(© 2019 by the authors; licensee RonPub, Liibeck, Germany. This article is an open access article distributed under the terms and conditions of
the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).

Research
online
Publishing

www.ronpub.coim

Open Journal of Semantic Web (OJSW)
Volume 6, Issue 1, 2019

http://www.ronpub.com/ojsw
ISSN 2199-336X

Integrity Proofs for RDF Graphs

Andrew Sutton, Reza Samavi

Department of Computing and Software, McMaster University, 1280 Main Street West,
Hamilton, Ontario, L8S 4L8, Canada, {suttonad, samavir } @ mcmaster.ca

ABSTRACT

Representing open datasets with the RDF model is becoming increasingly popular. An important aspect of this data
model is that it can utilize the methods of computing cryptographic hashes to verify the integrity of RDF graphs.
In this paper, we first develop a number of metrics to compare the state-of-the-art integrity proof methods and then
present two new approaches to generate an integrity proof of RDF datasets: (i) semantic-based and (ii) structure-
based. The semantic-based approach leverages timestamps (or other inherent notions of ordering) as an indexing
key to construct a sorted Merkle tree variation, where timestamps are semantically extractable from the dataset. The
structure-based approach utilizes the redundant structure of large RDF datasets to compress the dataset statements
prior to generating a variation of a Merkle tree. We provide a theoretical analysis and an experimental evaluation of
our two proposed methods. Compared to the Merkle and sorted Merkle tree, the semantic-based approach achieves
faster querying performance for large datasets. The structure-based approach is well suited when RDF datasets
contain large amounts of semantic redundancies. We also evaluate our methods’ resistance to adversarial threats.
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1 INTRODUCTION Data based log designed for encoding privacy auditing
constantly grows and the integrity proof needs to be
recomputed to guarantee that the log is tamper-proof
and/or supports non-repudiation [31]. In this paper,
we investigate the state-of-the-art methods of generating
cryptographic hashes that can be used as integrity proofs
for RDF datasets. We then propose two approaches
for computing a cryptographic hash of RDF datasets
based on the semantic or structure of the underlying
dataset. Our semantic-based approach provides a more
efficient method of computing a cryptographic hash

The Resource Description Framework (RDF) [35],
developed by the World Wide Web Consortium (W3C),
is an effective data model for the Semantic Web.
With the Linked Data initiative [15], RDF has become
increasingly popular to represent open datasets and
facilitate data interoperability and aggregation in big data
analytics environments. The simplicity and intrinsic
flexibility of the RDF data model, the lightweight
reasoning support of RDFS (RDF-schema) [33], and

availability of query languages (e.g., SPARQL [36]) led
to a variety of Linked Data based proposals such as
scalable solutions on privacy auditing [27, 28]. As for
any data model, a desirable feature for RDF is having
efficient methods to generate integrity proofs of RDF
statements, particularly when the size of the dataset
is incrementally growing. For example, the Linked

for the special case of growing RDF datasets where
the dataset statements carry some notion of ordering
(e.g., statements are timestamped). Alternatively, the
structure-based method forms a compressed version of
the dataset to provide a cryptographic hash with less
processing effort.

Current approaches to generate integrity verification
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(cryptographic hash) for RDF datasets are either based
on incremental methods where a commutative operation
(e.g., concatenation or multiplication) is applied to
the hash values of data items (e.g., individual RDF
statements or subgraphs) to produce a hash value for the
whole dataset [22, 3, 29, 13] or based on constructing
different variations of a Merkle tree [23], which is a
rooted binary hash tree where nodes are labeled with
cryptographic hashes and the root provides a hash for the
whole dataset [23, 4, 5, 20]. The hash value of an RDF
graph generated using each of the proposed methods
carries different properties. For example, one method
may generate the same hash value when the order of
statements in a dataset changes and another might be
order sensitive. The methods may also differ in their
running time to generate the integrity proof of a graph
or in supporting an efficient method for pinpointing a
specific RDF statement that contributes to a different
hash value for the entire graph.

The gap that this research intends to fill is to first
define a set of properties that can be used to compare and
select the appropriate method of generating the integrity
proof of an RDF graph depending on the requirements
which the proof needs to satisfy. Second, we propose an
algorithm to generate an integrity proof specifically in
the context of privacy auditing (or other similar logging
contexts) where the RDF statements in the log are
required to be timestamped. Our method is an extension
of a sorted Merkle tree in which the key is not externally
generated, as is typically the case for sorted Merkle
trees, but is exploited from the semantics of the RDF
dataset (e.g., the keys can be retrieved through SPARQL
queries). Although our algorithm is limited for special
cases where a key is inherently present in the dataset, it
provides the advantage of avoiding the additional cost of
pre-processing for sorting or indexing the RDF dataset
prior to generating an integrity proof. This is desirable
particularly in privacy auditing cases where the RDF
dataset is incrementally growing. Third, we propose
an algorithm to generate a structural integrity proof
based on compressing the semantic redundancies in the
dataset. This algorithm is limited in its application to
highly redundant datasets, however large RDF datasets
often result in high semantic redundancies, which our
algorithm leverages to reduce the cost of computing
hashes of the redundant data [10, 6].

The work presented in the paper is an extension of the
work that has been published in [32]. The contributions
uniquely reported in this paper include an expanded set
of integrity proof properties, a structure-based integrity
proof approach, and an experimental evaluation of the
semantic- and structure-based methods. We also extend
the related work and discuss new directions for future
research.

The rest of the paper is structured as follows. In
Section 2, a comparative analysis of existing methods
of generating integrity proofs is performed and common
properties among these methods are presented. In
Section 3, the algorithm for generating a semantic-based
integrity proof is described. Section 4 presents the
structure-based integrity proof algorithm. In Section 5,
we compare our proposed algorithms with nine other
integrity proof methods. We experimentally evaluate our
semantic- and structure-based methods in Section 6. The
related work is studied in Section 7 and we provide a
number of future research directions and conclude in
Section 8.

2 INTEGRITY PROOF PROPERTIES

In this section, we perform a comparative analysis
between nine methods of generating a cryptographic
hash value for a set of data items, which can be used
as the integrity proof for the dataset. We selected the
methods based on their popularity and relevance in the
literature. We investigate these methods in terms of
eight common properties as described below. For the
remainder of the paper, we interchangeably refer to RDF
statements (i.e., triples or quads) or RDF graphs as
data items and a collection of statements or graphs as
a dataset.

Preserving integrity proof independent to data order.
This property determines if the method for computing
a hash value of the entire dataset is independent from
the order of the data items. It is often the case that the
same set of data items are ordered in different sequences.
For example, querying a database may provide the
same set of data to different users, but the order of
the data in the query result may be different for each
user. In certain scenarios, such as when calculating
digital signatures, it is undesirable for the same set of
data to generate a unique hash value for each possible
data item sequence order. Rather, we would like the
hash value to remain data order independent so that the
same dataset, regardless of the order of its data items,
generates the same hash value (assuming that the data
items themselves have not been modified).

Support for random access to a hash value. For
this property, we are interested to investigate if the
hash method supports random access (or provides a
notion of indexing) to the hash value of a specific data
item. When some data items are modified in a dataset
(intentionally or maliciously) and in turn the computed
hash value of the entire dataset captured the integrity
violation, the ability to efficiently pinpoint hash values
of which data items contributed to the inconsistency of
the integrity proof is a desirable property. For example,
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in Linked Data-based auditing, where privacy events
are represented by RDF graphs, we need to determine
which graph was modified so that auditors can focus their
investigation on the modified statements. Alternatively,
a lack of random access forces an auditor to examine the
entire dataset to pinpoint altered subgraphs.

Pre-processing and running time. In order to achieve
properties such as calculating data order independent
hash values, some methods require data pre-processing,
such as running the data through a sorting algorithm.
Other methods require dataset compression in order
to reduce the amount of hashing calculations. The
additional pre-processing effort will affect the overall
efficiency of the hash calculation method. Since each
hash calculation method requires different amounts of
pre-processing to achieve desirable properties (such as
data order independence), the runtime of each method is
an important factor to consider. Importantly, determining
the computational cost of achieving different hash
calculation properties must be examined. We break
down the runtime property to analyze and compare the
complexities of the pre-processing step (if applicable),
insertion (the incremental step), generation (computing
the integrity proof for the entire dataset at once), and
query (locating a specific data item hash value in the
dataset integrity proof).

Incrementality. Suppose we have a dataset, D, and a
hash of the dataset H. If D is modified to D’ (e.g., by
inserting a new data item and the original dataset remains
unchanged), the property of incrementality states that
we can update the hash H to H' proportional to the
amount of change that was made to produce D’ (rather
than entirely recomputing H' from scratch) [1, 2]. This
property is particularly useful for the case of computing
the hash of RDF datasets that contain common subjects
and predicates as well as for incrementally growing RDF
datasets (e.g., audit log data, where new log events are
added to the log). Support for incrementality increases
the efficiency in computing the hash for incremental
changes to the underlying dataset.

Compression. When computing the integrity proof of
an RDF dataset, a common approach is to compute
individual statement hashes and combine the hash values
into the dataset integrity proof. Especially for large RDF
datasets, performing compression prior to computing
the dataset integrity proof may reduce the overall
hash computation runtime. Importantly, compression
reduces the semantic redundancies in the dataset, the
overall size of the dataset, and the number of hash
calculations required. For this property, we study if
the method incorporates compression in its integrity
proof computation and if the inclusion of compression

outweighs the additional pre-processing effort.

Proof of membership and non-membership. The
last property we investigate is if the hash computation
method allows proofs of membership and/or proofs of
non-membership. A proof of membership means that
there is way to determine if a data item is or is not at
a given position in the set, without having to store or
retrieve the entire dataset. Alternatively, a proof of non-
membership means that we can produce evidence, such
as a position or a path, that a given data item is not
present in the dataset, without storing or retrieving the
entire dataset.

In the following subsections, we evaluate the state-
of-the-art methods of computing hash values that can
be applied to RDF datasets in terms of the above
properties. The results of our analysis are summarized
in Table 1. Columns in this table are ordered according
to the appearance of properties. Rows in Table 1
are ordered according to the algorithms and methods
described below.

2.1 Linked Data Graph Digests

We first discuss two similar methods for computing
the digest of Linked Data (RDF) graphs proposed by
Melnik [22] and Carroll [3]. A statement in an RDF
graph is composed of a subject, predicate, object triple.
For each statement in a graph, Melnik [22] computes
a hash value of a statement’s subject, predicate, and
object, and concatenates the three digests to produce
the statement’s digest. Upon computing a digest for
each statement, the set of statement digests are sorted,
concatenated together, and hashed to produce the digest
of the graph. Similarly, Carroll [3] uses a sort function
on the statements, concatenates the sorted statements,
and computes the digest. Since both methods use a sort
function, the computed hash value is independent to the
order of the data items, as the same hash value will
be computed for different sequences of the same data.
Using concatenation means that there is no indexing
ability for these methods since there is no key associated
with each data item and the position of each data item in
the resulting hash is dependent on the sort function.
Both methods require the use of a sort function,
such as merge sort, which results in a pre-processing
complexity of O(nlog(n)). Incrementality is not
supported by these methods since there are sorting
functions applied to the data prior to computing the
dataset hash. Since these methods do not support
insertion and the sort function is integrated into the hash
computation, the generation runtimes for both methods
are O(nlog(n)). The lack of incrementality means that
an inserted data item affects the data order and requires
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Table 1: Comparative analysis of integrity proof methods for RDF datasets
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2 Carroll [3] Y N Y | O(nlog(n)) N/A O(nlog(n)) N/A N N N N §21
3 Sayers et al. [29] Y N N N/A o(1) O(n) NA |[Y N N N §22
4 Fisteus et al. [13] Y NN N/A o(1) O(n) NA |Y N N N §22
5 Merkle Tree [23] N Y N N/A O(log(n))  O(n) On) [N Y N N §23
6  Sorted Merkle Tree Y Y Y | O(nlog(n)) N/A O(n) O(n) N Y Y N §24
7 Position Merkle Tree [20] N Y Y o(1) O(log(n)) O(n) O(n) Y Y N N §25
8  History Merkle Tree [4] N Y N N/A O(log(n)) O(n) O(log(n)) |Y Y N N §26
9  Merklix Tree [5] Y Y Y O(k) O(log(n)) O(n) O(log(n)) |Y Y Y N §27
10 Timestamp Tree [32] Y YN N/A O(log(n)) O(n) O(log(n)) |Y Y Y N §3
11 Compression Tree N Y Y O(n) O(log(n)) O(n) O(log(n)) |Y Y Y Y §4

the dataset hash to be entirely recomputed. All of the
data are concatenated when computing the hash value,
which means there is no way to provide a proof of
membership or non-membership without supplying the
whole dataset. These comparisons are summarized in
the first two rows of Table 1.

2.2 Incremental Cryptography

Sayers et al. [29] and Fisteus er al. [13] utilize
incremental cryptography to compute the digest of
Linked Data graphs. Incremental cryptography is the
process of incrementally applying a combining function
that is both commutative and associative to a set of
data item hash values to produce a hash value for the
whole dataset. Sayers [29] uses multiplication, whereas
Fisteus [13] employs exclusive-or as the combining
operation. The hash value of a graph is computed by
hashing the statements of the graph and multiplying (or
XORing) each statement digest together modulo a large
prime number [29, 16]. Both methods can compute the
same hash value for a set of data independent to the data
order because of the combining operation.

However, the consequence of using the combining
operation is that the position of a data item in
the resulting hash value will be lost, so these
methods do not support proof of membership and non-
membership.  Since each of these methods utilize
incremental cryptography, they do not need to perform
pre-processing to the data (for example, sorting), which
is an improvement over the previous two methods, and
results in a generation runtime of O(n). Each of these
methods are based on incremental cryptography, which
supports incrementality. Insertions can be easily applied
by hashing the statement and applying the combining
operation to the statement and dataset hashes, which

results in an insertion complexity of O(1). The third and
fourth rows of Table 1 summarize these comparisons.

2.3 Merkle Tree

A Merkle tree [23] is used for the integrity verification
of an ordered set of data items. Formally, a Merkle tree
is a rooted binary hash tree defined as an undirected
graph MT = (V,E), where V is a finite set of
vertices (or nodes) and F is a finite set of edges. The
vertex set of MT contains three types of elements,
root, internal, and leaf. An example Merkle Tree is
shown in Fig. 1. The root node has no parents and
is defined as r = h(r.leftChild||r.rightChild) and
h is a cryptographic hash function (e.g., SHA-256).
Internal nodes have a parent and are defined as n; =
h(n;leftChild||n;.rightChild). A leaf node has a
parent and is defined as I[; = h(data;), where data;
is a data item. Each node in the tree is labeled with a
hash value. The label of the root h,., is used to verify the
integrity of the data items that a Merkle tree is generated
for. The integrity of a data item can then be verified by
reconstructing a portion of the tree up to the root and then
comparing the original root hash with the recomputed
hash. The root hash of a Merkle tree is dependent on the
order of the data items in its leaf nodes. Each sequence
of a set of data items results in a unique Merkle tree and
in turn a different hash value for the root node.

To make the Merkle tree order independent, we
need to either sort the data items prior to constructing
the tree (Section 2.4) or determine an item’s position
while constructing the tree (Section 2.7). Furthermore,
a Merkle tree is designed to statically generate an
integrity proof of a dataset, so the entire tree must be
reconstructed for incremental updates. The generation
runtime is O(n) as the integrity proof is generated
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Figure 1: Merkle tree MT

at once for the entire dataset. However, there are
incremental Merkle trees that support data item hash
value insertions [14]. In this case, the insertion runtime
is O(log(n)) since only a subset of the tree needs to be
updated upon each insertion. Querying a hash value in a
Merkle tree results in a runtime of O(n) due to the lack
of indexing keys (i.e., in a worst case scenario, the query
must traverse the whole tree). The fifth row of Table 1
summarizes the Merkle tree properties.

2.4 Sorted Merkle Tree

If the set of data contains key-value pairs then a sorted
Merkle tree can be constructed. Formally, if we have
a dataset D = {(k,d)|k € K,d € D}, where each
data item d € D has an associated key k, then we can
construct a Merkle tree where the data items are sorted
based on their keys. Contrary to a Merkle tree where
the resulting root hash is dependent on the order of the
data items, a sorted Merkle tree allows the root hash to
be independent of the data order. Since each data item is
associated with a key, no matter what the initial order of
the data is, a sort function can be applied to the keys to
order the data into a specific sequence and then construct
a Merkle tree on this ordered sequence of data. However,
the sort function requires additional pre-processing to get
the data into an ordered sequence.

The asymptotic runtimes of a sorted Merkle tree
are equivalent to a Merkle tree except additional pre-
processing due to sorting requires a worst case runtime
of O(nlog(n)). Similar to a Merkle tree, a sorted Merkle
tree allows for proofs of membership without revealing
or storing the entire dataset as well as lacks support for
incrementality. However, unlike a Merkle tree, a sorted
Merkle tree can provide proofs of non-membership by
producing a path in the tree where the data item should
be. Since the data items are sorted, the correct position
of the data item is known. The sixth row in Table 1
summarizes the properties for a sorted Merkle tree.

2.5 Position-Aware Merkle Tree

Mao et al. [20] present a modified Merkle tree called a
Position-aware Merkle tree (PMT) where each node in a
Merkle tree can keep track of its relative position to its
parent node. A node n; in a PMT records its position
in the tree and is defined as a 3-tuple (n;.p, n;.r, n;.v),
where n;.p is n;’s relative position to its parent node,
n;.r is the number of n;’s leaf nodes, and n;.v is the
value of n; [20]. A PMT allows the generation of
an integrity authentication path for data verification by
directly computing the root of the tree without querying
the whole tree structure. Although this approach makes
each node cognisant of its position in the overall tree
structure, it does not utilize the underlying semantics of
the data to position the data items in the tree.

Similar to a Merkle tree, a PMT does not provide data
order independent integrity proofs of datasets. Since
each node is aware of its position in the tree, data items
can be accessed through the positioning scheme. Proofs
of membership can be achieved since a data item can
be checked if it is or is not at a given position due
to the node position data. Unlike a Merkle tree, a
PMT requires some additional pre-processing to record
the 3-tuple position index for each node, which only
takes O(1) time. Incrementality is supported since the
new data can be inserted into the tree. The runtime
complexities for insertion, generation, and query are
similar to a Merkle Tree. The seventh row of Table 1
summarizes the position-aware Merkle tree properties.

2.6 History-Based Merkle Tree

Crosby et al.  propose a tree-based history data
structure for tamper-evident logging called a History-
Based Merkle tree [4]. The history-based tree is an
append-only tree where loggers incrementally add log
events to the tree and consistency proofs are generated
to prove that each addition to the tree has not altered
past additions. However, the addition of data items to
the tree does not preserve the semantic order of the data.
If log events are added to the tree out of sequence, then
the resulting root hash will not be representative of the
specific order of the events. Therefore, the root hash of
the tree is dependent on the order of the data items.
Similar to the Merkle tree, a history-based tree
supports indexing and proofs of membership since paths
in the tree for each data item can be produced. Unlike
a Merkle tree, a history tree supports incrementality
since a log event can be incrementally added to the
tree, which means the entire hash tree does not need
to be recomputed. Given the index of a data item,
the history tree supports O(log(n)) random access [4].
The insertion and generation runtimes are similar to
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the previous Merkle tree based approaches. These
comparisons are shown in the eighth row of Table 1.

2.7 Merklix Tree

A Merklix tree [5] (also known as a Merkle Patricia
Tree [9]) is a binary tree with Merkle and radix tree
properties. A radix tree is a search tree where keys are
strings defined by the position of nodes in the tree and
all children of a node share a common prefix of the key.
Similar to a Merkle tree, a Merklix tree labels non-leaf
nodes with the cryptographic hash of their children and
leaf nodes with the cryptographic hash of a data item.
Unlike a Merkle tree, a Merklix tree uses a radix tree
structure to store elements in the tree by using a key,
where each sub-tree shares a common prefix in their
key [5].

A Merklix tree is also a rooted binary hash tree
defined as an undirected graph M XT = (V,E). An
example Merklix Tree is shown in Fig. 2. The root and
leaf nodes are defined the same way as for the Merkle
tree. However, the internal nodes of a Merklix tree are
defined as the ordered pair n; = (hash, key), where
hash = h(n;leftChild||n;.rightChild) and key is
the common prefix shared among the hash values of n;’s
children. Assuming that the hash values are in binary,
node ng is the subtree of nodes whose hash values have
a common prefix of 0 (e.g., h;, =001101001... and h;, =
011001110...). Similarly, node n; is the subtree of nodes
whose hash values have a common prefix of 1 (e.g., hy,
=10110010... and h;, =11100110...).

Note that the order of the data items in Fig. 2 differs
from the order shown in Fig. 1, however, the computed
hash value of the root for a Merklix tree will always be
the same for each possible sequence of the nodes’ data
items (assuming the data items have not changed) since
the data items will be sorted into the correct sequence
based on their hash values. Another advantage of
Merklix tree is its support for proof of non-membership.
Since the position of a data item in the tree is known
based on the key, we can determine if a data item was
part of the dataset used to construct the tree by producing
a path in the tree that would lead to that data item [5].

Although a Merklix tree provides integrity verification
proofs of unordered data, additional computation is
required to determine the key and an element’s position.
Determining an element’s position involves computing
and comparing common prefixes, which requires O(k)
worst case time, where k is the length of the key. Due
to the use of indexing keys, a Merklix tree supports
O(log(n)) query time. Furthermore, in certain situations
where maintaining the order of the data is important,
a Merklix tree does not guarantee order preservation.
For example, in security logs, preserving the order

h(nol[n1)

(h(loll1), 0 1(lo||13), 1)

h(datay)

h(datag) h(datas)

Figure 2: Merklix tree M XT'

of events is critical when conducting forensic analysis
and maintaining log provenance. Since a Merklix tree
employs a radix tree structure, the data items will be
positioned based on their hash values rather than some
underlying semantic of the dataset. Due to the radix
tree structure, a Merklix tree allows the insertion of data
in O(log(n)) time, which supports incrementality. The
ninth row of Table 1 shows these properties.

3 SEMANTICS-BASED INTEGRITY PROOF

In this section we recapitulate our algorithm proposed
in [32] to construct a sorted Merkle tree for
incrementally growing RDF datasets based on a key
that is semantically extractable from the RDF dataset.
Although not all RDF datasets carry a notion of a key in
their dataset, the assumption of finding a key, in special
cases, is reasonable since there are a number of semantic
databases built on Linked Data principles in which
capturing provenance assertions of an individual or
collection of RDF statements is necessary. For example,
in privacy auditing, a privacy log event is designed
as a named graph [34] that the provenance assertions
about the event include the necessary timestamp of
its publication [28]. This timestamp can be a perfect
candidate to be used as the key for the log event (an
RDF named graph). We can leverage this existing feature
of the dataset to create a sorted Merkle tree without
additional pre-processing effort to generate a key or to
sort the dataset based on the generated key.

A timestamp tree is an incrementally growing
(i.e., append-only) sorted Merkle tree that uses pre-
determined timestamp data as the key for data items
in the tree. Formally, a timestamp tree is a rooted
binary hash tree defined as an undirected graph 77 =
(V,E). Similar to the trees discussed in Section 2,
the vertex set of 11" contains three types of elements,
root, internal, and leaf, where each type is defined as an
ordered pair (hash, timestamp). For a root or internal
node n;, hash = h(n;leftChild||n;.rightChild)
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Algorithm 1: Timestamp tree insertion algorithm

Data: Previous timestamp tree: tt;—1, RDF data: d;

Result: Timestamp tree: tt;

TSq, < extractTimestamp(d;) ;

2 position; <— compareTimestamp(T'Sq,, tti—1) ;

3 newLeaf; < insertData(h(d;), T'Sq;, tti—1,
position;) ;

4 tt; < recomputeParentHashes(new Leaf;, tti—1) ;

5 return tt;

-

and timestamp = n;.rightChild.timestamp. For
a leaf node, hash = h(data;) and timestamp =
data;.timestamp.

We now illustrate the operations in the construction
of T'T' through the sub-figures of Fig. 3, where node
updates are highlighted. The construction of a timestamp
tree includes one generate operation followed by
n—1 insert operations (formally described in Alg. 1),
where n is the number of data items at a given time.

Initially, the generate(dy) operation starts the
construction of a timestamp tree as shown in Fig. 3a,
where dj is the first data item. The timestamp 754,
is extracted from dy and will be used to determine dj’s
position in the tree. Since this is the first stage in the tree
generation, there is no position to determine and dj is
inserted as the root of the tree and is labeled with hash
of do, h(dp), and T'Sg,. There are no other nodes in the
tree so there are no parent node hashes to recompute.

At time T}, a new data item d; is available and is
inserted in the tree with the insert(tto, d;) operation
in Alg. 1 (Fig. 3b). Data item d;’s timestamp 7S,
is extracted (line 1) and is compared with each node’s
timestamp in the tree at time 7T (ttg) to determine d;’s
position (line 2). Since there is only one node in the
tree, 1'Sq4, is compared with 7'S4,. Assuming that
1S4, > TS4,, di is inserted to the right of dj as a leaf
[; labeled with the hash of dy, h(dp), and T'Sg, (line
3). Since a new node was inserted in the tree, the root
of the tree must be recomputed. In this case the root
from Fig. 3a becomes leaf [y and a new root r; labeled
with the hash of it’s children, h(ly||l1), and the rightmost
child’s timestamp 7'Sy, is computed (line 4). Data item
do is available at time 75 and is inserted in the tree
(Fig. 3c). The extracted timestamp 7'S,4, is compared
with each node of the tree from 77 starting at the root 7.
Assuming that 'S4, > T'S4,, we know that all children
of r; contain timestamps before TSy, so a new root s is
created where the previous root 71 becomes the left child
of ry and ds becomes the right child.

Finally, at time 73, data item dg is inserted in the
tree (Fig. 3d). Again, the comparison with the extracted
timestamp 7'Sy, is performed on ry from T5. Assuming
that 'Sy, > T'S4,, d3 will be inserted to the right of

do. Since ds is a leaf Iy at T, a new internal node n;
is created with ds as it’s left child and d3 as it’s right
child. Node n; is labeled with the hash of it’s children,
h(l2]|l3), and the left child’s timestamp 7'S;, and is the
right child of the new root r3. The root r3 updates it’s
hash value to be h(ng||n1) and timestamp to be the right
child’s timestamp, 7'S,,,. The process of inserting new
data items through timestamp extraction, comparison,
insertion, and node re-computation continues as data
becomes available.

Throughout the provided tree generation example, it
is assumed that 'Sy, < T'S4, < ... < T'Sg,. This
assumption is valid in situations where out of sequence
data are considered invalid, such as in security and
privacy logs. In such datasets, the new data item is
always appended to the tree as the rightmost leaf node
since the timestamps are sequentially ordered from left
to right and the current rightmost leaf of the tree has
the latest timestamp. In this case, computation of the
hash value of the root node in each increment of a data
item is limited to only recomputing the hash values of
the rightmost path of the tree. For this reason, we store
the right child’s timestamp at each parent to provide
a timestamp comparison upper bound so that we can
immediately insert a new data item as the rightmost
leaf node of the tree upon performing a timestamp
comparison with the root.

However, if in a rare case, insertion of out-of-sequence
nodes is a requirement (for example, due to system
latency where appending out of sequence data items is
necessary), this algorithm supports this type of insertion
with the additional cost of comparing timestamps and
following a path to a leaf of the tree depending on where
in the tree the out-of-sequence data item ends up.

4 STRUCTURE-BASED INTEGRITY PROOF

The caveat of the method described in the previous
section is that the semantics we are extracting from the
data might be considered confidential [19, 24]. For
example, the timestamps extracted from the audit log
events can be queried in the timestamp tree. These
timestamps provide temporal information relating to the
events, which can help an adversary determine when
specific events occur in a system (e.g., when access
requests and responses are performed). Rather than rely
on the semantics of the data to generate an integrity
proof, we can generate an integrity proof based on the
structure of the data. In this section, we demonstrate
how the structure of the RDF datasets can be exploited
to generate structure-based integrity proofs.

The underlying data model of Linked Data is
RDF with the subject-predicate-object triple structure.
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Often, large datasets contain semantic redundancies, i.e.,
multiple repetitions in the subjects and predicates of
triples. The graph representation includes redundancy
in the form of repeated nodes and edges that follow
power law distributions [10, 6]. Due to large portions
of RDF datasets containing semantic redundancies, we
can perform compression techniques in order to reduce
the size of the dataset (i.e., reduce the number of
statements to hash) prior to generating an integrity proof.
Computing an integrity proof of a full sized dataset will
result in multiple identical hash values being computed
because of the semantic redundancies. It is important to
note that, semantic-based integrity proof methods, such
as the timestamp tree in Section 3, operate on a graph
level since they rely on a group of statements (i.e., named
graph) with an associated timestamp to order the data
in the tree. However, a structure-based integrity proof
provides more granularity by operating on a triple level
(i.e., hashing individual statement components).

We leverage the RDF compression approach
described in [10] to perform dataset compression prior
to generating an integrity proof. The method in [10]
states that a set of triples {(s,p1,011), .-, (S, D1, 01n, )
s ooy (8,02, 091)5 oovy (8,02, 0915 )y +vs (8, Dy Okimy ) }
would be written as the adjacency list s —
[(p1,ObjListy), ..., (pr, ObjList)].  We adapt the

adjacency list to a k-ary hash tree, called a Compression
Tree, so that auditing queries can be performed on the
tree (e.g., querying a specific triple or triple element).

Formally, a compression tree (Fig. 4) is a rooted k-ary
hash tree defined as an undirected graph CT = (V, E).
The internal node type of the vertex set V' is defined
as the pair (tripleComponentHash, childrenHash).
The element tripleComponentHash = h(subject),
h(predicate) or h(object), where h is a cryptographic
hash function, and for node n;, childrenHash =
h(n;.childy]|...||n;.childy). The root node represents
the integrity proof of the dataset and is defined as
childrenHash and the leaf nodes are defined as the
hash of the object, h(object). Since the compression
tree is based on the RDF triple, the tree has a maximum
height of 3, where all nodes at depth 1 are common
subjects, all nodes at depth 2 are common predicates, and
all nodes at depth 3 are objects. The compression tree is
designed for highly redundant data, where there are large
amounts of common subjects and predicates. We present
the generation algorithm (Alg. 2) in Section 4.1 and the
insertion algorithm (Alg.3) in Section 4.2.

4.1 Compression Tree Generation

Alg. 2 takes an RDF dataset, D, as input and outputs
a compression tree ct. In line 1, we perform RDF
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compression on the dataset D. Using the method
described in [10], the algorithm removes all semantic
redundancies from the dataset, where common subjects
and predicates are reduced to one instance. After
performing the compression, we have the compressed
dataset d (composed of a number of adjacency lists).
In line 2, we iterate over the compressed dataset d and
compute the hash (using SHA-256) of all elements in the
adjacency lists, which outputs the hashed dataset T'H.

It is important to note that there will be no collisions
in the hash function output (assuming we use a strong
cryptographic hash function) since we have reduced all
redundant triple components to one instance (i.e., there
will not be two subjects that hash to the same value).
Lines 3-5 construct the compression tree. In line 3, we
initialize the tree with a root node. Then in line 4, for
each adjacency list in T'H, we insert a triple to the tree.
For example, in Fig. 4, we first create the root r, then
the nodes of the triple s1, p11, 0111 are added to the tree,
followed by objects 0112 to 0115, and predicates py to
pi. This process is repeated for all triples in T'H up to
(and including) the final subject s (line 4 is essentially
converting the set of adjacency lists to a k-ary tree).
After the tree has been constructed in line 4, in line 5
we compute the hash of each node’s children (starting
from the object nodes up to the root node) to form the
hash tree.

4.2 Compression Tree Insertion

To support incrementality, the compression tree also
provides an insertion method. The input to Alg. 3 is
the compression tree that the new data will be inserted
to, ct;—1, and the RDF triple, ¢;, that will be inserted
in the tree. First, we decompose the triple into its
subject, predicate, and object components and compute
the hash (using SHA-256) of each component in lines 1,
2, and 3, respectively. In line 4, we search the subject

Algorithm 2: Compression tree generation algorithm
Data: RDF dataset: D
Result: Compression tree: ct
d < RDFCompression(D) ;
T H < computeTripleHashes(d) ;
ct < createRootNode() ;
ct < addTripleNodes(T' H, ct) ;
ct <— computeChildrenHashes(ct) ;
return ct

L T S T R S

Algorithm 3: Compression tree insertion algorithm

Data: Previous compression tree: ct;—1, RDF triple: ¢;
Result: Compression tree: tt;

sh; <— computeSubjectHash(¢;) ;
ph; < computePredicateHash(?;) ;

oh; < computeObjectHash(¢;) ;

subj Position; <— compareSubjectHash(sh;, cti—1) ;
if subj Position; == NULL then

cti—1 < insertSubject(sh;, cti—1) ;
L subj Position; < updateSubjPosition() ;

NS N R W N

8 predPosition; < comparePredicateHash(ph;, ct;—1,

subj Position;) ;
9 if predPosition; == NULL then
10 cti—1 < insertPredicate(ph;, ct;_1,
subj Position;) ;
11 predPosition; < updatePredPosition() ;

12 ct;—1 < insertObject(oh;, ct;—1, pred Position;) ;
13 ct; < recomputeChildrenHashes(ct;—1) ;
14 return ct;

nodes in the compression tree ct;_; (i.e., the nodes at
depth 1) for an equivalent subject hash to sh;. If sh;
does not exist in the tree, a new node is inserted as the
rightmost child of the root (line 6), otherwise sh; exists
and we do not add a new node. The position of the
newly inserted node (or the existing node’s position) is
recorded in subjPosition; (line 7). In lines 9-13, we
perform a similar procedure for the predicate. However,
we use the recorded subject position, subjPosition;,
to reduce the scope of the predicate hash comparison
search to the children of the subject node. We assume
that the triple ¢; has not been inserted into the tree
previously (i.e., the dataset follows proper semantics and
does not have multiple identical triples). Therefore, in
line 14, we simply insert the object hash oh; as a child
of the predicate node at predPosition;. Finally, since
the compression tree is a hash tree, we recompute all
of the nodes’ children hashes along the inserted path.
Performing the process in Alg. 3 will either: i) add a
new object node to an existing subject-predicate path;
(i1) add a new object and predicate node to an existing
subject node; or (iii) add a new subject-predicate-
object path to the tree (of depth 3).
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5 COMPARATIVE ANALYSIS

In this section we use the same properties discussed
in Section 2 to compare our semantic- and structure-
based methods with other integrity proof approaches.
The tenth and eleventh rows of Table 1 summarize the
properties of the timestamp tree (semantic-based) and
the the compression tree (structure-based), respectively.

Data order independence. A timestamp tree produces
an integrity proof independent of the data order since
a data item can be inserted into the tree based on
underlying data semantics (i.e., timestamps). These
semantics follow a total ordering (e.g., timestamps are
ts;1 < tsy < ... < tsp), which means the data items
(e.g., log events) will always be inserted in a strict order.
Therefore a timestamp tree produces the same integrity
proof regardless of the initial data sequence. On the other
hand, the compression tree, in its current form, does
not support data order independence. However, the tree
can be modified to leverage incremental cryptography to
achieve data order independence as proposed in [29, 1].
Rather than using concatenation to create a hash of the
children of the subject and predicate nodes (as is typical
for the Merkle tree data structure), we can combine the
children hashes through a commutative and associative
operation, thus maintaining the same dataset integrity
proof regardless of the data order.

Random access. Since the data items are ordered
in a specific way, a timestamp tree supports random
access (indexing) to a hash value since each node in
the tree is indexed with a timestamp key related to
the data. The compression tree is a k-ary tree with
indexes based on the component hashes of triples in
the dataset, which supports random access to a hash
value. A compression tree provides more granularity
in its random access support than the timestamp tree
since we can query hash values on the triple level rather
than the graph level. A timestamp tree cannot support
triple level granularity random access since the semantic
required for indexing is based on metadata describing a
set of statements. For example, each log event in an audit
log is defined as a set of statements (i.e., a graph) with
an associated publication timestamp, which is used for
indexing. Therefore, the timestamp tree supports random
access to hashes of graphs (i.e., graph level random
access) based on metadata that carry a notion of ordering
(e.g., timestamp), whereas the compression tree provides
random access to hashes of triple components.

Pre-processing and running time. Leveraging the
semantics of the data in the timestamp tree approach
to order the items means that there is no pre-processing
cost associated with applying a sort function to the data
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or computing an external key for indexing. However,
the timestamp keys still need to be extracted through
a query, although the query runtime is O(1). Unlike
the timestamp tree, the compression tree requires pre-
processing (i.e., compression) to be done to the dataset.
Therefore, since we rely on compression to be applied
to the data, the pre-processing step runs in O(n) times,
which means the generation time for the compression
tree is also O(n). The running time for querying and
inserting a hash value into both the timestamp and
compression trees is only dependent on a subset of the
tree, which results in a runtime of O(log(n)). These
runtimes are similar to the asymptotic insertion time for
Merkle-based binary hash trees (see the experiment in
Section 6 for tree generation and query runtimes).

Incrementality. Both the timestamp and compression
trees support incrementality through their respective
insertion operations. When new data is available, the
data can be added to the trees to update the integrity
proof of the dataset without requiring the entire tree (and
integrity proof) to be recomputed. Insertions to the tree
only rely on updating the nodes along the insertion path.

Compression. A unique property of the compression
tree is that it integrates dataset compression into the
integrity proof computation. Unlike the other methods
outlined in Table 1 (including the timestamp tree), the
compression tree reduces the overall size of the dataset
and the total number of hashing operations. This
is particularly beneficial for large datasets with many
semantic redundancies (see the experiment in Section 6).

Membership and non-membership proofs. The
timestamp tree supports proofs of membership and non-
membership since paths to leaves in the tree can be
determined based on the timestamp indexing. The total
ordering of the timetamp semantics means that paths
can be produced to where log events should be located.
Similarly, proofs of membership and non-membership
are supported in the compression tree based on the triple
hash indexing. Since the nodes of the tree are derived
from the RDF triple, determining where a specific triple
component should be in the tree can be easily performed.

Summary. Although the timestamp and compression
trees are based on the binary hash tree, there are
cases when exploiting the semantics is more beneficial
than the structure and vice versa. The semantic-
based approach is beneficial when the dataset contains
groups of statements with associated metadata (e.g.,
log events with publication timestamps) since queries
can be performed on the tree to verify the integrity
of a specific timestamped event. However, since the
data semantics are stored in the tree and accessible
through queries, there is a potential for private
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@prefix xsd:
_:privacy-graph-header {

12tap:memberOf _:logl
l12tap:eventParticipant

’

_:el-tl a tl:Instant
tl:atDateTime

’

_:privacy-graph-body {

_:logevent a l2tap:PrivacyEvent
_:researcher-2

12tap:publicationTimestamp _el-tl
l2tap:eventData _:privacy-graph-body

_:requests-reqgl a scip:AccessRequest

@prefix 12tap:<http://purl.org/l2tap#>
@prefix scip:<http://purl.org/scip#>
<http://www.w3.0rg/2001/XMLSchema#>

’

’

’

"2018-01-29T12:00:002"" "xsd:dateTime ;
tl:onTimeline _:tlphysical
_:privacy-graph-body a rdfg:Graph

}

I

16 scip:dataRequestor _:researcher-2 ;

17 scip:dataSender _:researcher-1 ;

18 scip:dataSubject _:patient-1234 ;

19 scip:requestedDataltem _:patient-1234-CTScan ;

20 scip:requestedPurpose _:purposes—treatment ;

21 scip:requestedPrivilege _:Use .

2 _:researcher-2 scip:requestorRole _:Principle-Investigator
23 _:researcher-1 scip:senderRole _:Researcher }

Listing 1: Typical privacy log event graph

information leakage.  Utilizing the data structure
in a compression tree is suitable for computing an
integrity proof without revealing information about the
underlying dataset, while also allowing random access
to a statement component hash value (i.e., hash of a
subject, predicate, or object). A compression tree is
most beneficial for large redundant datasets since the
integrated compression eliminates the need to perform
many repetitive hash calculations.

6 EXPERIMENTAL EVALUATION

In this section, we report the experimental evaluation of
our semantic-based approach with Merkle tree variations
in terms of generation and query runtimes. We describe
the dataset used in the experiments in Section 6.1 and
our experimental setup in Section 6.2. We report the
results of two sets of experiments for the semantic- and
structure-based integrity proof methods in Sections 6.3
and 6.4, respectively. Additionally, we evaluate the
runtime of our structure-based method to determine the
amount of redundancies that need to be present in the
dataset to benefit from compression. We also include an
evaluation of the memory used during the compression
process. Finally, in Section 6.5, we discuss how our
methods can withstand types of security-related threats.
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6.1 Dataset

For both the semantic- and structure-based integrity
proof experiments we leveraged the Linked Data Log
to Transparency, Accountability, and Privacy (L2TAP)
privacy audit log framework [28] to generate synthetic
privacy audit log events. An example log event is
shown in Listing 1. The events in an L2TAP log
are composed of a header representing provenance
semantics (lines 4-13), and a body describing privacy
semantics (lines 14-23). For the semantic-based integrity
proof experiment, we constructed our privacy audit
log dataset by incrementally generating log events
(Listing 1) over time so that each event has a different
timestamp, resulting in our dataset containing 1 million
events. The publication timestamp for each event is
captured in the event header in line 11 (this is extracted
in the timestamp tree generation). For the structure-
based integrity proof experiment we leverage a fixed-size
subset of our dataset (1 million triples). We vary a subset
of the 1 million triples (i.e., 0% to 100%) to be redundant
triples (i.e., equivalent subjects and predicates).

We understand the limitation of using synthetic data
for experimental evaluation. However, the validity of
experiments designed in this paper is independent to
the content of RDF graphs since we made minimal
assumptions about the datasets used for the experiments:
i.e., presence of a notion of ordering (timestamp) for the
semantic-based experiments and having varying levels of
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Figure 5: Tree generation runtime

redundancy (10%, 20%, 30%, etc.) for the structure-
based experiments. Therefore, any RDF dataset with
these characteristics, regardless of its content, would
qualify for our experiments.

6.2 Test Environment

Prior to running the experiment, we generated increasing
amounts of the privacy log event in Listing 1
with sequential timestamps. The event graph hash
computation, tree generation, and hash query operations
were run on a MacBook Pro with a 2.9 GHz Intel
Core i7 processor and 16 GB of memory. The
semantic- and structure-based integrity proof methods
were implemented in Java and the System.nanoTime()
Java method was used to measure the elapsed execution
time of the experiments. The memory usage was
measured using the Java runtime totalMemory() and
freeMemory() methods. The recorded time does not
take into account the time to generate the audit log
events (these were pre-computed before the experiment).
To account for variability in the testing environment,
each reported elapsed time is the average of twenty
independent executions.

6.3 Semantic-Based Experiment

In the context of privacy auditing, it is assumed that all
events in a privacy log have an associated publication
timestamp. We want to demonstrate how leveraging
the underlying semantics of the data can improve the
Merkle tree-based integrity proof methods. Specifically,
we are interested in evaluating two aspects of the
methods: integrity proof generation and data hash
query runtimes. In our semantic-based integrity proof
experimental evaluation, we compare our timestamp
tree approach (Section 3) with the standard Merkle tree
(Section 2.3) and the sorted Merkle tree (Section 2.4).
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Integrity proof generation. We opted to perform static
tree generation rather than incremental tree generation.
Static tree generation constructs the tree at once for n
data items, whereas incremental generation constructs a
new tree for each data item 1...n. Although we have
shown the incremental generation approach in Alg. 1, we
can easily adapt this algorithm for statically generating
the tree (i.e., rather than inserting a single data item each
iteration, we run the algorithm over the whole dataset
at once). In a privacy auditing context, incremental
generation is leveraged for when the integrity proof
method requires real-time updates, where new log events
can be inserted to the tree as they become available.
On the other hand, static generation is leveraged for
retrospective auditing, where we have a set of generated
log events and we want to compute an integrity proof
for that dataset. We decided to evaluate the static tree
generation since it better highlights the differences in
overall runtimes between the three tree-based methods
for datasets of increasing sizes.

Fig. 5 depicts the results of the integrity proof
generation runtime experiment comparing the timestamp
tree (TT), Merkle tree (MT), and sorted Merkle tree
(SMT) for log datasets of increasing sizes (100,000
to 1,000,000 log events). The standard Merkle tree
constructs a binary hash tree from the data with no pre-
processing steps involved in the construction. A sorted
Merkle tree extends this process to include a sorting
step prior to constructing the tree. This sorting process
requires a key to be generated to order the data. A
timestamp tree extracts the key used to sort the data
from the data (i.e., timestamp) and additionally carries
the timestamp ordering semantics throughout the entire
tree. In this experiment, the data are ordered sequentially
based on their timestamps prior to constructing the tree
(as is typically the case for audit log events). As shown
in Fig. 5, the Merkle tree has the lowest generation
runtime since it simply computes the hash of each data
item and constructs the tree. Since the log events are
generated in order prior to constructing the tree, the
sorting step for the sorted Merkle tree negligibly adds
to the processing time. The timestamp tree has the
additional step of extracting the timestamp from the
event and storing that information in the nodes of the
tree, which yields a slight increase in runtime over the
other two methods. Based on the results, it can be seen
that all three methods have similar generation runtimes
and that the timestamp extraction and comparison for the
timestamp tree negligibly adds to the runtime.

Data hash query. The ability to query the integrity
proof of a privacy audit log for a specific event is
beneficial for auditors when conducting an investigation.
Specifically, an auditor may ask the question of “did this
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Figure 6: Data hash query runtime

event produce a hash value that was part of the dataset
integrity proof?”. We evaluate the three methods on
their ability and effectiveness at supporting such a query.
After the tree is generated, we compute the hash of a
data item and query the tree for that data item. A typical
auditing query would want to check if the tree contains
the hash of the latest event in the log. To evaluate
the query execution runtime for each tree method, we
perform a black-box query, where the auditor running
the query is not aware of the underlying tree ordering or
semantics (i.e., does not know the internal structure of
the timestamp tree, sorted Merkle tree, etc.). Querying a
timestamp tree is similar to a binary search through the
tree (i.e., comparing timestamps at each node), whereas
querying the Merkle tree methods resembles a depth first
search (i.e., brute-force checking each path in the tree).

Fig. 6 shows the results of the data hash query
runtime experiment. Although the sorted Merkle tree
orders the data items prior to constructing the tree,
under the assumption that the auditor is performing a
black-box query, they cannot exploit the fact that the
latest event is in the rightmost leaf position of the tree.
Therefore, the query execution time is similar to the
Merkle tree. Furthermore, the sorted Merkle tree does
not carry the underlying data semantics throughout the
tree (as opposed to the timestamp tree, which carries the
timestamps in all tree nodes), so we cannot perform a
binary tree search, rather we must rely on the depth first
search method. Since the Merkle and sorted Merkle tree
methods rely on depth first searching, the query must
traverse 2 - d — 1 nodes, where d is the size of the
dataset (i.e., the query must check all leaves to find the
data hash). Conversely, the timestamp tree only requires
traversing h nodes, where h is the height of the tree
(since the query is performing binary search based on the
timestamps). Since h < 2 -d — 1 and h grows slowly,
the timestamp tree query runtime is sub-linear compared
with the Merkle and sorted Merkle trees. For example,
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for a dataset of size 30,000 the timestamp tree query
takes about 0.32 ms, whereas the Merkle and sorted
Merkle trees take around 54 ms. If we increase the
dataset to 40,000 the timestamp tree remains at around
0.32 ms, whereas the Merkle trees increase to 64 ms.

Although the timestamp tree does not improve over
the Merkle tree generation performance, the additional
timestamp semantics greatly reduces the query runtime.
While the sorted Merkle tree produces identical integrity
proofs independent to the order of data, similar to the
timestamp tree, we cannot leverage this property when
querying, especially in a black-box query scenario, since
the tree does not carry the semantics of the data ordering
throughout the tree. When comparing the three tree-
based integrity proof methods against the generation and
query runtime aspects, the timestamp tree is a more
suitable structure for audit log based tasks.

6.4 Structure-Based Experiment

Although the structure-based method is based on the
Merkle binary hash tree, we did not perform an
experimental comparison of the compression tree with
the methods used in the semantic-based experiment.
The purpose of the structure-based experiment is
to determine if performing compression reduces the
runtime for hashing the dataset and where a breakpoint
occurs. Alternatively, the semantic-based approach is
a modification of an existing approach (sorted Merkle
tree), so we wanted to compare our semantic approach
with the Merkle tree and demonstrate that the semantics
in the tree benefits an auditor’s query. Furthermore, the
two approaches operate at different levels of granularity;
the semantic approach operates on the graph level,
whereas the structure approach operates at the triple
level. Therefore, in our structure-based experiment, we
evaluate the runtime of our compression method and
the memory overhead incurred during the compression
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process.

Compression.  The results of the structure-based
integrity proof experiment are shown in Fig. 7. We
first computed the integrity proof of the dataset (i.e.,
hashing each triple component) with no compression
as the number of redundant triples increases. Since
no compression is performed, the hashing runtime is
constant for all redundancy sizes and provides a baseline
to compare the compression runtime with. We then
performed the same experiment, however we apply
dataset compression to reduce the number of redundant
triples prior to hashing the triples. This process is
broken down into compression, hashing, and the overall
computation (compression and hashing) and we report
each elapsed execution time in Fig. 7. We want to
experimentally verify where a breakpoint is to determine
how many redundancies must be present in the dataset
to benefit from performing compression prior to hashing
the dataset. From our reported results, performing
compression prior to hashing will reduce the overall
integrity proof runtime if the dataset contains at least
80% redundant elements. Fig. 7 shows that the overall
computation (compression and hashing) intersects the
(no compression) hash computation when the dataset
contained 80% redundancies. After this point, the
overall computation runtime was lower than the hash
computation without compression.

Despite requiring at least 80% redundancies in the
dataset to benefit from applying compression prior to
generating an integrity proof, there are still cases where
datasets contain redundancies of this size. Large RDF
datasets follow power law distributions in the amount of
redundant triple components in the dataset. For example,
the Linked Data log for privacy auditing [28] allows
participants to encode privacy policies and obligations
related to the sharing of data. Often, there are many
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clauses that need to be encoded in the log, which results
in a large amount of semantic redundancies on both
the subject and predicate level (i.e., there are many
obligations associated with a single privacy policy).
Especially for large audit logs, there will be many
redundancies of this nature and applying compression to
the dataset would reduce the integrity proof generation
runtime.

Memory. A limitation of the structure-based method
is that the data structure needs to be loaded into
the main memory in order to generate the integrity
proof. Due to this limitation, the structure-based
approach may not be able to process very large
datasets (depending on the memory allocation and size).
Fig. 8 and 9 depict the memory usage during the
compression and integrity proof process. In Fig. 8
we ran the compression process over the same dataset
as reported in Fig. 7 (i.e., fixed dataset size with
increasing amounts of redundant statements). Although
the memory usage reciprocates between some values,
there is an overall trend in declining memory usage as
the dataset redundancies increase. For datasets with
many redundancies, the memory usage decreases since
there are less statement hashes to process (due to the
compression).  Furthermore, in Fig. 9 we compare
the memory usage between the compression and non-
compression methods. For this experiment, we leveraged
a variable dataset size composed entirely of redundant
triples. It can be seen that the compressed version
requires less memory than the non-compressed version,
however, the memory usage begins to increase as the
dataset size increases. Therefore, for very large datasets
(> 10°), there may be problems processing the dataset
if there is limited memory available.
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6.5 Threat Model Evaluation

When the items in a dataset have a temporal aspect, as
in the case of auditing, an adversary may change the
order of log events to avoid the detection of malicious
activity. For example, at time ¢y, a log recorded the
authorization for a process pg. At time ¢, an adversary
performs an action and is recorded in the log. At
time 5, a benign entity performs another action and is
recorded in the log. Suppose a security incident occurs
and upon investigation, is determined to have occurred
at time ¢; (and unknowingly to the investigators, was
ultimately caused by the adversary’s actions at time ¢1).
By attempting to reorder the data items in the timestamp
tree to hide malicious activity, the adversary makes the
appearance that the benign entity’s actions caused the
security incident. A timestamp tree should be able to
detect and prevent the malicious attempt to incorrectly
insert and change the order of the leaves.

In order to prevent an adversary from reordering the
data items in a timestamp tree, we can utilize a chaining
mechanism that takes advantage of the underlying data
order semantics to detect and prevent this malicious
behavior. When a new data item is being inserted into
the tree, the data item leaf node’s label is modified to
additionally contain the hash of the previous root of the
tree. Originally, a data item leaf in a timestamp tree is
labeled with the pair (h(d;),TSq,). The modified label
contains the triple (h(d;),TSq,,h(ri—1)), where r;_1
is the previous root of the tree. By adding the hash
of the previous tree root to the leaf node, an adversary
could not successfully insert a data item in the incorrect
location. Since the tree is incrementally growing over
time, the adversary cannot retrospectively calculate the
correct h(r;_1) for the previous tree root. Of course
for this method to work, all tree root hashes must be
published, for example in a blockchain [31, 21], so that
they can be used for integrity verifications.

The chaining method previously described can also
be applied at the data item generation level. For
example, in a privacy auditing scenario, where there
are multiple participants contributing to the log, each
participant can link together their generated log events.
Specifically, if a participant is inserting event data d; into
the tree and they have previously generated data d;_
and d;_o, the leaf node for d; would be labeled with the
pair (h(d;||di—1||di—2), TSa,). Therefore, an adversary
could not alter a participant’s event data in the tree since
they do not possess all of a participant’s log events.

Contrary to the semantic-based integrity proof
method, the structure-based method does not reveal any
private information about the dataset. From a semantic
perspective there is no adversarial threat to the data
structure. However, leveraging compression techniques
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adds another layer of complexity to adversaries
attempting to reveal plaintext data. Cryptanalysis relies
on exploiting redundancies in the plaintext, which means
large RDF datasets that contain many redundancies helps
adversaries reduce the possible number of plaintext [30].
When encrypting (or computing digital signatures),
compression resolves the risk of adversaries exploiting
dataset redundancies to reveal the plaintext triples.

7 RELATED WORK

A number of related work has been described in the
comparative analysis of Section 2. In this section, we
discuss the additional related work in auditing, Linked
Data-based digital signatures, RDF graph compression
techniques, and RDF triple indexing.

Google’s DeepMind Health Verifiable Data Audit
project is developing a real-time auditing platform for
health research data that uses an append-only log that
records data usage events in a Merkle tree structure [14,
7]. This approach can be extended to capture the time
of any data interaction, which can be utilized in the
log tree structure such as in our method. Lindqvist
presents a protocol for producing verifiable privacy-
preserving membership proofs of Merkle trees [19]. In
the context of audit logs, Lindqvist’s protocol allows
auditors to query the logs for audit proofs of log
entries while preserving the privacy of unrelated entries.
Since our timestamp tree is an extension of a sorted
Merkle tree, where the leaves are ordered, there is the
potential of leaking information about adjacent leaves
when querying the tree [19, 24]. Supplementing our
approach with Lindqvist’s protocol has potential for
preventing undesirable data leakage.

Kleedorfer et al. propose a Linked Data-based
messaging system where conversations can be verified
through digital signatures [18]. This approach preserves
the integrity of conversations by chaining message
signatures, where all messages and signatures are
defined as RDF graphs. The graph hashes used for
the digital signatures are calculated using incremental
cryptography. However, this approach does not exploit
the fact that the message graphs contain timestamp
information for each message, which our approach can
use to semantically preserve the order of the messages.
Kasten et al. provide a framework for signing graph
data where a number of graph hashing methods for the
signatures are discussed [16]. Similarly, this approach
does not leverage available data in the graph datasets
to construct a hash value to achieve sorted Merkle tree-
like properties, which is desirable for preserving the data
order.

A number of approaches to RDF compression
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are discussed in [10], including direct compression,
adjacency lists representations, and dictionary+triples
decomposition. Direct compression applies zip
based compression to an RDF dataset, whereas
dictionary+triples decomposition requires constructing
a catalog of the information entities in an RDF
graph with high levels of compression [11]. We
leverage the adjacency list approach rather than direct
or dictionary compression since using dedicated data
structures (i.e., adjacency lists) efficiently compresses
the dataset [10]. Fernandez et al. extend the
dictionary+triples decomposition approach and propose
a new representation format called Header-Dictionary-
Triples (HDT), where the header includes metadata
describing the RDF dataset, the dictionary organizes all
RDF graph identifiers, and the set of triples comprises
the structure of the RDF graph [11, 12]. An HDT
representation of an RDF graph provides a compact
dataset for the exchange and publication of huge RDF
datasets. Pan er al. propose a method to reduce the
number of triples in RDF documents and serialise the
graph based on the structure of the RDF document [25].
Khatchadourian builds a representation of an RDF
dataset by generating a structural summary of the
graph [17]. However, this approach focuses on capturing
the semantics of the dataset rather than capturing the
exact signature of the dataset (as is applicable in our
case).

Leveraging the structural nature of RDF graphs
for indexing is important for RDF data management
system performance and scalability.  Picalausa et
al. present a framework for designing and using
RDF structural indexes [26]. Erling discusses
applying indexing schemes, column-wise compression
and adopting column store techniques in the Virtuoso
RDF management system [8].

8 CONCLUSIONS

In this paper we defined a set of properties that can
be used to analyze appropriate methods of generating
integrity verification proofs for RDF datasets. Current
methods are based on incremental procedures that utilize
a commutative operation or use constructions of Merkle
trees to produce a hash value for a dataset. We
proposed two tree-based approaches for generating an
integrity proof of an RDF dataset: i) semantics-based
and ii) structure-based. Our semantics-based integrity
proof approach is an extension of a sorted Merkle tree,
called a timestamp tree, where keys are semantically
extractable from an RDF dataset (e.g., timestamps) and
exploited to produce an integrity proof that achieves
characteristics such as data order independent integrity
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proofs, random access, and proofs of membership and
non-membership. The keys that are extracted from the
dataset could be considered private information (e.g.,
timestamps), so we propose an alternative approach
that leverages the structure of the RDF dataset. We
apply compression techniques to the dataset to remove
semantic redundancies prior to constructing a tree based
on the RDF triple, called a compression tree. The
paper includes an evaluation of the timestamp tree and
compression tree generation algorithms compared to
other integrity proof methods and an adversarial threat
model. Based on the results, our methods are comparable
to existing methods in terms of runtime growth and can
resist adversaries that attempt to insert incorrect data to
the tree.

There are a number of directions for future work
for the semantic- and structure-based trees. First, in
some application domains (e.g., in privacy audit logs)
the nature of the chosen key used in a timestamp tree
may be considered private information. Further work
can be done to apply privacy-preserving techniques such
as fully homomorphic encryption or zero knowledge
proofs, where the exact timestamp is not revealed but
the data insertion comparisons can still be performed
over the encrypted data. Second, identical timestamps
are stored in multiple tree nodes, resulting in redundant
data in the tree. Node data optimization needs to be
investigated to determine indexing schemes that allow
the random access of data where a subset of the nodes
carry a key rather than all nodes. Third, further Linked
Data specializations can be applied to the compression
tree. As described in [16], canonicalization and
serialization functions should be applied to generalize
the algorithm. Prior to performing any hash functions
to the data, we can apply a canonicalization function to
normalize the data followed by a serialization function
to convert the canonicalized data into a sequential
representation [16]. Furthermore, handling blank nodes
and common or redundant URIs needs to be investigated
in order to prevent unwanted collisions from the hash
function.
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