational databases
(RDB), data in MongoDB are organized in documents
(equivalent to rows in an RDB) with fields (as a column
in an RDB) that are grouped into collections (equivalent
to tables in an RDB). As a document-oriented database,
MongoDB is well-adapted to Web-based applications
(e.g., Node.js, JavaScript-based scripting, RESTful
Web Services). The JSON format is using for
document storage with the possibility to extend the data
implementation with additional types (e.g., arrays) and a
JSON-LD schema.

6 TECHNICAL CONTRIBUTION AND TEST

In this section, we follow the REST-based system
architecture. The system presents a uniform interface
and interactions with WoT built around universally
supported methods. As shown in Figure 9, the system
queries the graph to determine the services that can meet
the parameters of a connected object.

26 https://www.getpostman.com/
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Figure 9: System layers for the technical solution

6.1 Test

For proof of our graph-based service discovery concept,
according to the scenario depicted in the previous
chapter, we conduct a test. The test uses a real dataset
built on RESTful CRUD (i.e., CREATE, RETRIEVE,
UPDATE, DELETE) API with the Node.js27 platform,
Express.js28 framework, and MongoDB server both
assisted by Mongoose29 framework for better data
integration. The level of system and data integration
and the functionalities of concerned components are as
follows:

• Node.js is a server-side JavaScript framework
for building cross-platform applications. This
server platform is composed of an event-driven
architecture that is used for asynchronous (non-
blocking) I/O operations.
We build the tested RESTful API in front of Node.js
and Express.js.

• Express.js is a Web Application Framework with an
HTTP module built on top of the Node.js server.
To organize our lightweight Web application into
an MVC30 architecture, we set up the body-parser
rules to manage the incoming requests dependency
destined to the RESTful API.

• MongoDB is a NoSQL database that can store graph
data. A graph is a data structure that consists of
a set of nodes and a set of edges that relate nodes
to one another. A MongoDB record is a document
where the data structure is similar to JSON objects.
To represent a graph in this database, links and
nodes are stored as objects. To do this, we bring
Mongoose as an object-relational mapping library.

27 https://nodejs.org/
28 https://expressjs.com/
29 http://mongoosejs.com/
30 Model View Controller

{ "@WoT": [
{ "@id": "devicemanagement",
"@type": "service",
"tags" :"lampe , light",
"URL": https://www.sevices.net },

{ "@id": "devicespeaker",
"@type": "device",
"description": "smart speaker" },

{ "@id": "sensorlampe",
"@type": "sensor",
"description": "lamp managing" },

{ "edges": [
{ "source": "lampemanagement",

"target": "sensorlampe",
"relation": "manage" },

{ "source": "sensorspeaker,
"target": "devicespeaker",
"relation": "manage" },

{ "source": "LED Lamp,
"target": "lampemanagement",
"relation": "use" }

]
}
{ "user":[ { "@type": "user",

"name": "Michel Blanc",
"jobTitle": "devlopper"} ]

}
}

Listing 1: Fragment of WS collection in JSON-LD
format

• Mongoose is an Object Document Mapping (ODM)
tool for Node.js and MongoDB and helps to convert
the objects in the code to documents in the database.
They are often used together because of their shared
use of JSON format. A fragment of our tested
collection is présented in Listing 1 in adapted
JSON-LD form.

The discussed in this work infrastructure is designed
for building scalable RESTful network applications.
With Node.js, it is also relatively simple to set up an API,
based on a server running with a few lines of code, that
natively returns data in JSON format.

7 EXPERIMENTATION

In this section, we present a preliminary evaluation
of our multigraph-based recommender approach. We
discuss the experimentally obtained results following
the implementation of the recommender system. For
proof of our graph-based service discovery concept,
a test collection has been used to assess a set of
recommendations, i.e., services and mashups.

It should be noted that as a result of the significant
disruption that is being caused by the COVID-19
pandemic, we were not able to conduct a full-
scale evaluation. However, all components of the
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Figure 10: Multigraph workflow

recommender system have been tested and validated
with external public resources. For evaluation, we
crawled a set of services, devices, and mashups from
a test collection derived from SWTC31. “This project
contains shared resources used for testing semantic
web services technologies. These test resources are a
collection of pre-existing and derived test collections
produced by a number of researchers”.

7.1 Implementation

The used test collection results from 18 queries
from different domains, i.e., communication, food,
economy, medical, travel and education. The requests
involved 586 services and 28 ontologies used to Web
services semantically annotation. To evaluate the
recommendation precision a relevant dataset is provided
for each query. We built on MongoDB a graph by
creating a JSON-LD collection (Listing 1) by exporting
the set of recommended results. The workflow of the
multigraph modeling for the test is presented in Figure
10.

To reduce the test complexity, we first selected offline
data randomly from the external test repository. In this
manner, we ensure that the results are independent of
the input dataset. The extraction process collects data
on users and services that are identified on watchlists
(user history). The mapping module determines the
similarities between users and services. The graph
building module creates a node for each: category,
service, and user. Then it proceeds to the creation
of the relationships between the nodes, i.e., between
users and services; and similarity between services. The
classification process groups the similar services. The
recommendation process works online and comports

31 https://github.com/kmi/sws-test-collections

two modules: (1) a graph query module and (2) a
recommendation module. The query module identifies
candidate services in the graph collection. A list of
resulting services is passed to the recommender module.
During the recommendation process, the module sorts
and enriches the results of this list.

7.2 Evaluation

The goal of the experimentation is to evaluate user
satisfaction with recommended services and mashups
based on MongoDB database exploration. As noted
previously, the recommender system performs graph
analytics to produce a set of recommended services and
mashups according to a user request, which consists of a
set of keywords. The similarity between the user query
and services components is evaluated to discover the
most similar services or mashups. The recommender
system returns a set of ranked services or mashups that
are supposed to satisfy the user’s needs. The quality
of the recommendations is evaluated by the built-in
MongoDB JSON-LD graph that is browsed for a set of
services, smart-devices, and mashups. A fragment of
the JSON-LD WoT/user collection is shown in Listing
1. The involved algorithm is carried out ten times with
random inputs. Experiments have been conducted on a
Rasberry PI 4 model B, with 8G RAM, under Raspberry
Pi OS (Raspbian).

7.3 Quality of Recommendation

In essence, recommender systems filtering selective data
extracted from large amounts of dynamically generated
information related to user’s preferences, interests,
items, or events. We used an implementation [30]
of the Apriori algorithm [1] for NoSQL databases to
determine the most common itemsets within the used
test dataset. Two parameters are to be defined: (1)
support that refers to items’ frequency of occurrence,
and (2) confidence to express the conditional probability.
Following tests conducted on 100 users with 20 services
in their watchlist, we set the two parameters respectively
to 0.5 and 0.9.

This data mining technique is part of a collaborative
filtering technique that is used to calculate the similarity
between users by comparing their relationships (ratings)
with services and to compute a recommendation item.
Our approach is based on a hybrid technique, i.e., (1)
memory-based collaborative filtering to compute the
similarity between users and services and (2) a model-
based algorithm for data mining.

To evaluate the quality/performance of the
recommender system (QoRS), three measures were
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inspected: (1) Precision; (2) Recall; (3) RMSE
measures.

1. Precision refers to the ratio of correctly predicted
services to the number of all recommended
services.

2. Recall refers to the ratio of correctly predicted
services to the number of all the services in the
testing set.

3. RMSE refers to the Root Mean Squared Error that
is used in evaluating the accuracy of predicted
rating (rs).
In [38], authors testify that the RMSE measure
is widely used in service recommendation
approaches. It corresponds to the mean absolute
error between the actual opinion and the user’s
prediction about a service.
For each service (s ∈ L), we define the
prediction rating (rs) that represents the prediction
satisfaction.
Thus, we consider : rs = {(s ∈ P ? 1; 0)}

Let us introduce PR as a set of relevant recommended
services, R as a set of recommended services, and P as a
set of relevant services.

Precision =
| PR |
| R |

, Recall =
| PR |
| P |

(2)

RMSE =

√∑
u,s(r − rs)

N
(3)

Where N is the number of recommended services and
r is the real evaluation.

The first resulting recommended services (mashups)
are used to compute precision and recall. Figure 11
shows the five and the ten first resulting recommender
services and mashups that are used to compute
the Recall, Precision, and RMSE. It is obvious
that the accuracy of the recommendations increases
proportionally with the number of returned services
and mashups. In this case of use, the probability of
providing a relevant service increases as the number of
recommended services increases too.

Unlike existing recommender approaches (e.g.,
TrustSVD [15]), we also tested user-service and user-
mashup relationships, and better performances are
observed even when users have an incomplete watchlist.
The support for user-profiles and backgrounds are
assets in our recommender system compared to existing
service recommendation systems.

Despite the lack of a benchmarking system, the
experimental results are promising, even the lack of
relevant touchstone.

Figure 11: Evaluation results

8 CONCLUSIONS

In this paper, we consider the Internet of Things as an
emerging research domain. The main contribution of
the presented research work is a single interoperable
framework to overcome the heterogeneity of proprietary
technologies to enable the data and application (device)
integration for IoT devices. To achieve this objective, we
consider the similarity between connected objects and
linked Web services. We use Web services discovery
methods in the IoT context, where the interoperability
raises problems with the description of connected
objects, as well as that of services.

In this paper, we also argue that Web technologies
offer a suitable environment to access IoT (WoT) data
and parameters via Web service-based applications. In
this way, users profit from well-known Web mechanisms
to interact and share IoT by managing them with popular
Web languages, platforms, and services. We propose
a system based on graphs of services and parameters
of connected objects associated with a REST system
architecture for Web of Things (WoT) management.
The graph-based approach for Web service discovery,
recommendation, and composition is tested in real
life. The validation process is based on analyzing the
correlations of IoT usage frequency and the satisfaction
of users’ needs. This factor, among others, reflects
the scalability of the presented recommender system
concerning work contributions. The discussed system-
model fits easily into the new computing paradigm, i.e.,
Dew Computing (DC). The scalability of the DC [36]
model integrates a large number of heterogeneous
devices and different types of equipment [37], and this
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corresponds to the presented in this paper use case.
The analysis of the discussed in Section 3 case of use

pushes us towards the idea in future work to perform an
adapted machine learning approach.
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