
c© 2020 by the authors; licensee RonPub, Lübeck, Germany. This article is an open access article distributed under the terms and conditions of
the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).

Open Access

Open Journal of Semantic Web (OJSW)
Volume 7, Issue 1, 2020

http://www.ronpub.com/ojsw
ISSN 2199-336X

Ten Ways of Leveraging Ontologies for Rapid
Natural Language Processing Customization
for Multiple Use Cases in Disjoint Domains

Tatiana ErekhinskayaA, Marta TatuA, Mithun BalakrishnaA,
Sujal PatelA, Dmitry StrebkovB, Dan MoldovanA

A Lymba Corporation, 901 Waterfall Way, Bldg 5, Richardson, Texas, USA,
B Independent Researcher, 901 Waterfall Way, Bldg 5, Richardson, Texas, USA,

{tatiana, marta, mithun, sspatel, dstrebkov, moldovan}@lymba.com

ABSTRACT

With the ever-growing adoption of AI technologies by large enterprises, purely data-driven approaches have
dominated the field in the recent years. For a single use case, a development process looks simple: agreeing on
an annotation schema, labeling the data, and training the models. As the number of use cases and their complexity
increases, the development teams face issues with collective governance of the models, scalability and reusablity
of data and models. These issues are widely addressed on the engineering side, but not so much on the knowledge
side. Ontologies have been a well-researched approach for capturing knowledge and can be used to augment
a data-driven methodology. In this paper, we discuss 10 ways of leveraging ontologies for Natural Language
Processing (NLP) and its applications. We use ontologies for rapid customization of a NLP pipeline, ontology-
related standards to power a rule engine and provide standard output format. We also discuss various use cases for
medical, enterprise, financial, legal, and security domains, centered around three NLP-based applications: semantic
search, question answering and natural language querying.

TYPE OF PAPER AND KEYWORDS

Short communication: ontologies, natural language processing, domain-specific knowledge, labeling, semantic
graph, natural language querying

1 INTRODUCTION

Although ontologies have been used for knowledge
representation and inference for many decades [28],
they have not gained significant adoption within the
data science/NLP community, with a few notable
exceptions: [42], [18], [38], [31]. This paper attempts
to bridge the gap between ontology-driven and data-
driven approaches and discusses practical scenarios for
a beneficial combination of the two.

Based on our experience with providing enterprise-

level NLP solutions for multiple domains, we created a
project flow and a resulting NLP pipeline that are driven
by ontologies, yet utilize the most recent advances of
Deep Learning. At a high-level, an input ontology is
used on three major dimensions: (1) to customize the
NLP pipeline for a new domain, (2) to use Resource
Description Framework (RDF) within the NLP pipeline,
and (3) for end-user applications.

As shown in Figure 1, we use ontologies for NLP
in 10 different ways. First of all, we use ontologies to
describe the labeling schema (e.g., named entity types,

33

http://creativecommons.org/licenses/by/4.0/
http://www.ronpub.com/ojsw

Open Journal of Semantic Web (OJSW), Volume 7, Issue 1, 2020

Figure 1: Integration of Ontology, Annotation tool
and NLP

relation types, and section tags) that is to be used to
annotate the data. Despite the various features provided
by annotation tools to improve user experience, the key
for successful data labeling is agreement between subject
matter experts (SMEs) on the definitions of the labels.
Currently, this agreement either (1) happens outside of
the annotation tool (as part of the task documentation)
or (2) is saved as notes in the annotation tool’s custom
format. However, ontologies provide a way to capture
domain knowledge in a format that is both machine- and
human-readable [41].

Furthermore, when reusing labeled data and
combining corpora developed by different teams,
same tags might have different meanings. This semantic
discrepancy corrupts the training process and is hard to
trace back. When labeled corpora are accompanied by
governing ontologies, SMEs are able to reconcile edge
cases and formalize new category definitions.

In addition to keeping SMEs on the same page, we use
an input ontology to configure the annotation tool and
eliminate invalid labeling. Furthermore, the ontology
enables the validation of manually and automatically
generated annotations against different versions of the
ontology (created as part of the development process).

If ontologies contain instance data, we leverage it in
the form of lexicons to extract custom named entities
(NEs). Since collecting extensive class hierarchy and/or
additional instance data is a labor-intensive process, we
use unsupervised NLP to come up with good candidates
from unlabeled text. These candidates are then reviewed
by SMEs who select the concepts of interest and finalize
the IS-A relations as well as create custom relation types.

To support relation extraction and other types of

automatic tagging using an intermediate semantic
representation of the document, we combine the RDF
and SPARQL frameworks within a rule-based engine.
These semantic rules can be written by hand, learned
from a labeled corpus as well as automatically generated
using a relation’s labels and domain/range restrictions as
defined within an ontology.

Furthermore, we blend configurations required by AI
and NLP tools into input ontologies. This flattens the
learning curve and provides control to SMEs without
concerning them with implementation details, and,
therefore, shortening the feedback loop.

Finally, RDF format is used to represent the output of
NLP and AI tools, which can then be validated against
the input ontology, shared between systems, and used for
further inference.

It is important to note that ontology usage does
not put any restrictions on implementation details of
annotation tools, NLP modules, or applications. Rather,
ontologies provide an expressive framework for schema,
configuration, and additional features. This information
can be leveraged by statistical, rule-based, machine
learning (ML) or deep learning (DL) tools.

This article is an extension of the work presented
in [16]. We have included more details for all ways of
making use of ontologies during NLP, a summary of our
motivational use cases, and quantitative characteristics
of varying-domain ontologies and the automatically-
generated artifacts.

2 RELATED WORK

There is also a substantial body of literature on data
modeling in general: entity-relationship modeling [13],
entity-attribute-value [7], fact-based modeling [15],
COMN [19], as well as more NLP-oriented slot-
based approaches that describe verb arguments, such as
FrameNet [4]. Additionally, there are less formalized
domain-specific frameworks, e.g., the PICO model
(Patient/population/problem, intervention, comparison,
outcome) [32] in health care, which can be transferred
to other domains, such as products and their technical
issues, sports teams, companies, etc. Ontologies provide
additional inference capabilities as well as a broad range
of commercial and open-source tools supporting the
development process and usage in application.

Domain ontology creation was researched for several
decades, see for example [28] and [39], suggesting
to start with enumerating important domain terms,
define ontological classes and their hierarchy, and then
defining their corresponding properties. All of the
frameworks mentioned above, together with existing
universal ontologies, for instance, BFO [2], or domain-

34

T. Erekhinskaya et al.: Ten Ways of Leveraging Ontologies for Rapid NLP Customization for Multiple Use Cases in Disjoint Domains

specific ontologies, e.g., FIBO [9], can be leveraged for
a new application.

NLP is not the only area to show the benefits of
ontology in the modern enterprise domain. Recently,
ontologies were used to represent ML schema [30], as
well as in information technology (IT) cases [35].

There is a body of literature on using Semantic Web
resources (languages/ontologies/knowledge-bases/tools)
to improve Information Extraction, and vice versa -
using Information Extraction to populate the Semantic
Web [22]. Ontologies proved to be useful for
named entity/concept/term extraction when combined
with deep learning [1], [6], [23]. Non-surprising,
these results are mostly in the medical domain that
benefits from established ontologies, such as SNOMED
CT [33] and UMLS Metathesaurus [11]. While
creating an extensive ontology from scratch implies
an overwhelming effort, there are ways to leverage
unsupervised NLP mechanisms to populate the ontology
with recent deep learning techniques [29], [3].

Providing the output in an open standard format
can significantly ease the chaining and integration
of the various tools implemented in different
programming languages. The closest analogies
are annotations in UIMA [17], Apache Stanbol [8]
or LODeXporter [40]; however, they are focused
on XML/Java implementations, while an RDF
representation is implementation-agnostic and enables
the usage of various tools for visualization and querying.
Currently, popular NLP libraries do not support or make
use of ontologies. NLTK1, spaCy2, Apache OpenNlp3,
AllenNlp4, Spark NLP5, and others represent their
labeling results using data structures specific to their
corresponding programming language, such as string
and/or arrays. However, there is at least one attempt
to combine NLP with ontologies for the whole NLP
pipeline - Teanga [42] that uses linked data format
for NLP service interoperability. The system uses the
NLP Interchange Format (NIF) [18] to represent output
annotations. It also uses ontologies for configuration - a
Teanga ontology - that describes properties of the NLP
services.

Despite a plethora of annotation tools, only
a few support relation labeling with a RDF
representation/ontology, whereas most represent
annotations in a tool-specific format, thus requiring
tool-specific parsers and converters for interoperability.
This need for RDF-based interoperability is proven
by ongoing attempts to create converters from a

1 https://www.nltk.org
2 https://spacy.io
3 https://opennlp.apache.org
4 https://allennlp.org
5 https://www.johnsnowlabs.com/spark-nlp

Figure 2: NLP solution development cycle

task-oriented format, e.g., CoNLL, to RDF [14].
INCEpTION [21] is a notable annotation tool that
supports RDF-based knowledge bases for knowledge
management as well as external extensions.

One of the interesting directions of deep learning
and ontology convergence is doing symbolic reasoning
with deep learning networks to improve scalability and
tolerance of uncertain data [20].

3 MOTIVATIONAL USE CASES

Our approach was iteratively developed based on a
number of projects across multiple domains. Most
representative use cases are described in Table 1.

Across all domains, the various business goals boil
down to the core functionality of populating a knowledge
graph based on the text and supporting the user’s
interaction with the knowledge graph. The key is
the rapid customization of a NLP pipeline for a new
knowledge goal.

4 TYPICAL PROJECT FLOW

The overall development cycle of a project is depicted
in Figure 2. We start with the domain knowledge
modeling and create an ontology that will impact all
major steps of the development process. In a nutshell,
this input ontology defines the schema of the semantic
graph built from a given text using NLP. We use the
ontology to drive the annotation process. We then train
the models used by a pipeline of NLP tools, using special
controls that are embedded in the ontology. Furthermore,
RDF and SPARQL are directly used as part of the
NLP pipeline to power rule-based engines. During

35

Open Journal of Semantic Web (OJSW), Volume 7, Issue 1, 2020

Table 1: Enterprise use case examples

Customer Business Goal NLP Task

1
Large medical
organization

Understand treatment best practices
Extract demographic characteristics of population,
symptoms, and diagnosis; intervention options, and
their outcomes

2
Large research
organization

Collect information about
antibiotic-resistant bacteria

Pinpoint mentions of bacteria, genes, antibiotics,
etc., and their relations. Infer resistance based on
facts extracted from multiple documents.

3 Aerospace company
Speed up repair process, optimize
technician access to knowledge

Identify numeric values of parameters like
temperature, torque, pressure, part codes, and their
compatibility from documentation, including
tabular data. Support English querying.

4
International car
manufacturer

Understand car problems as recorded
by mechanics and customer support

Label VIN, car model, make, and year, car parts
and the issues. Support English querying and
visual analytics

5 Online retailer
Wrangling product inventory. Improve
online search

Single out key concepts and their
attributes/functions in product descriptions

6
Large financial
organization

Inferring product taxation category
according to government regulations

Find product attributes and functions from product
descriptions and legal text. Convert semantic graph
to logic expression, perform ontology-based
inference.

7
Large financial
organization

Provide access to human resources
information stored in a graph

Extract key concepts and their relations from
English questions. Convert to formal graph queries
and execute against the store.

the evaluation phase, test documents are converted to
semantic graphs using the ontology-driven NLP pipeline.
The resulting feedback leads to updates of the labeled
data and its corresponding annotations, the semantic
rules, the learned models, and even updates of the
ontology itself.

Once the ontology is finalized, its corresponding NLP
pipeline can be used to process a document collection of
interest. Its resulting graph is then available to power
various applications, to provide user interaction with
the extracted knowledge, including, but not limited to
monitoring for specific events, visualization, business
analytics, search, and querying.

The following sections describe in detail the 10 ways
for leveraging ontologies within an NLP engine.

5 DOMAIN KNOWLEDGE MODELING

For the given NLP-based task, we start by modeling the
domain knowledge, defining the domain’s key concepts
and the relations between them. Are we talking
about patients, symptoms, and medications or about
companies, acquisitions, and financial metrics? These
high-level concepts and relations become classes and
relations in our ontology, typically anywhere between 30
and 100 types. An example of a small domain ontology
is shown in Figure 3. This is our Way 1 of using
ontologies for NLP.

The ontological classes become named entity types
(e.g., “Company” is a type of entity of interest for
the M&A domain), where we target the most specific
types for automatic labeling and use high-level types
for inference-purposes only. More details on how the
ontology affects the NLP customization process are
included in Section 6. In this section, we discuss three
potential issues that may arise when creating ontologies
as NLP-labeling schemas and our solutions.

From our experience, SMEs and ontologists tend to
come up with labels that are fairly general as well
as abstract, meaning “not widely used in text”. This
limits the application of the ontology in a data-driven
context. For example, an abstract label “software
agent” is unlikely to be mentioned in a document and
will require explicit annotation of the training samples,
whereas “software system” may be found in text and
leveraged directly.

Similarly, for ontological relations between classes,
labels closer to actual text fragments can be more
reliably used for weak supervision. Therefore, an
ontology with abstract labels can be made more NLP-
friendly by adding alternative labels or introducing more
specific subclasses. For example, a label IS BUYER IN
is unlikely to occur in the text. While the system
can parse the label, identify buyer as the main word,
and even link it to the verb buy, this process may be
unsuitable for a bigger ontology with more complex

36

T. Erekhinskaya et al.: Ten Ways of Leveraging Ontologies for Rapid NLP Customization for Multiple Use Cases in Disjoint Domains

Figure 3: A sample ontology for Merger & Acquisition domain (displayed in Protégé). Its list of classes
include “Company”, “MergerAcquisitionEvent”, various business assets, and several attributes of M&A
events: “Percentage”, date, “PurchasePrice”. These classes are linked by various properties, for instance,
ACQUIRES – done by a “Company” to another “Company”, “Equity”, or “Product”. Additionally, instances
are included for certain classes, e.g., “3dfx Interactive, Inc.”, “ADC Telecommunications, Inc.”, and
“Advanced Micro Devices, Inc.” are companies.

labels. Adding alternative labels, such as ACQUIRES,
provides additional hints to the system and boosts
the confidence for noun-verb augmentation, as well as
expansion of the verbs and nouns with their synonyms.

And, while ontology classes are often too abstract,
relation types tend to be too specific, as it is tempting to
define a separate relation type for each meaningful pair
of classes. This results in additional effort to annotate
training data for each relation type. This process is
optimized if the number of relations targeted for NLP
is limited to fewer, more general types. The more
specific relation can be inferred downstream based on
the underlying general relation type and the types of its
arguments. For example, COMPANY - HAS INCOME -
INCOME and COMPANY - HAS REVENUE - REVENUE
are expressed in text using similar linguistic patterns
and, therefore, can be generalized to COMPANY
- HAS METRIC - METRIC (assuming INCOME and
REVENUE are subclasses of METRIC).

Some relation declarations that look legitimate as part
of an ontology may introduce unwanted ambiguity when
used for labeling text. For example, “Marry” (to wed)
can be defined as an ontological class with links to the
“Person” class. However, identifying these concepts and
relations in “Alice and Barbara are married to Andrew
and Bob, respectively” will result in the “married”
event/state being linked to all four “Person” concepts
as its participants, which obscures the pairing expressed
in the sentence. It is better to introduce a relation type
MARRY and use it to connect two instances of “Person”

(e.g., “Alice” to “Andrew” and “Barbara” to “Bob”).

5.1 Automated Taxonomy Creation

The manual creation of ontologies can be a labor-
intensive process. In this section, we describe how NLP
can be used to create a taxonomy from unlabeled text
semi-automatically.

This process consists of the iterative expansion of
an upper-level ontology in a semi-automated manner
via mining unlabeled corpora for additional concepts
and relations, thus significantly reducing the amount of
manual work required of SMEs.

Our concept detection methods range from the
detection of simple nominal and verbal concepts to
more complex NEs and phrasal concepts. This hybrid
approach to concept extraction makes use of machine
learning classifiers, a cascade of finite-state automata,
and lexicons to label more than 80 types of concept
classes, including technical terms such as insider
trading, causal reasoning, and organizations such as
World Bank, United Nations, and ASEAN, various types
of locations, quantities, numerical values, etc.

The domain ontology generation module extracts
and organizes key domain concepts from a document’s
section headers. Our algorithm to automatically extract
domain relevant concepts and semantic relations consists
of the following steps:

1. Process the document content to identify:

37

Open Journal of Semantic Web (OJSW), Volume 7, Issue 1, 2020

(a) Section header information such as part,
chapter, section, and subsection titles.

(b) Textual content of headers (i.e., the natural
language title of the section without its
numbering/label information; e.g., ASEAN
Free Trade Area (AFTA) from “Chapter 5.
ASEAN Free Trade Area (AFTA)”).

2. Extract concepts from section titles to identify the
overarching terms relevant to the domain. For
instance, from the title ASEAN Free Trade Area
(AFTA), we extract the concepts: ASEAN Free
Trade Area, AFTA, Free Trade, Trade, and Trade
Area.

3. Extract relationships between:

(a) Concepts in the same header. For instance,
from the title ASEAN Free Trade Area (AFTA),
we extract the relations: ASEAN Free Trade
Area SYNONYMY AFTA, ASEAN Free Trade
Area RELATED Free Trade, and Free Trade
ISA Trade

(b) Concepts in a parent header with concepts in
a child header linked via:

i. Optional seed taxonomy that was
manually created by an SME. For
example, we add the semantic relation
Trade Union SYNONYMY Labor Union
based on an entry in the SME seed
taxonomy and merge their respective
sub-trees under a single node.

ii. Optional seed taxonomy that was
automatically created from index terms.

iii. Semantic relations extracted from the
textual content of identified section
headers. For example, we add an ISA
semantic relation between two concepts
implication and reasoning occurring in
a child and parent section header,
respectively, because the relation was
extracted from a sentence included in the
child section “The use of reasoning, such
as implication....”

4. Classify the concepts and relations into an
ontological hierarchy using the SYNONYMY and
ISA derivation procedures described in [5].

The following three semantic relations are encoded in
domain ontologies:

1. SubClassOf (ISA): specifies that a concept is sub-
class of another concept, for example, implication
ISA reasoning.

2. Synonymy (SYNONYMY): connects two
synonymous concepts, for example, WHO
SYNONYMY World Health Organization.

3. RelatedTo (RELATED): specifies that two concepts
are related to one another. It is a coarse-
grained semantic relation that includes PART-
OF/CONTAINS, ASSOCIATED-WITH, SEE-ALSO
relations. Examples include absence of proof
RELATED causal reasoning, part-of-speech tagging
RELATED Markov chain. All these relation types
are merged into one since SMEs do not see the
practical use of the fine-grained representation as
well as to simplify the annotation task.

Once created, SMEs curate the domain ontology
generated using the steps described above, which is
much faster than manually creating the ontology from
scratch.

6 ONTOLOGY-BASED NLP CUSTOMIZATION

As shown in Figure 2, once the knowledge extraction
goals are captured in the ontology, we proceed with the
customization of the NLP pipeline. We note that we
are not developing a new suite of NLP tools for the
new domain/extraction schema. We are employing an
existing set of NLP modules that are now re-configured
for the new domain/ontology. New domain-specific
models are created to be used during the NLP of domain-
specific input documents.

This rapid NLP customization process includes
training and configuring NLP tools to extract mentions
of ontology elements from natural language texts,
mainly NEs (corresponding to the ontology’s classes)
and relations between them (i.e., the ontology’s object
properties) to form a knowledge graph that instantiates
the ontology from text.

In order to identify the set of target NE types, we use
the ontology’s ISA-hierarchy of classes (a small sample
is shown in Figure 4).

First, the most specific classes are used to tag instances
in text. We use a leaf class’s prefLabel to create
two corresponding named entity types that will be
automatically output by the NLP as labels of matching
words or phrases. In order to distinguish between
mentions of classes and mentions of instances in text, we
use a special “ G” suffix (stands for “general”) for class-
based named-entity types. For example, for “Country”
(leaf class in Figure 4), two named entity types are
generated: (1) COUNTRY G, which will label the word
“country”, and (2) COUNTRY, which is the correct named
entity label for “USA”. Using this setup for ontology-
based named entity recognition (NER), “[COUNTRY US]

38

T. Erekhinskaya et al.: Ten Ways of Leveraging Ontologies for Rapid NLP Customization for Multiple Use Cases in Disjoint Domains

is one of the G7 [COUNTRY G countries].” is an accurate
labeling of the text using the ontology as input.

However, according to the ontology, a “Country”
is also a “Geopolitical entity” as well as a
“Political agent”. If we were to extend our tagging
framework beyond the leaf classes of the ISA-
hierarchy, this would mean “[POLITICAL AGENT
[GEOPOLITICAL ENTITY [COUNTRY US]]] is one of the
G7 [POLITICAL AGENT G [GEOPOLITICAL ENTITY G
[COUNTRY G countries]]]”, which is a cumbersome
setup for the NER module as it would require
annotations, models and resources for the additional NE
types.

Nonetheless, this hierarchical information can
be converted into inference rules that can be
used within the knowledge base created using
all the leaf-class label triples to also derive the
more general information about each word/phrase.
Therefore, “Country” ISA “Geopolitical entity”
becomes ?X example:neType ‘‘COUNTRY’’ → ?X

example:neType ‘‘GEOPOLITICAL ENTITY’’,
which produces <http://example.com/US>

example:neType ‘‘GEOPOLITICAL ENTITY’’ from
<http://example.com/US> example:neType

‘‘COUNTRY’’ (triple created by serializing the NLP
output into RDF format).

In addition to making use of the ontology classes to
create named entity types and inference rules involving
these types, the labels of individuals defined in the
ontology are collected and grouped to create lexicons
for their corresponding classes and used as training
data. In the examples shown above, “USA” (as the
rdfs:label of the individual URI) as well as any
synonyms included in the ontology for this individual of
class “Country” are listed as entries for the COUNTRY
lexicon (e.g., “United States of America”; “USA”;
“US”; “United States”). We note that any lexicons
automatically generated using ontology content can be
directly leveraged by the NER module during NLP.

When it comes to ontological relations, we make use
of (1) the property’s rdfs:label6 as the name of
the target domain/custom relation, as well as (2) its
defined domain and range classes/sets of classes. Other
relational properties, such as transitivity, are mapped to
inference rules.

If no rdfs:label is provided within the
ontology, a value can be derived by parsing the
URI (uniform resource identifier) of a given class,
individual, and/or property to pinpoint its local name
and applying camel case or underscore-to-space
transformations to separate any multiple tokens
that make up a name. For example, (1) as a class,

6 https://www.w3.org/TR/rdf-schema

Figure 4: Mapping an ontology’s class hierarchy to
named entity types. Leaf classes (e.g., “Country”)
produce two corresponding named entity types for
NLP (e.g., COUNTRY G and COUNTRY). All other
classes are used for inference only (e.g., COUNTRY G
→ GEOPOLITICAL ENTITY G). All instance labels are
used to produce lexicons for their respective NE type.

<http://example.com/GeopoliticalEntity>

is converted into GEOPOLITICAL ENTITY and
GEOPOLITICAL ENTITY G named entity types; (2) the
individual <http://example.com/United States>

produces “United States” as a lexicon entry; and (3)
the property <http://example.com/is-buyer-in>

defines a new relation type IS BUYER IN.

6.1 Annotation Schema

A domain ontology formalizes a labeling schema
agreement between SMEs, which we automatically
leverage via integration with the annotation tool - this
is our Way 2 of leveraging ontologies.

In our practice, we use the BRAT annotation tool7 [34]
for named entity and relation labeling, but the same
technique applies to other annotation tools. The BRAT
annotation tool must be configured with fixed sets of
labels for named entity and relation annotations.

Additionally, relation types may have restricted sets
of entity types for their domain and range arguments.
This information can be directly translated from the
input ontology’s definitions. However, since BRAT’s
configuration files (e.g., annotation.conf) use its own
YAML-like format (Figure 5), we implemented a simple
converter from OWL format that will list the types of
NEs targeted for NLP (e.g., COMPANY, COMPANY G,
etc.) as well the custom relation types that we
aim to identify as defined in the ontology (e.g.,
IS BUYER IN linking COMPANY to ACQUISITION G).
Having a semantically-accurate configuration file for the
annotation tool leads to correct annotations, since non-
complaint labeling is not permitted.

7 https://brat.nlplab.org/

39

Open Journal of Semantic Web (OJSW), Volume 7, Issue 1, 2020

Figure 5: BRAT annotation example and configuration fragment

This automatic process of producing BRAT
configurations from an ontology is especially vital
for ontologies undergoing active development. If the
input ontology is updated, it can be used to automatically
re-generate BRAT configurations, therefore ensuring up-
to-date annotations. Updated annotation configurations
can also be used to validate previously annotated
documents against a newer version of the ontology and
any conflicts can then be reconciled.

The entire process helps (1) keep SMEs in agreement
with respect to extraction targets, (2) represent the
agreement in machine-readable form, and (3) reduce the
annotation error rate.

6.2 Ontology-Based Lexicons for NER

We use the set of instances defined within an input
ontology to generate lexicons for NER - our Way
3 of leveraging ontologies. By default, we use
SKOS8 prefLabel and altLabel properties of an
individual to identify its canonical form and synonyms,
respectively. These are then added as entries within
a lexicon for the named entity type corresponding to
the individual’s class. However, custom properties
(e.g., asText) may be also used to convey this
information within an ontology and can be easily added
as configurations for the ontology-as-input tool. For
instance,

example:USA
a example:Country;
skos:prefLabel "United States of America";
skos:altLabel "USA";
skos:altLabel "US";
skos:altLabel "United States";
example:asText "US of A";

is used to create an entry in the COUNTRY lexicon:
“United States of America”; “USA”; “US”; “United
States”; “US of A”.

We note here the distinction we make between the
canonical form of a concept/entity and its synonyms.
Since the normalized form is used for indexing the
extracted knowledge and when matching a question to
its answer as part of question answering and other query-
based applications, we recommend the separation of the
canonical form from alternative labels.
8 https://www.w3.org/2004/02/skos

Alternatively, if an ontology is accompanied by
a knowledge base with individuals for ontological
classes9, corresponding lexicons can be created by
querying the knowledge base and performing any
required transformations on these instances in a fashion
similar to the procedure described above.

6.3 Ontologies for NER Control

In addition to using an ontology as a source for
named entity types and their corresponding lexicons,
we support custom OWL properties that provide SMEs
with additional control over the system’s identification
of names. Without such controls, the development cycle
involves: (1) SMEs providing ontology and annotations,
(2) data scientists configuring the tools and generating
results, (3) SMEs validating these results, providing
more annotations and communicating feedback to the
data scientists. We shorten this feedback loop by adding
tool configuration parameters directly into the ontology
so that SMEs can change them and run experiments
independently.

While implementation details depend on the actual
software used to recognize NEs, the general approach is
to augment ontologies with additional triples that define
software behavior. These triples can be stored in a
separate file so that the schema itself is not polluted with
application-specific triples.

Within our application, we allow SMEs to setup
part-of-speech (POS) constraints for candidate tokens.
For example, we restrict instances of class “Liability”
to match only nouns by including an annotation
property to a regular expression literal: :Liability

:instancePOS ‘‘NN.*’’. Please note that we
distinguish between POS restrictions for classes and
instances.

Additionally, and, in a similar fashion, we allow
SMEs to control the amount of fuzziness that can be
used when identifying names of a particular type in text
as well as any case variations that may exist within a
class. More than 10 different types of variations are
currently supported within our application to account

9 Best practices dictate that ontologies define the model/schema of the
domain and known individuals (instances of ontology classes) are
stored outside of the ontology, especially when there are many such
known instances.

40

T. Erekhinskaya et al.: Ten Ways of Leveraging Ontologies for Rapid NLP Customization for Multiple Use Cases in Disjoint Domains

for hyphenated/no-hyphenated spellings (e.g., “Anne-
Marie” vs. “Anne Marie”), special characters or removal
of stopwords (e.g., “AT&T” vs. “ATT”), abbreviated
company names (e.g., “Microsoft Corporation” vs.
“Microsoft Corp.” vs. “Microsoft”), and common
spelling variations (e.g., “MySql” vs “Mysql”).

SMEs can also indicate whether the surface form
of a word should be matched as is against a lexicon
or if its lemma should be used by including a
custom annotation property in the input ontology, e.g.,
:instanceLexOptions ‘‘add-lemmas’’.

All these options save considerable manual effort
without compromising the output of the NLP tools.

6.4 Ontology-Based Relation Extraction

Within our NLP-based applications, the NLP pipeline
includes a suite of tools that begin by performing low-
level NLP tasks, such as tokenization, POS tagging,
lemmatization, and continues to NER and syntactic
parsing. Lastly, tools that make use of this underlying
lexical and syntactic knowledge identify the semantic
relations conveyed by the text.

We divide the semantic parsing process into two
steps. First, a standard relation extraction module
identifies generic relations, including semantic roles,
e.g., AGENT, THEME, LOCATION, MANNER, etc. as well
as nominal relations, e.g., IS-A, PART-WHOLE, KINSHIP,
and others [24]. These relations abstract out linguistic
structures and provide a higher-level representation
when compared with one based on syntactic parsing
alone. For instance, Amazon is the AGENT of acquire
(i.e., AGENT(Amazon, acquire)) for both “Amazon
acquired ...” and “... acquired by Amazon”, which
have very different surface forms as well as underlying
syntactic dependencies.

However, the standard relation types provide little
value to an end-user who targets a custom set of relations
relevant to their domain/application, e.g., IS BUYER IN.

Therefore, in order to identify custom high-level
semantic relations defined in an input ontology, we make
use of Semantic Calculus [10] and its semantic rules,
where the standard relations serve as building blocks. In
a nutshell, Semantic Calculus rules are conditional first-
order logic axioms that add (or delete) the annotations
specified on the right-hand side of a rule whenever the
patterns specified on its left-hand side are instantiated
by the underlying semantic representation of the input
text. The following Semantic Calculus rule: ne(X ,
COMPANY) && ne(Y , ACQUISITION G) &&
R(X , Y , AGENT) → R(X , Y , IS BUY ER IN)
creates a new instance for the IS BUYER IN relation
between a COMPANY name and an ACQUISITION G
event when the company is the agent of the event.

Given “Amazon acquired ...”, this Semantic Calculus
rule will identify IS BUYER IN(Amazon, acquire). More
information on a viable implementation of Semantic
Calculus that makes use of RDF and SPARQL
technologies is included in Section 7.2.

Whereas one can manually create Semantic Calculus
rules as well as learn these rules from human annotations
of the ontological relations on domain-specific training
data, we use the ontology’s relation declarations to
automatically generate an initial set of rules for custom
relation extraction based on relation labels and their
corresponding domain/range restrictions - Way 4.

Here, we rely on the assumption that the ontology
includes object properties with names that can be linked
back to domain-relevant texts, as opposed to very
abstract naming schemes that cannot be utilized (by an
automated system) in conjunction with the data that it
models. For instance, “isOwnerOf” is a better name for
an ownership property when compared to “isHolderOf”,
which is less likely to be found in texts that discuss
ownership.

Given this assumption, we use the label information
of an object property (its skos:prefLabel or
rdfs:label, if defined; otherwise, its local name
as parsed out from its unique URI) to create an
artificial “natural language” sentence about the object
property. This sentence combines the information
provided within the ontology for the custom relation:
its label and domain/range classes as “<domain>
<label> <range>.”, where we know that the custom
relation holds between the <domain> and <range>
tokens. Given this effortless “gold” annotation, semantic
rules can be automatically generated: (1) the rule’s
left-hand-side constrains are a direct translation of the
underlying semantic graph produced for this sentence,
and (2) the right-hand-side is the new custom relation
predicate.

For example, for an object property “Bought” between
“Company” and “Company”:
example:Bought

skos:prefLabel ‘‘bought’’;
skos:altLabel ‘‘purchase’’;
skos:altLabel ‘‘acquired’’;
rdfs:domain example:Company;
rdfs:range example:Company;

a basic “Company bought company.” sentence is
generated, where BOUGHT(Company, company) holds.
The standard NLP understanding for this sentence
produces: an AGENT(Company, bought) relation as
well as a THEME(company, bought), meaning that
a COMPANY/COMPANY G entity is the AGENT of
verb “buy”, which also has as its THEME another
COMPANY/COMPANY G. Therefore, an initial semantic
rule can be automatically generated as:

41

Open Journal of Semantic Web (OJSW), Volume 7, Issue 1, 2020

lemma(A, “buy”) && (ne(X,COMPANY) ||
ne(X,COMPANY G)) && R(X,A,AGENT) &&

(ne(Y,COMPANY) || ne(Y,COMPANY G)) &&

R(Y,A, THEME) → R(X,Y,BOUGHT)

Please note that both COMPANY and COMPANY G are
named entity types derived from example:Company
(the ontological class) and become part of the
automatically generated semantic rule for BOUGHT.

This initial rule identifies instances of a company
purchasing another company in natural language
text (e.g., BOUGHT(“Amazon”, “Whole Foods”) from
“Amazon bought Whole Foods”).

Any additional labels defined for this object property
in the ontology are used to further expand this rule to
provide additional coverage for relation extraction. For
example, the object property “Bought” has “purchased”
and “acquired” as alternate labels and, thus, the
lemma(A, “buy”) predicate of rule shown above
can be expanded to (lemma(A, “buy”) || lemma(A,
“purchase”) || lemma(A, “acquire”)), which can now
identify the BOUGHT relationship in “Amazon acquires
Whole Foods” or “Amazon purchases Whole Foods”.

When no alternate labels are included in the ontology,
we use the degree of semantic similarity between
two tokens to ease the strict nature of a lemma-only
check. For instance, similarity(A, “buy”, 0.8) matches
words/concepts whose lemmas have a word embedding-
based cosine similarity to “buy” greater than 0.8.

Additionally, paraphrasing can be used to
automatically generate alternate labels and improve
recall. Lexical paraphrases can be used within
additional lemma constraints (as shown above for
any skos:altLabels defined within the ontology).
However, syntactic paraphrases of the initial sentence
may provide drastically different semantic rules.
For instance, “Company bought company.” can be
paraphrased as “Company is buyer of company.”, which
results in a rule that uses an ISA relationship:

lemma(A, “buyer”) && R(X,A, ISA) &&

(ne(X,COMPANY) || ne(X,COMPANY G)) &&

(ne(Y,COMPANY) || ne(Y,COMPANY G)) &&

R(Y,A, THEME) → R(X,Y,BOUGHT)

We note that changes from active to passive voice
for the verb denoting the custom relation have no effect
on the semantic rules generated for the sentence – the
underlying semantic graph, which contains the AGENT
and THEME relations from COMPANY/COMPANY G to
“buy” for “Company bought company.” remains
unchanged for “Company was bought by company”.

When several classes serve as the domain or range of a
object property, their corresponding named entity types
are combined into a single type constraint using the ||
(“or”) operator. For instance,

example:Bought
...
rdfs:range example:Company;
rdfs:range example:Equity;
rdfs:range example:Asset;

is automatically translated to the following conditions
for the Y variable (the second argument of the BOUGHT
relation):

(ne(Y,COMPANY) || ne(Y,COMPANY G) ||
ne(Y,EQUITY) || ne(Y,EQUITY G) ||
ne(Y,ASSET) || ne(Y,ASSET G))

When no domain/range restrictions are provided
formally for an ontological relation, but a triple store
contains instance information for the input ontology, a
given relation’s instances can be used to (1) identify
likely domain/range classes for the object property and
(2) constrain the relation’s corresponding semantic rules
to the type combinations that occur in the data. We note
that this is a situation encountered when natural language
questions are used to query structured data already stored
within a graph database.

Another aspect that must be handled when it comes
to deriving semantic rules for ontological relations is
negation. Recognizing and representing negations [25]
is a complex task and a detailed discussion on this
topic is out of the scope of this article. However, our
Semantic Calculus rule generation approach accounts
for frequently used negation expressions to remove a
positive/stated relation and generate a negated relation.
We distinguish between negation of the argument and
negation of the relation. For example, we extract a
ACQUIRED BY NEGATED relation for “List companies
that are not acquired.”, where acquired is negated
(the company took part in no acquisition event), but
ACQUIRED BY NEGATED ARG2 for “List companies
that are not acquired by Amazon”, where Amazon
is negated (companies may have been acquired by
companies other than Amazon).

6.5 Ontology for Data Augmentation

Ontologies identify and store important domain-specific
lingo, for instance, synonyms and abbreviations, which
can be used to augment the training data required by
data-driven approaches (Way 5). For data augmentation
purposes, we replace ontological concepts with their
corresponding synonyms (as defined within an ontology)

42

T. Erekhinskaya et al.: Ten Ways of Leveraging Ontologies for Rapid NLP Customization for Multiple Use Cases in Disjoint Domains

in annotated texts to generate semantic variations of
already labeled data, therefore, increasing the size of
a training dataset. This is a straightforward way
for data-driven approaches to benefit from ontological
knowledge.

For instance, given an already manually annotated
sentence that mentions “United States of America”,
we can quickly replace this phrase with its synonyms
as provided by an ontology (e.g. “USA”, “United
States”, “US”, etc.), to produce new sentences that
are semantically equivalent to the manually annotated
sentence and, therefore, can automatically be assigned
the annotations manually added to the original sentence
at a fraction of the cost.

7 RDF FRAMEWORK FOR NLP

In addition to all the benefits that ontologies directly
bring to the NLP task, there are several other advantages
to using ontologies and ontology-driven frameworks for
NLP.

7.1 Standardized Format for NLP Output

As Way 6 of leveraging ontologies as a framework,
we use an RDF standard format [12] to represent the
knowledge extracted by an NLP pipeline from input
texts/documents. While the detailed schema is out of
the scope of this article, the key elements include the
document and its corresponding metadata, sentences,
tokens, named entities, and relations, as well as text
fragment labels (Figure 6). In addition to resources
representing the knowledge extracted directly from
the document’s content, we use meta named entity
resources for concepts provided as metadata, e.g., author,
publication date, collection name, etc.

Most commonly, ontological relations are
compactly represented as properties: <Ne1Uri>

example:IS BUYER IN <Ne2Uri>.
However, these relations can be represented as

resources when we need to include additional
information, such as confidence score or source semantic
rule, while their example:lhs and example:rhs
properties link to their respective left-hand-side and
right-hand-side argument URIs.

<RelationUri> example:type ‘‘IS_BUYER_IN’’;
example:lhs <Ne1Uri>;
example:rhs <Ne2Uri>;
example:confidence ‘‘0.86’’ .

Within our application, we use a separate namespace
for such properties to allow easy querying for all
relations without the need to list their types.

Figure 6: RDF schema to represent NLP output:
identified concepts (NamedEntity) and their
corresponding tokens with links to source sentences
and documents, as well as extracted semantic
relations and their corresponding arguments

We note that the RDF representation of the
knowledge extracted from text contains a unique
URI for each mention of a concept in the text
as opposed to the URI of the concept itself. In
other words, for “Microsoft bought LinkedIn”, we
represent Microsoft as a unique text span (e.g.,
<http://example.com/doc1/Microsoft/0-8>)
and link it to the named individual “Microsoft”
of type COMPANY from the ontology
(<http://example.com/Microsoft>), thus, making
it possible to preserve the origin of each concept and
relation as well as their connection to the ontology.

7.2 RDF and SPARQL for a Semantic Rule
Engine

With deep learning methods gaining most of the
attention in current NLP research, in real-world projects,
there are cases where writing a few rules is more
efficient than collecting a large set of annotated samples
for training. Within our NLP pipeline, the Semantic
Calculus tool [10] makes use of conditional first-
order logical rules (without functions and quantifiers),
whose left-hand-side must unify with a text’s underlying
semantic information, so that its right-hand-side is
activated. More specifically, the rule lemma(X ,
“Microsoft”) → ne(X , COMPANY) matches all
tokens with lemma “Microsoft” and labels them as
COMPANY names.

Since we already use RDF to represent the information
extracted by the NLP pipeline (Section 7.1), SPARQL
becomes the natural choice as the back-end for these
semantic rules (Way 7). Therefore, we use SPARQL
queries to manipulate the RDF representation of the

43

Open Journal of Semantic Web (OJSW), Volume 7, Issue 1, 2020

underlying NLP output. Specifically, a semantic rule’s
left-hand-side is converted into a SELECT query to bind
the rule’s variables, and then its right-hand-side actions
are applied for each of the bindings. For the sample rule
shown above, its left-hand-side predicate is converted
into the following SPARQL query:

SELECT ?X
WHERE {

?X example:lemma ‘‘Microsoft’’ .
}

Its right-hand-side predicate is translated to a set of
triples that will be added to the text’s semantic graph
for each ?X returned by the SPARQL query (e.g., ?X
example:neType ‘‘COMPANY’’).

We note that SPARQL queries can be formulated for
all logical operations used within Semantic Calculus
rules. For left-hand-side operators, we use: (1)
conjunction, and (&&), (2) disjunction, or (||), which is
converted to UNION, and (3) negation, not (!), which is
converted into SPARQL using MINUS or FILTER NOT
EXISTS depending on the SPARQL standard supported
by the graph store. For instance, as the left hand side of
a rule shown above,

lemma(A, “buy”) && (ne(X,COMPANY) ||
ne(X,COMPANY G)) && R(X,A,AGENT)

becomes

SELECT ?A ?X
WHERE {

?A example:lemma ‘‘buy’’ .
{ ?X example:neType ‘‘COMPANY’’ } UNION
{ ?X example:neType ‘‘COMPANY_G’’} .
?X example:AGENT ?A

}

The right-hand-side of rules are restricted to the
conjunction of predicates to support multiple atomic
actions.

To achieve this, for each rule predicate (e.g., lemma(),
ne(), R()), three templates are defined:

1. triples that need to be matched, when the predicate
is used on the left-hand-side of a rule;

2. triples that need to be inserted, when the predicate
is used on the right-hand-side;

3. triples that need to be deleted, when the predicate is
negated on the right-hand-side of a rule.

By making use of these standard frameworks as
described above, semantic rules can be created not
only to produce new instances of custom semantic
relations/object properties (Section 6.4), but also custom
NEs (when the entity labeling decision relies heavily

on the semantic context of the ambiguous name),
classification labels, updated part-of-speech tags, etc.
For instance, money values can be reliably tagged
by ignoring their context using regular expressions.
However, when identifying prices, certain money values
must be re-labeled based on their context and a simple
semantic rule can be used for this purpose ne(X ,
MONEY) && lemma(Y , “pay”) && R(X , Y ,
THEME) → ne(X , PRICE).

By using RDF and SPARQL, one can quickly
extend the set of predicates for custom applications,
e.g., validating that a question contains all information
necessary to provide a meaningful answer, or blending
the knowledge extracted from the text with external
knowledge to access historical or reference data.

7.3 Leveraging ISA-Hierarchies within Rules

Having detailed how RDF and SPARQL can be used
to implement a semantic rule engine, we now describe
how a semantic rule developer can benefit from using a
domain-specific ontology. More specifically, semantic
rule engines configured to use the class hierarchy
formed by the ontology’s rdfs:subClassOf property
instances require a considerably smaller number of
generalized and compact semantic rules that are easy to
read and/or edit. With a new predicate neIsaType(T ,
SUPER T) that will check if a named entity type
can be generalized to another (according to the domain
ontology’s ISA hierarchy), rules can be greatly simplified
to reduce a disjunction of several ne(X ,...) predicates,
e.g.,

(ne(X,REV ENUE) || ne(X,MARKET SHARE) ||
ne(X,SALES) || ne(X,CASH FLOW) ||...)

to only two:

ne(X,T) && neIsaType(T, FINANCIAL METRIC)

With this notation, the named entity type itself
becomes a variable. With this rule generalization
framework, semantic rules do not require updates when
new classes are added within existing hierarchies.
For instance, rules that include neIsaType(T ,
FINANCIAL METRIC) require no changes if
a new financial metric, e.g., “Net Margin”, is added to
the financial ontology.

We note that the neIsaType() predicate works for
both “regular” named entity types as well as general ones
(i.e., G types). However, the ISA hierarchies are parallel
and cannot be combined.

Based on our experience, the most common use
for rules that require the neIsaType() predicate is the
classification of a generic NE (e.g., MONEY, DATE,

44

T. Erekhinskaya et al.: Ten Ways of Leveraging Ontologies for Rapid NLP Customization for Multiple Use Cases in Disjoint Domains

NUMBER, etc.) into a domain specific sub-class (e.g.,
REVENUE, SALES, GROSS PROFIT, etc.). Semantic rules
are preferred for these tasks because the classification
requires contextual information; it relies on the semantic
relations around the value of interest. For instance, given
“The company’s revenue for 2019 is $4M.”, $4M is
not only a MONEY value, but also a REVENUE because
VALUE($4M, revenue) – it is the value of revenue (a
REVENUE G instance). The semantic rule implementing
this reasoning is

ne(X,REV ENUE G) && ne(Y,MONEY) &&

R(Y,X, V ALUE) → ne(Y,REV ENUE)

However, the same linguistic pattern is used, in
natural language, for other financial metrics, e.g., “The
company’s gross profit for 2019 is $1.6M.” and without
the neIsaType() predicate, corresponding rules are
required for each sub-class of FINANCIAL METRIC G. In
order to simplify the semantic rule set, one can use

ne(X,T) && ne(Y,MONEY) &&

neIsaType(T, FINANCIAL METRIC G) &&

R(Y,X, V ALUE) → neByClass(Y, T)

as the single rule that accounts for all financial metrics
involving MONEY values. We note that, here, T is
a general type (a G type, e.g., REVENUE G) and
the neByClass(Y ,T) predicate labels Y with T’s non-
general variant, e.g., REVENUE, to indicate that Y is an
instance of the class.

8 STATISTICS ON USE CASES

Quantitative characteristics of ontologies and generated
artifacts for the use cases summarized in Section 3 are
listed in Table 2.

Based on our experience, we note the following:

1. Ontologies with larger amount of classes are
updated more frequently. Combining ontologies,
annotation, and NLP allows us to streamline the
update steps.

2. Generating rules automatically is a considerable
time saver, as it takes an experienced NLP engineer
about 5 minutes to write a single rule.

3. The effort required to create an ontology might
seem an unwanted upfront investment. In practice,
however, small ontologies can be created in a few
days. Larger ontologies are produced with data-
driven approaches or by borrowing concepts from
existing industry ontologies.

9 ONTOLOGIES FOR NLP APPLICATIONS

In our experience, most NLP applications are centered
around semantic search and question answering (QA).
Users are interested in responses to queries, questions,
or commands that need to be answered or executed
against a knowledge base. The user interface can range
from interactive visualization dashboards to chatbots,
while the QA component supports the capabilities. For
example, to see a breakdown diagram of Apple’s revenue
by country, the system needs to pull data matching
a query like “List revenue of Apple by country” and
display it. Similarly, a chatbot interface would consult
a QA component to extract the answer, and potentially
expand the functionality with clarifying user questions
by asking “Do you mean ...?” counter-questions.

The knowledge base used to address user questions
can be (1) an enterprise graph store already populated
with structured data (e.g., personnel/company directory
information) or (2) a semantic graph produced from
unstructured documents using NLP tools customized
for a given ontology. The extraction supports multiple
document formats – plain text, HTML, PDF, email,
Microsoft Word, etc. – and targets textual parts of the
documents as well as embedded tables.

9.1 Semantic Search and Question Answering

Ontologies help semantic search applications by
providing synonyms and hyponyms (ISA-hierarchies)
for search terms in order to expand user queries [26].
Furthermore, ontologies can guide the indexing schema,
where named entity types derived from the ontology can
be indexed as separate fields and have separate boosting
weights to provide more flexibility for relevance tuning.
Also, using ontologies and their correspondence between
class mentions (e.g., “price” as PRICE G) and instance
mentions (e.g., “$13.7M” as PRICE), queries that specify
a class retrieve instances from the indexed documents.
For example, given “price of Amazon’s acquisition of
Whole Foods”, documents containing PRICE NEs are
more relevant than ones that include just PRICE G (e.g.,
“price”).

In addition to semantic search, question answering
systems benefit by using ontologies in two ways: (1)
using RDF/SPARQL as a technology framework and
(2) using type hierarchy as a source of knowledge [36],
Way 10. By employing a customized NLP pipeline
(Section 6), an input natural language question is
converted into a semantic graph consistent with the
ontology-based schema. Within this graph, the focus of
the question, the concepts (named entities or tokens) that
represent the requested/unknown information, is marked
to become a variable. Next, the graph is serialized into

45

Open Journal of Semantic Web (OJSW), Volume 7, Issue 1, 2020

Table 2: Quantitative characteristics of domain ontologies and counts for automatically-generated NLP
artifacts

Domain # Classes # Triples # Lexicons # Lexicon entries # Rules
1 Medical 7 6,735 14 6,456 5,189
2 Research 11 13,284 22 12,583 126
3 Aerospace 15 42 30 80 62
4 Auto 14 97 28 4272 32
5 Retail 2,200 270,000 4,400 13,000 58
6 Taxes 4,734 12,458 9,468 8,475 120
7 Human Resources 253 14,199,818 506 808,646 1,180

Figure 7: Ontology-based Question Answering is
done by matching semantic graphs of questions to
semantic representations of documents; all consistent
with the schema defined within a given ontology

a SPARQL query or other formal query language [37],
which is then executed against the graph store to retrieve
precise answers (Figure 7).

As part of this process, the ontology provides domain-
specific synonyms and hypernyms that can be used for
term expansion and for matching focus terms to answers
– Ways 8, 9. In some use cases, these expansions can be
automatically learned from the data or bypassed using
word embeddings. However, for complex domains with
little data available, ontologies are a convenient tool for
SMEs to convey their understanding explicitly.

For example, “results” can mean particular financial
metrics for different applications or user roles, which
can be represented using different RESULT classes and
their corresponding rdfs:subClassOf relations to
particular metric classes, such as gross domestic product
for a global analyst, or company’s revenue in the region
for a business analyst. Then, queries like “What are
China’s 2019 results?” can be interpreted as either
“What is China’s 2019 GDP?” or “What was our revenue
in China in 2019?”.

Ontologies help identify answers more intelligently
using ISA hierarchies, relation transitivity, and inference.
For example, for “List employees from Canada”, we can

Figure 8: Example for table understanding. Each
content cell is linked to its row-header (left-most
column) and its column-header (top row).

identify John Smith who works in Vancouver, due to a
triple stating that Vancouver is located in Canada.

9.2 Table Querying

Recognizing and parsing tabular data is a related but
distinct task from a regular NLP. The location of each
table and its individual cells must be accurately detected
using visual clues along with the text contained in each
cell. Tables can have complex structures with multiple
layers of headers at the top as well as on the left-
hand side, rotated text, nested tables, inline lists or even
hierarchical list, merged cells, etc. Table extraction is
a much larger topic, therefore, in this section, we only
discuss table representation and its usage for querying.

Tabular text data must also be handled differently from
other natural language data as far as syntax is concerned.
For tables, the relationships between entities cannot be
parsed from natural language syntax, but must instead
be discovered from the positions of the entities within
the rows and columns of a table. We simplify complex
table layouts by explicitly repeating merged cells, so that
the overall table structure can be represented as a matrix.
We also store which top rows and left-hand-side columns
are headers, as shown in Figure 8.

Such relationships between cells are represented using
a table-specific RDF output, where the table, its caption
and all its cells become RDF resources, with links
between tables and the source document, tables and
their captions, cells and their tables, as well as relations

46

T. Erekhinskaya et al.: Ten Ways of Leveraging Ontologies for Rapid NLP Customization for Multiple Use Cases in Disjoint Domains

between cells to capture column/row header information.
For instance, the following triples partially represent the
structure of the table shown in Figure 8:

example:t5
rdf:type example:Table;
example:document example:doc1;
example:caption example:c5;

.
example:c5

rdf:type example:Caption;
example:text ‘‘Table 5. ...’’;
example:table example:t5;

.
example:c-2-0

rdf:type example:Cell;
example:text ‘‘Bob Johnson’’;

.
example:c-2-2

rdf:type example:Cell;
example:text ‘‘$135,000’’;
example:table example:t5;
example:row example:c-2-0;
example:column example:c-0-2;

The NLP-based RDF representation is then produced
for each of the cells and table captions. For
instance, “[MONEY $135,000]” for the bottom-right
cell of the table (example:c-2-2 example:neType

‘‘MONEY’’). Additionally, for the table’s caption, we
have “Table 5. [EMPLOYEE G Employees] [SALARY G
salary].” as well as HAS SALARY(employee, salary).

The joint representation is the basis for inferring
domain-specific relations within tables. For
example, ISA($135,000, salary) and, furthermore,
HAS SALARY(Bob Johnson, $135,000), which is
equivalent to the representation of the custom relation
as identified from the sentence “Bob Johnson earns
$135,000”. Using domain-specific relations, textual
and tabular data are uniformly represented and can be
queried seamlessly as described above.

If the domain-specific relations are not inferred, we
fall back to structural representation. For instance,
to answer a natural-language query, such as “What
was Bob Johnson salary in 2019?”, we first identify
the concepts: “Bob Johnson”, “salary” and “2019”.
Then, we use a SPARQL query to pinpoint them
within table headers and captions, and return the values
found at the intersections of structural relations. This
graph representation approach allows expansion in any
dimension and can support complex queries that require
joining multiple tables.

10 CONCLUSION

In this paper, we summarized our experience with
various ways of leveraging ontologies throughout the

NLP development cycle as well as within NLP
applications. The key benefits include (1) capturing
SMEs agreement in a human- and machine-readable
format and (2) providing domain knowledge that is
directly used for generalization and inference, which
is hard to achieve with purely data-driven approaches.
We use ontologies to yield more control to SMEs and
provide a standard format for tool configuration and
integration. Using RDF to represent NLP output reaps
the benefits of an open standard supported by numerous
open-source and commercial-grade tools, thus making
the integration of an existing knowledge management
platform with NLP tools fairly straightforward.

While the creation of an ontology in the beginning
of a project seems a considerable upfront investment, it
pays off later by reducing disagreement between SMEs
and, as we have shown, it can be leveraged in numerous
ways to lower the barrier between SMEs and NLP
systems. An ontology is especially beneficial when it can
drive a series of applications within the same knowledge
domain, as it allows keeping the applications in sync
with each other. An additional benefit of ontologies is
the opportunity to have multiple layers of representation
to streamline the application to similar problems [27].
For instance, an upper ontology can be used for overall
domain modeling (e.g., the automotive industry), while
manufacturer-specific or dealer-specific information can
be expressed on top of the upper ontology as additional
files.

Ontologies do not put any restriction on the NLP
methodology. The approach described in this article
can be implemented with multiple annotation tools, NLP
frameworks, or graph stores to ease and speed up the
project flow.

REFERENCES

[1] M. Arguello Casteleiro, G. Demetriou,
W. Read, M. J. Fernandez Prieto, N. Maroto,
D. Maseda Fernandez, G. Nenadic, J. Klein,
J. Keane, and R. Stevens, “Deep learning
meets ontologies: experiments to anchor the
cardiovascular disease ontology in the biomedical
literature,” Journal of Biomedical Semantics,
vol. 9, no. 1, p. 13, Apr 2018.

[2] R. Arp, B. Smith, and A. D. Spear, Building
Ontologies with Basic Formal Ontology. The MIT
Press, 2015.

[3] A. Ayadi, A. Samet, F. de Bertrand [de Beuvron],
and C. Zanni-Merk, “Ontology population with
deep learning-based nlp: a case study on
the biomolecular network ontology,” Procedia
Computer Science, vol. 159, pp. 572 – 581, 2019,

47

Open Journal of Semantic Web (OJSW), Volume 7, Issue 1, 2020

knowledge-Based and Intelligent Information &
Engineering Systems: Proceedings of the 23rd
International Conference KES2019.

[4] C. F. Baker, C. J. Fillmore, and J. B. Lowe, “The
berkeley framenet project,” in Proceedings of the
17th International Conference on Computational
Linguistics - Volume 1, Stroudsburg, PA, USA,
1998, pp. 86–90.

[5] M. Balakrishna, D. Moldovan, M. Tatu, and
M. Olteanu, “Semi-automatic domain ontology
creation from text resources,” in Proceedings of
the Seventh International Conference on Language
Resources and Evaluation (LREC’10), Valletta,
Malta, may 2010.

[6] E. Batbaatar and K. H. Ryu, “Ontology-
based healthcare named entity recognition from
twitter messages using a recurrent neural
network approach,” International journal of
environmental research and public health, vol. 16,
no. 19, p. 3628, Sep 2019. [Online]. Available:
https://pubmed.ncbi.nlm.nih.gov/31569654

[7] S. Batra, S. Sachdeva, and S. Bhalla, “Entity
attribute value style modeling approach for
archetype based data,” Information, vol. 9, p. 2,
2017.

[8] W. Behrendt, The Interactive Knowledge Stack
(IKS): A Vision for the Future of CMS. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2012, pp.
75–90.

[9] M. Bennett, “The financial industry business
ontology: Best practice for big data,” Journal of
Banking Regulation, vol. 14, no. 3-4, pp. 255–268,
July 2013.

[10] E. Blanco and D. Moldovan, “Composition of
semantic relations: Theoretical framework and
case study,” ACM Trans. Speech Lang. Process.,
vol. 10, no. 4, Jan. 2014.

[11] O. Bodenreider, “The unified medical language
system (umls): Integrating biomedical
terminology,” 2004.

[12] D. Brickley and R. Guha, “RDF Vocabulary
Description Language 1.0: RDF Schema,” World
Wide Web Consortium, W3C Recommendation,
2004. [Online]. Available: http://www.w3.org/TR/
2004/REC-rdf-schema-20040210/

[13] P. P. Chen, “The entity-relationship model - toward
a unified view of data.” ACM Trans. Database Syst.,
vol. 1, no. 1, pp. 9–36, 1976.

[14] C. Chiarcos and C. Fäth, “CoNLL-RDF: Linked
Corpora Done in an NLP-Friendly Way,” in

Language, Data, and Knowledge, J. Gracia,
F. Bond, J. P. McCrae, P. Buitelaar, C. Chiarcos,
and S. Hellmann, Eds., Cham, 2017, pp. 74–88.

[15] Y. T. Demey, “Adapting the fact-based modeling
approach in requirement engineering,” in
Proceedings of the Confederated International
Workshops on On the Move to Meaningful Internet
Systems: OTM 2014 Workshops - Volume 8842.
New York, NY, USA: Springer-Verlag New York,
Inc., 2014, pp. 65–69.

[16] T. Erekhinskaya, D. Strebkov, S. Patel,
M. Balakrishna, M. Tatu, and D. Moldovan, “Ten
ways of leveraging ontologies for natural language
processing and its enterprise applications,” in The
International Workshop on Semantic Big Data,
2020.

[17] D. Ferrucci, A. Lally, K. Verspoor, and
E. Nyberg, “Unstructured information management
architecture (UIMA) version 1.0,” OASIS
Standard, 2009. [Online]. Available: https:
//docs.oasis-open.org/uima/v1.0/uima-v1.0.html

[18] S. Hellmann, J. Lehmann, S. Auer, and
M. Brümmer, “Integrating nlp using linked data,”
in The Semantic Web – ISWC 2013, H. Alani,
L. Kagal, A. Fokoue, P. Groth, C. Biemann,
J. X. Parreira, L. Aroyo, N. Noy, C. Welty, and
K. Janowicz, Eds., 2013, pp. 98–113.

[19] T. Hills, NoSQL and SQL Data Modeling: Bringing
Together Data, Semantics, and Software, 1st ed.,
ser. 10. Technics Publications, 2016, vol. 4.

[20] P. Hohenecker and T. Lukasiewicz, “Ontology
reasoning with deep neural networks,” CoRR,
vol. abs/1808.07980, 2018. [Online]. Available:
http://arxiv.org/abs/1808.07980

[21] J.-C. Klie, M. Bugert, B. Boullosa, R. E.
de Castilho, and I. Gurevych, “The inception
platform: Machine-assisted and knowledge-
oriented interactive annotation,” in Proceedings
of the 27th International Conference
on Computational Linguistics: System
Demonstrations, June 2018, pp. 5–9.

[22] J. L. Martinez-Rodriguez, A. Hogan, and I. Lopez-
Arevalo, “Information extraction meets the
semantic web: A survey,” Semantic Web, pp. 1–81,
10 2018.

[23] M. A. Magumba, P. Nabende, and E. Mwebaze,
“Ontology boosted deep learning for disease name
extraction from twitter messages,” Journal of Big
Data, vol. 5, no. 1, p. 31, Sep 2018.

[24] D. Moldovan and E. Blanco, “Polaris: Lymba’s
semantic parser,” in Proceedings of the Eighth

48

https://pubmed.ncbi.nlm.nih.gov/31569654
http://www.w3.org/TR/2004/REC-rdf-schema-20040210/
http://www.w3.org/TR/2004/REC-rdf-schema-20040210/
https://docs.oasis-open.org/uima/v1.0/uima-v1.0.html
https://docs.oasis-open.org/uima/v1.0/uima-v1.0.html
http://arxiv.org/abs/1808.07980

T. Erekhinskaya et al.: Ten Ways of Leveraging Ontologies for Rapid NLP Customization for Multiple Use Cases in Disjoint Domains

International Conference on Language Resources
and Evaluation, Istanbul, Turkey, May 2012, pp.
66–72.

[25] R. Morante and C. Sporleder, Eds., Proceedings
of the Workshop on Negation and Speculation
in Natural Language Processing. Uppsala,
Sweden: University of Antwerp, Jul. 2010.
[Online]. Available: https://www.aclweb.org/
anthology/W10-3100

[26] V. M. Ngo and T. H. Cao, “Ontology-based
query expansion with latently related named
entities for semantic text search,” CoRR, vol.
abs/1807.05579, 2018. [Online]. Available: http:
//arxiv.org/abs/1807.05579

[27] I. Niles and A. Pease, “Towards a standard upper
ontology,” in Proceedings of the International
Conference on Formal Ontology in Information
Systems - Volume 2001, ser. FOIS ’01. New York,
NY, USA: ACM, 2001, pp. 2–9.

[28] N. F. Noy and D. L. Mcguinness, “Ontology
development 101: A guide to creating your
first ontology,” Stanford Knowledge Systems
Laboratory, Technical Report KSL-01-05, March
2001.

[29] G. Petrucci, C. Ghidini, and M. Rospocher,
“Ontology learning in the deep,” in 20th
International Conference on Knowledge
Engineering and Knowledge Management
- Volume 10024, ser. EKAW 2016, Berlin,
Heidelberg, 2016, p. 480–495.

[30] G. C. Publio, D. Esteves, A. Lawrynowicz,
P. Panov, L. N. Soldatova, T. Soru, J. Vanschoren,
and H. Zafar, “Ml-schema: Exposing the semantics
of machine learning with schemas and ontologies,”
CoRR, vol. abs/1807.05351, 2018. [Online].
Available: http://arxiv.org/abs/1807.05351

[31] R. Rak and S. Ananiadou, “Making UIMA
truly interoperable with SPARQL,” in Proceedings
of the 7th Linguistic Annotation Workshop and
Interoperability with Discourse. Sofia, Bulgaria:
Association for Computational Linguistics, Aug.
2013, pp. 89–97. [Online]. Available: https:
//www.aclweb.org/anthology/W13-2311

[32] D. L. Sackett, W. S. Richardson, W. Rosenberg, and
R. B. Haynes, “How to practice and teach evidence-
based medicine,” New York: Churchill Livingstone,
pp. 118–128, 1997.

[33] SNOMED International, “SNOMED CT: 5-step
briefing,” 2019. [Online]. Available: http://www.
snomed.org/snomed-ct/five-step-briefing

[34] P. Stenetorp, S. Pyysalo, G. Topić, T. Ohta,
S. Ananiadou, and J. Tsujii, “Brat: A web-
based tool for nlp-assisted text annotation,” in
Proceedings of the Demonstrations at the 13th
Conference of the European Chapter of the
Association for Computational Linguistics, ser.
EACL ’12, Stroudsburg, PA, USA, 2012, pp. 102–
107.

[35] V. Tarasov, U. Seigerroth, and K. Sandkuhl,
“Ontology development strategies in industrial
contexts,” in BIS, 2018.

[36] M. Tatu, M. Balakrishna, S. Werner, T. N.
Erekhinskaya, and D. I. Moldovan, “A semantic
question answering framework for large data sets,”
Open J. Semantic Web, vol. 3, no. 1, pp. 16–31,
2016. [Online]. Available: https://nbn-resolving.
org/urn:nbn:de:101:1-201705194921

[37] M. Tatu, M. Balakrishna, S. Werner, T. N.
Erekhinskaya, and D. I. Moldovan, “A semantic
question answering framework for large data
sets,” OJSW, vol. 3, no. 1, pp. 16–31, 2016.
[Online]. Available: https://nbn-resolving.org/urn:
nbn:de:101:1-201705194921

[38] R. Troncy and M. Bruemmer, “Nerd meets nif:
Lifting nlp extraction results to the linked data
cloud,” in In Proceedings of the 5th International
Workshop on Linked Data on the Web, 2012.

[39] M. Uschold and M. Gruninger, “Ontologies:
principles, methods and applications,” The
Knowledge Engineering Review, vol. 11, no. 2, p.
93–136, 1996.

[40] R. Witte and B. Sateli, “The LODeXporter:
Flexible generation of linked open data triples
from NLP frameworks for automatic knowledge
base construction,” in Proceedings of the Eleventh
International Conference on Language Resources
and Evaluation), Miyazaki, Japan, May 2018.

[41] P. Wongthongtham, N. Kasisopha, E. Chang, and
T. Dillon, “A software engineering ontology as
software engineering knowledge representation,”
in 2008 Third International Conference on
Convergence and Hybrid Information Technology,
vol. 2, Nov 2008, pp. 668–675.

[42] H. Ziad, J. P. McCrae, and P. Buitelaar, “Teanga:
A linked data based platform for natural language
processing,” in Proceedings of the Eleventh
International Conference on Language Resources
and Evaluation, Miyazaki, Japan, May 2018.

49

https://www.aclweb.org/anthology/W10-3100
https://www.aclweb.org/anthology/W10-3100
http://arxiv.org/abs/1807.05579
http://arxiv.org/abs/1807.05579
http://arxiv.org/abs/1807.05351
https://www.aclweb.org/anthology/W13-2311
https://www.aclweb.org/anthology/W13-2311
http://www.snomed.org/snomed-ct/five-step-briefing
http://www.snomed.org/snomed-ct/five-step-briefing
https://nbn-resolving.org/urn:nbn:de:101:1-201705194921
https://nbn-resolving.org/urn:nbn:de:101:1-201705194921
https://nbn-resolving.org/urn:nbn:de:101:1-201705194921
https://nbn-resolving.org/urn:nbn:de:101:1-201705194921

Open Journal of Semantic Web (OJSW), Volume 7, Issue 1, 2020

AUTHOR BIOGRAPHIES

Tatiana Erekhinskaya studied
Mathematics at the Nizhniy
Novgorod State University,
Russia. She worked at Dictum
Ltd focusing on natural language
processing of the Russian
language. The key projects
include syntactic parser robust
to spelling mistakes and opinion
mining using dependency
parsing. She received her MBA

degree in 2010. She received her PhD in Computer
Science from The University of Texas at Dallas in 2014.
Her dissertation focused on probabilistic models for
text understanding. Today, she is a research scientist at
Lymba Corporation. Her primary areas of research are:
deep semantic processing with special focus in medical
domain and big data.

Marta Tatu received her PhD
in Computer Science from
The University of Texas at
Dallas in 2007. As a research
scientist at Lymba Corporation,
she focuses on applying
knowledge extraction and
question answering technologies
to various unstructured data
sources such as contracts,
scientific proposals, and

research publications. She has been instrumental
in the development of Lymba’s state-of-the-art question
answering system, PowerAnswer, which topped NIST
TREC QA evaluations for seven years. As the PI of an
NSF award, she has focused on developing a solution to
process large amounts of unstructured data. By aligning
the extracted knowledge against a common ontology,
the solution provides customized semantic search to
intelligence analysts.

Mithun Balakrishna received
his PhD in Computer Science
from The University of Texas
at Dallas in 2007. His academic
research focused on extraction
and application of high-level
linguistic knowledge to improve
spoken language recognition
and understanding. He currently
leads Lymba Corporation’s
research and business thrusts in

the area of Knowledge Engineering and Management.
His research is focused on the development of tools
to automatically build semantically rich knowledge
models for specific domains using relevant unstructured
data. He has been the PI on several enterprise and
government projects, including Spoken Dialog Question
Answering, Automatic Extraction of Biographical
Profiles, Ontologies for Education, and Antibiotic
Resistance Knowledge Extraction.

Sujal Patel received his
Master’s degree in Computer
Science in 2017 from The
University of Texas at Dallas.
He joined Lymba Corporation in
February 2018. He has focused
his efforts on classification
projects for retail inventory
wrangling, as well as natural-

language querying projects for multiple domains,
including financial, retail, and legal. He has expertise
in natural-language querying. His current research
interests include customized natural-language search
using ontologies and contextualized word embeddings.

50

T. Erekhinskaya et al.: Ten Ways of Leveraging Ontologies for Rapid NLP Customization for Multiple Use Cases in Disjoint Domains

Dmitry Strebkov received his
Master’s degree in Applied
Informatics from the Nizhniy
Novgorod State University,
Russia. While working at
Dictum Ltd., he focused on
development of the full NLP
pipeline for opinion mining.
The solution included rule-
based components, such as
synactic parsing for Russian and
Arabic languages, as well as

data-driven components such as Arabic diacritization
system. With Lymba Corporation, he mostly worked on
linked data processing and usage of ontologies for NLP
customization and inference. His main areas of interest
are lexical semantics and open domain QA.

Dan Moldovan received his
diploma degree in Engineering
in 1969 from the Polytechnic
Institute of Bucharest, Romania.
He received his PhD in
Computer Science in 1978
from Columbia University,
New York. He is a Professor
of Computer Science at the
University of Texas at Dallas

and the co-Director of the Human Language Technology
Research Institute at UTD. Previously he held faculty
positions at the University of Southern California and
Southern Methodist University in Dallas. He was a
Program Director at NSF while in sabbatical from
USC. He is the Founder and Chief Scientist of Lymba
Corporation, a Texas based company specializing in
Natural Language Processing products and solutions.
His current research interests are in lexical semantics, in
particular studying the representation and reasoning of
explicit and implicit text knowledge, and transforming
unstructured data into semantic triples.

51

	Introduction
	Related Work
	Motivational Use Cases
	Typical Project Flow
	Domain Knowledge Modeling
	Automated Taxonomy Creation

	Ontology-Based NLP Customization
	Annotation Schema
	Ontology-Based Lexicons for NER
	Ontologies for NER Control
	Ontology-Based Relation Extraction
	Ontology for Data Augmentation

	RDF Framework for NLP
	Standardized Format for NLP Output
	RDF and SPARQL for a Semantic Rule Engine
	Leveraging isa-Hierarchies within Rules

	Statistics on Use Cases
	Ontologies for NLP Applications
	Semantic Search and Question Answering
	Table Querying

	Conclusion

