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ABSTRACT

Data-flow errors in BPMN 2.0 process models, such as missing or unused data, lead to undesired process executions.
In particular, since BPMN 2.0 with a standardized execution semantics allows specifying alternatives for data as
well as optional data, identifying missing or unused data systematically is difficult. In this paper, we propose an
approach for detecting data-flow errors in BPMN 2.0 process models. We formalize BPMN process models by
mapping them to Petri Nets and unfolding the execution semantics regarding data. We define a set of anti-patterns
representing data-flow errors of BPMN 2.0 process models. By employing the anti-patterns, our tool performs model
checking for the unfolded Petri Nets. The evaluation shows that it detects all data-flow errors identified by hand,
and so improves process quality.
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1 INTRODUCTION

The language BPMN (Business Process Model and No-
tation), now an ISO standard, is widely accepted in re-
search and practice. One important trait of BPMN 2.0 [5]
is the possibility to specify executable processes. Fur-
ther, the standard integrates the data aspect: With BPMN
2.0, data objects are first-class flow elements. This is not
only an issue at a syntactic level, as is the case with, say,
BPEL [16], but also addresses the semantics, i.e., how
the data is used. Process designers can now model, for
example, the data needs and data results of a task. The
data needs describe the data elements a task requires for
its execution, data results the ones available afterwards.
This does not only hold for tasks, but - with restrictions
- also for other flow elements, such as events or condi-
tional sequence flows. Finally, one can specify alterna-
tives for data as well as optional data.

Process designers model the data flow, i.e., how data

traverses a process, by specifying the data needs and data
results for individual flow elements. The problem stud-
ied here is to decide at design time whether the data-flow
specifications in executable BPMN process models are
correct. In line with other research [14, 18, 22], a data
flow is correct if there are no anomalies regarding pro-
cessed data. Such anomalies occur if data needed by
flow elements is not available, if flow elements do not
use data produced before, or if they use data inconsis-
tently. Data-flow correctness is crucial. To illustrate,
a missing data element (e.g., a non-initialized element)
may lead to blocking due to starvation, or to incorrect
gateway decisions [3, 18]. In executable BPMN models,
specifications for optional data and alternatives for data
can contain errors as well.

Example 1: Think of a process withdrawing money
from an ATM with two alternative authentication meth-
ods. In this process, a task authentication needs either
the data elements cash card and PIN, or the elements
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cash card and fingerprint. If at least one of the data el-
ements of an alternative authentication method may not
be available at task execution time, it indicates a design
fault, namely a missing data error in one of the alterna-
tives for data input of a task. This means that we define a
missing data error in a strict manner: Not only an unini-
tialized data element which definitely leads to blocking
is critical, but also an uninitialized one which might be
compensated with alternatives at runtime. �

In consequence, an approach for detecting data-flow
errors in BPMN 2.0 process models, i.e., at design time,
has to take alternatives for data and optional data into
account.

It is advantageous to check the correctness of a data
flow already at design time (correctness at design time).
In particular, this holds for data-flow errors which one
cannot detect at runtime. To illustrate, compensating
missing data at runtime with an available alternative
hides design errors, c.f. Example 1. Existing approaches
for checking correctness, e.g., [14, 18, 22], are not able
to detect such errors. Moreover, they cannot take the
specifics of BPMN 2.0 into account, namely the execu-
tion semantics when using mandatory and optional data
as well as alternatives for data.

Detecting data-flow errors in executable BPMN gives
rise to the following challenges: (1) The BPMN 2.0
specification defines the execution semantics of flow el-
ements with their data needs and data results only in-
formally, in a textual representation. Hence, a formal
verification requires a transformation of BPMN process
models into a formal structure like Petri Nets. This trans-
formation is complex, because it has to consider the exe-
cution semantics with respect to data elements. (2) Data-
flow errors in executable BPMN may have to do with
the fact that some data elements are optional, whereas
others are mandatory. This leads to additional complex-
ity, compared to the case where everything is mandatory.
The definitions of data-flow errors must take all possible
combinations into account. (3) A task may read or write
data elements out of alternative sets. Detecting errors
must take this into account as well. However, avoiding to
explicitly handle the huge number of possible constella-
tions for data within the process execution path that stem
from such flexible alternatives is not trivial. As data ele-
ments may be optional at the same time, things become
even more complex. (4) There is a lack of publicly avail-
able process models conforming to BPMN 2.0, which
could be used in an evaluation. For instance, the repos-
itory provided by the BPM Academic Initiative [4] does
not contain models suited for this purpose, as we will
explain in Section 4.

This paper proposes an approach to detect data-flow
errors in BPMN 2.0 process models. More specifically,

we make the following contributions:
Definition of Anti-Patterns. Starting with classifica-

tions of anti-patterns from the literature [14, 21, 22], we
define a set of data-flow anti-patterns enhanced to cap-
ture the specifics of data in BPMN 2.0. Our anti-patterns
describe anomalies of the data flow. Their definitions
consider the execution semantics for data needs and data
results of BPMN 2.0 flow elements. In particular, they
allow for combinations of alternative data needs and data
results and distinguish between mandatory and optional
data.

Transformation. We specify a new transformation of
process models into unfolded Petri Nets. In particular,
these Petri Nets formally express the execution seman-
tics of the process and its flow elements using data. They
do so by taking alternatives for data as well as optional-
ity of data into account. They also avoid handling the
huge number of data alternatives explicitly by coordinat-
ing data needs and data results separately.

Tool Support. We have implemented a tool to detect
data-flow errors in BPMN 2.0 process models automat-
ically at design time. It realizes the transformation just
mentioned and finds data-flow errors in the Petri Net us-
ing a model checker. When a data-flow error is found,
the tool points to the task where it occcurs.

Evaluation. We have asked a BPMN expert to develop
a set of process models, which we then have used in our
evaluation. Our tool systematically detects all data-flow
errors generated by him as well as errors occurring in
another user experiment.

Using this approach, process designers can now in-
crease the quality of their models by analyzing the data
flow of BPMN 2.0 processes at design time. This avoids
costly process executions with errors. Our approach al-
lows to detect data-flow errors such as missing and re-
dundant optional data.

Section 2 analyzes and explains the data perspective
and describes data-flow errors in BPMN 2.0 process
models. Section 3 introduces our approach to check data-
flow correctness in executable BPMN process models
and its implementation. We describe the evaluation of
our approach in Section 4. Section 5 discusses related
work, and Section 6 concludes.

2 DATA IN BPMN

The BPMN 2.0 standard [5] distinguishes several repre-
sentations for process models. They differ regarding ex-
pressiveness: The executable subclass contains the com-
plete execution information. The graphical process dia-
grams in turn cover only a subset of this. Data elements
play different roles in these representations: Data associ-
ations with flow elements in graphical process diagrams
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Figure 1: Exam Correction Process Diagram with Data-Flow Errors

mean potential data needs and potential data results of
flow objects. The specifications for mandatory data, al-
ternatives for data, and optional data in the executable
sub-class give precise information on data needs and
data results. So-called InputSets and OutputSets,
containing DataInputs and DataOutputs, represent
this information, which is not visible in the graphical
process diagram.

In the following, we first describe concepts for spec-
ifying process diagrams with data graphically and give
an example of a BPMN 2.0 process diagram with dif-
ferent data-flow errors. Then we analyze the execution
semantics of process flow elements handling data. In the
following, we will use the term BPMN instead of BPMN
2.0 if it is unambiguous.

2.1 Data in Graphical Process Diagrams

The most important concepts regarding data flow in
process diagrams are DataObjects and their Data-
Associations to the flow elements task and event. A
representation of a DataObject, visualized as docu-
ment, can be a single instance or a collection of data
elements of the same type. Process designers can de-
fine potential data needs and data results by modeling
DataAssociations to or from DataObjects, vi-
sualized as dotted lines. They represent potential reads
or writes on the DataObjects. DataObjects are
unique within a process, but one DataObject can
be referenced (i.e., visualized) several times in a pro-
cess model. All specifications for DataObjects to-
gether determine the graphically visible data flow within
a process. BPMN describes DataObjects local to
the process, so a DataObject does not require an ex-
plicit deletion. DataStores, DataInput and Data-
Output of processes allow to specify data exchange

between databases and processes, thus they do not af-
fect the data flow within the process. While tasks
can have DataAssociations to and from Data-
Objects, events have either DataAssociations to
or DataAssociations from DataObjects, depen-
dent on their type (catching or throwing).

Example 2: Figure 1 displays a process diagram for
correcting answer sheets of a written exam. At the begin-
ning, the DataInput Collection Answer sheets
of the process contains a set of answer sheets (i.e., filled
out solutions of the exam). Task Get answer sheet selects
one element of a local copy of this collection and writes it
to the DataObject Answer sheet. A performer of task
Single correction marks this Answer sheet using cor-
rection guidelines given in DataObject Answer key.
Task Check state of correction reviews whether all An-
swer sheets have been corrected or not. The task writes
its result in DataObject State. It records the status
of the correction process. The performer of task Single
correction may identify a solution in an Answer sheet
which is not part of the correction guidelines in Answer
key up to now. In this case, Single correction writes the
status Answer key incomplete to State, and the process
runs task Complement answer key later on. Because of
this, State is optional output of this task and is written
on demand. As the graphical representation does not al-
low modeling optionality of output, this characteristic is
not visible in Figure 1. In the other cases, a performer
corrects the next answer sheet (Correction not done &
Answer key complete), or the process terminates (Cor-
rection done). �

2.2 Data in Executable Processes

To get executable processes, BPMN requires to refine the
potential data needs and data results of a task or event,
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represented as DataAssociations in the process di-
agram, by a more concrete specification [5]. This is im-
portant because there exist several cases of ambiguity in
graphical diagrams. For example, several input or out-
put DataAssociations can mean that a task reads or
writes all data elements, only one of them, or some com-
bination. Further, process designers can combine speci-
fications for alternatives and optional data.

Example 2 (cont.): In Figure 1, it is unclear whether
the data output State of task Single correction is optional
or mandatory. �

We now focus on the execution semantics for tasks.
The data elements a task requires for its execution are
its data needs. When a task is ready for execution, the
process engine checks the availability of its data needs.
The concepts InputSet and OutputSet describe the
data needs and data results. Figure 2 shows an excerpt
of our sample process of Figure 1. The boxes display
two expanded tasks Single correction and Check state of
correction, with their InputSets and OutputSets.
Each InputSet consists of references to DataInput,
which are associated with one or more DataObjects.
In Figure 2, the ovals with dotted lines represent an
InputSet and an OutputSet of a task (the first ones
with small, the latter ones with larger dots), containing
DataInputs and DataOutputs. For the visual rep-
resentation of DataInputs and DataOutputs of a
task, we have harnessed the visual notation of Data-
Input (empty arrow) and DataOutput (filled arrow)
of processes and mark document symbols with “T”.

An InputSet summarizes data needs of a task t,
with a mandatory and an optional subset. In Figure
2, the parts of the ovals with grey background denote

the optional subsets, and those with white background
the mandatory subsets of InputSets or OutputSets.
An InputSet IS(t) is available if all DataObjects
referred to in the mandatory subset of the InputSet
ISM (t) are available. DataObjects referred to in the
optional subset of the InputSet ISO(t) do not af-
fect its availability. The converse concept to data needs
is data results. They are the output of a task resulting
from its execution. Analogously to the InputSets,
OutputSets may have mandatory OSM (t) and op-
tional subsets OSO(t). In Figure 2, do 1 of task Sin-
gle correction is mandatory (white), and do 2 is optional
(grey).

A task may have several InputSets, representing al-
ternative data needs. If so, the process engine checks
the availability of the InputSets in the order of their
specification in the process model and takes the first one
available to execute the task. In other words, at least
one InputSet has to be available for execution. Anal-
ogously to the InputSets, a task may have several
OutputSets. When a task terminates, the process uses
one OutputSet for further execution. InputSets
can optionally have references to the OutputSets that
should be generated when the InputSet is used for
the execution of the task (outputSetRef). This addi-
tional knowledge could be useful to limit the combina-
tion of Input-/OutputSets at a task to reduce the
effort for model checking, see Subsection 3.4. However,
the execution semantics in the standard does not take
these relationships into account, i.e., they only may serve
as guideline for implementing the task but not for de-
tecting data-flow errors. Moreover, in the standard there
does not exist any rule defining which OutputSet will
be used during execution. The standard says: “The im-
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plementation of the element where the OutputSet is
defined determines the OutputSet that will be pro-
duced. So it is up to the Activity implementation or the
Event to define which OutputSet will be produced.”
Consequently, for detecting data-flow errors we have to
take the OutputSets of a task without any ordering
information of the OutputSets or relationships to cer-
tain InputSets.

2.3 Data-Flow Errors in BPMN 2.0

A common understanding is that a data flow of a pro-
cess is correct if there are no anomalies regarding data
processed [21]. To capture these anomalies, existing ap-
proaches [14, 21, 22] specify a set of data-flow errors
for any data element of a process: missing data, redun-
dant data, lost data, inconsistent data, and wrongly or
not destroyed data. A missing data error occurs if a task
needs a DataObject, but it is not available, because
it has not been initialized yet. A redundant data error
happens if a task writes a DataObject which is not
read by any task in the subsequent process execution. A
lost data error holds if a task writes a DataObject,
and no upcoming task reads it until another task over-
writes it. An inconsistent data error occurs if one task
writes a DataObject and another task reads or writes
it in parallel. BPMN does not foresee the possibility to
delete DataObjects explicitly, so wrongly or not de-
stroyed data is not relevant in our context. [22] further
differentiate between weak and strong variants of redun-
dant and lost data. In other words, it may be some or all
execution paths containing the error. Regarding the data
aspects of BPMN, these general classifications of errors
are relevant as well. However, those publications do not
cover the specifics of optionality of data as well as of
alternatives for data in BPMN.

Optionality of Data: In BPMN a task reads or writes
a DataObject mandatorily or optionally. This af-
fects the data flow and its correctness. For example, op-
tional DataInputs and optional DataOutputs can
cause lost data, but with partly different effects as in the
mandatory case. An optionally lost data error occurs if
a task writes a DataObject optionally or mandatorily
but it is not read by any task before it is optionally over-
written. This may be problematic, but does not have to
be, in contrast to the mandatory case. Furthermore, op-
tional outputs are not sufficient to avoid a missing data
error.

Example 3: Our example in Figure 1 contains four
data-flow errors: (1 & 2) two Missing Data errors, (3)
Weakly Lost Data, (4) Strongly Redundant Data. (1) In
the first run of Single correction, Answer key is unini-
tialized. (2) Task Single correction initializes State only

optionally, but Check state of correction needs it manda-
torily. (3) Weakly Lost Data refers to Answer sheet. In
two execution paths (Correction not done & answer key
complete, Answer key incomplete) there is no task read-
ing Answer sheet until task Get answer sheet writes it
again. (4) There is no task using Answer sheet that has
been updated by Single correction. �

Alternatives for Data: The data flow of a BPMN pro-
cess depends on the InputSets and OutputSets
chosen during process execution. For example, to avoid
compensations for uninitialized data with alternatives at
runtime, this asks for analyzing data flow with respect
to these alternatives for data at design time. A miss-
ing data error occurs in one alternative if at least one
DataObject of this InputSet is uninitialized. In
each InputSet the missing data error depends on the
alternatives for OutputSets chosen previously. To de-
tect all potentially incorrect data alternatives, we have to
consider all possible combinations of InputSets and
OutputSets for each DataObject involved. By do-
ing so, we do not have to take the order of InputSets
and OutputSets into account.

Example 4: Think of a slight modification of the exam-
ple in Figure 1: Task Check state of correction requires
DataObjects Answer sheets and State mandatorily.
But now we assume that both DataObjects are alter-
native in use. I.e., there are two InputSets specified,
each with one DataObject. In this case, the error op-
tionally missing data occurs at task Check state of cor-
rection in one alternative for DataObject State. �

Due to the specifics of BPMN with respect to data,
detecting data-flow errors in BPMN asks for new anti-
patterns and their specifications by using the classifica-
tion of anti-patterns known from literature. This requires
first to distinguish mandatory and optional data explic-
itly. Second, multiple InputSets and OutputSets
must be taken into account. As both features are speci-
fied by the executable subclass of a process model, this
need for new anti-patterns is not obvious having only a
graphical process diagram at hand. Our anti-patterns for
BPMN processes reflect alternatives for data and option-
ality, see Table 1.

3 DETECTING DATA-FLOW ERRORS

To achieve data-flow correctness in BPMN 2.0 process
models, we formalize the execution semantics regarding
data-dependent flow elements in BPMN by using a trans-
formation algorithm, see Section 3.1. In Section 3.2 we
formalize generic data-flow anti-patterns for BPMN 2.0
and say how to generate process-specific anti-patterns for
model checking. The final step is proving the possible
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existence of data-flow errors in the process model with
model checking. Figure 3 gives an overview of our ap-
proach.

3.1 The BPMN2PetriNets Transformation Al-
gorithm

To analyze process models, many approaches employ
Petri Nets to represent the models; see [24] or Ap-
pendix A for the definition. For example, [10] uses Petri
Nets for representing BPMN 1.0 models and [11] for
BPEL processes; [12] gives an overview of transforma-
tions of process models to Petri Nets.

We transform the control flow of BPMN models to
Petri Nets by following the approach in [10]. How-
ever, [10] does not capture the data characteristics of
BPMN 2.0. Existing work [2] transforms data objects but
into BPMN 1.2. Their way to represent data with Petri
Nets including the limited data perspective of BPMN 1.2
is not sufficient for our purposes, and their proprietary
interpretation of the execution semantics of data objects
and related states is not compatible with BPMN 2.0. In
particular, supporting alternatives for data in [2] would
inflate the Petri Nets because any possible combination
of InputSets and OutputSets must be reflected.
This asks for an appropriate transformation to represent
alternative InputSets and OutputSets.

Alternatively, one could use Colored Petri Nets to
represent data-dependent flow elements. This would
slightly reduce the number of places of the Petri Nets,
but would require complex firing rules for the represen-
tation of the execution semantics regarding data.

Due to the complexity of the required transformation,
our BPMN2PetriNet algorithm transforms a BPMN pro-
cess model into a Petri Net representation in two steps,
see Algorithm 1: Step (1) Mapping the control flow to
Petri Nets; Step (2) Unfolding the data needs and data
results of mapped flow elements according to the execu-
tion semantics.
Mapping: The procedure Map() in Algorithm 1 starts
with Step (1a) mapping the flow elements, including data

elements, to a Petri Net using mapping rules. In Step (1b)
it connects the mapped flow element with its successor
and predecessor flow elements according to the sequence
flow specified in the BPMN process model.

We distinguish two cases for the mapping.
Case (1): For the mapping of all data elements and

data-dependent flow elements, i.e., tasks, events, and
conditional sequence flows, we have developed new
mapping rules to Petri Net representations. Our mapped
Petri Nets depict data-dependent flow elements with in-
terfaces for embedding data characteristics in the unfold-
ing step later on. Further, we distinguish explicitly be-
tween a reading and a writing subnet, in the following
called R/W subnet, of a mapped flow element. We rep-
resent multiple InputSets and OutputSets by com-
bining the respective R/W subnets with an XOR split in
the Petri Net. A place in the mapped Petri Net coordi-
nates them. This gives rise to combining InputSets as
well as OutputSets without the need for having to ex-
plicitly handle all possible combinatorial constellations
of data uses.

Case (2): To map the sequence flow and data-
independent flow elements, e.g., parallel gateways, we
use an existing BPMN 1.0 to Petri Nets transformation
[10], which requires some preconditions, e.g., for in-
coming and outgoing flows of split or join gateways, not
affecting the generality of the proposed mapping [10].
This approach reflects the state-of-the art for transform-
ing BPMN sequence flows.

We now describe our mapping rules for data elements
and tasks, cf. Figure 4.

Data Elements. The mapping rules are applied to
unique data elements, not to their references. The
rules are straight-forward (see Figs. 4a and 4b): The
two places p.d id and p.¬d id, with number of tokens
m(p.d id) + m(p.¬d id) = 1, represent the initializa-
tion status of a DataObject or a DataInput or -
DataOutput of a process. We distinguish two cases:
First, a DataObject or DataOutput of a process is
uninitialized, i.e., p.¬d id has a token, see Fig. 4a. Sec-
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Algorithm 1: The BPMN2PetriNet Transformation Algorithm

Algorithm BPMN2PetriNet()
for each flow element fi do

Map(fi) // Step (1)
if fi is a data-dependent flow element then

if IS(fi) 6= ∅ ∨OS(fi) 6= ∅ then
Unfold(fi) // Step (2)

Procedure Map(Flow element f)
Map f to Petri Net // Step (1a)
Connect f with predecessors & successors // Step (1b)

Procedure Unfold(Flow element f)
if |IS(f)| ≥ 2 ∨ |OS(f)| ≥ 2 then

Unfold InputSets/OutputSets of f // Step (2a)

for each InputSet/OutputSet IOSi(f) do
for each data element dj ∈ IOSi(f) do

Unfold input & output subsets of dj in IOSi(f) // Step (2b)
Record I/O places of dj // Step (2c)
if dj ∈ OM (IOSi(f)) ∧ ∃ pred(dj) then

Generate predicate subnet of dj // Step (2d)

ond, a DataInput of a process is already initialized,
i.e., p.d id has a token, see Fig. 4b. As a result, each
unique DataObject is represented by two places in
the Petri Net, even if the process model contains several
references to this DataObject.

Tasks. The main idea behind the structure of a mapped
task is to prepare the Petri Net for embedding com-
plex data constellations, such as multiple InputSets
or OutputSets as well as optional and mandatory
data specifications. This asks for interfaces to expand
a mapped task with input/output subnets for optional and
mandatory data use as well as with combining places for
data alternatives. Figure 4c shows the mapping rule for
a task. Each mapped task has a reading and a writing
(R/W) subnet with particular transitions. The abbrevia-
tions in the transition names mean a reading start (rs),
a reading end (re), a writing start (ws), etc. The R/W
subnets serve as interfaces for the input/output subnets
generated in the unfolding step and represent the de-
fault setting, namely one ’empty’ InputSet and one
’empty’ OutputSet. But they do not contain their
DataInput and DataOutput elements yet. The un-
folding step will add them to the R/W subnets. Be-
tween the R/W subnet, there is place p.t.t id to combine
data alternatives. Additionally, the Petri Net represent-
ing a mapped task has two connecting places p.x.t id
and p.t id.y (dashed lines) for connecting the mapped
task with its predecessor flow element x and successor
flow element y. Each reading subnet contains an input

place p.I i.t id and each writing subnet an output place
p.O i.t id (filled in grey). The input and output places,
in short I/O places, in the R/W subnets are essential for
checking the data-flow correctness.

Definition 1 (Input and output places): An input pla-
ce p.I i.t id is a place of the reading subnet of the i-th
InputSet of a task t id with the following character-
istics: If it has a token, all DataInputs of the i-th
InputSet have been read successfully. The firing of
transition t.rs i.t id indicates the successful reading.
An output place is the analogous place of a writing sub-
net. �

The mapping rules for other data-dependent flow el-
ements, i.e., events and conditional sequence flows, fol-
low the same concept as described, see [25] for the de-
tails. In contrast to the mapping rules for tasks, the ones
for events and conditional sequence flows are less com-
plex. Mapped events have either one reading or one writ-
ing subnet, and mapped conditional sequence flows have
a reading subnet only.

Unfolding: If a data-dependent flow element contains
specifications for data, procedure Unfold() of Algo-
rithm 1 adds Petri Net representations of the data needs
and/or data results to an already mapped data-dependent
flow element f . The added input/output subnets repre-
sent the execution semantics regarding data. In partic-
ular, our algorithm extends the default Petri Net repre-
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Figure 5: Task after Unfolding a Second InputSet and a Second OutputSet (Step (2a))

sentation by further InputSets and OutputSets if
needed, and by representing the behavior for mandatory
and optional data. It comprises the following four steps:

Step (2a): The mapped flow element contains one
reading subnet or one writing subnet, representing one
InputSet or one OutputSet. If f has several
InputSets or OutputSets, we unfold each further
InputSet ISi(f) by adding an additional reading sub-
net as alternative path to already existing reading sub-
nets. For each further OutputSet OSi(f) we add an
additional writing subnet as alternative path to already
existing writing subnets. Figure 5 shows the resulting
Petri Net of a task after unfolding a second InputSet
and a second OutputSet. By doing so, we repre-
sent alternative InputSets and OutputSets of tasks
and coordinate their paths at place p.t.t id, leaving aside
their ordering.

Step (2b): Each InputSet/OutputSet
has a mandatory and an optional subset of
DataInput/DataOutput elements. Figure 6
represents the subnets for these four different cases
(input/output, mandatory/optional) for unfolding one
element of an InputSet/OutputSet of a flow
element t id as well as their interfaces. The parts
visualized with dashed lines in Fig. 6 represent the
already mapped flow elements (c.f. procedure Map())
of the Petri Net. For each DataObject dj in an
InputSet/OutputSet we add the appropriate

input/output subnet. Next, we connect each unfolded
input/output subnet with the reading or writing subnet of
the flow element mapped and with the two places p.d id
and p.¬d id, which represent the data object dj mapped.

This results in a representation of the execution se-
mantics regarding data for InputSets/OutputSets,
as well as for the process as a whole: The subnets con-
nected to the reading or writing subnet of a mapped
data-dependent flow element reflect the local execution
semantics of a flow element regarding data. Further,
the connections of the unfolded input/output subnets to
the mapped places of DataObjects account for the
global behavior of a process. The latter is because
for each unique DataObject there exist exactly two
places in the resulting Petri Net representing whether
DataObject is initialized or not. Any subnet of the
Petri Net representing the local execution semantics for
a particular DataObject is connected to these two
process-global places of the particular DataObject.
These connections follow the structure as given in the
unfolding rules (see Fig. 6). To illustrate, there are con-
nections from transitions t1 and t2 to the two places for
a subnet representing a mandatory output (see Fig. 6c).
For a subnet representing an optional output (see Fig. 6d)
transitions t1, t2, t3 and t4 are connected. We will de-
scribe the subnets in detail at the end of this subsection.

Step (2c): This step records all I/O places as well as in-
formation on the kind of usage (mandatory/optional, as
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Figure 6: Unfolding Rules

alternatives) for DataObject dj . We deploy this for
the following process-specific anti-pattern formula gen-
eration.

Step (2d): If OSi refers the DataObject mandato-
rily, and if any condition of a conditional sequence flow
refers the DataObject, we generate a so-called pred-
icate subnet [22]. [22] introduced ’unfolding’ of predi-
cate subnets to express that a DataObject may hold
several values which influence the process execution by
data-dependent gateways.

Input/Output Subnets. We now describe the unfolding
rules, i.e., the input and output subnets, in more detail by
focusing on the local execution semantics for data. Fig-
ure 6a displays the subnet for a mandatory input. As a
task requires its mandatory data input for its execution,
the subnet specifiying one mandatory DataObject is
very simple: It consists of a bidirectional arc from the
place p.d id, representing that the DataObject is ini-
tialized, to the reading transition of the mapped task. The
bidirectional arc ensures that the DataObject stays
initialized. An optional data input does not affect the
execution semantics of a task. Thus, the subnet contains
an optional input place p.io.d id.t id with a token and a
connection to the reading subnet of the unfolded task, see
Fig. 6b. The subnet for a mandatory output, see Fig. 6c,
reflects that a task t id initializes a DataObject in any
case, i.e., place p.d id finally has a marking. Before the
start of task t id, either place p.d id or place p.¬d id has
a marking. Accordingly, either transition t1 or t2 fires.
This subnet is connected to the writing part of the task
mapped. The subnet in Fig. 6d covers all three execution
scenarios of an optional output d id of an OutputSet
OS(t id) of a flow element t id: (a) transitions t1 and
t3 fire if d id has no value before start of t id, and t id
initializes d id, (b) transitions t1 and t2 fire if d id has
no value before start of t id and t id does not write to
d id, and (c) t4 fires if d id is initialized before start of
t id, and t id writes d id again.

3.2 Formalization of BPMN 2.0 Data-Flow
Anti-Patterns

In this section we formalize the data-flow errors as anti-
patterns, which we have identified as relevant for a
BPMN process model, see Section 2.3. The result is a set
of so-called generic anti-patterns, reflecting the specifics
of BPMN for several Input- and OutputSets and
for optional data. These generic anti-patterns are inde-
pendent of a concrete process model. Then we say how
to generate process-specific anti-patterns.

Formalizing Generic Anti-Patterns: The ideas behind
the formalization are as follows. BPMN allows speci-
fying the data needs and data results of flow elements.
This results in a data flow from the perspective of an in-
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dividual DataObject. Thus, we examine data-flow er-
rors for each DataObject d. To consider alternatives
of data modelled as several Input- and OutputSets,
we analyze the data flow regarding the combinations of
these alternatives. Further, supporting mandatory or op-
tional use of data gives rise to several data-flow errors
we define anti-patterns for. We aim to achieve correct-
ness at design time, however, the availability of data is
only known during execution. This is why we have to
analyze all possible execution variants that contain ex-
ecution paths determined by the control flow as well as
by the choice of alternative data needs and data results.
These variants are contained in the state space of the un-
folded Petri Net model which we use for error detection.

We illustrate how to formalize the data-flow errors
with anti-patterns, using the example of a Missing Data
flow error of a DataObject d. This error occurs if the
process contains a flow element f which needs dmanda-
torily, and the process has no flow element f ′ which ini-
tializes dmandatorily before the execution of f . f and f ′

might have several alternative data needs in combination
with several alternative data results. Hence, we consider
all possible combinations of input and output alternatives
where d is used to analyze its data flow. Note that the
data flow of d considers its availability in the whole pro-
cess (not only local to a certain task or event).

As a basis for our formalization, for each
DataObject d we need information on where in
the process d can be processed (as input or output,
optionally or mandatorily). To this end, we now
define these sets of BPMN flow elements for a cer-
tain DataObject. We will make use of these sets
to specify the anti-patterns. For the definitions that
follow we assume a process model containing a num-
ber of tasks |tasks|, a number of events |events|,
and a number of conditional sequence flows |conds|.
setf = tasks ∪ events denotes the set of all tasks
and events of the process model. A task or event f has
a number of InputSets and OutputSets that we
denote with |IS(f)| and |OS(f)|. Note that these sets
contain DataObjects as data needs and data results.
Let ISO

i (fm) be the subset containing the optional
DataObjects of the i-th InputSet ISi of the m-th
task or event, and OSO

i (fm) the subset containing the
optional DataObjects of the i-th OutputSet OSi

of the m-th task or event; an event has at most one
InputSet or one OutputSet depending on its type.

In Definition 2, we summarize all InputSets
Set IO(d) resp. OutputSets Set OO(d) d is an op-
tional element of. Using these sets, IO(d) of type
Boolean specifies whether d has been read successfully
in one of its InputSets; correspondingly, OO(d) of
type Boolean specifies whether d has been written suc-
cessfully in one of its OutputSets.

For the mandatory use of d, we define IM (d) and
OM (d) analogously to Definition 2 In addition to tasks
and events, a conditional sequence flow s can use a
DataObject within a condition cond(s) mandatorily
as well. For Definition 3, setf = tasks ∪ events ∪
conds denotes the set of all tasks, events and condi-
tional sequence flows of the process model. The defi-
nitions of IM (d) and OM (d) are analogous to the op-
tional case. In the following definition, we summarize
Set IM (d) is the set of all InputSets d is a manda-
tory element of. Analogously, Set OM (d) is the set
of all such OutputSets. Using these sets, IM (d) speci-
fies whether d has been read successfully in one of the
InputSets of Set IM (d). Correspondingly, OM (d)
specifies whether d has been written successfully in one
of the OutputSets of Set OM (d). read(x) and writ-
ten(x) as defined in Definitions 2 and 3 are formalized in
the generation step of process-specific anti-patterns, see
below.

We now formalize the anti-patterns for BPMN using
a temporal logic formalism, namely CTL (Computation
Tree Logic). See [8], Appendix A for a description
of CTL. [8] introduces an effective algorithm to ver-
ify properties specified in CTL on Petri Net models.
To achieve data-flow correctness, our approach aims to
identify errors which occur during reading or writing of
a DataObject in the context of a certain choice of al-
ternatives. Next, the specification of data needs and re-
sults in BPMN allows for optional or mandatory use of
data. This gives rise to a distinction between optional
and mandatory errors, as described in Section 2.3. Fur-
ther, we differentiate between weak and strong variants
of redundant and lost data, see Section 2.3. The result
is a set of generic anti-patterns for a DataObject d,
in the following called Data-Flow Anti-Patterns (DAP).
Table 1 lists our generic anti-patterns tailored to the exe-
cution semantics of BPMN 2.0.

In the following, we explain our generic anti-patterns
for BPMN 2.0. We provide their formal specification in
CTL.

DAP 1: Missing Data occurs if a DataObject d is
a mandatory input IM (d), but not a mandatory output
OM (d) before, i.e., d is not initialized.

DAP 2: Missing Optional Data means that a
DataObject d is optional input IO(d), and d is not
initialized before by a mandatory outputOM (d) or by an
optional output OO(d).

DAP 3: Strongly Redundant Data is given if a
DataObject d is a mandatory outputOM (d), but there
is no flow element using this DataObject as manda-
tory input IM (d) or as an optional input IO(d) in all fol-
lowing execution paths.

DAP 4: Weakly Redundant Data happens if there ex-
ists at least one execution path of the process where a
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Definition 2 (Optional InputSets/OutputSets containing DataObject d):

Set IO(d) =
⋃

m∈{1..|setf |}

{ISi(fm) | d ∈ ISO
i (fm) ∧ i ∈ {1..|IS(fm)|}}

Set OO(d) =
⋃

m∈{1..|setf |}

{OSi(fm) | d ∈ OSO
i (fm) ∧ i ∈ {1..|OS(fm)|}}

read(x) = all DataInputs in InputSet x have been read successfully % type: boolean

written(x) = all DataOutputs in OutputSet x have been written successfully % type: boolean

IO(d) =
∨

x∈Set IO(d)

(
read(x)

)
OO(d) =

∨
x∈Set OO(d)

(
written(x)

)

Definition 3 (Mandatory InputSets/OutputSets containing DataObject d):

Set IM (d) = {sl | d ∈ cond(sl) ∧ l ∈ {1..|cond|}} ∪( ⋃
m∈{1..|setf |}

{ISi(fm) | d ∈ ISM
i (fm) ∧ i ∈ {1..|IS(fm)|}}

)
Set OM (d) =

⋃
m∈{1..|setf |}

{OSi(fm) | d ∈ OSM
i (fm) ∧ i ∈ {1..|OS(fm)|}}

read(x) = all DataInputs in InputSet x have been read successfully % type: boolean

written(x) = all DataOutputs in OutputSet x have been written successfully % type: boolean

IM (d) =
∨

x∈Set IM (d)

(
read(x)

)
OM (d) =

∨
x∈Set OM (d)

(
written(x)

)

DataObject d is neither a mandatory input IM (d)
nor an optional input IO(d), but DataObject d is a
mandatory output OM (d) before.

DAP 5: Redundant Optional Data holds for a
DataObject d if an optional output OO(d) is not used
later on, i.e., DataObject d is no mandatory input
IM (d) or optional input IO(d) in one of the succeeding
execution paths.

DAP 6: Strongly Lost Data occurs if a DataObject
d is mandatory output OM (d) several times, but before
the later mandatory outputs happen, there is no manda-
tory input IM (d) in between. This situation holds for all
execution paths and means that earlier data results (e.g.,
initializations, updates) for d are lost.

DAP 7: Weakly Lost Data means that a DataObject
d is mandatory output OM (d), and there exists at least
one execution path where it is mandatory output OM (d),
but not mandatory input IM (d) before.

DAP 8: Optional DataOutput does not lead
to an error in every case. Lost optional data are
DataObjects d which are optional output (OO(d)).
Additionally, no upcoming flow elements exist that read
d (IM (d) ∨ IO(d)) until a flow element writes d manda-
torily, i.e., U OM (d).

DAP 9: Optionally Lost Data includes all

DataObjects d which are mandatory (OM (d))
or optional output (OO(d)), and, additionally, there is
a flow element that optionally writes d subsequently
without a flow element reading d in between (optionally
or mandatorily).

DAP 10: Inconsistent Data Two elements are in con-
flict if one element f writes d, i.e., d belongs to its (op-
tional or mandatory) data results (OS(f)), and another
element f ′ reads (d ∈ IS(f ′)) or writes d optionally or
mandatorily (d ∈ OS(f ′)). d is inconsistent if two ele-
ments in conflict regarding d can be executed in parallel.

Figure 7 shows examples of process models which il-
lustrate the ten anti-patterns of Table 1. Some of these
models include more than one data-flow error. For in-
stance, the model in Figure 7f illustrates strongly lost
data and also features a strongly redundant data-flow er-
ror. This is because the Data Object is not read by any
task before the process terminates. Furthermore, each
strong data-flow error also is a weak one.

Generating and Checking Process-Specific Anti-
Patterns: Using our generic BPMN data-flow anti-
patterns, the Step Process-specific anti-patterns genera-
tion of our approach in Figure 3 delivers specific formu-
las of the generic anti-patterns for each DataObject.
To this end, we use the results of the transformation from
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Anti-Patterns - DAP Formalization
1 Missing Data E

(
¬OM (d) U IM (d)

)
2 Missing Optional Data E

(
¬(OO(d) ∨OM (d)) U IO(d))

)
3 Strongly Redundant Data EF

(
OM (d) ∧ AX(A[¬(IM (d) ∨ IO(d)) U term])

)
4 Weakly Redundant Data EF

(
OM (d) ∧ EX(E[¬(IM (d) ∨ IO(d)) U term])

)
5 Redundant Optional Data EF

(
OO(d) ∧ EX(E[¬(IM (d) ∨ IO(d)) U term])

)
6 Strongly Lost Data EF

(
OM (d) ∧ AX(A[¬(IM (d) ∨ IO(d)) U OM (d)])

)
7 Weakly Lost Data EF

(
OM (d) ∧ EX

(
E[¬(IM (d) ∨ IO(d)) U OM (d)]

))
8 Lost Optional Data EF

(
OO(d) ∧ EX

(
E[¬(IM (d) ∨ IO(d)) U OM (d)]

))
9 Optionally Lost Data EF

((
OM (d) ∨OO(d)

)
∧
(
EX(E[¬(IM (d) ∨ IO(d)) U OO(d)])

))
10 Inconsistent Data

∨
f∈{E∪T}∧d∈OS(f)} EF

[
exec(f)∧

∨
f ′ 6=f∧(d∈IS(f ′)∨d∈OS(f ′)) exec(f

′)
]

Legend (for CTL formulas):
A path operator (A or E) occurs together with a state operator (X, F, U).
A/E: the formula needs to hold in all/at least one of the succeeding execution paths.
X/F: the formula holds in the next/at least in one succeeding state.
[φ1 U φ2]: φ1 holds until φ2 is reached.
exec(f) means that flow element f is ready to be executed, i.e., the respective
transition is activated.
term denotes the termination of the process.

Table 1: BPMN 2.0 Generic Anti-Patterns for a DataObject d

BPMN to Petri Nets with its Input and Output Places,
see Definition 1. The information recorded in Step (2c)
of Algorithm 1 comprises the I/O places as well as infor-
mation on the kind of usage (mandatory/optional, in al-
ternatives) of the DataObject d. The generation step
of process-specific anti-patterns instantiates the generic
BPMN 2.0 anti-patterns by means of the optional and
mandatory usages of a DataObject d according to
Definition 2. In order to be able to check whether d is an
optional or mandatory data input, the model checker has
to prove that an IS ∈ Set IO(d)/∈ Set IM (d) is avail-
able. To do so, it checks whether the input place of IS
contains a token, see Definition 1. This means that we
instantiate the anti-patterns by replacing read(IS) (an
InputSet of a flow element t id) with m(p.I i.t id)
= 1 (respectively for a flow element e id)). The picture
is analogous for the OutputSets. written(t id) is re-
placed using the output place, i.e., with m(p.O i.t id)
= 1. The alternative use of d induces additional path
expressions of the data flow in the process-specific anti-
patterns.

For the final step, we employ a representation of the
possible states of the process model to find the states with
errors. A CTL model checker, namely LoLA [19], ana-
lyzes the process-specific formulas of the anti-patterns
for each DataObject on the unfolded Petri Net model
in question. If a formula is satisfied, the data-flow error
is detected.

3.3 Tool Support

We have implemented a tool for automatically ana-
lyzing data-flow errors in process models specified
with BPMN 2.0, see Figure 3. Input to the tool is
a well-formed and sound BPMN process model, see
also Subsection 3.4. For each data object of the model
in question, the tool generates the process-specific
anti-patterns. For each of these anti-patterns in turn, it
runs the model checker LoLA to prove it. If a data-flow
error has been found, our tool returns the data object
and the task of the BPMN model where the error occurs.
The naming of a BPMN task corresponds to the label of
the respective place of the Petri Net. A special case is a
missing data error of a data object d, because it causes
a dead transition in the Petri Net. In this case the tool
inserts an initialization of d into the Petri Net to repair
the error before checking the other anti-patterns. Our
evaluation makes use of the tool, see Section 4.

3.4 Discussion

Features Supported: We support all standardized data
features of BPMN 2.0. Our data-flow verification con-
siders BPMN 2.0 process models according to the pro-
cess execution conformance type of the BPMN 2.0 stan-
dard. We do not consider business process choreogra-
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(a) DAP 1 - Missing Data (b) DAP 2 - Missing Optional Data

(c) DAP 3 - Strongly Redundant Data (d) DAP 4 - Weakly Redundant Data

(e) DAP 5 - Redundant Optional Data (f) DAP 6 - Strongly Lost Data

(g) DAP 7 - Weakly Lost Data (h) DAP 8 - Lost Optional Data

(i) DAP 9 - Optionally Lost Data (j) DAP 10 - Inconsistent Data

Figure 7: Examples of Process Models Illustrating all Anti-Patterns of Table 1
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phies. Specifying more complex data dependencies in
data-aware business process models, see e.g., [15], [27],
[7] is not our current focus. Such proposals extend
the standard, e.g., by annotations for newly created and
deleted data objects, by introducing semantics on states
of the data objects forming a life-cycle, or by semantic
data constraints, e.g., in preconditions of tasks.

Incorrect Process Models: Our focus is on data-flow
correctness. Here, we assume that the input process
model is well-formed and sound. In other words, data-
flow correctness and soundness are issues that can be
dealt with separately from each other. This means that
our tool can be integrated into a verification tool chain
for BPMN process models, after the soundness check.

Complexity: The state space depends on the dif-
ferent cases enhancing the Petri Net: A) inserting
the input/output subnets for each DataInput/Ouput
of each Input-/OutputSet adds up to a lo-
cally restricted increase, i.e., with minor problems
for verification, and B) inserting paths for several
Input-/Output- Sets can result in a polynomial
increase, accounting for state space explosion.

A) For each DataInput or DataOutput of a flow
element, a predefined number of states is added to the
state space. This is due to the additional input/output
subnets of the unfolding step. c = 4 is the maximum
number of states for these subnets, namely the number
of states of subnet 6d. Let n(f) be the number of data
needs and data results of the flow element f . Then each
state containing a marked place which represents a flow
element f with data incurs the following number of ad-
ditional states at most: cn(f).

B) The occurrence of a DataObject in several
Input/OutputSets of tasks all over the process
model can generate a growth of the state space in poly-
nomial order. This is because alternatives for data gener-
ate parallel paths. This so-called state-space explosion
is a well-known problem for model checking [9] and
can hinder verification. Currently, alternatives for data
in processes is a new concept in BPMN 2.0. We plan
to investigate respective optimization methods as future
work.

4 EVALUATION

The evaluation of our approach consists of several steps
from designing a collection of process models with in-
tensive use of data needs and data results, explicitly
adding data-flow errors into some of the process models
to a user experiment for modeling data in process mod-
els given. Step 1 is auxiliary, to prepare the evaluation of
Steps 2 and 3.

To evaluate process models of realistic complexity, we

first looked for publicly available process models which
we could use as benchmarks. In particular, this includes
the huge process repository of the BPM Academic Ini-
tiative [4] for BPMN 2.0 process models with intensive
data usage. Unfortunately, only a small fraction of the
process models contains DataObjects. Next, even
fewer models of this share conform to the standard. For
instance, some models have non-conformant annotations
of message flows with DataObjects. In addition, the
most important feature required for analyzing BPMN 2.0
process models with data is missing: None of the process
models contains specifications for DataInput, Data-
Output, InputSet, OutputSet, etc., being part of
executable processes (see Section 2.2). We argue that in
business processes modeling data as first-class objects is
not ubiquitous yet and is very new in BPMN. Further-
more, we hypothesize that BPMN process models with
specifications for optional data and alternatives are ab-
sent because the know-how regarding these new features
currently is only in an early state. Without such spec-
ifications, the conventional detection of data flow errors
(see for instance [14, 18, 22]) is possible, but not a detec-
tion of data-flow errors for optional data and alternatives
of data in BPMN 2.0. Consequently, we have faced the
problem that such a set of processes that we could use as
benchmark has not yet been available publicly.

To deal with this problem, we have asked an ex-
pert to design process models for 11 scenarios. These
scenarios use data intensively. Some examples are
adapted from literature, others we have developed our-
selves. The scenarios comprise, say, order handling
(S1) and job interview (S7) and are available online,
see http://dbis.ipd.kit.edu/2134.php. These process mod-
els do not have any data-flow errors according to our def-
inition. We also checked these process models (namely
the Processes Sx.1 in Table 2) with our data-flow analysis
tool, which confirmed their error-freeness. Sx.n stands
for the n-th variant of a process model of Scenario x.

In Step 2, our expert has added data-flow errors to
some of the error-free process models. These process
models cover all types of data-flow errors (see S3.2,
S5.2, S8.2, S9.2 and S10.2 in Table 2). Our data-flow
analysis tool has correctly detected all of them.

In Step 3, we have run a user experiment to understand
the difficulties of modeling an error-free data flow, and
also to obtain process models with data-flow errors for
further evaluation of our tool. We have organized this
experiment as an exercise of a lecture with seven stu-
dents with knowledge in BPMN modeling, including the
data aspect. These experienced individuals have started
with two process models given, namely S1.1 and S2.1
(from Step 1 of our evaluation). We had removed the
data elements from the models before. The task has been
to enhance the process models with data needs and re-

14



Silvia von Stackelberg, Susanne Putze, Jutta Mülle, Klemens Böhm: Detecting Data-Flow Errors in BPMN 2.0
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# Lost Data

# Incon. Data

S1.1-8 6 4 1 2 3-8 5-12 49-72 40-50 0-4 0-4 0 0
S2.1-6 8 2 1 2 4-10 12-21 63-84 47-58 0-3 0-3 0-1 0
S3.1 8 2 3 6 5 17 85 74 0 0 0 0
S3.2 8 2 2 4 5 15 80 70 0 2 1 0
S4.1 14 2 0 0 12 24 107 82 0 0 0 0
S5.1 7 2 1 2 5 15 64 52 0 0 0 0
S5.2 7 2 1 2 6 16 64 52 0 0 2 0
S6.1 8 2 2 4 7 17 90 70 0 0 0 0
S7.1 6 2 1 2 5 10 58 33 0 0 0 0
S8.1 13 3 2 5 8 22 110 94 0 0 0 0
S8.2 14 3 2 5 9 16 121 104 1 5 5 2
S9.1 8 2 1 2 3 21 72 58 0 0 0 0
S9.2 8 2 1 2 5 24 79 62 0 2 2 0
S10.1 8 2 2 4 5 12 75 60 0 0 0 0
S10.2 8 2 2 5 6 13 91 81 0 1 0 0
S11.1 19 3 2 5 6 13 91 81 0 0 0 0

Table 2: Evaluation of the Correctness Tool

sults. Modifying them has also been allowed if neces-
sary. We textually described the use of data, so that the
participants were able to model the data perspective of
the processes. We have obtained several process mod-
els for the two scenarios. They differ in the number of
DataObjects and control flow elements, see Scenar-
ios S1 & S2 in Table 2. Because the process models are
not overly complex, we have been able to check manu-
ally if they contain data-flow errors. This serves as gold
standard to evaluate our tool. Using it, we then have
checked the models. Our tool has detected all data-flow
errors contained in the models, 40 errors altogether.

Table 2 gives an overview of the results of our evalu-
ation, i.e., detecting data-flow errors and confirming the
correctness of process models without data-flow errors.
Because of better readability we present the results for
Scenarios 1 and 2 in an aggregated form. See [25] for
the detailed results. We list the size of the BPMN pro-
cess models analyzed, the size of the Petri Nets gener-
ated and the number of data-flow errors identifed. The
number of the BPMN elements determines the size of
the corresponding Petri Net, defined by the number of
transitions and places. The input and output subnets in
particular, added in the unfolding step of our transforma-
tion, increase the size of the Petri Net.

For one, the experiment of Step 3 (user experiment)
shows that our tool has detected all data-flow errors in
the process models created. Further, Missing Data is a
frequent error in process modeling. The numbers of Re-
dundant Data errors and of Lost Data errors reflect that

we count both strong as well as weak variants of data-
flow errors. Inconsistent Data errors occur when differ-
ent tasks read or write a DataObject in parallel. This
only happens with parallel execution paths. Only one of
our scenarios (S8.2) has this characteristic. All in all, the
evaluation shows that in process modeling all types of
data-flow errors are relevant and can occur.

5 RELATED WORK

Behavioural analysis of process models without the data
aspect has been studied extensively, see [13] for an
overview, but is not the focus of our work. In what fol-
lows, we concentrate on the correctness of the data flow.
[18] is one of the first approaches illustrating the impor-
tance of data-flow correctness in process modeling. The
authors have thoroughly analyzed problems which can
occur with a data flow but do not provide a solution for
error detection. [3] defines data-flow errors as patterns,
but focuses on visually specifying compliance rules in
order to explain the violations. There, key requirements
are availability of data input and data output of an activ-
ity, and consistent flow of data between two activities.
We in turn use the patterns to express the execution se-
mantics of process models with data elements and thus
analyze the correctness of the data flow not restricted to
the availability perspective supported in [3]. [23] pro-
poses using patterns for the analysis of general compli-
ance violations. In particular, order and occurrence pat-
terns support the users when specifying constraints on a
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process model with data. However, they do not support
BPMN but use BPEL with its specific data semantics for
process modeling. This is different from BPMN and also
does not handle optional data or alternatives for data.

[22] introduces a method based on CTL* that com-
bines the detection of control-flow and data-flow er-
rors. They use anti-patterns for missing data, inconsis-
tent data, redundant data, and lost data for Workflow-
Net process models. In contrast to our approach, they do
not cover the BPMN 2.0 semantics of data during pro-
cess execution, including specific more elaborate ways
to use data, i.e., alternatives for data and mandatory as
well as optional data. [21] regards data-flow analysis
in processes based on UML activity diagrams. The au-
thors provide separate correctness proofs directly imple-
mented as procedures for each of the three basic types of
data-flow errors, namely missing data, conflicting data,
and redundant data. [14] extends the results of [21] for
UML activity diagrams, by discussing additional data-
flow errors such as inconsistent data. For error detection
they also use separate checking procedures for each er-
ror type. To do so, they have to explicitly generate and
store all possible paths of the process model. Due to
XOR-nodes in particular, their number tends to be daunt-
ing. Another drawback is that they do not use a state-
based approach to represent the dynamic behaviour of
processes (e.g., with a state space of a Petri Net). Fur-
ther approaches exist using UML data-flow analysis on
UML activity models, e.g., [20], and [26], with another
focus than ours. [17] deals with data-flow correctness of
BPMN 2.0. They use the work of [21] adding optional
reading and writing access. To this end, they add behav-
ioral profiles consisting of information on conflicts be-
tween a pair of nodes of a process model. In other words
they establish behavioral relationships each between a
pair of tasks (nodes) of the process and use this list of re-
lationships for the data-flow analysis. In contrast to our
method, their modeling of errors with behavioral profiles
handles data separately from the process model. Further,
they do not take alternatives into account. Finally, they
address only some of the data-flow errors, our approach
can cope with. For instance, they define inconsistent data
only for write-write conflicts, do not distinguish between
redundant data with optionality, and do not consider lost
data.

Summing up, our approach for detecting data-flow
errors uses a process formalization by Petri Nets. To
achieve this, we have provided new transformation rules,
to represent execution semantics for data in particular.
Our new data-flow anti-patterns distinguish mandatory
and optional data as well as alternatives. By doing so,
they cover any anomalies known from existing work. In
particular, we are, to our knowledge, first to support the
data-flow perspective of BPMN 2.0, as well as alterna-

tives for data and mandatory and optional data.
Considering more intricate dependencies of data ob-

jects in data-aware process models is subject of further
approaches. For instance, some deal with data depen-
dencies like inclusion, referential dependencies [15], se-
mantically defined constraints [6] or with information
leaks [1]. These approaches focus on dependencies
which are not part of the BPMN data perspective and
would require to enhance its specification concepts. In
other words, the problem is different from the one stud-
ied here.

6 CONCLUSIONS

In this paper, we have proposed a new method for de-
tecting data-flows errors in BPMN 2.0 process models
at design time. This approach takes alternatives for data
as well as optional data into account. An automatic de-
tection scheme requires a formal representation of the
execution semantics of BPMN 2.0 flow elements with
data associations. To achieve this, we have developed
transformation rules and a set of anti-patterns represent-
ing data-flow errors in BPMN 2.0 process models. On
this basis, we transform data-dependent flow elements of
a process model into unfolded Petri Nets to detect data-
flow errors by using an existing model checker. Experi-
ments with users have shown that our tool identifies the
data-flow errors present.
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A BASIC CONCEPTS FOR PROCESS
ANALYSIS

In this appendix, we review fundamental concepts for
data-flow analysis in processes, namely Petri Nets with
its state space formalism and the temporal logic CTL.

Petri Nets and State Space Formalism.

Petri Nets are a representative of formal graph-based pro-
cess languages. The definition of a Petri Net used here
is the one from [24]. A Petri Net is a directed bipartite
graph with two types of nodes called places and transi-
tions.

Definition 4 (Petri Net): A Petri Net is a triple
(P, T, F ) with P a set of places, T a set of transitions
(P ∩ T = ∅) and F ⊆ (P × T ) ∪ (T × P ) a set of arcs
(flow relation).

p ∈ P is an input place of t ∈ T if (p, t) ∈ F and
an output place if (t, p) ∈ F . •t denotes the set of input
places of t and t• the set of output places. A mapping
M : P → N0 maps every p ∈ P to a positive number
of tokens, i.e., at any time a place contains zero or more
tokens. The distribution of tokens over places (M ) rep-
resents a state of the Petri Net, often referred to as its
marking. A transition t ∈ T is activated in a state M
if ∀p ∈ •t : M(p) ≥ 1. A transition t ∈ T in M can
fire, leading to a new stateM ′ which reduces the value of
M(p) by 1 if p ∈ •t, adds 1 to M(p) if p ∈ t• and does
not change otherwise. The set of reachable states from
a start state M0 of a Petri Net builds the state space. To
check properties of a BPMN process, we need this state
space, for which we use the Kripke structure [22] of the
Petri Net corresponding to the original BPMN model.

CTL.

Computation Tree Logic CTL is a temporal logic formal-
ism often used to specify properties for model checking.
In our case, those properties are data-flow anti-patterns.
E.g., [8] describes CTL and an effective algorithm to ver-
ify properties specified in CTL.

The formal syntax of CTL is as follows:

Definition 5 (Computation Tree Logic): Every
atomic proposition ap is a CTL formula. If φ1 and φ2
are CTL formulas then ¬φ1, φ1 ∨ φ2, φ1 ∧ φ2, AXφ1,
EXφ1, AGφ1, EGφ1, AFφ1, EFφ1, A[φ1 U φ2], E[φ1
U φ2] are CTL formulas.

In our context, ap is a state of a Petri Net which repre-
sents the status of a data element in the BPMN process.

The logical operators always occur in pairs: A path
operator (A or E) together with a state operator (X,G, F

or U). A means that the formula needs to hold in all suc-
ceeding execution paths. E means that at least one exe-
cution path exists where the formula holds. X means that
the formula holds in the next state, G means the formula
holds in all succeeding states, F means that the formula
holds at least in one succeeding state, [φ1 U φ2] means
that φ1 holds until φ2 is reached.
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