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ABSTRACT

Increasingly data on the Web is stored in the form of Semantic Web data. Because of today’s information overload,
it becomes very important to store and query these big datasets in a scalable way and hence in a distributed fash-
ion. Cloud Computing offers such a distributed environment with dynamic reallocation of computing and storing
resources based on needs. In this work we introduce a scalable distributed Semantic Web database in the Cloud. In
order to reduce the number of (unnecessary) intermediate results early, we apply bloom filters. Instead of computing
bloom filters, a time-consuming task during query processing as it has been done traditionally, we precompute the
bloom filters as much as possible and store them in the indices besides the data. The experimental results with data
sets up to 1 billion triples show that our approach speeds up query processing significantly and sometimes even
reduces the processing time to less than half.
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1 INTRODUCTION

The data volume world-wide will grow to 40 Zettabytes
by the year 2020 according to a study [19] done in 2012,
such that the data volume is doubled every two years.
Handling such big data volumes is one of the current
challenges.

Cloud Computing has been born partly from the need
of storing and processing large data sets with dynamical
reallocation of hardware resources per demand for scal-
ing up with higher requirements and larger data process-
ing volumes. Cloud Computing offers cost-effectiveness
(as resources are not used when not needed), scalability
(per dynamic reallocation of hardware resources) and a

high availability (by dynamically switching from erro-
neous to correct running resources).

One of the main objectives of the Semantic Web [54]
and especially of the Linking Open Data (LOD) project
[29] is to offer and administer large machine-processable
data sets which are linked with each other. Hence, Se-
mantic Web data has a high capability of integration and
is the ideal choice to be used for big data. Already in
September 2011, the freely available Semantic Web data
contains over 30 billions triples in nearly 300 datasets
with over 500 million links between these data sets [29].

It is therefore a promising idea to marry Cloud Com-
puting with the Semantic Web. Utilizing Cloud technolo-
gies for storing large-scale Semantic Web data and pro-
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cessing Semantic Web queries on top of it is not a new
idea (e.g., [40, 34, 25, 24, 44, 43, 13]). Different ways to
optimize Semantic Web query processing in the Cloud
have been proposed (e.g., [34, 44, 25, 44, 43]), but the
research is still in its early stage.

A bloom filter [10] is a space-efficient probabilistic
data structure for testing the membership of an element
in a set. False positive matches are possible, i.e., the
test of membership returns either possibly in set or def-
initely not in set. Bloom filters find their applications
especially whenever the amount of source data would re-
quire impracticably large memory if error-free hashing
techniques were applied. Bloom filters typically use bit
vectors as internal data structure. This compact represen-
tation also allows saving transmission costs in distributed
scenarios.

Bloom filters are traditionally computed e.g. for joins
in relational databases during the index scan of one in-
put relation by applying a hash function to the values of
the join attribute(s) and setting corresponding bits in a bit
vector. For the other input relation, the bit vector is used
to filter unnecessary tuples as early as possible during
index scans, such that succeeding operations have less
intermediate results and are hence faster processed. In a
Cloud system, where data transmissions in the network
have high costs, bloom filters might help to minimize
the data volume transferred in the network. However,
the dynamic, on-demand computation of bloom filters
would require additional distributed processing steps in
a Cloud system and is hence very expensive. We propose
to precompute bloom filters and store them like data in
the Cloud to avoid these expensive distributed processing
steps. We will later in Section 4.1.1 argue how updates
can be processed without drawbacks in our approach.

Our main contributions are the following:

• An optimized system for Cloud-based large-scale
Semantic Web data storing and query processing.

• Utilization of bloom filters to minimize intermedi-
ate results and network traffic.

• Precomputation of bloom filters to avoid expensive
operations in the Cloud during query processing,
but dealing also with frequent updates.

• Smooth integration of the precomputed bloom fil-
ters in the data distribution strategy.

• A comprehensive experimental analysis for large-
scale data sets up to 1 billion triples showing
speedups for nearly all queries. The speedups even
increase with larger data volumes.

The rest of this paper is organized as follows: Sec-
tion 2 provides the basic knowledge concerning Seman-
tic Web and its languages, Cloud technologies and the

related work; Sections 3 and 4 present our system archi-
tecture and our bloom filter approach; Section 5 contains
our experimental performance evaluations; and finally
Section 6 concludes the paper with future work direc-
tions.

2 BASICS

We introduce the Semantic Web and its basic languages,
the relational algebra, and finally Cloud technologies and
their languages in the following sections. An overview
of existing contributions regarding processing Semantic
Web data in the Cloud is also provided.

2.1 Semantic Web

The current World Wide Web is developed for the hu-
mans, which can easily understand text in natural lan-
guage, take implicit knowledge into consideration and
discover hidden relationships. The goal of the Semantic
Web [54] is to enable a machine-processable web [8] al-
lowing new applications for its users. For this purpose,
the Semantic Web proposes to structure (web) informa-
tion which simplifies automatic processing. The Seman-
tic Web initiative of the World Wide Web Consortium
(W3C) already recommends technologies and language
standards in the recent years for driving the idea of the
Semantic Web. Among these languages is the Resource
Description Framework (RDF) [50] for describing Se-
mantic Web data and the RDF query language SPARQL
Protocol And RDF Query Language (SPARQL) [51, 52].
We introduce both languages in the following sections.

2.1.1 Data Format RDF

The Resource Description Framework (RDF) [50] is
a language originally designed to describe (web) re-
sources, but can be used to describe any information.
RDF data consists of a set of triples. Following the gram-
mar of a simple sentence in natural language, the first
component s of a triple (s, p, o) is called the subject, p
is called the predicate and o the object. More formally:

Definition (RDF triple): Assume there are pairwise dis-
joint infinite sets I , B and L, where I represents the set
of IRIs, B the set of blank nodes and L the set of literals.
We call a triple (s, p, o) ∈ (I ∪B)× I × (I ∪B ∪L) an
RDF triple, where s represents the subject, p the predi-
cate and o the object of the RDF triple. We call an ele-
ment of I ∪B ∪ L an RDF term.

In visualizations of the RDF data, the subjects and ob-
jects become (unique) nodes, and the predicates directed
labeled edges from their subjects to their objects. The
resulting graph is called RDF graph.
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Listing 1 shows an example of RDF data consisting
of three triples about a book published by Publisher
with the title "Pig" from the author "Expert" in the
serialization format N3 [7].

1 @PREFIX ex: <http://example.org/>.

2 ex:book ex:publishedBy ex:Publisher .

3 ex:book ex:title "Pig" .

4 ex:book ex:author "Expert" .

Listing 1: Example of RDF data

2.1.2 Query Language SPARQL

The World Wide Web Consortium proposed the RDF
query language SPARQL [51, 52] for searching in RDF
data sets. Listing 2 presents an example SPARQL query.
The structure is similar to SQL queries for relational
databases. The most important part is the WHERE-
clause which contains triple patterns. These are used for
matching triples. Known components of a triple are di-
rectly given in a triple pattern, unknown ones are left
as variables (starting with a ?). A triple pattern result
consists of variables bound to the values of matching
triples. The results of several triple patterns are joined
over common variables. All variables given behind the
keyword SELECT appear in the final result, all others are
left out. Besides SELECT-queries, also CONSTRUCT-
and DESCRIBE-queries are available to return RDF data.
Furthermore, ASK-queries can be used to check for the
existence of results indicated by a boolean value. Analo-
gous to N3, SPARQL queries may declare prefixes after
the keyword PREFIX.

Listing 2 presents an example SPARQL query, the re-
sult of which is {(?title=”Pig”, ?author=”Expert”)}when
applied to the RDF data in Listing 1.

1 PREFIX ex: <http://example.org/>
2 SELECT ?title ?author
3 WHERE {
4 ?book ex:publishedBy ex:Publisher .

5 ?book ex:title ?title .

6 ?book ex:author ?author .

7 }

Listing 2: Example of a SPARQL query

Besides this basic structure, SPARQL offers several
other features like FILTER clauses to express filter con-

ditions, UNION to unify results and OPTIONAL for a
(left) outer join.

SPARQL in its new version 1.1 [52] additionally sup-
ports enhanced features like update queries, paths and
remote queries.

2.2 Relational Algebra

Relational algebra is used in relational databases. Basic
operations of queries in such databases can be expressed
in terms of (nestable) operators of the relational algebra
[15, 16]. Also SPARQL operators can be transformed
[53] to a relational expression (which can be represented
by an operator tree or by its more general form, an op-
erator graph). An additional operator is the triple pattern
scan, which is a special form of an index scan operator,
yielding the result of a triple pattern. Table 1 contains
a brief overview of the operators which we use in the
following sections.

Figure 1 presents an example of a SPARQL query and
its transformation to an operator graph. The result of the
triple patterns 1, 2 and 3 are first joined over the variable1

?a, and the triple patterns 4 and 5 over the variable ?b.
Afterwards their results are joined over the variable ?x.

������

��������

�	�
���

����������������

����������������

����������������

�����������������

���������������

�

���

�� ���

������������ ������������ ���������� ������������� �����������

��	
��
�
���

�� � � �

Figure 1: Transformation of a SPARQL query to an
operator graph

2.3 Cloud Technologies

The idea of Cloud Computing is to allow users to out-
source their own software or even IT hardware in order
to dynamically react to current workload or hardware re-
quirements. For this purpose, Cloud providers often use
virtualization. For the user, the Cloud is often visible as
one logical unit, although if necessary, several physical
computers are processing the user’s Cloud. The Cloud

1Whereas in the relational model the terms attribute or column are
used to express schema information, for SPARQL operators the term
variable is typically used, which we will also use in this paper.
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Operator Notation Result
Selection σC(R) Relation containing only

tuples of the relationR for
which the formula C is
fulfilled

Projec-
tion

πv1,...,vn(R) Relation containing all tu-
ples of R, where only the
variables v1, ..., vn appear

Union R ∪ S Relation with all tuples of
R and S

Cross-
product

R× S Relation concatenating
each tuple of R with each
tuple of S

Equi-Join R onv1,...,vn S σR.v1=S.v1∧...∧R.vn=S.vn

(R× S)
Left
Outer
Join

R d|><|v1,...,vnS Relation containing the
join result as well as those
tuples from R which have
not been joined

Distinct δ(R) R without any duplicates
Order By τv1,...,vn(R) R sorted according to

v1, ..., vn
Limit limitn(R) Relation with the first n

tuples of R
Triple
pattern
scan

(i1, i2, i3) Relation containing the re-
sult of a triple pattern.
This operator is special for
SPARQL queries.

Table 1: Used operators of the relational algebra

user’s benefits are that the user does not need to maintain
any hardware resources, which are not fully used or even
idle most of the time, and the Cloud user only pays what
(s)he uses (pay-by-use). Usually the Cloud technologies
scale well and are arbitrarily extendible [20].

Many free and commercial Cloud technologies are
available. The Cloud service model Platform as a Ser-
vice (PaaS) [30] offers a programming application inter-
face or an execution environment to its users. Among the
Platform as a Service frameworks, Apache Hadoop [3]
is the most widely used de facto standard for processing
big data. Apache Hadoop is open source and hence can
be installed and executed on the user’s own infrastruc-
ture (in a Private or Community Cloud [30]) or (s)he can
buy an access to a commercial environment (in a Pub-
lic Cloud [30] like Amazon EMR [1]). We introduce
Apache Hadoop and its further relevant technologies in
the following subsections.

2.3.1 Hadoop

Apache Hadoop [3] is a freely available Cloud frame-
work which offers distributed processing of big data with
high availability and a good scaling performance in a
cluster of processing nodes. In contrast to other clus-
ter systems which often require specialized hardware,
Hadoop runs on a cluster of (heterogeneous) conven-
tional PCs. High availability of the whole system is
achieved by using data replication and automatic detec-
tion of errors.

Hadoop consists of two main components:

• The Hadoop Distributed File System (HDFS) which
can be used to store and access data in a distributed
and scalable fashion in the cluster.

• The MapReduce programming model and its frame-
work in Hadoop which define the way to process the
data stored in the cluster.

Additional extensions of Hadoop are built on top of
these two main components. We use the database HBase
and the data analysis framework Pig [4], which offers
the high-level language Pig Latin to describe MapRe-
duce jobs for data processing.

2.3.2 MapReduce Programming Model

In the MapReduce programming model, the in- and out-
put of a user-defined map function is a set of key-value
pairs. A MapReduce job consists of two phases: In the
first phase the input of the map-function is mapped, such
that all intermediate values with the same key are com-
bined using an user-defined reduce function in the sec-
ond phase. For this purpose, the key-value pairs may be
redistributed in the cluster allowing distributed and par-
allel processing of both functions, the map as well as the
reduce function. For example, a query processor may use
the map function to map the results of triple patterns (by
accessing an index) to the values of their join variables
and the reduce function for finally joining these results
(see Figure 2).

Several MapReduce jobs can form a MapReduce pro-
gram, such that several iterations of redistributions may
be necessary. Iterators are used within the processing
phases supporting pipelining of intermediate results to
overcome expensive materializations on external storage
media like hard disks and instead process large-scale in-
termediate results in main memory.

2.3.3 HBase

The predecessor of HBase is Google BigTable [12].
HBase and Google BigTable share their main principles:
HBase is a column-oriented database built on top of the
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Figure 2: MapReduce example for joining the results
of three triple patterns

Hadoop framework and has therefore the same advan-
tages like high availability and scalability. Leading com-
panies of the web era like Facebook, Twitter and eBay
overcome their big data problems by running HBase.

HBase stores a table (also called multidimensional
map) of key-value pairs. The key consists of several
components: row key, column-family, column-name and
timestamp. Values with the same column-family are
stored in the same physical file, such that the distribu-
tion can be controlled for supporting local operations in
order to avoid expensive network traffic.

Figure 3 presents an HBase table with two rows. One
of the two rows has the row key key1 and the other row
has the row key key2. There are three columns for the
row key key1: red (with value ”#F00”), blue (with value
”#00F”) and square (with value ”4”). As the columns red
and blue are in the same column-family, both are stored
in the same physical file [38].

An HBase table is not the same as a relational table. In
fact an HBase table can be understood as a nested key-
value-container [46] as follows:

• Row container: For each table row there is a con-
tainer with the row key as key and the value is
an own key-value container containing the columns
and their values (maybe over different column
families) for this row.

• Column container: The column name is the key of
this container and its value is a value container.

• Value container: The value container contains a
time-versioned value.

Each column family is stored in its own separate con-
tainer.

The keys are internally indexed in a Log Structured
Merge Tree (LSM-Tree) [36]. This data structure for big

data is well known to be efficient, especially for frequent
insertions as well as for searching.

2.3.4 Pig

Apache Pig [4] provides the high-level language Pig
Latin to specify big data processing tasks and an exe-
cution environment to run those tasks.

The creation of conventional MapReduce tasks is of-
ten very time-consuming. First the map and reduce func-
tions must be defined, the code compiled, the job trans-
mitted and finally the result received.

The advantage of Pig Latin is that for the same work
only a few lines of code are necessary. Furthermore, Pig
offers already data operations on big data like join, filter
and sort. Pig itself is easily extensible, e.g., user defined
functions may be defined for writing, executing or read-
ing data. The generated Pig Latin-programs are trans-
lated and executed in the Pig environment, which opti-
mizes the execution for highly-efficient processing. The
optimizations themselves are hidden from the user [49].

2.3.5 LUPOSDATE

LUPOSDATE [21] is an open source Semantic Web
database which uses different types of indices for
large-scale datasets (disk based) and for medium-scale
datasets (memory based) as well as processing of (pos-
sibly infinite) data streams. LUPOSDATE supports the
RDF query language SPARQL 1.1, the rule language
RIF BLD, the ontology languages RDFS and OWL2RL,
parts of geosparql and stparql, visual editing of SPARQL
queries, RIF rules and RDF data, and visual represen-
tation of query execution plans (operator graphs), opti-
mization and evaluation steps, and abstract syntax trees
of parsed queries and rules. The advantages of LUPOS-
DATE are the easy way of extending LUPOSDATE, its
flexibility in configuration (e.g. for index structures, us-
ing or not using a dictionary, ...) and it is open source
[22]. These advantages make LUPOSDATE best suited
for any extensions for scientific research.

2.4 Related Work of Data Management of Se-
mantic Web Data in the Cloud

Several approaches exist in the scientific literature which
address utilizing Cloud technologies for Semantic Web
databases. In the following sections we will character-
ize these contributions according to the following design
strategies:

• Storage strategy: Which data structure is used for
storing the triples on the nodes?

• Distribution strategy: How are triples distributed
among the nodes?
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Figure 3: Example of an HBase table [38]

• Query strategy: How is the data queried?

2.4.1 Storage Strategy

The triples can be either stored in one or more files
(e.g. using HDFS) or in a complex data structure like
a database (e.g. HBase).

Storing in one file: The simplest way is to store all the
triples in one file [40]. Hadoop and HDFS automatically
take care of the distribution of the file among the differ-
ent nodes. The disadvantage is that the way of distribu-
tion cannot be influenced. Also for querying the data,
all the triples in this file need to be scanned to achieve
the result of each triple pattern. In comparison to a cen-
tralized solution, this is very time-consuming, although
scanning can be done in parallel on each node, and inef-
ficient because the query optimizer has no possibility to
restrict the number of fragments that will be scanned.

Storing in several files: Most existing work proposes
to distribute the triples among several files [34, 25, 24,
44]. Because of the data fragmentation the result of a
triple pattern can be scanned faster by addressing a frag-
ment directly. The effectiveness depends on the distribu-
tion strategy, i.e., the way the triples are distributed over
the different files. After a certain size each file will again
be distributed over several nodes, such that the paral-
lelization during query processing is increased for larger
files.

Using a complex data structure (like HBase): Some
existing work (e.g., [43, 13]) describes how to utilize
HBase for storing the triples. HBase is a distributed,
column-based database (see Section 2.3.3) built on top
of Hadoop. The advantage of utilizing HBase is its well
structured environment that is optimized for data dis-

tribution. By using column families it is possible to
directly influence the data distribution to the different
nodes. This is very important for the distribution strate-
gies and their corresponding specialized query optimiza-
tions.

Centralized Semantic Web databases like
RDF-3X [32] and Hexastore [48] often use six dif-
ferent indices according to the six different collation
orders SPO, SOP, PSO, POS, OSP and OPS of RDF
triples, such that the result of a triple pattern can be
achieved with one index access. The result is also sorted
because the indices of these centralized databases are
stored in B+-trees, such that often the fast merge joins
[32] can be applied for joining the results of several
triple patterns. As HBase uses LSM-trees [36], which
have a B+-tree similar structure (but are faster for
insertions), it seems to be reasonable to choose a similar
distribution strategy.

2.4.2 Distribution Strategy

The choice of the distribution strategy is one of the most
important design decisions and influences the used stor-
age space as well as, more importantly, query processing
performance (with trade-off between both). We discuss
existing approaches in the following paragraphs.

Horizontal partitioning: Horizontal partitioning [34]
distributes the triples according to their subjects. If the
subject is used as file name, this will lead to many too
small partitions as there are typically a lot of subjects.
Hence the result of a hash function applied to the sub-
ject determines the HDFS file, which yields a much bet-
ter uniform distribution. Each resulting partition is then
stored in a HDFS file. For all triple patterns with a fixed
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subject (or a variable already bounded with the result of
another triple pattern), it is possible to scan only the rel-
evant file for their results instead of all triples. How-
ever, for all other cases, it is still necessary to scan all
the triples, which means this approach is not efficient for
many queries.

Vertical partitioning: Vertical partitioning [34, 44],
which is also sometimes called Predicate Split [25], dis-
tributes the triples according to their predicates. As usu-
ally there are only few predicates in real-world data sets
[18], it is not necessary to hash the predicates for com-
puting the HDFS file in which the triple should be stored.
Instead just the predicate label itself is used as the name
of the HDFS storage file for this triple. Furthermore,
only the subjects and objects of the triples are storage-
efficiently stored, which avoids redundancy for storing
the predicates. Unfortunately, the sizes of the partitions
vary much as the predicates in triples do not uniformly
occur, e.g., the predicate rdf:type occurs the most in
many real-world data sets [18].

A similar problem to that in horizontal partitioning
also exists for this approach: if the predicate of a triple
pattern is known, then its result can be found quickly;
otherwise the whole data must be scanned. In many typ-
ical application scenarios and for most triple patterns, the
predicates are known [6, 31], such that this distribution
strategy works well. However, not all types of queries
can be answered efficiently.

Predicate Object Split/Clustered Property Parti-
tioning: Predicate Object Split [25] is sometimes also
called Clustered Property Partitioning [34]. This ap-
proach avoids the large partitions of the vertical parti-
tioning by splitting and distributing the partitions further.
It is assumed that those partitions of vertical partitioning
are larger which contain triples with an Internationalized
Resource Identifier (IRI) as object. Those partitions are
split according to the object and distributed to smaller
partitions. If the object is a literal, then just vertical par-
titioning is applied, as literals are mostly unique or oc-
cur seldom. In this way too small partitions are avoided.
Like vertical partitioning, Predicate Object Split cannot
handle all types of triple patterns efficiently. However, if
predicate and object are known, a smaller partition than
that for vertical partitioning is to be scanned to compute
the result of the triple pattern. Storage space can be re-
duced up to 70% [25] by just storing the subjects in files
containing the predicates and objects in their names.

Column-based Partitioning: In Column-based Par-
titioning [44] each triple is distributed to three different
tables according to the subject, predicate and object. In-
stead of storing the whole triple inside, only one of them,
respectively, is stored together with a triple id in the ta-
ble. If the subject, predicate or object of a triple pattern
is known, then the triple ids of its result can be accessed

with one index scan and the triples with another index
scan: At least two expensive MapReduce jobs are neces-
sary to retrieve a triple pattern result. For most other dis-
tribution strategies only one MapReduce job is needed.

Ordered-Sorting Partitioning: In a variant of
Column-based Partitioning, Ordered-Sorting Partition-
ing [44] stores the complete triples (instead of only triple
ids) in a sorted way. In this way, only one MapReduce
job is necessary to retrieve a triple pattern result, but also
the storage of the triples needs much more space. Large
tables are splitted into subtables, such that often only a
few subtables and not the whole table must be scanned.
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Figure 4: Triple pattern and its corresponding index
when using Hexastore distribution (see [43])

Hexastore Distribution with HBase: The contribu-
tion [43] proposes a distribution strategy similar to the
one of Hexastore [48] and RDF3X [32] for centralized
Semantic Web databases. The triples are distributed to
six different indices: S PO, P SO, O SP, SP O, SO P
and PO S, where the name before the underscore repre-
sents the rowkey and that after the underscore the value.
By choosing the correct index (see Figure 4), we can re-
trieve the result of any triple pattern within one index
access.

Each triple is stored six times, which implies a much
higher space consumption than the previously described
approaches. According to the Cloud paradigm the Cloud
can dynamically offer more space when needed, such
that a better performance outweighs the disadvantage of
higher space consumption.

2.5 Query Strategy

In the Hadoop environment, queries must be processed
in one or several MapReduce jobs. For this purpose, the
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SPARQL query must be first transformed to these jobs.
If there are several triple patterns inside the query, more
than one job is necessary to fulfill the task of query pro-
cessing. If one job (e.g., for joining) needs the results of
other jobs as an input, then these results must be tem-
porarily stored in the distributed file system. As this
causes high costs in terms of space and time, the goal
of optimization is to create as few jobs as possible, such
that query processing needs less data traffic and process-
ing time.

Creation of ”pure” MapReduce jobs: Several pro-
posals (e.g., [43, 24]) describe approaches that create
”pure” MapReduce jobs and store intermediate results
of these jobs in HDFS, which are then used as input for
further processing steps. The algorithm presented in [24]
also minimizes the number of MapReduce jobs.

Creation of MapReduce jobs with the help of an
abstraction language: Most of the time a lot of efforts
are needed to develop ”pure” MapReduce jobs, where
even for simple queries often several hundred lines of
code are necessary. Hence, several abstraction languages
have been developed in order to indirectly create suitable
MapReduce jobs.

The contribution [34] describes how triples can be
stored as JSON objects. Furthermore, SPARQL queries
are translated into JAQL [9] queries which work on
JSON files. JAQL supports core functionalities like
JOIN, FILTER and SORT which abstract from the
MapReduce Framework.

Another work [40] uses the abstraction language Pig
Latin from the Pig framework in order to create MapRe-
duce jobs for tasks such as joining, filtering or process-
ing other set operations like union. Here, the SPARQL
query is first transformed into an operator graph which
is afterwards optimized and finally transformed into the
Pig Latin program to be executed.

2.5.1 Relation of our work to existing contribu-
tions

Our approach combines the Hexastore distribution strat-
egy [43] for HBase with the creation of the MapRe-
duce jobs with Pig Latin from an SPARQL operator
graph (similar to the approach presented in [40]). How-
ever, we extend the existing approaches by using a vari-
ant of bloom filter [10]. Bloom filters are often used
in databases to minimize the intermediate query results
early in the query execution process [37, 33, 23]. The
contributions [56] and [27] already describe the usage of
bloom filter for SPARQL processing within the MapRe-
duce framework. The approach in [56] is quite rudimen-
tary as the bloom filter can only be created if the triples to
be processed fit completely in main memory. The other
approach [27] uses bloom filters only during joining two

triple patterns. Furthermore, the bloom filter of a triple
pattern is computed in both approaches during query pro-
cessing, which is time consuming. Contrary to these ap-
proaches, our proposed variant already precomputes and
stores the bloom filters for all possible triple patterns dur-
ing the import phase of the triples. In this way the bloom
filter of the whole query can be faster determined as addi-
tional iterations through triple pattern results are avoided
during query processing. We describe more details of
our approach in Section 4.

3 PROPOSED ARCHITECTURE

We first clarify the requirements of our Cloud-based Se-
mantic Web database. Afterwards the motivations for
some of our design decisions, like addressing the storage,
distribution and query strategies, are given. Finally, we
describe the main phases of our approach during query
processing.

3.1 Requirements

Our architecture is developed to fulfill the following re-
quirements for a Cloud-based SPARQL processing en-
gine:

• Supporting full SPARQL 1.1: The system should
support the whole SPARQL 1.1.

• Processing as many operations in the Cloud as
possible: The system should only schedule the op-
erations that are definitely not supported by the
Cloud technologies to be processed outside the
Cloud.

• Using proven Cloud-technologies: The system
should not re-invent the wheel, but use proven and
efficient Cloud-based technologies as much as pos-
sible.

• Using indices: The system should use the best-
known indices for RDF data and SPARQL query
processing to achieve efficient query processing.

• Precomputing as much as possible: The system
should precompute meta-data as much as possible,
such that this information does not need to be com-
puted for each query.

• Supporting updates: The system should be able
to handle updates efficiently, even though the meta-
data needs to be (partly) recomputed.
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3.2 Storage Strategy

Our system stores the triples in HBase instead of using
the distributed file system HDFS because of its advan-
tages concerning efficient storage, fast access according
to rowkeys and the possibility to influence the distribu-
tion to nodes by using column families.

Furthermore, HBase supports compression of its con-
tained data and the compression rate of RDF data is very
high due to its contained IRIs that have many long com-
mon prefixes. Although the Cloud paradigm offers the il-
lusion of infinite storage space, in concrete systems espe-
cially in private Clouds, it may be an advantage to reduce
the stored data. HBase supports different compression
algorithms like GZIP [17], LZO [35] and SNAPPY [55].
GZIP has a good compression rate, but the compression
itself is slower in comparison to LZO and SNAPPY. As
we want to offer high performance in query processing,
we hence choose LZO as the compression algorithm for
HBase data.

3.3 Distribution Strategy

We choose the Hexastore distribution strategy (see Sec-
tion 2.4.2) because the result of a triple pattern can be
accessed with one index access. The result of a triple
pattern is also on one node in the Cloud, such that the
triple pattern result is at once available without an addi-
tional Reduce phase.

The disadvantage of this distribution strategy is the ad-
ditional space requirements as the triples are replicated
in six different indices. However, this problem is mini-
mized by using a suitable compression algorithm. Like
in [47] we choose LZO as the compression algorithm.
In this way the overall space consumption (of all six in-
dices) is reduced to 15% of the original data.

We use Bulk Load [5] for importing data. For this pur-
pose, triples are block-wise imported using MapReduce
jobs. In this way we import 10 million triples (which lead
to 60 million HBase entries because of the chosen data
distribution strategy) in approximately 11 minutes in our
experimental setup (see Section 5). In other words, we
import 1 million triples (leading to 6 million HBase en-
tries) per minute.

3.4 Query Strategy

For full support of SPARQL 1.1, we decided to ex-
tend an existing SPARQL engine, such that parts of the
query can be executed in the Cloud and the rest lo-
cally at the node initiating query processing. Because
of its advantages like the easy way of extending LU-
POSDATE, its flexibility in configuration and its being
open source as described in Section 2.3.5, we have cho-

sen LUPOSDATE [21] as basis for our new engine called
P-LUPOSDATE.

For the query strategy we have the possibilities to di-
rectly implement MapReduce jobs or to use a higher
abstraction language (see Section 2.5). While we can
implement exactly what is needed using efficient algo-
rithms when directly coding MapReduce jobs, we have
less implementation effort when using an abstraction lan-
guage. Abstraction languages already offer most needed
functionalities and are often extendible for currently un-
supported parts. Furthermore, we will directly benefit
from future improvements of supported algorithms when
using an abstraction language. Also temporarily storing
large intermediate results in the Cloud is already sup-
ported by the use of an abstraction language, which oth-
erwise would have to be re-implemented. Pig (see Sec-
tion 2.3.4 and Section 2.5) with its abstraction language
Pig Latin to express data processing jobs is proven as
Cloud-based framework for big data [4]. Hence, we de-
cided to use Apache Pig as most functionalities needed
for SPARQL query processing are already supported by
Pig. Actually the name P-LUPOSDATE is a combina-
tion of Pig and LUPOSDATE to reflect this design de-
cision. Pig also supports compression of intermediate
results with GZIP or LZO;2 we choose LZO because of
its fast compression and decompression. Besides saving
storage space, using compression also reduces network
load whenever intermediate results need to be transferred
to other nodes.

All the SPARQL operators of Table 1 can be processed
in the Cloud with P-LUPOSDATE. However, it is neces-
sary to extend Pig Latin for the support of some built-in
functions for the Selection operator. For example, our
implementation extends Pig Latin by the bound built-
in function, which checks whether or not a variable is
bound to a value.

3.5 Phases during Query Processing

Figure 5 shows the main phases for SPARQL query pro-
cessing in P-LUPOSDATE. The phases 1a and 1b are
processed on the client side and phase 2 in the Cloud.
First the SPARQL query is converted into a Pig Latin
program (phase 1a) by transforming it into an optimized
operator graph using LUPOSDATE. The Appendix A
describes the transformation steps for the different op-
erators in more detail. In phase 1b for computing the
bloom filter(s) (see Section 4), the bit vectors for each
triple pattern are loaded from HBase and combined ac-
cording to the SPARQL operators to retrieve bloom fil-
ter(s) for the whole SPARQL query. The bloom filter(s)
is/are used in phase 2 to filter out unnecessary intermedi-

2Pig version 0.11.1 does not support SNAPPY [2].
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ate query results of each triple pattern. The final result of
the whole SPARQL query is computed by executing the
Pig Latin program (using one or more MapReduce jobs)
in the Cloud.

4 PROPOSED BLOOM FILTER APPROACH

Databases often use bloom filter [10] in order to reduce
the number of intermediate query results especially be-
fore expensive operations like join for speeding up these
operations. Figure 6 presents an example for bloom fil-
ter application. First a bit vector (initialized with all bits
cleared) for table B is generated by applying a hash func-
tion to the join attribute value of each tuple of B. The
result is an index position used to set the bit in the bit
vector. Afterwards this bit vector (also called bloom fil-
ter) is compared with the tuples of table A. Each tuple,
for which the corresponding bit (determined by apply-
ing the same hash function as before to the join attribute
value) in the bloom filter is unset, is ignored and the other
tuples form a new table A’. Finally, the smaller table A’
is joined with B instead of the whole table A. This con-
cept is very interesting for distributed approaches as for
a bloom filter of 1024 bits, only 128 bytes needs to be
transferred.

Hence, in our system we also use bloom filters to
restrict the input to the necessary minimum and avoid
superfluous data transfers and computations. Typically
bloom filters are computed before or during the query
processing phase. This would require at least one more
costly MapReduce job on large data, which can be
avoided by precomputing bloom filters during importing
data. Due to the simple nature of RDF consisting of only
three components and because of the used Hexastore dis-
tribution strategy, we can precompute all possible bloom
filters and store them in line with the Hexastore distri-
bution strategy. The following Section 4.1 describes this
in more detail. We will later argue (see Section 4.1.1)
that even frequent updates are no problems to the sys-
tem. Section 4.2 describes a hybrid storage format for
the bloom filter, and Section 4.3 deals with the computa-
tion of bloom filters for the different SPARQL operators.

4.1 Precomputation of the Bloom Filters

We adapt the concept of bloom filters for Cloud-based
SPARQL processing. Apache Pig already provides a
bloom filter implementation. However, applying this im-
plementation in our Cloud-based SPARQL processing
engine leads to a recomputation of the bit vector for each
triple pattern. It takes a long time if the triple pattern re-
sult is large, as the complete result must be iterated and
one additional MapReduce phase is necessary. Hence,
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Figure 6: Bloom filter example

we developed our own bloom filter variant (and imple-
mentation), which only computes the bit vectors once
during the data import. For each possible triple pattern
we store the corresponding bit vector besides the pre-
computed triple pattern result in HBase, such that these
are incorporated in line with the Hexastore distribution
strategy. The bit vectors are stored in a Column-family.
Figure 7 presents the final storage scheme inclusive bit
vectors. The storage scheme is exemplified for the S PO
table and is similar for the other tables.

For each rowkey three column-families exist:

• Hexa: The values of the rowkey are stored here.
For the table S PO, this is, for example, the concate-
nated elements of predicates and objects separated
by a comma.

• Bloomfilter1: This column-family stores the set
bits of the bit vector of the first element. The first
element is the predicate in the case of table S PO.

• Bloomfilter2 (optional): This column-family
stores the set bits of the bit vector of the second el-
ement. The second element is the object in the case
of table S PO. Some tables like SP O do not have
any second element, such that for these tables only
one bit vector is stored and Bloomfilter2 is empty.

By using several column-families, the triple pattern
results as well as the bit vectors can be accessed sepa-
rately. HBase stores three different key-value- container
for each rowkey and a container for each column-family.
Within the containers, the column name is stored as a
key and, in our system, the corresponding value remains
empty. Figure 7 marks the different elements by Key and
Value.
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Figure 5: Phases of SPARQL Query Processing in the Cloud

4.1.1 Updates

We discuss updating the data (i.e., adding, deleting
and modifying triples) and the necessary updates in the
bloom filters in the following paragraphs.

Adding triples: For each added triple the correspond-
ing bit vectors must be updated, too, by just setting the
corresponding bit. This can be done quickly as for each
index to which the triple is added, only one or two bit
vectors need to be accessed. The system only has to en-
sure that the bit vectors are updated in the same transac-
tion as the one for adding the triple; otherwise the bloom
filters are incorrectly filtering out too much input.

Deleting triples: Whenever a triple is deleted from
an index, it may lead to errors if we just clear the
corresponding bits in the bit vectors. The corresponding
bits may still need to be set because of other remaining
triples in the index. We may scan all triples in the in-
dex for such a triple, but this takes similar time as build-
ing the bloom filter from scratch. Building the affected
bloom filters again is, on the other hand, too inefficient
for each inserted triple.

We therefore propose to delay building the bloom fil-
ters to times when the workload is low or build the bloom
filters after a certain number of deletions based on the
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Figure 7: HBase Storage Scheme with Bloom Filter

following observation: If a few bits are unnecessarily set
in a bloom filter, then the bloom filter does not filter out
too much and the approach still works correctly. Only
few more false drops may be generated, i.e., some un-
filtered triples, which could be filtered out based on an
up-to-date bloom filter, may lead to a higher number of
unnecessary intermediate query results, which are later
actually not joined and are not necessary for the final
query result. An upper bound for the number of addi-
tional false drops can be obviously determined by

D × #triples of data set
#bits of bloom filter

where D is the number of triples without bloom filter
update. According to [11] the number of false drops is
low for choosing the same number of bits for the bloom
filter as the number of triples in the data set. Hence we
expect the number of additional false drops to be at most
the same as the number of deleted triples, which is man-
ageable.

Counting bloom filters [11] which counts the occur-
rences of a bit position may be another solution to this
problem. However, counting bloom filters needs much
more storage space and thus we are not in favor for this

solution.
Modifying triples: Modifying a triple can be seen as

an atomic operation of deleting the old and adding the
modified triple. The previously discussed methods for
adding and deleting triples thus apply also here.

In summary, handling updates (adding, deleting as
well as modifying triples) can be done efficiently in our
system.

4.2 Storage Formats

For sparse bit vectors with only few bits set, we store
the index positions of these bits. This has a big disad-
vantage for bit vectors with many bits set in that each
index requires additional 4 bytes space as the indices are
stored as integers. In fact it is no problem for HBase as
the data is efficiently compressed, but the phase 1b (in
Figure 5) takes too long for this kind of bit vectors. This
is because in these circumstances, many indices must be
loaded from HBase and transformed into a real bit vec-
tor. Experiments show that bit vectors with more than
100,000 bits set are unpractical as the calculation takes
several minutes.

Hence, we searched for an alternative storage format
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for bit vectors. Indeed we could save the real bit vec-
tors instead of the indices. However, this would require
overall more space for the following reasons: For the
Hexastore distribution strategy, HBase stores many rows
containing the results of a triple pattern, and for each of
these rows, one or two bit vectors are created. In order
to illustrate the problem we imported 50,027 triples and
printed the number of rows (see Table 2).

Table Number of Rows
S PO 9,788
P SO 57
O SP 25,559
SP O 48,671
SO P 50,027
PO S 25,850

Table 2: Number of rows for 50,027 triples

Additionally, the following properties are to be con-
sidered:

• Each table contains 50,027 triples. This means if a
table contains 10,000 rows, on average 5 results are
stored for each row.

• For each column name, in every row, there will be
at most one new bit set in the bit vector. If several
results have the same hash value, then the number
of bits is lower than the number of results.

• For each of the tables S PO, P SO and O SP, two
bit vectors are stored.

• The sum of the rows is approximately 150,000.

A real bit vector with 10 million bits represented by
bytes has a size of 1.2MB if, for each index, only 1 bit
is stored. We call such a real bit vector a byte-bit vec-
tor. When storing the byte-bit vectors, for each row,
1.2MB is stored for SP O, SO P and PO S, and 2.4MB
for S PO, P SO and O SP. Altogether we would have to
store (48,671 + 50,027 + 25,850) × 1.2MB + (9,788 +
57 + 25,559) × 2.4MB ≈ 228GB (uncompressed). If
only the indices are stored as integers, then we would, in
the worst case, have only (48,671 + 50,027 + 25,850) ×
4 Byte + (9,788 + 57 + 25,559) × 8 Byte ≈ 0.75MB.
This example demonstrates that for the most rows, the
storage of the byte-bit vectors is unnecessary and wastes
too much storage space. We hence developed a hy-
brid approach which unifies the advantages of (a) storing
byte-bit vectors and (b) storing the indices of set bits.

In this hybrid approach, there is an additional phase
that checks each of the rows after importing the triples.
If there are more than 25,000 results in a row (corre-
sponding to the number of set bits), then additionally the

byte-bit vector is generated and stored. The threshold of
25,000 is chosen because our experiments show that the
generation of the byte-bit vector from the indices of set
bits only needs few hundred milliseconds (and is there-
fore not significant in the whole query processing phase).
These bit vectors with fewer than 25,000 set bits do not
consume much storage space if they are stored as indices
of set bits. On the other hand, the byte-bit vectors with
more than 25,000 set bits can be fast accessed. There-
fore overall the hybrid approach saves storage space and
processing time.

4.3 Bloom Filters for a whole Query

Bloom filters are computed after a SPARQL query has
been parsed, transformed to a relational expression and
optimized, but before the first index scan starts. Such
resulting bloom filters can be used to filter out irrelevant
input.

Figure 8 provides the computation formulas for com-
puting the bloom filters of a relational expression to
which SPARQL queries are transformed. The bloom fil-
ters of each triple pattern for a specific variable can be
accessed by querying the corresponding index in HBase
where the precomputed bloom filters are stored. The
right index is chosen based on the constants in the triple
pattern and the position of the considered variable (see
formula (1) in Figure 8). For example, the first bloom
filter of the index SP O with key (c1, c2) is chosen for a
triple pattern (c1, c2, v) and a variable v, where c1 and c2
are constants. The second bloom filter of the index P SO
with key c is chosen for a triple pattern (v1, c, v2) and a
variable v2, where c is a constant and v1 is a variable.
See Table 3 for the used index and key for the differ-
ent types of triple patterns. If we want the bloom filter
of v or v1, we choose the first bloom filter, for v2 we
choose the second bloom filter. We cannot determine a
bloom filter for a triple pattern consisting only of con-
stants. For the bloom filter for triple patterns with only
variables (v1, v2, v3) we have many possibility to deter-
mine the bloom filter. One possibility is to choose the
first bloom filter of P SO for v1, the first bloom filter of
S PO for v2 and the second bloom filter of S PO for v3.

Operators not changing the bloom filter: Most rela-
tional operators like projection, sorting, duplicate elim-
ination and limit do not affect filtering and, hence, the
bloom filter remains as it is (see formula (2)).

Bloom filter of selection: For many cases of the se-
lection operator, we can compute a more precise bloom
filter than just using the bloom filter of the input relation
(see formula (3)). If there is a boolean AND-operation
inside the filter, the conditions of its operands must be
both fulfilled and, hence, we can combine the bloom fil-
ters of the operands’ conditions applied to the input re-
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Unary operators:

bfv(tp) = index-access(tp, v) (1)
bfv(Φ(R)) = bfv(R) | Φ ∈ {πv1,...,vm , τv1,...,vm , δ, limitn} (2)

bfv(σC(R)) =



bfv(σC1
(R)) ∧ bfv(σC2

(R)) if C = (C1 ∧ C2)

bfv(σC1
(R)) ∨ bfv(σC2

(R)) if C = (C1 ∨ C2)

bfv1(R) ∧ bfv2(R) if v ∈ {v1, v2} ∧ C = (v1 = v2)

gen(c) if C = (v = c)

bfv(R) otherwise

(3)

Binary operators:

bfv(R1 ./v1,. . .,vm . . . ./v1,. . .,vm Rn) =

{
bfv(R1) ∧ . . . ∧ bfv(Rn) if v ∈ {v1, . . ., vn}
bfv(Ri) if v /∈ {v1, . . ., vn} ∧ v ∈ Ri ∧ i ∈ {1, . . ., n}

(4)

bfv(R1 × ...×Rn) = bfv(Ri) | v ∈ Ri ∧ i ∈ {1, ..., n} (5)

bfv(R1d|><|v1,...,vmR2) =

{
bfv(R1) if v ∈ R1

bfv(R2) if v /∈ R1 ∧ v ∈ R2

(6)

bfv(R1 ∪ ... ∪Rn) = bfv(R1) ∨ ... ∨ bfv(Rn) (7)

Legend:

bfv Function with signature Relation→ bitvector to compute the bloom filter of variable v
tp Triple pattern

v, v1, ..., vm Variables
index-access Function with signature Triple Pattern× V ariable→ bitvector to retrieve the

bloom filter of a variable for a given triple pattern from HBase
R,R1, ..., Rn Relations

v ∈ R Variable v occurs in the relation R
C,C1, C2 Conditions

c Constant (an RDF term, i.e., an iri, blank node or literal)
gen(c) Function with signature Constant→ bitvector returning a bit vector, where all bits are unset

except the one for the constant c. The bit-position for c is determined by a hash function applied to c.

Figure 8: Computation of bloom filters based on relational expression

lation by a bitwise AND-operation. For a boolean OR-
operation, one of the conditions of its operands must be
fulfilled, and hence the bloom filter of the operands’ con-
ditions applied to the input relation must be combined
by a bitwise OR-operation. If two variables are checked
for equality, then this is an equi-join: after the selection
operator only those tuples remain, which have the same
values for both variables, i.e., the intersection of values
for the two variables remain. Hence, the bloom filter for
these two variables is the same after the selection and we
can build this bloom filter by a bitwise AND-operation

on the bloom filters of these two variables of the input
relation. If a variable is compared with a constant value,
then the resulting bloom filter contains only one bit set at
the position for the constant.

Bloom filter of join: For joining operations, the
bloom filters of their operands are bitwise AND-
combined for join variables; otherwise the bloom filter
of the input relation from which the variable originates
is taken (see formula (4)).

Bloom filter of Cartesian product: There are no
common variables between the input relations of Carte-
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Triple pattern type Index Key
(c, v1, v2) S PO c
(v1, c, v2) P SO c
(v1, v2, c) O SP c
(c1, c2, v) SP O (c1, c2)
(c1, v, c2) SO P (c1, c2)
(v, c1, c2) PO S (c1, c2)

(c1, c2, c3) e.g. SP O
(c1, c2) additional

filtering step necessary
(v1, v2, v3) e.g. SP O full scan

Table 3: Used index and key for the different types
of triple patterns (v and vi are variables, c and ci are
constants)

sian products, such that also here the bloom filter of the
input relation from which the variable originates is cho-
sen (see formula (5)).

Bloom filter of Left outer join: There are two pos-
sibilities for the left outer join (see formula (6)): If the
variable occurs in the left operand, then its bloom fil-
ter must be chosen as all tuples from the left operand
are considered, but not additional ones from the right
operand in its final result. If the variable occurs only
in the right operand, then its bloom filter must be cho-
sen as values for this variable might only come from this
operand.

Bloom filter of union: For the union operation (see
formula (7)), the bloom filters are bitwise OR-combined
as any tuple from its operands is considered. How-
ever, many of the bits of the bloom filters may be set
in this way leading to worse filtering rates. If there
are no further operations like joins on the result of an
union-operation, it is often better to just compute the
bloom filters within the operands and apply these local
bloom filters only within the operands. An even better
way is to bitwise AND-combine the bloom filter for the
whole query and the bloom filter of the considered union
operand and use the result as the bloom filter for this
union operand. These optimizations are not expressed in
the formulas, but should be implemented in real systems.

5 EXPERIMENTAL EVALUATION

This section presents the results of the experiments using
P-LUPOSDATE3 and their analysis. We have imported
data of different sizes into the Cloud database and com-
pare the execution times of different queries. Each query
is evaluated with and without using bloom filters in order
to compare both approaches.

3The source code of P-LUPOSDATE is open source and freely
available at https://github.com/luposdate/P-LUPOSDATE.

5.1 SP2Bench: SPARQL Performance Bench-
mark

We have used the SP2B benchmark [42] of the Univer-
sity Freiburg. The advantage of this benchmark is that
a generator can be used to generate different data sizes.
The structure of the generated data is based on the Digital
Bibliography & Library Project (DBLP) [45], such that
the data and its properties are very similar to data sets of
the real world. The authors of [42] also propose 14 SE-
LECT queries and 3 ASK queries, which are developed
in such a way that all important language constructs of
SPARQL are covered. We do not consider the 3 ASK
queries in our experiments as they do only differ from
some of the SELECT queries by being an ASK query
and not a SELECT query.

All queries are executed completely in the Cloud ex-
cept of query 11 which contains an OFFSET-clause
(OFFSET 50), which is not supported by Pig Latin.
Hence, the OFFSET operator is executed at the master
node after all the other computations have been done in
the Cloud. As only 50 intermediate results are addition-
ally transmitted to the master node, this does not signifi-
cantly influence the total query execution time.

The original query 6 in this benchmark contains an
OPTIONAL clause with no common variables with the
outer triple patterns. We have to specify the join vari-
ables for left outer joins in Pig Latin. Another work
[39] solved this problem by modifying the query slightly,
such that executing the modified query does neither
change the result nor the execution order. Hence, we
use the same modified version (Listing 3) of the original
query 6.4

5.1.1 Experimental Environment

We have used Cloudera CDH 4.4.0 [14] for the instal-
lation of the Hadoop (version 2.0.0-mr1) and the HBase
(version 0.94.6) cluster.

The hardware of the cluster consists of 8 different
nodes with the following configuration:

• 1× Master Node: Intel(R) Core(TM) i5 CPU 750
@ 2.67GHz, 12GB DDR3 1333 MHz RAM, 1TB
hard disk and 1GBit network connection.

• 5× Worker Nodes: Intel(R) Core(TM)2 Quad
CPU Q9400 @ 2.66GHz 4GB DDR3 1333 MHz
RAM, 250GB to 500GB hard disk and 1GBit net-
work connection.

• 2×Worker Nodes: Intel(R) Core(TM)2 CPU 6600
@ 2.40GHz, 4GB DDR3 1333 MHz RAM, 300GB

4 In future releases we will solve this problem by im-
plementing variable propagation (considering the filter condition
?author=?author2) in the logical optimization phase.
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1 ...

2 SELECT ?yr ?name ?document
3 WHERE {
4 ?class rdfs:subClassOf foaf:Document.

5 ?document rdf:type ?class.

6 ?document dcterms:issued ?yr.

7 ?document dc:creator ?author.

8 ?author foaf:name ?name.

9 OPTIONAL {
10 ?class2 rdfs:subClassOf foaf:Document.

11 ?document2 rdf:type ?class2.

12 ?document2 dcterms:issued ?yr2.

13 ?document2 dc:creator ?author.

14 FILTER (?yr>?yr2)
15 }

16 FILTER (!bound(?document2))
17 }

Listing 3: SP2B Query 6 (Modified)

and 400GB hard disk and 1GBit network connec-
tion.

Hence, we run 1 Namenode and 7 Datanodes for
HDFS, 1 JobTracker and 7 TaskTracker for MapRe-
duce as well as 1 HBase Master and 7 RegionServer
for HBase. We use the standard configuration with few
modifications: we change the replication factor of HDFS
from 3 to 1 in order to save space. We choose a heap
size of 2GB for the MapReduce-TaskTracker-Service
and 1GB for the MapReduce Child process. The number
of MapReduce slots corresponds to half of the number
of CPU cores in the worker nodes, i.e., 12 MapReduce
slots in our cluster. We choose one Reduce slot for each
worker node, i.e., our cluster contains 7 Reduce slots.

5.1.2 Benchmark Results and Analysis

The results of the experiments and their analysis are pre-
sented in the following sections. We first discuss the im-
port of the data and its space requirements, then the ex-
periments for query evaluation, the scalability of query
evaluation as well as the determination of the bloom fil-
ters.

5.1.2.1 Import and Byte-Bit Vector Calculation

We use Bulk Load [5] for importing the data. The times
and times per 1 million triples Ø per 1m for importing
the data in the sizes of 1 million, 10 million, 100 million
and 1000 million triples and the corresponding byte-bit
vector calculation are presented in Table 4.

The times per 1 million triples Ø per 1m are nearly
constant for 10 million triples and larger datasets. Note

# Triples Import Bit Vector-Calculation
Time Ø per 1m Time Ø per 1m

1 m 00:01:40 00:01:40 00:00:44 00:00:44
10 m 00:12:34 00:01:15 00:02:42 00:00:16

100 m 02:04:05 00:01:14 00:28:40 00:00:17
1,000 m 21:32:40 00:01:18 04:19:20 00:00:16

Table 4: Times for import and byte-bit vector calcu-
lation in the format [hours:minutes:seconds]

that the same numbers apply for subsequent updates be-
cause the way of adding triples is the same for import-
ing data from scratch and for adding additional triples.
Overall, the experiments show that the times to import
and update data are almost proportional to the number of
triples and are therefore well scalable.

5.1.2.2 Space Requirements

The data in the HBase tables are compressed before be-
ing stored on hard disk. We present the storage space for
the different indices and their sum in Table 5.

Index
# Triples 1m 10m 100m 1000m

S PO 0.041 0.417 4.1 41.4
SP O 0.041 0.421 4.1 41.0
SO P 0.048 0.517 5.0 49.6
P SO 0.031 0.306 3.6 39.6
PO S 0.047 0.439 4.5 46.6
O SP 0.059 0.548 5.6 56.6
Sum 0.267 2.590 27.0 274.9
Original Data 0.107 1.100 11.0 103.0

Table 5: Space of HBase tables in comparison to orig-
inal data in GB

The disadvantage of storing the triples six times (in
the six indices) is quite well compensated by compres-
sion. Furthermore, the space for the six indices is almost
proportional to the number of triples. Table 5 contains
also the storage space for the original data in N3 format.
Contrary to the storage format used in our implementa-
tion for the HBase data, the N3 data makes extensive use
of prefixes which minimizes the sizes drastically.

5.1.2.3 Query Evaluation

In order to show the benefits of the bloom filter approach,
we import 1 billion triples and compare the execution
times of query evaluation with and without using the
bloom filter approach. Table 6 and Figure 9 present the
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experimental results. In the experiments, we use a bit
vector size of 1 billion in order to minimize the num-
ber of false drops. We run each experiment three times.
Here, in Table 6 we present the average execution times
and the uncorrected sample standard deviation σ rela-
tive to the absolute execution times in percent in order to
show that the execution times do not differ much.

Table 6 contains also the speedup of each query when
using the bloom filter approach. Hence, the speedup is
computed in the following way:

Speedup =
Execution T ime without Bloom Filter

Execution T ime with Bloom Filter

This means that a speedup of 2 indicates that the
bloom filter approach needs half of the time in compari-
son to not using the bloom filter approach.

Query
With Without

Sp
ee

du
p

Number of
Query
Results

Bloom Filter Bloom Filter

Ti
m

e

σ
[%

]

Ti
m

e

σ
[%

]

Q1 00:10:03 2.97 00:14:45 3.61 1.47 1
Q2 01:21:38 0.91 01:45:28 2.21 1.29 95,476,064
Q3a 00:12:54 1.37 00:19:14 0.62 1.49 10,157,284
Q3b 00:01:53 1.89 00:02:37 1.55 1.39 70,612
Q3c 00:01:51 0.65 00:02:36 1.53 1.40 0
Q4 04:49:10 1.64 05:20:57 1.52 1.11 4,509,222,768
Q5a 01:38:30 1.57 01:42:08 1.26 1.04 9,197,169
Q5b 01:37:46 1.76 02:41:22 0.56 1.65 9,197,169
Q6 03:32:24 0.76 03:32:45 0.83 1.00 120,403,318
Q7 03:46:51 2.71 04:05:17 0.81 1.08 20,440
Q8 04:23:34 3.29 09:50:13 2.67 2.24 493
Q9 02:20:41 0.39 02:30:12 0.55 1.07 4
Q10 00:00:19 1.15 00:00:19 0.10 1.00 656
Q11 00:13:00 0.91 00:13:11 1.01 1.01 10
Q1-Q11 24:10:35 0.46 32:21:03 0.89 1.34 -

Table 6: Results for SP2B benchmark for 1 billion
triples (times in [hours:minutes:seconds])

Considering Table 6, nearly all queries are running
faster when using the bloom filter approach. We will
discuss the results for each query in the following para-
graphs in more detail:

Q1: The first query returns every time exactly one
result, independent of the size of the input data. The
query contains three triple patterns, the results of which
are joined over one common variable. The result of this
query can be determined by only one MapReduce job
by using a multi-join. Due to the bloom filter, unneeded
triples can be filtered out during the map phase, such that
the number of intermediate results can be reduced. This
can be also seen in the log files: Only 3 intermediate re-
sults with a size of 233 bytes are transmitted after the
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Figure 9: SP2B benchmark results for 1 billion triples

map phase to the reduce nodes when using bloom filters,
but 62,088,782 intermediate results with a size of 8GB
are transmitted without bloom filters, which explains the
high speedup of 1.47 for query 1.

Q2: Query 2 contains an OPTIONAL clause with one
triple pattern. Outside the OPTIONAL clause 9 different
triple patterns are joined over one common variable. Ad-
ditionally, the result should be sorted. Hence, 4 MapRe-
duce jobs are necessary: The first job loads the results of
the 9 triple patterns and joins them. The bloom filter ap-
proach transmits for this purpose 351,778,497 interme-
diate results (47GB) to the Reduce-nodes, whereas with-
out bloom filters 721,912,971 intermediate results with
a size of 90GB are transmitted. The second MapReduce
job loads the triple pattern of the OPTIONAL clause and
builds the left outer join with the result of the first job.
Finally, in the third and fourth jobs the data is sorted and
the projection is computed. These huge intermediate and
final results lead to long running queries. The obtained
speedup of 1.29 shows significant performance improve-
ments also for this kind of queries.

Q3 (a,b,c): The third query has three variants. Each
variant has two triple patterns, which are joined over one
common variable. The variants differ only in the pred-
icate of the second triple pattern (after constant prop-
agation in the logical optimization phase). Only one
MapReduce job was necessary for all query variants.
For query 3a with bloom filter 21,015,573 intermediate
results (2GB) and without 78,672,889 intermediate re-
sults (9,1GB) are transmitted to the Reduce nodes. For
query 3b with bloom filter 141,965 intermediate results
(13MB) and without 11,039,357 (780MB), and for query
3c with bloom filter 19,039 intermediate results (1.8MB)
and without 11,825,000 (881MB). For all variants, the
speedup is between 1.39 and 1.49.

Q4: For the fourth query, 8 triple patterns are loaded
and joined. Contrary to the previous queries, not all
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triple patterns can be joined over one common variable.
Hence, several MapReduce jobs are necessary for join-
ing. The triple patterns must be joined in 5 MapReduce
jobs and one additional MapReduce job is necessary for
a succeeding duplicate elimination. Table 7 presents the
jobs and their resultant intermediate results as well as
their sizes. In the first two jobs the data size is reduced
from 25.1GB to 5.58GB. The total execution time is re-
duced by 9.9%. This query contains a Cartesian product
over two bags with the same values (except of variable
names). Hence, the same data sizes are loaded in the
jobs 1 and 2, and also in jobs 3 and 4. Jobs 3 and 4
dominate the query evaluation time, their intermediate
results cannot be reduced much by our bloom filter ap-
proach. However, the reduction of intermediate results
in jobs 1 and 2 to 23% still leads to a speedup of 1.11.
The final result set after duplicate elimination contains
4,509,222,768 results. This shows that our system can
handle big data during query evaluation.

Job With Bloom Filter Without Bloom Filter
#Intermediate Size #Intermediate Size

Results [GB] Results [GB]
1 58,863,644 5.58 251,411,636 25.10
2 58,863,644 5.58 251,411,636 25.10
3 150,516,077 20.25 151,468,117 20.34
4 150,516,077 20.25 151,468,117 20.34
5 69,480,176 8.43 69,480,176 8.43
6 4,513,878,642 601.75 4,513,878,642 601.75

Table 7: Space requirements after the map function
for SP2B query Q4

Note that the database tables contain the sizes of the
uncompressed data, but we have used SNAPPY for com-
pressing the intermediate query results during transmis-
sion, which reduces the space to 15-50% of the uncom-
pressed data.

Q5a: In query 5a, six different triple patterns are
joined. Here, 5 MapReduce jobs are necessary for these
joins as well as 1 MapReduce job for duplicate elimina-
tion. Table 8 contains the properties of these jobs. Ex-
cept of job 1, the data sizes are not significantly reduced
when using bloom filters. The first two jobs are executed
in parallel and are the input of the third job, which must
wait for the results of both jobs. Hence, the reduction of
the data size in job 1 does not improve the overall ex-
ecution time. We obtain an improvement of only about
3.55%.

Q5b: The result of query 5b is the same as that of
query 5a. However, query 5b contains only 5 triple pat-
terns, which must be joined in 3 MapReduce jobs fol-
lowed by an additional MapReduce job for duplicate
elimination. Table 9 lists the number of intermediate

Job With Bloom Filter Without Bloom Filter
#Intermediate Size #Intermediate Size

Results [GB] Results [GB]
1 47,895,418 4.22 289,724,174 27.66
2 255,333,923 24.46 240,443,060 23.74
3 231,551,928 20.94 233,455,696 21.20
4 150,516,282 18.79 151,468,329 18.89
5 227,627,971 37.99 227,629,074 37.99
6 39,206,794 3.66 39,206,794 3.66

Table 8: Space requirements after the map function
for SP2B query Q5a

query results and their sizes. Especially in the second job
the bloom filter reduces the intermediate results much
from 1.7 billion to 70 million triples, such that the total
execution time is reduced to 39.41% of the time without
bloom filters.

Job With Bloom Filter Without Bloom Filter
#Intermediate Size #Intermediate Size

Results [GB] Results [GB]
1 347,787,102 33.72 575,676,818 56.52
2 69,761,060 14.47 1,681,136,113 397.04
3 101,567,720 11.47 134,603,979 16.67
4 39,206,794 3.66 39,206,794 3.66

Table 9: Space requirements after the map function
for SP2B query Q5b

Q6: Query 6 contains 5 triple patterns and addition-
ally 4 triple patterns in an OPTIONAL clause, such that
overall 10 MapReduce jobs are created. Table 10 con-
tains the intermediate query results of the jobs. The jobs
1 to 3, 4 to 6, and 7 and 8 are executed in parallel. Except
for the jobs 1 to 3, the bloom filter does not significantly
reduce the number of intermediate results. The first three
jobs without bloom filter additionally store about 12GB
(uncompressed) for the intermediate results. A further
analysis shows that the transmission of these additional
12GB takes only about one minute longer. Hence, over-
all the execution times when using and when not using
bloom filters do not significantly change.

Q7: Query 7 requires duplicate elimination and con-
tains 2 nested OPTIONAL clauses each of which with 4
triple patterns, 5 triple patterns outside the OPTIONAL
clause and two FILTER expressions. Altogether 12
MapReduce jobs (see Table 11) run for this query in the
Cloud. The bloom filter approach filters out quite many
intermediate results for some of these jobs. For exam-
ple, the jobs 2 and 3 transmit only 92.7MB instead of
16.19GB to the Reduce nodes. Unfortunately, the first
5 jobs are executed in parallel and are the input of the
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Job With Bloom Filter Without Bloom Filter
#Intermediate Size #Intermediate Size

Results [GB] Results [GB]
1 319,350,924 35.41 481,737,742 47.00
2 319,350,924 35.41 481,737,742 47.00
3 319,350,924 35.41 481,737,742 47.00
4 194,726,834 38.78 194,727,925 38.78
5 194,726,834 38.78 194,727,925 38.78
6 194,726,834 38.78 194,727,925 38.78
7 310,502,789 49.25 311,455,764 49.34
8 310,502,789 49.25 311,455,764 49.34
9 389,453,511 89.99 389,454,602 89.99

10 293,677,229 97.49 293,677,229 97.49

Table 10: Space requirements after the map function
for SP2B query Q6

further jobs. As the bloom filter for the 5th job does not
reduce the transmitted data, the reduction because of the
bloom filters in the first 4 jobs does not have any effect
on the query execution time (except for the overall work-
load reduction). In the end, a reduction of 7.52% of the
execution time can be observed when using bloom filters.

Job With Bloom Filter Without Bloom Filter
#Intermediate Size #Intermediate Size

Results [GB] Results [GB]
1 327,998,498 59.97 1,263,226,051 236.57
2 724,774 0.09 190,317,759 16.19
3 724,774 0.09 190,317,759 16.19
4 190,319,033 32.82 1,000,667,828 218.39
5 1,000,667,822 218.39 1,000,667,828 218.39
6 13,506,566 3,65 85,697,170 12.57
7 13,506,566 3,65 85,697,170 12.57
8 67,304,597 21,63 67,304,597 21.63
9 67,979,274 23,09 67,979,274 23.09

10 25,563,556 7,23 25,563,556 7.23
11 20,776,021 6,03 20,776,021 6.03
12 25,513 0.002 25,513 0.002

Table 11: Space requirements after the map function
for SP2B query Q7

Q8: In query 8 two triple patterns are joined with the
union of 5 and 3 triple patterns containing also filter ex-
pressions causing altogether 9 MapReduce jobs. The
achieved speedup of 2.24 is the largest for this query.
Applying bloom filters reduces the data size e.g. in job 8
from 1.85TB to 119.7GB (see Table 12), which are only
about 6% of the data without bloom filters.

Q9: Query 9 requires duplicate elimination and con-
sists of a union, each operand of which contains 2 triple
patterns. Hence, 3 MapReduce jobs are necessary. Ap-

Job With Bloom Filter Without Bloom Filter
#Inter-

mediate
Size

[GB]
#Inter-

mediate
Size

[GB]
Results Results

1 2 88 Bytes 116,727,855 3.11
2 458,947,675 45.96 458,948,970 45.96
3 458,947,675 45.96 458,948,970 45.96
4 229,475,055 22.98 458,948,970 45.96
5 753,023,885 136.34 753,979,316 136.43
6 753,023,885 89.47 753,979,316 89.56
7 637,248,267 119.69 1,274,498,947 245.57
8 637,251,403 119.7 9,839,070,935 1847.41
9 4,711 0.0003 4,711 0.0003

Table 12: Space requirements after the map function
for SP2B query Q8

plying bloom filters reduces the sizes of the intermediate
results in job 2 from 150.59 GB to 50.31GB (see Ta-
ble 13). A speedup of 1.07 is achieved.

Job With Bloom Filter Without Bloom Filter
#Intermediate Size #Intermediate Size

Results [GB] Results [GB]
1 1,116,720,996 168.92 1,116,720,996 168.92
2 533,546,529 50.31 1,116,720,996 151.59
3 464,993,168 21.54 464,993,168 21.54

Table 13: Space requirements after the map function
for SP2B query Q9

Q10 and Q11: These two queries are not relevant
for the bloom filter approach as each contains only one
triple pattern, such that no join is executed and hence the
bloom filter does not filter out any intermediate result.
Based on the 6 indices, the Cloud database can quickly
find the results of the triple patterns. For example, for
query 10 and its 656 results, our Cloud database needs
only 19 seconds.

5.1.2.4 Scalability for Big Data

Besides the dataset of 1 billion triples, also other data
set sizes are imported into the Cloud database in order to
investigate on their impacts on the bloom filter approach.
We present the results in the following paragraphs.

1 million triples: The experiments with 1 million
triples are repeated 5 times. The size of the bit vector
is 100 million. Table 14 summarizes the results for this
data set. Except for query 8, there is no significant dif-
ference, such that the overhead for the calculation and
application of the bloom filters outrun the runtime im-
provements for reducing the intermediate results for rel-
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atively small data sets. However, there is still a speedup
of 1.02 when running all queries.

Query
With Without

Sp
ee

du
p Number

of
Query
Results

Bloom Filter Bloom Filter

Ti
m

e

σ
[%

]

Ti
m

e

σ
[%

]

Q1 00:00:18 12.58 00:00:18 9.79 0.98 1
Q2 00:01:47 5.29 00:01:48 0.24 1.01 32,764
Q3a 00:00:34 7.28 00:00:33 5.30 0.98 52,676
Q3b 00:00:30 1.99 00:00:28 6.93 0.94 379
Q3c 00:00:27 10.47 00:00:29 0.18 1.05 0
Q4 00:03:00 2.65 00:03:03 1.32 1.01 2,586,645
Q5a 00:02:14 3.36 00:02:14 1.48 1.01 35,240
Q5b 00:02:05 0.69 00:02:06 1.84 1.01 35,240
Q6 00:03:38 1.56 00:03:38 3.17 1.00 62,790
Q7 00:03:48 2.14 00:03:54 0.82 1.03 292
Q8 00:03:09 2.74 00:03:24 3.60 1.08 400
Q9 00:01:34 3.94 00:01:35 0.23 1.01 4
Q10 00:00:18 12.58 00:00:18 9.79 0.98 572
Q11 00:01:21 4.11 00:01:22 4.83 1.02 10
Q1-Q11 00:24:43 0.83 00:25:10 0.79 1.02 -

Table 14: SP2B benchmark results for 1 million
triples (times in [hours:minutes:seconds])

10 million triples: The 10 million experiments are
executed 5 times with a bit vector size of 100 million
bits. According to Table 15 the bloom filter approach
saves execution time of already over 5% for the queries
Q1, Q3 (a,b,c), Q5b, Q8 and Q9. The query 8 is already
speeded up much (1.32) for this data size.
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Q1 00:00:35 2.20 00:00:37 6.60 1.13 1
Q2 00:02:52 1.73 00:02:57 1.16 1.03 613,683
Q3a 00:00:41 4.86 00:00:44 0.47 1.08 323,452
Q3b 00:00:29 2.74 00:00:33 5.98 1.14 2,209
Q3c 00:00:30 2.12 00:00:33 6.08 1.14 0
Q4 00:06:00 1.54 00:06:03 1.15 1.00 40,085,208
Q5a 00:03:13 3.43 00:03:13 1.79 1.00 404,896
Q5b 00:03:04 2.26 00:03:25 2.37 1.08 404,896
Q6 00:06:01 3.05 00:05:58 1.60 1.01 852,624
Q7 00:10:06 2.34 00:10:30 2.78 1.07 2,336
Q8 00:05:42 2.37 00:07:26 0.85 1.32 493
Q9 00:07:04 3.33 00:07:27 2.78 1.04 4
Q10 00:00:19 2.88 00:00:19 0.46 0.98 656
Q11 00:01:34 6.12 00:01:34 5.76 1.02 10
Q1-Q11 00:48:10 1.22 00:51:19 0.75 1.07 -

Table 15: SP2B benchmark results for 10 million
triples (times in [hours:minutes:seconds])

100 million triples: For 100 million triples we run the
experiments 3 times with a bit vector size of 100 million
bits. Table 16 shows that the improvements by the bloom
filter approach are high. For the queries Q1, Q3 (a,b,c),
Q5b and Q8 we save an enormous amount of time of up
to 53%.
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of
Query
Results

Bloom Filter Bloom Filter

Ti
m

e

σ
[%

]

Ti
m

e

σ
[%

]

Q1 00:02:11 4.69 00:02:40 4.53 1.22 1
Q2 00:11:20 12.6 00:11:26 4.39 1.01 9,049,975
Q3a 00:01:57 2.56 00:02:27 1.59 1.26 1,466,388
Q3b 00:00:47 5.22 00:00:52 4.53 1.11 10,143
Q3c 00:00:45 1.75 00:00:54 0.48 1.21 0
Q4 00:31:08 0.54 00:32:44 0.32 1.05 460,116,279
Q5a 00:10:07 1.54 00:10:22 0.36 1.02 2,016,938
Q5b 00:10:44 0.61 00:15:33 0.66 1.45 2,016,938
Q6 00:24:30 4.46 00:24:03 0.90 0.98 9,811,861
Q7 00:30:16 0.85 00:32:02 3.11 1.06 14,645
Q8 00:24:56 2.20 00:53:48 10.49 2.16 493
Q9 00:19:44 4.45 00:22:13 4.00 1.13 4
Q10 00:00:19 3.72 00:00:19 0.14 0.96 656
Q11 00:03:05 0.80 00:02:56 0.37 0.95 10
Q1-Q11 02:51:48 0.85 03:32:19 2.56 1.24 -

Table 16: SP2B benchmark results for 100 million
triples (times in [hours:minutes:seconds])

Figure 10 contains a comparison of the total execution
times of all queries altogether for the different data sizes.
The increase of the execution times is slightly more than
proportional to the number of imported triples for both
approaches (with and without bloom filter). However,
the experiments still show that the Cloud database is able
to handle large data sets in a scalable way. Especially the
improvements when applying the bloom filters increase
remarkably for larger data sets.

5.1.2.5 Determination of the bloom filters

Finally, we present the calculation times for determining
the bloom filters for the different queries. Table 17 con-
tains these calculation times for each query dependent
on the data size. For the data set sizes 1, 10 and 100 mil-
lion triples, we use a bit vector size of 100 million bits,
which can be stored in 12MB. For the data set size 1 bil-
lion triples, the bit vector size is 1 billion bits, which has
a size of 120MB. The experimental results show that the
time overhead incurred in this phase of query processing
is not significant compared to those incurred in the other
phases. For the data set sizes of up to 100 million, the
bloom filter calculation can be done for most queries in
under 1 second, and for the 1 billion triples data set in
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Figure 10: Comparison of the total execution times

only a few seconds. If the calculation needs longer time,
like for query 8 with 70 seconds, then it does not signif-
icantly extend the total execution time, which is over 4
hours for query 8, and the achieved speed up of 2.24 is
quite high. Queries 10 and 11 contain only 1 triple pat-
tern; thus the bloom filter calculation does not need to be
done.

Query
# Triples 1 m 10 m 100 m 1,000 m

Q1 0.04s 0.03s 0.05s 0.04s
Q2 0.72s 1.07s 3.57s 22.57s
Q3a 0.30s 0.37s 0.69s 4.40s
Q3b 0.28s 0.32s 0.59s 1.90s
Q3c 0.23s 0.36s 0.43s 1.92s
Q4 1.06s 1.53s 2.96s 26.39s
Q5a 0.98s 1.55s 3.27s 37.41s
Q5b 0.72s 1.10s 2.07s 23.00s
Q6 2.04s 2.96s 6.80s 61.63s
Q7 1.38s 2.07s 2.50s 21.66s
Q8 1.85s 2.98s 6.16s 69.91s
Q9 0.40s 0.61s 1.17s 9.63s
Q10 - - - -
Q11 - - - -
Q1-Q11 10s 14.96s 30.25s 280.45s

Table 17: Bloom filter calculation time before execut-
ing the SPARQL query

Figure 11 shows the bloom filter calculation times
of all queries together dependent on the data set sizes.
Again, the increase is slightly more than proportional to
the number of imported triples. This is caused by the
different sizes of the bloom filters for the different data

set sizes. For the first 3 data set sizes, the bloom filter
size is 100 million bits, and thus the calculation times
do not differ much. For the 1 billion triples data set size
we need a bloom filter size of 1 billion bits, as otherwise
much worse (and hence useless) filter effects occur. As
expected, the effort for calculating the bloom filter in-
creases by a factor of about 10 from 30.25 seconds to
280.45 seconds.
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Figure 11: Comparison of the bloom filter calculation
times

5.2 Real-world data: D2R Server publishing
the DBLP Bibliography Database

For real-world data we choose the content5 of the D2R
Server publishing the DBLP Bibliography Database
[26]. The data set is close to the one of SP2B, the re-
sults of which we discussed in the previous section, as
SP2B imitates DBLP data by generating synthetic data,
which has the advantage of generating data of different
sizes. However, this time the used data set contains the
data of a recent extraction from the DBLP Bibliography
Database [45] containing a huge collection of scientific
articles not only from the database and logic program-
ming community. Furthermore, we compare our results
with a local installation of a Semantic Web database as
well as with the traditional bloom filter approach.

5.2.1 Experimental Environment

This time all experiments are conducted in a cluster
of 8 nodes. All nodes are running Ubuntu 12.04.5
LTS. The master node uses an Intel(R) Core(TM) i5
CPU 750@2.67GHz with 16 Gigabytes main mem-
ory. All other nodes use an Intel(R) Core(TM) 2 Duo
CPU E6550@2.33GHz with 4 Gigabytes main memory.
HBase is configured to run 1 master and 8 region servers.

5available at http://dblp.l3s.de/dblp.rdf.gz
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HDFS runs 8 data nodes, 1 name node, 1 secondary name
node and 1 balancer. Join and duplicate elimination are
done in parallel by 5 nodes.

Furthermore, we compare the results with a local in-
stallation of LUPOSDATE [22]. The test system for the
performance analysis of the local installation uses an In-
tel Xeon X5550 2 Quad CPU computer, each with 2.66
Gigahertz, 72 Gigabytes main memory (from which we
reserved 10 Gigabytes for the Java heap during query
processing), Windows 7 (64 bit) and Java 1.7. We have
used a 500 GBytes SSD for administrating the indices.

5.2.2 Benchmark Results and Analysis

In this section, we describe our results concerning the
import of data, query evaluation as well as the determi-
nation of bloom filters.

5.2.2.1 Import and Space Requirements

The number of triples contained in the D2R DBLP ex-
traction data set is 113,175,668. After duplicated triples
have been eliminated, 70,929,219 triples remain.

Importing the data into the cloud took 2 hours, 49 min-
utes and 30 seconds. The space requirements are sum-
marized in Table 18. This time we have chosen GZIP
to compress the HBase table content, which achieves a
better compression. GZIP is slower in compression, but
is faster in decompression. Such configurations using
asymmetric compression schemes are good for the case
where data are not frequently updated having the benefit
of saving more space.

Index
# Triples approx. 100m

S PO 1.623
SP O 1.757
SO P 1.925
P SO 1.420
PO S 1.934
O SP 1.855
Sum 10.516

Original Data uncompressed: 17.660,
compressed (gz): 0.722

Table 18: Space of HBase tables for the D2R DBLP
extraction in comparison to original data in GB

The local installation took only 28 minutes and 22 sec-
onds for importing the data, but we reserved 32 GBytes
of the main memory for this purpose such that not much
data needed to be swapped during the import phase. The
local installation uses a dictionary for coding RDF terms

during query evaluation. The size of the dictionary on
disk is 3.18 Gigabytes. The other indices consume 6.92
Gigabytes, where about half of the indices are dedicated
to the data indices and the other to the histogram in-
dices of LUPOSDATE. Further information of the LU-
POSDATE indices is provided in [21].

5.2.2.2 Query Evaluation

This time we want to compare query execution times
not only for using our approach to bloom filters or using
no bloom filters at all, but with also filtering with dy-
namically generated bloom filters like in traditional ap-
proaches.

The first option for the traditional approach is to use
the built-in bloom filter approach in HBase itself. How-
ever, we do not have the possibility in HBase to access
the bloom filter itself directly (such that we cannot build
the bloom filter of the whole query as described in Sec-
tion 4.3). Furthermore, HBase computes for each table
only one bloom filter. For some tables like S PO, we
need two separate bloom filters for P and O for effective
filtering according to the single components, but not a
combined one like what HBase provides.

The second option is to use bloom filters as provided
in the Pig Latin language. In our scenario, we can build
the bloom filter from the result of one triple pattern and
filter the result of the other triple patterns before join-
ing. Again similarly to the HBase built-in bloom filter
approach, there is no possibility for a Pig Latin script to
build the bloom filter of the whole query as described in
Section 4.3. However, the simple approach of building
the bloom filter based on the result of one triple pattern
and filtering the others’ results with it is more close to the
traditional approach. In our experiments we modified the
Pig Latin scripts generated by our approach to use the Pig
Latin built-in bloom filter approach and ran these scripts
directly. We always chose to build the bloom filter from
the most selective triple pattern.

We have chosen four queries (see Appendix B) with
an increasing number of results. Appendix B also con-
tains the Pig Latin scripts implementing the traditional
bloom filter approach. The results are shown in Table 19.
Again using bloom filters greatly improves query pro-
cessing time in the cloud. More complex queries can
benefit mostly from the bloom filter approach: For exam-
ple, our bloom filter approach has a speedup of more than
7 for query Q3 and of more than 8 for query Q4. Due to
the time needed for dynamic bloom filter computation
as well as not a more precise bloom filter of the whole
query is computed, the traditional approach (here called
Pig Latin Bloom Filter) is always slower than our ap-
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proach. The difference grows for more complex queries:
Our bloom filter approach is about 3.5 times faster than
the Pig Latin Bloom Filter approach for query Q3 and 4.1
times faster for query Q4. However, the local installation
still beats the cloud technologies by several magnitudes,
although the gap becomes closer when using bloom fil-
ters in the cloud.

Query
Local With Without Pig Latin

Bloom Filter Bloom Filter Bloom Filter

Ti
m

e

σ
[%

]

Ti
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e
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[%

]

Ti
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[%

]

Ti
m

e

σ
[%

]

Q1 0.2 sec 14 00:02:28 2.7 00:03:16 0.1 00:09:27 1.7
Q2 00:00:08 0.6 00:03:07 3.1 00:03:17 1.2 00:09:23 0.6
Q3 00:00:05 0.3 00:04:21 3.4 00:31:59 5.59 00:15:13 1.7
Q4 00:00:10 0.4 00:04:55 3.1 00:42:36 3.3 00:20:26 0.6
Q1-Q4 00:00:05 3.8 00:03:42 3.08 00:20:09 2.55 00:13:37 1.15

Table 19: Results for the D2R DBLP extraction
(times in [hours:minutes:seconds])

5.2.2.3 Determination of the bloom filters

Table 20 lists the computation times for our bloom fil-
ters. Again, they are quite slow in comparison to the total
query execution times.

Query Computation Time
Q1 10
Q2 39
Q3 25
Q4 24

Table 20: Computation time of bloom filters in sec-
onds for the D2R DBLP extraction

6 SUMMARY AND CONCLUSIONS

In this paper we propose the Semantic Web Cloud
database, P-LUPOSDATE. We combine the advantages
of two existing systems: (a) We use the Hexastore dis-
tribution strategy [43], such that the result of any triple
pattern can be accessed within one index access; and (b)
we furthermore use the Pig framework with its abstrac-
tion language Pig Latin to express the processing steps
for SPARQL queries like in [40]. We use LUPOSDATE
as the basic Semantic Web engine to inherit its support
of SPARQL 1.1 by processing operations not supported
by Pig in LUPOSDATE.

To reduce network traffic and improve query process-
ing time, we further propose a bloom filter variant which

can be smoothly integrated into the Hexastore distribu-
tion strategy. In order to avoid an additional MapReduce
step, we precompute and store all possible bloom filters
during the import of the data and argue that updates are
no problem for our approach. We propose to store bloom
filters in a hybrid way. Bloom filters with few bits can
be fast transformed into byte-bit vectors and hence are
stored by enumerating the indices of the set bits in or-
der to save storage space. The other bloom filters are
precomputed and stored as byte-bit vectors during the
import of the data in order to save processing time.

A comprehensive experimental evaluation shows that
our system can handle big data with data sets contain-
ing up to 1 billion triples efficiently. Our bloom filter
variant always speeds up query processing. Our experi-
ments show that a speedup factor of more than 8 is pos-
sible. Our bloom filter approach is also faster than the
traditional bloom filter approach: In our experiments we
obtain a speedup of more than 4 for some queries.

Our future work will investigate other storage formats
for bloom filter like compressed bit vectors [28] or count-
ing bloom filters (CBF) [11], which may have advantages
in scenarios with frequent updates. Also the usage of
dictionaries [41] in order to save storage space and net-
work traffic and to lower the main memory footprint is a
promising future direction.
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SPARQL nach Pig Latin,” Masterthesis, University
Freiburg, 2010.

[40] A. Schätzle, M. Przyjaciel-Zablocki, and
G. Lausen, “PigSPARQL: Mapping SPARQL
to Pig Latin,” in Proceedings of the Interna-
tional Workshop on Semantic Web Information
Management. ACM, 2011, p. 4.

[41] M. Schmidt, T. Hornung, N. Küchlin, G. Lausen,
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APPENDIX A - TRANSFORMATION TO PIG
LATIN

We describe the transformation from relational expres-
sions (to which SPARQL queries can be transformed)
into Pig Latin syntax in this section. The following func-
tions are used within the transformation rules:
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• bag(R): This function returns for a given relational
expression R a unique name (also called alias in
Pig), which is used as the name for the Pig Latin
bag for the result of R.

• pos(b, {v1, ..., vn}): This function returns the posi-
tion of one or more variables v1 to vn in the bag b.
For the bag (var1 = a, var2 = b) we retrieve $1
when applying pos(bag, {var2}), and ($1, $2) for
pos(bag, {var1, var2}).

We use also some placeholders which are given in Ta-
ble 21.

Placeholder Placeholder represents...
R, Rx Relational expression
c, cx RDF term (blank node, IRI or literal)
v, vx variable
i, ix variable or RDF term
(i1, i2, i3) triple pattern

Table 21: Placeholders in the transformation rules

A transformation rule consists of a left side and a right
side separated by a right arrow (⇒). The transformation
rules are applied in the following way. We assume that
the relational expression R represents the query. Then
we apply the function map(R) in order to retrieve a Pig
Latin program for calculating the result of R. When-
ever the left side of a transformation rule matches the
relational expression to be transformed, the relational ex-
pression is replaced with the right side of the transforma-
tion rule. The right side might contain again functions
like map, which are recursively applied.

We collect several transformation rules for one pur-
pose in a tranformation rule set.

Transforming Triple Patterns

The most inner relational expression is always a triple
pattern. In order to retrieve the result of a triple pattern,
we have to load the data by choosing the right index.
Transformation Rule Set 1 contains the transformation
rules for handling triple patterns.

Transforming Joins and Cross Products

The join as well as the cross product have several rela-
tional expressions as input. The join can be joined over
several variables v1 to vn. They can be transformed to
Pig Latin syntax in a straightforward way (see Transfor-
mation Rule Sets 2 and 3).

Transformation Rule Set 1: Triple Pattern

map((i1, i2, i3))⇒
bag((i1, i2, i3)) = load((i1, i2, i3))
bag((i1, i2, i3)) = mapToBag((i1, i2, i3))

load((?s, c1, c2))⇒
load ’hbase://PO S’ using HBaseLoad(

’Hexa’,”,’c1,c2’,’bf ?s’) as (...);
mapToBag((?s, c1, c2))⇒

FOREACH bag((?s, c1, c2)) GENERATE
flatten(MapToBag($0,$1)) as (...);

...
load((?s, ?p, c1))⇒

load ’hbase://O SP’ using HBaseLoad(
’Hexa’,”,’c1’,’bf ?s’,’bf ?p’) as (...);

mapToBag((?s, ?p, c1))⇒
FOREACH bag((?s, ?p, c1)) GENERATE

flatten(MapToBag($0,$1,$2)) as (...);

load((?s, ?p, ?o))⇒
load ’hbase://S PO’ using HBaseLoad(

’Hexa’,’-loadKey true’,’bf ?s’,’bf ?p’,
’bf ?o’) as (...);

mapToBag((?s, ?p, ?o))⇒
FOREACH bag((?s, ?p, ?o)) GENERATE n

flatten(MapToBag($0,$1,$2,$3,$4)) as (...);

Transformation Rule Set 2: Join
map(R1 onv1,...,vn ... onv1,...,vn Rn)⇒
map(R1)

...
map(Rn)
bag(R1 onv1,...,vn ... onv1,...,vn Rn) = JOIN

bag(R1) BY pos(bag(R1), {v1, ..., vn}),
...

bag(Rn) BY pos(bag(Rn), {v1, ..., vn});

Transformation Rule Set 3: Cross Product
map(R1 × ...×Rn)⇒
map(R1)

...
map(Rn)
bag(R1× . . . ×Rn)=CROSS bag(R1), . . ., bag(Rn);

Transforming Projection

Projections can be computed in Pig Latin in a Foreach-
loop with keyword Generate (see Transformation Rule
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Set 4).

Transformation Rule Set 4: Projection

map(πv1,...,vn(R))⇒
map(R)
bag(πv1,...,vn(R)) = FOREACH bag(R)

GENERATE pos(bag(R), {v1, ..., vn});

Transforming Selection

The FILTER clause in SPARQL 1.1 is very expressive.
Besides simple comparisons between variables or a vari-
able and an RDF term, various built-in functions are sup-
ported. The most important constructs in the FILTER
clause are also supported by P-LUPOSDATE. The sup-
port of missing ones can be easily added. The following
language constructs are supported (see Transformation
Rule Set 5):

• Comparisons: All simple comparisons by <, >,
<=, >=, != and = are supported. The Pig Latin syn-
tax also covers a FILTER operator, which supports
these types of comparison, and which we use in the
mapped Pig Latin program.

• Built-In Functions: We currently support only the
bound(?v) built-in function, which checks whether
a variable ?v is bound with a value. We have imple-
mented a user-defined function in Pig Latin for this
purpose. The support of other built-in functions can
be added similarly.

• AND: Combining boolean formulas in the FILTER
clause with the boolean and operator is transformed
to Pig Latin by a subsequent application of the FIL-
TER operator with the boolean formulas.

• OR: The FILTER clause supports to combine its
boolean formulas by or, which is also supported by
the Pig Latin FILTER operator.

Transforming Sorting

The same as in SPARQL, there is also an Order-By oper-
ator in Pig Latin, which can be directly used for sorting
purposes (see Transformation Rule Set 6).

Transforming Duplicate Elimination

Similar to the SPARQL DISTINCT construct, Pig Latin
offers a DISTINCT operator, which we use for duplicate
elimination (see Transformation Rule Set 7).

Transformation Rule Set 5: Filter
map(σf1 ∧f2(R))⇒ map(σf1(σf2(R)))
map(σf (R))⇒ map(R)

bag(σ(R)) = FILTER bag(R)
BY map(bag(R), f);

map(b, f1 ∨ f2)⇒ map(b, f1) OR map(b, f2)
map(b, bound(v))⇒BoundFilterUDF (pos(b,v))
map(b, i1 op i2)⇒ map(b, i1) op map(b, i2),

where op ∈ {<,>,>=, <=, ! =}
map(b, c)⇒ c
map(b, v)⇒ pos(b, {v})

Transformation Rule Set 6: Order By

map(τv(R))⇒ map(R)
bag(τv(R)) = ORDER bag(R)

BY pos(bag(R), {v});

Transformation Rule Set 7: Distinct
map(δ(R))⇒ map(R)

bag(δ(R)) = DISTINCT bag(R);

Transforming Limit

With the help of the limit operator the query result can
be limited to a given number of results. Pig Latin also
supports this functionality with the LIMIT construct (see
Transformation Rule Set 8).

Transformation Rule Set 8: Limit
map(limitn(R))⇒

map(R)
bag(limitn(R)) = LIMIT bag(R) n;

Transforming Union

The Union operator can be implemented in Pig Latin
with the UNION construct (see Transformtion Rule Set
9).

Transformation Rule Set 9: Union
map(R1 ∪ ... ∪Rn)⇒
map(R1)

...
map(Rn)
bag(R1∪. . .∪Rn) = UNION bag(R1), . . ., bag(Rn);
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Transforming Optional

The SPARQL Optional construct causes a left outer join.
Pig Latin also supports outer joins and especially left
outer joins. The transformation is straight forward (see
Transformation Rule Set 10).

However, SPARQL supports a left outer join over null-
values, whereas Pig Latin does not, i.e., for very special
cases the transformed Pig Latin program does not yield
the same results as SPARQL queries do, and is hence
incorrect. These special cases can be detected by a static
analysis of the queries. As consequence these queries
cannot be computed completely in the Cloud, and at least
the left outer join must be computed at the master node,
which is the default strategy of P-LUPOSDATE for all
language constructs not supported by Pig Latin.

Transformation Rule Set 10: Optional

map(R1 d|><|v1,...,vn R2)⇒
map(R1)
map(R2)
bag(R1 d|><| R2) = JOIN bag(R1) BY

pos(bag(R1), {v1, ..., vn}) LEFT OUTER,
bag(R2) BY pos(bag(R2), {v1, ..., vn});

APPENDIX B - QUERIES FOR REAL-WORLD
DATA

This section contains the queries we used for querying
the content of the D2R Server publishing the DBLP Bib-
liography (see Section 5.2). We describe the queries in
natural language, present the SPARQL query itself as
well as the Pig Latin script of the query using the Pig
Latin built-in bloom filter, with which we compare our
approach in Section 5.2.2.2.

Query Q1

The first query determines all coauthors of Le Gruen-
wald.

1 PREFIX dc: <http://purl.org/dc/elements/1.1/>
2 SELECT DISTINCT ?coauthor WHERE {
3 ?article dc:creator <http://dblp.l3s.de/d2r/

resource/authors/Le_Gruenwald>.

4 ?article dc:creator ?coauthor.

5 }

Listing 4: Query 1

The Pig Latin script for the traditional bloom filter ap-
proach determines the bloom filter of all publications of
Le Gruenwald and filters with it the publication-author
relationship.

1 define bb BuildBloom(’jenkins’, ’1000’, ’0.1’);
2 P0 = load ’hbase://po_s’ using lupos.cloud.pig.

udfs.HBaseLoadUDF(’Hexa’, ’’, ’<http://

purl.org/dc/elements/1.1/creator>,<http

://dblp.l3s.de/d2r/resource/authors/

Le_Gruenwald>’) as (columncontent_0:map
[]);

3 I0 = foreach P0 generate flatten(lupos.cloud.pig.
udfs.MapToBagUDF($0)) as (output0:
chararray);

4 B = group I0 all;
5 C = foreach B generate bb(I0.output0);
6 store C into ’mybloom’;
7 define bloom Bloom(’mybloom’);
8 P1 = load ’hbase://p_so’ using lupos.cloud.pig.

udfs.HBaseLoadUDF(’Hexa’, ’’, ’<http://

purl.org/dc/elements/1.1/creator>’) as (
columncontent_1:map[]);

9 I1 = foreach P1 generate flatten(lupos.cloud.pig.
udfs.MapToBagUDF($0)) as (output1_1:
chararray, output2_1:chararray);

10 D = filter I1 by bloom($0);
11 I2 = JOIN I0 BY $0, D BY $0 PARALLEL 5;
12 I3 = FOREACH I2 GENERATE $2;
13 X = DISTINCT I3 PARALLEL 5;

Listing 5: Pig Latin script of query 1 for the
traditional bloom filter approach

Query Q2

The second query retrieves a lots of information of each
of the publications of Le Gruenwald.

1 PREFIX swrc: <http://swrc.ontoware.org/
ontology#>

2 PREFIX dcterms: <http://purl.org/dc/terms/>
3 PREFIX dc: <http://purl.org/dc/elements/1.1/>
4 PREFIX foaf: <http://xmlns.com/foaf/0.1/>
5 PREFIX rdf: <http://www.w3.org/1999/02/22-rdf

-syntax-ns#>

6 SELECT DISTINCT * WHERE {
7 ?article dc:creator <http://dblp.l3s.de/d2r/

resource/authors/Le_Gruenwald>.

8 ?article dc:title ?title.

9 ?article dc:creator ?creator.

10 ?article foaf:homepage ?url.

11 ?article dcterms:partOf ?partOf.

12 ?article swrc:pages ?pages.

13 }

Listing 6: Query 2

Again the Pig Latin script for the traditional bloom
filter approach determines the bloom filter of all publi-
cations of Le Gruenwald, but filters now with it all the
other publication relationships.

1 define bb BuildBloom(’jenkins’, ’1000’, ’0.1’);
2 P0 = load ’hbase://po_s’ using lupos.cloud.pig.

udfs.HBaseLoadUDF(’Hexa’, ’’, ’<http://

purl.org/dc/elements/1.1/creator>,<http
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://dblp.l3s.de/d2r/resource/authors/

Le_Gruenwald>’) as (columncontent_0:map
[]);

3 I0 = foreach P0 generate flatten(lupos.cloud.pig.
udfs.MapToBagUDF($0)) as (output0:
chararray);

4 B = group I0 all;
5 C = foreach B generate bb(I0.output0);
6 store C into ’mybloom’;
7 define bloom Bloom(’mybloom’);
8 P1 = load ’hbase://p_so’ using lupos.cloud.pig.

udfs.HBaseLoadUDF(’Hexa’, ’’, ’<http://

purl.org/dc/elements/1.1/title>’) as (
columncontent_1:map[]);

9 I1 = foreach P1 generate flatten(lupos.cloud.pig.
udfs.MapToBagUDF($0)) as (output1_1:
chararray, output2_1:chararray);

10 I2 = filter I1 by bloom($0);
11 P2 = load ’hbase://p_so’ using lupos.cloud.pig.

udfs.HBaseLoadUDF(’Hexa’, ’’, ’<http://

purl.org/dc/elements/1.1/creator>’) as (
columncontent_2:map[]);

12 I3 = foreach P2 generate flatten(lupos.cloud.pig.
udfs.MapToBagUDF($0)) as (output1_2:
chararray, output2_2:chararray);

13 I4 = filter I3 by bloom($0);
14 P3 = load ’hbase://p_so’ using lupos.cloud.pig.

udfs.HBaseLoadUDF(’Hexa’, ’’, ’<http://

xmlns.com/foaf/0.1/homepage>’) as (
columncontent_4:map[]);

15 I5 = foreach P3 generate flatten(lupos.cloud.pig.
udfs.MapToBagUDF($0)) as (output1_4:
chararray, output2_4:chararray);

16 I6 = filter I5 by bloom($0);
17 P4 = load ’hbase://p_so’ using lupos.cloud.pig.

udfs.HBaseLoadUDF(’Hexa’, ’’, ’<http://

purl.org/dc/terms/partOf>’) as (
columncontent_7:map[]);

18 I7 = foreach P4 generate flatten(lupos.cloud.pig.
udfs.MapToBagUDF($0)) as (output1_7:
chararray, output2_7:chararray);

19 I8 = filter I7 by bloom($0);
20 P5 = load ’hbase://p_so’ using lupos.cloud.pig.

udfs.HBaseLoadUDF(’Hexa’, ’’, ’<http://

swrc.ontoware.org/ontology#pages>’) as (
columncontent_8:map[]);

21 I9 = foreach P5 generate flatten(lupos.cloud.pig.
udfs.MapToBagUDF($0)) as (output1_8:
chararray, output2_8:chararray);

22 I10 = filter I9 by bloom($0);
23 I11 = JOIN I0 BY $0, I2 BY $0, I4 BY $0, I6

BY $0, I8 BY $0, I10 BY $0 PARALLEL
5;

24 X = DISTINCT I11 PARALLEL 5;

Listing 7: Pig Latin script of query 2 for the
traditional bloom filter approach

Query Q3

The third query asks for the conferences Le Gruenwald
participated and for the publications presented there.

1 PREFIX swrc: <http://swrc.ontoware.org/
ontology#>

2 PREFIX dcterms: <http://purl.org/dc/terms/>
3 PREFIX dc: <http://purl.org/dc/elements/1.1/>
4 PREFIX rdf: <http://www.w3.org/1999/02/22-rdf

-syntax-ns#>

5 SELECT DISTINCT ?title WHERE {
6 ?article dc:creator <http://dblp.l3s.de/d2r/

resource/authors/Le_Gruenwald>.

7 ?article dcterms:partOf ?conf.

8 ?conf rdf:type swrc:Proceedings.

9 ?article2 dcterms:partOf ?conf.

10 ?article2 dc:title ?title.

11 }

Listing 8: Query 3

Now 3 bloom filters are generated in the Pig Latin
script for the content of the variables ?article, ?conf
and ?article2.

1 define bbArticle BuildBloom(’jenkins’, ’1000’,
’0.1’);

2 define bbConf BuildBloom(’jenkins’, ’1000’, ’
0.1’);

3 define bbArt2 BuildBloom(’jenkins’, ’1000’, ’
0.1’);

4 P0 = load ’hbase://po_s’ using lupos.cloud.pig.
udfs.HBaseLoadUDF(’Hexa’, ’’, ’<http://

purl.org/dc/elements/1.1/creator>,<http

://dblp.l3s.de/d2r/resource/authors/

Le_Gruenwald>’) as (columncontent_0:map
[]);

5 I0 = foreach P0 generate flatten(lupos.cloud.pig.
udfs.MapToBagUDF($0)) as (output0:
chararray);

6 BArticle = group I0 all;
7 CArticle = foreach BArticle generate bbArticle(

I0.output0);

8 store CArticle into ’article’;
9 P1 = load ’hbase://p_so’ using lupos.cloud.pig.

udfs.HBaseLoadUDF(’Hexa’, ’’, ’<http://

purl.org/dc/terms/partOf>’) as (
columncontent_1:map[]);

10 I1 = foreach P1 generate flatten(lupos.cloud.pig.
udfs.MapToBagUDF($0)) as (output1_1:
chararray, output2_1:chararray);

11 define bloomArticle Bloom(’article’);
12 I2 = filter I1 by bloomArticle($0);
13 BConf = group I2 all;
14 CConf = foreach BConf generate bbConf(I2.

output2_1);

15 store CConf into ’conf’;
16 P2 = load ’hbase://po_s’ using lupos.cloud.pig.

udfs.HBaseLoadUDF(’Hexa’, ’’, ’<http://

www.w3.org/1999/02/22-rdf-syntax-ns#type

>,<http://swrc.ontoware.org/ontology#

Proceedings>’) as (columncontent_2:map[])
;

17 I3 = foreach P2 generate flatten(lupos.cloud.pig.
udfs.MapToBagUDF($0)) as (output2:
chararray);

18 define bloomConf Bloom(’conf’);
19 I4 = filter I3 by bloomConf($0);
20 P3 = load ’hbase://p_so’ using lupos.cloud.pig.

udfs.HBaseLoadUDF(’Hexa’, ’’, ’<http://
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purl.org/dc/terms/partOf>’) as (
columncontent_3:map[]);

21 I5 = foreach P3 generate flatten(lupos.cloud.pig.
udfs.MapToBagUDF($0)) as (output1_3:
chararray, output2_3:chararray);

22 I6 = filter I5 by bloomConf($1);
23 BArt2 = group I6 all;
24 CArt2 = foreach BArt2 generate bbArt2(I6.

output1_3);

25 store CArt2 into ’art2’;
26 P4 = load ’hbase://p_so’ using lupos.cloud.pig.

udfs.HBaseLoadUDF(’Hexa’, ’’, ’<http://

purl.org/dc/elements/1.1/title>’) as (
columncontent_4:map[]);

27 I7 = foreach P4 generate flatten(lupos.cloud.pig.
udfs.MapToBagUDF($0)) as (output1_4:
chararray, output2_4:chararray);

28 define bloomArt2 Bloom(’art2’);
29 I8 = filter I7 by bloomArt2($0);
30 I9 = JOIN I4 BY $0, I2 BY $1, I6 BY $1

PARALLEL 5;
31 I10 = JOIN I0 BY $0, I9 BY $1 PARALLEL 5;
32 I11 = JOIN I8 BY $0, I10 BY $4 PARALLEL 5;
33 I12 = FOREACH I11 GENERATE $1;
34 X = DISTINCT I12 PARALLEL 5;

Listing 9: Pig Latin script of query 3 for the
traditional bloom filter approach

Query Q4

The fourth query’s result is the set of authors Le Gru-
enwald could have met at the conferences in which she
participated.

1 PREFIX swrc: <http://swrc.ontoware.org/
ontology#>

2 PREFIX dcterms: <http://purl.org/dc/terms/>
3 PREFIX dc: <http://purl.org/dc/elements/1.1/>
4 PREFIX rdf: <http://www.w3.org/1999/02/22-rdf

-syntax-ns#>

5 SELECT DISTINCT ?name WHERE {
6 ?article dc:creator <http://dblp.l3s.de/d2r/

resource/authors/Le_Gruenwald>.

7 ?article dcterms:partOf ?conf.

8 ?article2 dcterms:partOf ?conf.

9 ?conf rdf:type swrc:Proceedings.

10 ?article2 dc:creator ?name.

11 }

Listing 10: Query 4

Again we compute 3 bloom filters for the content of
the variables ?article, ?conf and ?article2 in the
Pig Latin script.

1 define bbArticle BuildBloom(’jenkins’, ’1000’,
’0.1’);

2 define bbConf BuildBloom(’jenkins’, ’1000’, ’
0.1’);

3 define bbArt2 BuildBloom(’jenkins’, ’1000’, ’
0.1’);

4 P0 = load ’hbase://po_s’ using lupos.cloud.pig.
udfs.HBaseLoadUDF(’Hexa’, ’’, ’<http://

purl.org/dc/elements/1.1/creator>,<http

://dblp.l3s.de/d2r/resource/authors/

Le_Gruenwald>’) as (columncontent_0:map
[]);

5 I0 = foreach P0 generate flatten(lupos.cloud.pig.
udfs.MapToBagUDF($0)) as (output0:
chararray);

6 BArticle = group I0 all;
7 CArticle = foreach BArticle generate bbArticle(

I0.output0);

8 store CArticle into ’article’;
9 P1 = load ’hbase://p_so’ using lupos.cloud.pig.

udfs.HBaseLoadUDF(’Hexa’, ’’, ’<http://

purl.org/dc/terms/partOf>’) as (
columncontent_1:map[]);

10 I1 = foreach P1 generate flatten(lupos.cloud.pig.
udfs.MapToBagUDF($0)) as (output1_1:
chararray, output2_1:chararray);

11 define bloomArticle Bloom(’article’);
12 I2 = filter I1 by bloomArticle($0);
13 BConf = group I2 all;
14 CConf = foreach BConf generate bbConf(I2.

output2_1);

15 store CConf into ’conf’;
16 P2 = load ’hbase://po_s’ using lupos.cloud.pig.

udfs.HBaseLoadUDF(’Hexa’, ’’, ’<http://

www.w3.org/1999/02/22-rdf-syntax-ns#type

>,<http://swrc.ontoware.org/ontology#

Proceedings>’) as (columncontent_2:map[])
;

17 I3 = foreach P2 generate flatten(lupos.cloud.pig.
udfs.MapToBagUDF($0)) as (output2:
chararray);

18 define bloomConf Bloom(’conf’);
19 I4 = filter I3 by bloomConf($0);
20 P3 = load ’hbase://p_so’ using lupos.cloud.pig.

udfs.HBaseLoadUDF(’Hexa’, ’’, ’<http://

purl.org/dc/terms/partOf>’) as (
columncontent_3:map[]);

21 I5 = foreach P3 generate flatten(lupos.cloud.pig.
udfs.MapToBagUDF($0)) as (output1_3:
chararray, output2_3:chararray);

22 I6 = filter I5 by bloomConf($1);
23 BArt2 = group I6 all;
24 CArt2 = foreach BArt2 generate bbArt2(I6.

output1_3);

25 store CArt2 into ’art2’;
26 P4 = load ’hbase://p_so’ using lupos.cloud.pig.

udfs.HBaseLoadUDF(’Hexa’, ’’, ’<http://

purl.org/dc/elements/1.1/creator>’) as (
columncontent_4:map[]);

27 I7 = foreach P4 generate flatten(lupos.cloud.pig.
udfs.MapToBagUDF($0)) as (output1_4:
chararray, output2_4:chararray);

28 define bloomArt2 Bloom(’art2’);
29 I8 = filter I7 by bloomArt2($0);
30 I9 = JOIN I4 BY $0, I2 BY $1, I6 BY $1

PARALLEL 5;
31 I10 = JOIN I0 BY $0, I9 BY $1 PARALLEL 5;
32 I11 = JOIN I8 BY $0, I10 BY $4 PARALLEL 5;
33 I12 = FOREACH I11 GENERATE $1;
34 X = DISTINCT I12 PARALLEL 5;

Listing 11: Pig Latin script of query 4 for the
traditional bloom filter approach
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Lübeck, Germany. At the mo-
ment he is employed as a re-
search assistant at the Institute
of Information Systems at the
University of Lübeck. His re-
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