
c© 2018 by the authors; licensee RonPub, Lübeck, Germany. This article is an open access article distributed under the terms and conditions of
the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).

Open Access

Open Journal of Big Data (OJBD)
Volume 4, Issue 1, 2018

http://www.ronpub.com/ojbd
ISSN 2365-029X

Operation of Modular Smart Grid Applications
Interacting through a Distributed Middleware

Stephan CejkaA, Albin FrischenschlagerA, Mario FaschangB, Mark StefanB, Konrad DiwoldA

A Siemens AG, Corporate Technology, Research in Digitalization and Automation,
Siemensstraße 90, 1210 Vienna, Austria, {stephan.cejka, albin.frischenschlager, konrad.diwold}@siemens.com

B AIT Austrian Institute of Technology GmbH, Energy Department,
Donau-City-Straße 1, 1220 Vienna, Austria, {mario.faschang, mark.stefan}@ait.ac.at

ABSTRACT

IoT-functionality can broaden the scope of distribution system automation in terms of functionality and
communication. However, it also poses risks regarding resource consumption and security. This article presents
a field approved IoT-enabled smart grid middleware, which allows for flexible deployment and management of
applications within smart grid operation. In the first part of the work, the resource consumption of the middleware
is analyzed and current memory bottlenecks are identified. The bottlenecks can be resolved by introducing a new
entity that allows to dynamically load multiple applications within one JVM. The performance was experimentally
tested and the results suggest that its application can significantly reduce the applications’ memory footprint on
the physical device. The second part of the study identifies and discusses potential security threats, with a focus
on attacks stemming from malicious software applications within the framework. In order to prevent such attacks a
proxy based prevention mechanism is developed and demonstrated.

TYPE OF PAPER AND KEYWORDS

Regular research paper: IoT application management, distributed Smart Grid applications, Java virtual machine,
memory optimization

1 INTRODUCTION

The increased integration of renewable energy in the
European energy system has led to a paradigm shift
regarding the operation of medium and low voltage
distribution grids [2]. These grids were designed for the
distribution of energy among consumers, which requires
very little control. As renewable energy sources (e.g.,
PV-systems) are usually integrated at a medium low
voltage level, the role of distribution grids has changed.
In order to facilitate this new role new means of control
and monitoring mechanisms/solutions are required to
manage renewable energy installed on the distribution
system level and maintain the required operation quality

within distribution grids. Mechanisms discussed in
the context of active distribution system control and
monitoring are usually coined under the term “smart grid
operation”. The term Smart Grid can be defined as “an
electric system that uses information, two-way, cyber-
secure communication technologies, and computational
intelligence in an integrated fashion across the entire
spectrum of the energy system from the generation to the
end points of consumption of the electricity” [20].

In order to facilitate new means of monitoring and
control distribution system operation has started to adopt
Internet of Things (IoT) concepts. IoT constitutes the
efforts of integrating information technology seamlessly
with real world things [28]. In the context of distribution

14

http://creativecommons.org/licenses/by/4.0/
http://www.ronpub.com/ojbd

S. Cejka et al.: Operation of Modular Smart Grid Applications Interacting through a Distributed Middleware

system operation (DSO) this has led to a transformation
of formerly passively/manually operated devices such
as transformers, breakers or switches into devices,
which are actively integrated in the system operation
process [29]. Using IoT-concepts in the DSO domain
has led to a wide range of novel applications [27] as
well as business cases [21], which aim for increasing the
efficiency of operation and fostering the decarbonisation
of power supply systems.

This article extends the work presented in [6],
focusing on the memory optimization of a distributed
middleware by introducing a mechanism for
dynamically loading multiple applications into single
run-time environments. In addition this article analyses
security threats to which this middleware is susceptible
and demonstrates how the application of proxies can
be used to prevent threats emanating from malicious
third party applications hosted on the middleware. The
memory and security issues show-cased in this article
are based on a system developed in the context of an
IoT-enabled secondary substation. In a first step the
architecture underlying the system is presented and the
role that applications hosted on such a substation play is
outlined.

1.1 IoT-compliant Power Distribution Grids
and the Role of Applications in Such
Systems

The application of IoT devices in the context of
smart grid operation as well as the role such devices
could take within new forms of distribution system
operation has been extensively discussed in the context
of fog/edge computing (see e.g. [1]). The reason is
that a growing number of devices such as smart meters,
smart breakers, electric vehicles or smart storage systems
which are active in distribution grids already display
this functionality. These devices can effect several
domains of the smart grid (cf., domains of the Smart Grid
Architecture Model [7]). Such devices are integrated into
smart grid operation since their application increases the
economical and ecological effectiveness and allows the
active operation of power distribution grids [15].

In order to fully exploit IoT functionality within a
distribution grid novel services are required which utilize
ICT-connected power grid components and external
services. Especially, in the context of low voltage grid
automation novel solutions based on IoT-functionality
are actively developed (e.g., [10, 23]). Possible examples
of such a utilization are forecasting mechanisms and
the integration of weather information into system
operation [15].

There are different means how IoT-enabled power
grid devices can be integrated into grid operation

from an architectural point of view. One option is
to shift computation into the cloud or a dedicated
data warehouse. In such a scenario field devices are
used to measure and aggregate grid information, while
computation happens elsewhere. Such an approach has
been investigated in the context of distribution system
operation [11]. The architecture underlying such an
approach can be scalable [22] and it has been shown
that such cloud based approaches yield a better execution
time than their non-cloud equivalent [9].

Within this study an edge-based approach is presented,
where data storage and computation are performed on
a dedicated field devices. The reason for choosing
such an approach in contrast to a cloud approach lies
in the fact that edge-based computation constitutes
less strict infrastructure requirements (in terms of the
availability of an uplink and downlink) as computation
and aggregation are performed in the field, while
guaranteeing the execution and performance of system
critical applications.

It should be noted that the presented approach does
not exclude a hybrid approach where different means of
computation are used both in the field as well as in the
cloud, as the system can be easily extended to interact
and utilize higher level systems such as a data warehouse
or a dedicated cloud environment. The integration of
such services in the context of the presented framework
(given that the required infrastructure is at hand) would
further boost the scope of operation of the presented
system.

An important component regarding the operation
of low voltage distribution grids is the secondary
substation. It can be seen as a link between the
medium (MV) and the low voltage (LV) grid. Under
a passive operation scheme the substation constitutes
an isolated device, i.e. all functionality within the
substation is pre-installed and every interaction with
the substation requires staff on site. As outlined such
an approach is no longer feasible given the increased
integration of renewables into the energy system. For
such scenarios a proactive substation is required, which
allows to adjust its functional scope by the deployment
of applications and active integration of information in
these applications.

An intelligent secondary substation (iSSN) as
presented in [15] can be seen as the result of the
evolution from a passive towards an active substation
allowing for a novel function scope. In order to achieve
this functionality increased computational power and
means of communication (both north and southbound)
are required. In contrast to passive systems where
the functional scope is fixed, the iSSN allows to
extend the functional scope. Examples for such new

15

Open Journal of Big Data (OJBD), Volume 4, Issue 1, 2018

iSSN
Automation HW component

MV

LV

SW ecosystem

AppsApp

Manager

Data

Storage

SCADA

uplink

Apps

Figure 1: Architectural overview of the iSSN,
containing power and communication links, a
switchable medium (MV) to low voltage (LV)
transformer and an automation hardware (HW)
component – typically an industry-grade computer –
which operates the smart grid applications [15].

functionality are voltage and (re-)active power control,
the optimization of distributed generation, virtualization,
or even decentralized market interaction. The functions
are realized as distributed software applications – so
called Smart Grid applications – which can be deployed
on the iSSN. Figure 1 gives an architectural overview of
an iSSN. A key requirement is the ability of applications
to communicate with each other. This allows to bundle
functionality in applications (in terms of services) and
compose complex functionality via the interaction of
applications. Within this study this is achieved via a
proprietary distributed middleware system, the Gridlink,
which has been previously introduced [15, 4].

1.2 Similarity between IoT and Interacting
Distributed Power Applications

In many industrial applications built on top of a
distributed middleware framework, applications can
either be hosted and distributed on several automation
components or on the same machine. Gridlink was
built with a focus on distributed computation. The
ratio was the ability to establish iSSN functionality
across device boundaries – i.e., a substation with several
dedicated automation devices (e.g., one device being
responsible for the interaction with the transformer and
other devices being responsible for data aggregation
and/or southbound and northbound communication).

A special case arises if all applications are hosted
on one automation device. This is a likely scenario
regarding distribution system operation as the number of
automation devices required for power system operation
increases exponentially with decreasing voltage level.
A DSO typically has to manage a few MV grids to
which several hundreds of LV-grids are connected. For
example, in 2014 Wiener Netze GmbH, the DSO for

Vienna and surrounding areas, was responsible for 46
substations between high and medium voltage level, and
10.718 secondary substations between medium and low
voltage level [26]. Therefore, the cost effectiveness of
the automation component is an important aspect.

In the case of Gridlink this leads to a large number
of industrial applications (i.e., interlinked Java
applications) running on one constraint automation
component (i.e., an industry grade computer).
Each application demands for a specific amount of
computation and memory resources. Besides the
resources required for the operation of the iSSN
additional computational power, memory and bandwidth
needs to be reserved for the provisioning features
(deploying, updating and installing applications).

This situation maps well to the domain of IoT, where
distributed functionality has to be achieved by low priced
and resource constraint components via the interaction
of functional modules. In addition, the number of
applications (in IoT terminology: functional modules)
running on a device should have a limited effect on the
performance. Another requirement is that functionality
is not coupled to a specific hardware platform in order to
facilitate a heterogeneous world of devices.

1.3 Outline

This article shows that the desired modularity of iSSN
application modules running on a constraint device is
restricted by limited computation resource available on
typical automation hardware. In order to overcome this
obstacle the framework of the distributed middleware
has to be extended. In addition the article investigates
security threats that can arise in IoT-like application
environments via malicious third party applications, and
presents a potential solution that allows to minimize
these threats.

Section 2 summarizes our previous work on the
iSSN application framework, including the middleware
Gridlink, its provisioning features as well as previously
developed smart grid applications. In Section 3 a
typical use case scenario with several iSSN applications
is presented which is used to evaluate the system’s
performance. In Section 4 the performance of the
use case scenario is evaluated. It is shown that
modularity jars with limited resources in the presented
setup. In order to overcome this problem a framework
enhancement is proposed. The old solution is compared
with the new one, showing that significant savings in
resource consumption can be achieved.

The second part of the article deals with potential
security threats which can arise in a distributed
middleware. Section 5 identifies potential threats for the
proposed system. A specific threat which can arise in

16

S. Cejka et al.: Operation of Modular Smart Grid Applications Interacting through a Distributed Middleware

the context of distributed automation is the unauthorized
access of control/information by malicious applications.
To overcome this problem a proxy mechanism is
suggested and its application is demonstrated. Section 6
concludes this article and outlines planned future work.

2 APPLICATION FRAMEWORK FOR
DISTRIBUTION SYSTEM OPERATION

The application framework for distribution system
operation used in this article has been previously
proposed [14, 15, 4]. It was developed to establish
a flexible and modular software ecosystem in the
context of intelligent secondary substation automation.
The resulting distributed middleware – the Gridlink
(Section 2.1) – comprises a runtime environment for
distributed applications, a communication infrastructure
for the interaction of applications as well as means
to manage (deploy/update/remove) applications during
runtime. During the development of Gridlink a
number of non-functional requirements were taken into
consideration which include the modularity, resilience,
and scalability of the resulting system. A key
requirement was to achieve an easy integration of
Smart Grid applications as well as the management of
running applications, while keeping the influence of an
application on others minimal.

Figure 1 sketches a potential scenario regarding the
deployed components on an iSSN. Besides a number
of applications the iSSN hosts an AppManager with
a remote uplink to establish provisioning features
(Section 2.2). Thus, the application framework allows
for the use of a Plug & Automate paradigm, i.e.,
applications can be activated and deactivated during the
runtime of other applications. In addition a data storage
is deployed, which can be used by applications for the
local aggregation of information received from the grid.
Previously a number of Smart Grid applications have
been introduced, including services and functions for

• acquisition, processing, and analyzing of field
component measurement data (e.g., Smart Meter
measurements) [14, 4],

• linking the iSSN to the energy market [18, 17], and

• making decisions, e.g., by a voltage controller
application able to switch the transformer’s tap-
changer based on historical and/or current data
[12, 4].

2.1 Gridlink

Gridlink was introduced as a middleware solution for
intelligent secondary substations, based on vert.x and

StorageModule

storage

. . .

shutdown

createDataPoint
addMeasurement
getMostRecentValue
. . .

Figure 2: Modules, roles and services [4]
A module (in this example the StorageModule)
is registered for the roles storage and shutdown.
The role storage provides several services (e.g.,
createDataPoint).

Hazelcast [4, 15]. Gridlink as distributed middleware
solution (in contrast to many typical IoT middleware
solutions, as e.g. listed in [25]) has a key advantage in
not creating a single-point-of-failure within the system.

A Gridlink-based secondary substation is composed
of several application modules (written in Java),
which interact via a message bus. The event bus
underlying the system is based on an asynchronous
communication model, which allows to couple modules
with management functions such as a service registry
and application update, upgrade and provisioning.
Application modules run on a single Java virtual machine
(JVM) that dynamically form a cluster of known
instances during execution using multicast discovery. In
addition, modules are able to enter and leave the system
at any time without influencing other modules’ execution
or communication. While the failure of modules can
impact the overall operational reliability of applications,
the impact of a failing module on the overall applications
can be limited by introducing redundancy and increasing
timeouts to react on failed transmissions.

Message Exchange: The communication
infrastructure provided by Gridlink for the application
modules includes the concepts of roles, topics and
services. An example is outlined in Figure 2.

Messages (i.e., requests or events) are identified by a
type (e.g., createDataPoint), contain a destination
address (e.g., the role storage) and may optionally
include a payload (e.g., the data point to be created).
They are either sent to a designated module role address
or published to a topic address reaching all registered
modules, by default being marshalled into a JSON
representation for transmission. Dedicated proxies are
executed after the module called the send or publish
command but before the message is really transmitted
(Figure 3). This allows for prior executing additional
message processing steps, including the modification of
a message (e.g., for encryption). The recipient module,

17

Open Journal of Big Data (OJBD), Volume 4, Issue 1, 2018

Sender

Encryption Proxy

Receiver

Decryption Proxy

Logging ProxyLogging Proxy

GL

Figure 3: Example that utilizes the Gridlink proxy
concept for logging and encryption of message
payloads [15]

registered to the role or topic to which the message was
issued to, is the data sink. After the respective proxies
are executed on the recipient side, e.g., for decryption,
the received message is handed over to the module’s
registered service handler for the message type and
processed, which may include issuing a reply message
to the sender.

Whether a proxy is in use, is defined only by the
operator and stays completely transparent to sender and
receiver module. These proxies are attached via the
module’s configuration file and can be plugged in and
out during runtime of the affected module. According
to their appearance in the configuration file, multiple
proxies are executed in sequence.

Gridlink Registry: A module can access a distributed
list of all currently attached and active modules – the
Gridlink Registry. It furthermore includes all roles and
topics the modules are registered to, the list of requests
they are able to handle and the associated replies, as
well as their proper JSON format specification. Thus,
using the Gridlink Registry each module knows at any
time which modules are currently present to behave
accordingly. By using the defined message schemata
even components outside the Gridlink system could
establish communication to Gridlink modules.

2.2 Provisioning Tasks

At some time it is necessary to install new features,
update applications, reconfigure them or uninstall them.
These steps are grouped under the term provisioning,
requiring – for cost efficiency – a functionality to initiate
these steps directly from the remote operator control
center without requiring staff on site.

A designated core module – the AppManager module
– is responsible for such tasks. Figure 4 shows the
simplified steps that are necessary:

1. The provisioning task is initiated from the remote
operator site, for example a web-based dashboard
of the DSO.

Figure 4: Provisioning tasks are initiated from the
remote site, e.g., by an operator’s dashboard,
communicated to and executed by the local
AppManager module. Status information is
communicated back to the operator.

2. The AppManagaer receives these provisioning
commands. In case of an installation it downloads
the respective module.

3. The AppManager manages installation,
configuration, updating, and removal of the
other modules – hence, they are termed managed
modules.

As the AppManager is a normal Gridlink module
itself, it is able to communicate with any other module
by sending and receiving Gridlink messages. The
AppManager does not introduce a single point of failure
to the functionality of the iSSN, as its fail crashes
the remote provisioning features only. Interferences of
modules with the operation of other modules can thus be
kept to a minimum.

Since starting and stopping modules is tightly
connected with the AppManager, selected design
choices of this software will be highlighted, to better
understand the later proposed solution.

Start-Up: During the AppManager’s start-up, all
Gridlink modules in its managed directory are started
– currently as a new Java process (cf., Figure 5). These
modules are the AppManager’s managed modules.

Module Installation: The Module Installation task
allows a functionality upgrade of the iSSN. First, the
AppManager receives an install command triggered
from the remote side. Afterwards the respective
application is downloaded, the content of the archive is
extracted and started.

Module Configuration Update: The Module
Configuration Update task allows a modification of

18

S. Cejka et al.: Operation of Modular Smart Grid Applications Interacting through a Distributed Middleware

Node 1

AppManager

Node 2

Storage

Node 3

Dashboard Interf.

Node 4

Data Generator

Node 5

Volt. Problem H.

Node 6

OLTC Controller

Node 7

Voltage Guard

Gridlink

Figure 5: The current solution with one module per JVM/node

operation parameters during the module’s execution.
Once the configuration file is changed, the corresponding
module is automatically notified. By design, the
configuration update shall not require a restart. In
the same way, Gridlink proxies can be attached and
detached from a module dynamically during its runtime.

Module Uninstallation: When a module shall be
removed, the AppManager sends a shutdown request to
the module and waits for the module to disappear from
the Gridlink Registry. Therefore, each module implicitly
implements a shutdown role (cf. Figure 2). On success,
the module’s directory is deleted from the file system.
Otherwise, the AppManager can be requested to kill the
process over its remote link.

Further Provisioning Tasks: Information of the
running modules, such as their state and the currently
used configurations can be requested. This may also
include information that bases on the Gridlink Registry.

During the runtime, it may be required to replace
a module in execution with another version. This
procedure is basically a combination of the module
uninstallation and installation procedures, including –
however – to keep the current module’s state for (near
to) continuous work of the module.

3 ISSN USE CASE SCENARIO: ACTIVE
VOLTAGE REGULATION

Secondary substations are typically used to transform
and distribute electric energy to connected customers
within a restricted voltage band. Active voltage
regulation measures are required to counteract voltage
fluctuation caused by renewable generation units and
high loads. Such active regulation can be achieved,
e.g., by using on-load-tap-changer transformers [12].
Subsequently we demonstrate a use case dealing with
the detection and handling of voltage band violations [4].
All seven Gridlink modules that are required for this use
case are running on one host machine in the iSSN (cf.,
Figure 5).

1. AppManager Module: The AppManager module
handles the software provisioning tasks described in

Section 2.2. This module has a remote communication
connection, where the provisioning commands are
received and downloads of artifacts take place.

2. Storage Module: The applications typically
require access to some historical and current data. The
Storage module is used for the permanent storage of the
accumulated data and to make these data available to
other modules on request. In this use case, the module is
responsible for measurement data (i.e., simulated voltage
value time series) and meta data of the simulated data
points [5].

3. Dashboard Interface Module: The Dashboard
Interface module provides a web-browser based view
on current and historical values of sensors and the
transformer.

4. Data Generator Module: The Data Generator
module generates measurement values by simulating
some houses’ power consumption during the day as well
as their power production in case they are equipped
with a photovoltaic (PV) installation using predefined
profiles.

5. Voltage Problem Handler Module: The Voltage
Problem Handler module is a monitoring module that
detects problematic voltages in the grid. The permitted
voltage band in the use case is defined to be between
220 V and 240 V and is thus tighter than power quality
criteria limits specified in EN 50160, that requires 95 %
of all ten minutes-average values within a week to be
within 207 V and 253 V (Un±10 %) [8]. Upon detection
of a violation the operator is notified such that proper
countermeasures can be taken.

6. On-Load-Tap-Changer (OLTC) Controller
Module: The OLTC Controller module links the
message bus and the transformer in the substation. Tap
change requests transmitted to the transformer result in
an increase of the voltage level by 2.5 V on tap up; a
decrease on tap down, respectively.

19

Open Journal of Big Data (OJBD), Volume 4, Issue 1, 2018

Figure 6: Minimum and maximum voltage level in
the simulated low voltage grid before installation of
the Voltage Guard Module.

7. Voltage Guard Module: The Voltage Guard
module analyses the voltage levels in the grid and reacts
when approaching the voltage band limits. Once a
voltage value below 225 V or above 235 V is detected
at one of the monitored data points, the module may
decide to request the OLTC controller to change the
transformer’s tap position. The algorithm in use tries
to keep the number of tap changes at a minimum level
by not reacting immediately when hitting the barrier but
only after a certain defined threshold level of cumulative
voltage violations over time is exceeded [24, 30].

Scenario Execution: The simulated low voltage grid
scenario consists of a group of apartment houses yielding
a voltage level over the day submitted by the Data
Generator module (Figure 6). During the day, a
voltage level violation is detected by the Voltage Problem
Handler module and communicated to the operator.
Note that at this time all modules except the Voltage
Guard Module are installed and running.

As countermeasure to the limit violations the operator
decides to install the Voltage Guard Module (7) during
the runtime of the Gridlink middleware and the modules
1–6. Due to its installation, tap position changes are
communicated to the OLTC and thus the values all
remain within the allowed voltage band (Figure 7).

Further Modules and Related Work: For presenting
the impacts of node management it is reasonable to
utilize the shown use case scenario. Some of the
described applications are – however – only of basic
functionality and need to be replaced or extended for
real world use cases. The data generator – for example –
necessarily needs to be replaced by a Data Concentrator
module connected to the sensors and smart meters

Figure 7: Minimum and maximum voltage level in
the simulated low voltage grid with the Voltage Guard
installed. Arrows show the submitted OLTC tap
changes during the day.

installed in the grid. Other publications that focus
more on the module functions than on the framework,
have introduced more sophisticated modules, e.g., for
data processing, analysis, and grid operation [14, 13].
These applications enable novel functions on the power
distribution grid level.

4 MIDDLEWARE OPTIMIZATION

The usage of the presented iSSN Application Framework
in the Smart Grid testbed of the Aspern Smart City
Research (ASCR) revealed two shortcomings. First,
the necessity to specify roles over which messages
are exchanged on sender and receiver side resulted in
a complicated and error prone configuration process
(Section 4.1). The second problem was a high main
memory demand created by the modular approach
(Section 4.2).

4.1 Service Discovery Optimization

As described in Section 2.1, Gridlink modules register
handlers for various message types on roles to receive
messages. On the recipient side, the pseudo-code to
register a handler looks as follows:

registerHandler(<role-name>,
<message-type>, <handler>)

To send a message, a module needs to supply a
message of the appropriate type and the role to which
the message shall be delivered:

send(<role-name>, <message>)

Thus, the sender needs to know the role name on
which the receiver awaits messages and the message

20

S. Cejka et al.: Operation of Modular Smart Grid Applications Interacting through a Distributed Middleware

type the receiver can handle. In systems consisting of
high numbers of modules, this resulted in complicated
configuration files for each module; as requiring to
specify on which roles the module has to listen for
which message-types and to which roles the module
has to send messages of which message type. Errors
in these configurations inhibited the communication
between those modules.

Field experiences show that in most cases, the sender
does not care who the recipients of its messages are. The
information, to which modules messages shall be sent to
– however – is required by mentioned send command.
This information which message-types are handled by
which module is already located in the registry. Hence,
the client module sending a message of a specified
type could search in the registry for modules handling
those message types and more importantly over which
roles those messages have to be exchanged. With this
information the module is able to send the message
once for each found role. Since a new module could
have registered a handler, this registry search has to be
performed every time a message is sent. With the help
of this mechanism, the cumbersome and error prone
configuration process is reduced significantly.

The second step is to remove the trouble for module
developers to search the registry and thus to remove
duplicated code. Thus, Gridlink API was extended to
include the described behavior, such that the role address
is no longer required to be specified:

send(<message>)

If a module uses the send method without supplying a
role, the message is sent to all modules with a registered
handler appropriate to the message-type, by implicitly
querying the registry. As the registry is distributed to
all modules and all role registrations by modules are
observed by the local registries, the search for that role
requires local available information only.

4.2 Memory Optimization

The modularity of the approach requires running a
high number of various modules for small independent
tasks simultaneously. Previously, one Gridlink node
executed exactly one module (cf., Figure 5), i.e., the
AppManager initializes a new process for each module
it is managing, introducing a high overhead in terms of
main memory consumption. In consequence, the number
of required modules for a typical Smart Grid use case
is typically higher than the RAM-constrained devices
can host simultaneously, before undesirable effects like
trashing occur.

The use case consisting of seven modules being
executed concurrently on the same machine, requires

already more than 800 MB of main memory, not
available on the target hardware platform. Thus, a
mechanism to execute multiple Gridlink modules in
one node and thus in one JVM process had to be
developed (“scale up”). The proposed extensions
shall however not invalidate any of the Gridlink
functions. It shall be possible to run all modules as
previously intended, therefore decisions like the start-up
of modules, communication etc., should remain.

To solve the described problem of excessive
memory consumption, a new Gridlink module –
the NodeManager – is proposed. It introduces the ability
of managing multiple modules on the same node, and
thus, in the same JVM instance (Figure 8). To avoid
ambiguous use of the term “managed”, we will now
distinguish between app-managed for management by
the AppManager, and node-managed for management
by the NodeManager, respectively. Therefore, the
NodeManager is responsible for the module’s start-up,
provides a command line interface to node-managed
modules, and is able to undeploy them. The process of
application provisioning is notably influenced by the
introduction of a NodeManager:

Start-Up: The AppManager was introduced as an
unmanaged module [4]. However, besides installing
it on its own node (cf., Node 1 in Figure 5), the
AppManager now can – just like any other module
– be started parallel to and by a NodeManager – as
a node-managed module (cf., Node 1 in Figure 8).
As in the old setup, all Gridlink modules in the
AppManager’s managed folder are started during its
start-up by creating a new JVM process, including a
NodeManager module if it is contained in this folder
(cf., NodeManager on Node 2 in Figure 8). No
special handling is necessary, as the NodeManager
complies with the module structure conventions. On
the NodeManager’s start-up, all Gridlink modules nested
inside its own managed subfolder are started within
the NodeManager’s node/process (cf., the remaining
modules on Node 2 in Figure 8). Special attention has
to be paid to libraries of these node-managed modules:
Java does not allow for including two classes with the
same fully qualified name to the classpath. By using an
own class loader for each module, possible problems of
influences between libraries are kept to a minimum (cf.,
isolated bundles in OSGi [19, 16]).

Module Installation: The module’s configuration
needs to include whether it shall be started traditionally
as its own process via the AppManager or on an existing
node next to a NodeManager. Based on this decision,
the artifact is extracted to the respective directory. In the

21

Open Journal of Big Data (OJBD), Volume 4, Issue 1, 2018

Node 1

AppManager Storage

NodeManager1

Node 2

Dashboard Interf. Data Generator Volt. Problem H. OLTC Controller Voltage Guard

NodeManager2

Gridlink

Figure 8: Solution with multiple modules on one JVM/node (“scale up”).
In this example it is decided to execute the AppManager and the Storage module on one node; all other
modules together on one other node, respectively.

latter case the request to start the module needs to be
communicated to the respective NodeManager module.

Module Configuration Update: Configuration
changes of a module always reach the AppManager,
which is responsible for the modification of the
JSON configuration file. The location of a module’s
configuration file depends on whether it is node-
managed or not, as it either is located in the
NodeManager’s or in the AppManager’s managed
directory. The AppManager internally knows all the
modules it has started, but not necessarily all modules
started by other node managers (e.g., the Storage
module in Figure 8). However, the AppManager is only
responsible for its app-managed modules and thus, all
modules of which he is capable of configuration changes
are known.

Module Uninstallation: In case of the node-managed
module’s refusal to shut down, the AppManager cannot
kill the process as earlier, as this would also shut down
the NodeManager and every other module on that node.
It can however request the managing NodeManager to
stop the module, shifting the responsibility. As for
configuration, for removal of the module’s files the
AppManager has to know the directory location.

Summary: In consequence, both AppManager
and NodeManager module are responsible for their
?-managed modules. The difference is that app-managed
modules are started in their own JVM and thus, have
their own process; node-managed modules are started
beside the NodeManager in the already existing process.
Figure 8 shows both options:

1. NodeManager1 on Node 1 is an unmanaged
module, initially started.

2. It has started the Storage and the AppManager.
These two modules are node-managed modules –
managed by NodeManager1.

 0

 200

 400

 600

 800

 1000

Old New

M
B

 R
A

M

NodeManager
AppManager

Storage
Dashboard Interface

Data Generator
OLTC Controller

Voltage Problem Handler
Voltage Guard

Figure 9: Evaluation results

3. The AppManager on Node 1 has traditionally
started NodeManager2 as its own process on
Node 2. Therefore, NodeManager2 is an app-
managed module – managed by the AppManager
on Node 1.

4. The five modules running within Node 2 have either
been started (node-managed) by NodeManager2 or
by request of the AppManager to NodeManager2
(in result being app-managed by the AppManager
and node-managed by NodeManager2).

In the scenario of Section 3, the AppManager would
thus issue an request to NodeManager2 to start the
Voltage Guard module after its download.

As communication of all modules is done via the
Gridlink – and so are the start commands from the
AppManager to the NodeManager – the AppManager is
also able to request modules to be started on Node 1 by
issuing requests to its own NodeManager1.

Evaluation Results: We conducted experiments to
show the impact of the new solution. Thus, we faced
the memory consumption of the old solution – all seven
modules of the iSSN use case (cf. Section 3) being
started within their own node – with the new solution
using the proposed NodeManager concept to start the
modules in one JVM.

22

S. Cejka et al.: Operation of Modular Smart Grid Applications Interacting through a Distributed Middleware

Figure 9 shows the results of both experiments. It
is shown that each JVM requires at least 100 MB in
main memory. Thus, the start of the NodeManager
module shows a comparable memory consumption to
each module in the first experiment. More specifically,
for n modules with their memory consumption for
additional required libraries, its logic, and its data
structures mi and a (for simplification assumed) constant
amount of Gridlink dependencies’ memory consumption
c, the memory consumption for the old solution was:

Mold =

n∑
i=0

(c+mi) = nc+

n∑
i=0

mi

In contrast, the memory consumption of the new
– NodeManager-based – solution requires Gridlink
dependencies to be load only once, resulting in a
significant reduction of the total memory consumption:

Mnew = c+

n+1∑
i=0

mi

Therefore, the higher the number of modules, the
greater the difference of the required memory between
old and new Smart Grid application management
solutions becomes. However, when only one module
should be started on a host, the old system requires less
memory. This results from the NodeManager’s memory
requirements for its own logic and a small Gridlink
middleware overhead.

5 SECURITY THREATS

Potential security threats of Gridlink communication
have been first identified and analyzed in [3].
Countermeasures against potential attacks relating node
management consist of trusted applications and the
middleware’s security layer.

5.1 Event Bus Blocking Attack / Trusted
Gridlink Apps

The event bus thread is shared between all modules
running on one vert.x node. This aspect gets important
– and security relevant – with the introduction of node
management. If the thread is blocked by one module all
other modules on the node are affected, e.g. by getting
stuck or showing other unexpected behavior (Event Bus
Blocking Attack) [3]. A malicious module could thus
deny all other modules on the node from their proper
execution.

As modules developed by other parties are possible, a
mechanism for certified modules needs to be introduced
(Trusted Gridlink Apps). An execution of uncertified and

thus untrusted modules beside trusted ones on the same
physical node may be prohibited. This partly solves the
Event Bus Blocking Attack, as the influence of untrusted
to trusted modules’ execution remains limited.

To further improve the availability, fundamental
modules (e.g., the storage), modules with higher
processor consumption or modules that are required to
reply fast could be moved to their own nodes, such that
they are not required to share the event bus with other
modules.

5.2 Communication Issues / Gridlink Security
Layer

We earlier introduced Gridlink proxies that allow the
normal execution to be interrupted to run user-defined
code for interception or modification of messages or to
execute additional tasks when messages are transmitted
over the component (cf. Figure 3). A number of proxies
can be defined for an application allowing a proxy side
customization of the in- and outgoing data.

Message Encryption Proxies: The use of Gridlink
proxies for encrypting messages before sending and
decrypting them again at the receiver denies that
malicious modules can read the communication. These
proxies can either use symmetric or asymmetric
cryptography. By use of proxies only features that
are already included in the Gridlink are utilized;
cryptography proxies are thus termed the Gridlink
Security Layer establishing end-to-end encryption [3].

Message Filter Proxies: This subsection will
demonstrate the application of proxies in the context
of the secure integration of third party Gridlink
applications. In such cases, the communication between
Gridlink modules needs to be observed. The need for
message filter proxies is shown by the following three
motivating examples:

1. Assume that the Voltage Problem Handler module
is developed by a third party. Such analytics
modules pre-process sensor information. While
this module should be able to request the Storage
module for measurement data, other information
and services available on the message bus should
not be accessible by the module.

2. The OLTC Controller Module module provides a
link between the message bus and the transformer
in the substation. Applications are able to
access current information on the tap position and
can issue service requests regarding tap position
changes, which are forwarded to the substation

23

Open Journal of Big Data (OJBD), Volume 4, Issue 1, 2018

controller via the module. The operation of the
transformer is critical due to active interference
with grid operation. If the voltage is too high at any
point in the grid, machines of industries and devices
of households can get damaged; if the voltage is too
low, they may cease to operate. Thus, it must be
ensured that only authorized modules are able to
issue tap change requests to the OLTC Controller
module.

3. The AppManager module issues shutdown requests
to all modules using normal Gridlink messages.
It needs to be ensured that only this module can
send such requests, furthermore that every module
accepts such requests only from that sender.

The intended behavior can be achieved using the
proxy concept outlined previously. Modules are
equipped with proxies which monitor and control the
incoming and outgoing messages of a module, such that
messages identified as prohibited can be filtered out.

Message Filter Security Proxy for incoming
messages
On receiving a message check message type and
sender; if permitted hand message over to module,
drop it otherwise.

Message Filter Security Proxy for outgoing
messages
Before sending a message check message and
receiver; if permitted send message, drop it
otherwise.

Both proxies work likewise: if the type of the
message is not among the allowed types and/or
communication with the other party (i.e., sender or
receiver) is not permitted the message is dropped.
Otherwise, the incoming message is handed over to the
designated module; the outgoing message is sent over
the communication network, correspondingly. Note that
all proxies in use are specified by the module’s user
(i.e., the operator) and not by its developer. Thus, this
mechanism allows to specify the allowed communication
of a module without requiring in-depth inspection of the
third party module.

For the motivating examples – besides encryption of
messages – the following proxies are reasonable:

1. a proxy filtering outgoing messages of the Voltage
Problem Handler module, that let pass only
messages of permitted type and destination, e.g.,
this module is not permitted to issue tap change
requests to the OLTC Controller module. In this
case, the proxy is defined to drop all outgoing

messages that are not data retrieval requests to the
Storage module.

2. a proxy filtering incoming messages at the OLTC
Controller module, that let pass only messages of
permitted type and source, e.g., this module must
not accept tap change requests from the Voltage
Problem Handler module. In this case, the proxy is
defined to drop all incoming messages that are not
tap change requests by the Voltage Guard module.

3. a proxy for all modules except the AppManager
that filters outgoing shutdown request messages;
furthermore a proxy for all modules that filter
incoming shutdown requests not originating from
the AppManager.

Proxy Security Concept Demonstration To
demonstrate the concept a malicious analytics module
was generated. Besides its designated task (i.e.,
receiving current sensor information from the data
generator module, preprocessing them and storing them
in the Storage module) the module will also try to
subscribe information from the OLTC module in order
to receive information of the current tap position as well
as send tap position change requests and therefore try to
actively interfere into the grid operation process.

To demonstrate the application of proxies the scenario
was tested under two setups. In the first setup no proxies
were used, while the second second setup equipped
each module with a module specific proxy defining the
allowed in- and output of each module. The exemplary
proxies for incoming and outgoing messages for the
analytics module are shown in Listing 1.

The proxy of Listing 1 checks if incoming messages
are sent from the specified sender as well as correspond
to the data model which is required from the sender. If
an incoming message does not correspond to an expected
payload from an expected sender it is not forwarded to
the module.

The proxy of Listing 2 works in a similar manner
for outgoing message, filtering them according to data
type and receiving module. Messages which do not
correspond to the specification are not forwarded and
will thus not reach their destination module.

When running the scenario without proxies each
module is able to access information as well as
services from all the other modules. Therefore the
malicious module can access information on the current
tap position as well as request the tap position to
be changed. This behavior can be prevented using
application specific proxies which manage the incoming
and outgoing communication and service scope of the
modules. Using proxies the analytics module is only

24

S. Cejka et al.: Operation of Modular Smart Grid Applications Interacting through a Distributed Middleware

Listing 1: Example incoming proxy for an analytics module
p u b l i c c l a s s A n a l y t i c s I n P r o x y e x t e n d s L a y e r I n P r o x y {

p r i v a t e f i n a l Logger l o g g e r = . . . ;

. . .

p u b l i c Enve lope a p p l y (Enve lope message) {
i f (message i n s t a n c e o f Gr idEven t && message . getFrom () == " Data

G e n e r a t o r ") {
l o g g e r . i n f o (" Rece ived Gr idEven t message from DG. Th i s message t y p e i s

a l l o w e d and w i l l be f o r w a r d e d t o t h e module ") ;
r e t u r n message ;

} e l s e {
l o g g e r . i n f o (" Rece ived message t y p e o r s e n d e r which was n o t s p e c i f i e d .

Th i s message t y p e i s n o t a l l o w e d and w i l l n o t be f o r w a r d e d t o t h e
module ") ;

r e t u r n n u l l ;
}

}
}

Listing 2: Example outgoing proxy for an analytics module
p u b l i c c l a s s A n a l y t i c s O u t P r o x y e x t e n d s LayerOutProxy {

p r i v a t e f i n a l Logger l o g g e r = . . . ;

. . .

p u b l i c Enve lope a p p l y (Enve lope message) {
i f (message i n s t a n c e o f AddEnt ryReques t && message . ge tTo () ==

" S t o r a g e ")) {
l o g g e r . i n f o (" Outgoing AddEnt ryReques t t o S t o r a g e . Th i s message t y p e

i s a l l o w e d and w i l l be d e l i v e r e d ") ;
r e t u r n message ;

} e l s e {
l o g g e r . i n f o (" Outgoing message o f f o r b i d d e n t y p e o r f o r b i d d e n r e c e i v e r .

Message w i l l n o t be f o r w a r d e d ") ;
r e t u r n n u l l ;

}
}

}

25

Open Journal of Big Data (OJBD), Volume 4, Issue 1, 2018

Machine 1

Node 1 Node 2

Machine 2

Node 3 Node 4

Gridlink

Figure 10: Solution with modules on two machines (“scale out”)

able to receive information from the data generator
(of the type GridEvent) and store information in the
Storage module using the AddEntryRequest service. All
other means of communication are blocked. While the
provided example is very simple it demonstrates the
application of proxies in the context of security.

As mentioned, the numbers of proxies used in the
context of a module is not limited. Therefore, a number
of proxies can be defined for an application allowing a
proxy side customization of the incoming and outgoing
data.

6 CONCLUSION AND OUTLOOK

To counteract the high memory demand of multiple
Smart Grid application modules running each on its own
JVM instance, we introduced the new NodeManager
entity. Using node management, multiple Gridlink
modules can be executed concurrently within one
JVM without influencing installation, update and
uninstallation during the runtime of the node and other
modules. Memory usage was thus reduced by a huge
extent as dependency libraries need to be loaded only
once and no additional JVM caused memory overhead
is introduced. Additionally required main memory just
results from the module’s implementation.

The evaluation shows that the described extension
allows for modular applications plugged in
(installed/started) and out (stopped/uninstalled) during
the runtime of the node (Plug & Automate paradigm)
and the concurrent execution of a high number of
modules. With this solution, we raised a potential
problem by a commonly used event bus which might
lead modules to mutually block each other on the same
node. We thus introduced some security measures
(Trusted Gridlink Apps, Gridlink Security Layer) that
allow to specify the allowed modules on one node
and the allowed communication of modules without
requiring changes in the (possibly third party) module’s
implementation. The proxy concept was demonstrated
in a scenario where a malicious third party application
tries to access information and services. This behavior
can be prevented using application specific proxies

which limit the information scope of each application.
In future work, it may be necessary to run modules

on different machines (Scale Out, cf. Figure 10).
While Gridlink has always been able to communicate
beyond the barriers of physical machines, application
provisioning is more complicated in this setup requiring
file transfer to and process execution on the other
machine. This extension would allow various use cases,
such as load balancing and the use of fault tolerant and
standby modules. Those functionalities are future work,
once needed in a concrete use case.

ACKNOWLEDGEMENTS

The presented work is developed in the Smart Grid
testbed of the Aspern Smart City Research (ASCR) and
conducted

(i) in the “iNIS” project (849902), funded and
supported by the Austrian Ministry for Transport,
Innovation and Technology (BMVIT) and the
Austrian Research Promotion Agency (FFG), and

(ii) in the “SCDA-Smart City Demo Aspern” project
(846141), funded and supported by the Austrian
Climate and Energy Fund (KLIEN).

REFERENCES

[1] F. Bonomi, R. Milito, J. Zhu, and S. Addepalli,
“Fog computing and its role in the internet of
things,” in Proceedings of the first edition of
the MCC workshop on Mobile cloud computing.
ACM, 2012, pp. 13–16.

[2] R. E. Brown, “Impact of smart grid on distribution
system design,” in Power and Energy Society
General Meeting-Conversion and Delivery of
Electrical Energy in the 21st Century, 2008 IEEE.
IEEE, 2008, pp. 1–4.

[3] S. Cejka, A. Frischenschlager, M. Faschang, and
M. Stefan, “Security concepts in a distributed
middleware for smart grid applications,”
in Symposium on Innovative Smart Grid

26

S. Cejka et al.: Operation of Modular Smart Grid Applications Interacting through a Distributed Middleware

Cybersecurity Solutions 2017, Mar 2017, pp.
104–108.

[4] S. Cejka, A. Hanzlik, and A. Plank, “A
framework for communication and provisioning
in an intelligent secondary substation,” in 2016
IEEE 21st International Conference on Emerging
Technologies and Factory Automation (ETFA),
Sept 2016.

[5] S. Cejka, R. Mosshammer, and A. Einfalt, “Java
embedded storage for time series and meta data
in Smart Grids,” in 2015 IEEE International
Conference on Smart Grid Communications
(SmartGridComm), Nov 2015, pp. 434–439.

[6] S. Cejka, A. Frischenschlager, M. Faschang,
and M. Stefan, “Memory optimization of a
distributed middleware for smart grid applications,”
in Proceedings of the 2nd International Conference
on Internet of Things, Big Data and Security,
IoTBDS 2017, Porto, Portugal, April 24-26, 2017,
2017, pp. 331–337.

[7] CEN-CENELEC-ETSI, “Smart Grid Reference
Architecture,” CEN-CENELEC-ETSI Smart
Grid Coordination Group, Technical Report,
Nov 2012. [Online]. Available: http:
//ec.europa.eu/energy/sites/ener/files/documents/
xpert_group1_reference_architecture.pdf

[8] CENELEC, “EN 50160:2010 - Voltage
characteristics of electricity supplied by public
electricity networks,” Mar 2011.

[9] V. Chang and G. Wills, “A model to compare
cloud and non-cloud storage of big data,” Future
Generation Computer Systems, vol. 57, pp. 56–76,
2016.

[10] Y. Chollot, P. Deschamps, A. Jourdan, and
S. Mishra, “New approach to regulate low
voltage distribution network,” in 23rd International
Conference on Electricity Distribution (CIRED),
Jun 2015, paper 1145.

[11] G. L. De Alvaro, G. A. Taylor, D. C. Wallom,
G. Gershinsky, A. Y. Huete, and K. Diwold, “High
performance computing and communications
technology solutions for future smart distribution
network operation,” IET Conference Proceedings,
pp. 0730–0730(1), 2013.

[12] A. Einfalt, F. Zeilinger, R. Schwalbe, B. Bletterie,
and S. Kadam, “Controlling active low voltage
distribution grids with minimum efforts on costs
and engineering,” in 39th Annual Conference of the
IEEE Industrial Electronics Society (IECON), Nov
2013, pp. 7456–7461.

[13] A. Einfalt, S. Cejka, K. Diwold,
A. Frischenschlager, M. Faschang, M. Stefan,
and F. Kupzog, “Interaction of smart grid
applications supporting plug & automate for
intelligent secondary substations,” CIRED, Open
Access Proceedings Journal, vol. 2017, no. 1, pp.
1257–1260, Oct. 2017.

[14] M. Faschang, M. Stefan, F. Kupzog, A. Einfalt,
and S. Cejka, “‘iSSN Application Frame’ – A
flexible and performant framework hosting smart
grid applications,” in CIRED Workshop 2016, Jun
2016, paper 255.

[15] M. Faschang, S. Cejka, M. Stefan,
A. Frischenschlager, A. Einfalt, K. Diwold,
F. Pröstl Andrén, T. Strasser, and F. Kupzog,
“Provisioning, deployment, and operation of smart
grid applications on substation level,” Computer
Science - Research and Development, vol. 32,
no. 1, pp. 117–130, 2017.

[16] K. Gama and D. Donsez, Towards Dynamic
Component Isolation in a Service Oriented
Platform. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2009, pp. 104–120.

[17] T. Gawron-Deutsch, S. Cejka, A. Einfalt, and
D. Lechner, “Proof-of-Concept for market based
grid quality assurance,” in 23rd International
Conference on Electricity Distribution (CIRED),
Jun 2015, paper 1495.

[18] T. Gawron-Deutsch, F. Kupzog, and A. Einfalt,
“Integration of energy market and distribution grid
operation by means of a flexibility operator,” e &
i Elektrotechnik und Informationstechnik, vol. 131,
no. 3, pp. 91–98, 2014.

[19] N. Geoffray, G. Thomas, B. Folliot, and
C. Clément, “Towards a new isolation abstraction
for osgi,” in Proceedings of the 1st Workshop on
Isolation and Integration in Embedded Systems,
ser. IIES ’08. New York, NY, USA: ACM, 2008,
pp. 41–45.

[20] H. Gharavi and R. Ghafurian, “Smart grid: The
electric energy system of the future,” Proceedings
of the IEEE, 2011.

[21] V. Giordano and G. Fulli, “A business case for
smart grid technologies: A systemic perspective,”
Energy Policy, vol. 40, pp. 252–259, 2012.

[22] C.-S. Li, H. Franke, C. Parris, B. Abali,
M. Kesavan, and V. Chang, “Composable
architecture for rack scale big data computing,”
Future Generation Computer Systems, vol. 67, pp.
180–193, 2017.

27

http://ec.europa.eu/energy/sites/ener/files/documents/xpert_group1_reference_architecture.pdf
http://ec.europa.eu/energy/sites/ener/files/documents/xpert_group1_reference_architecture.pdf
http://ec.europa.eu/energy/sites/ener/files/documents/xpert_group1_reference_architecture.pdf

Open Journal of Big Data (OJBD), Volume 4, Issue 1, 2018

[23] M. Mangani, F. Kienzle, M. Eisenreich,
Y. Farhat Quinones, R. Bacher, and A. Brenzikofer,
“GridBox: An Open Platform for Monitoring
and Active Control of Distribution Grids,” in
23rd International Conference on Electricity
Distribution (CIRED), Jun 2015, paper 1070.

[24] A. Plank, F. Zeilinger, and A. Einfalt,
“Untersuchung der Effektivität von
Regelkonzepten in Verteilnetzen,” in 14.
Symposium Energieinnovation, Graz, Austria,
Feb 2016, in german.

[25] M. A. Razzaque, M. Milojevic-Jevric, A. Palade,
and S. Clarke, “Middleware for internet of things:
A survey,” IEEE Internet of Things Journal, vol. 3,
no. 1, pp. 70–95, Feb 2016.

[26] T. Schuster, “Auswirkungen der unsymmetrischen
Belastung im Niederspannungsnetz für dezentrale
Energieeinspeiser,” in Tagungsunterlagen Eninnov
2014, 2014, in german.

[27] M. L. Tuballa and M. L. Abundo, “A review
of the development of smart grid technologies,”
Renewable and Sustainable Energy Reviews,
vol. 59, pp. 710–725, 2016.

[28] D. Uckelmann, M. Harrison, and F. Michahelles,
“An architectural approach towards the future
internet of things,” in Architecting the internet of
things. Springer, 2011, pp. 1–24.

[29] X. Yu and Y. Xue, “Smart grids: A cyber-physical
systems perspective,” Proceedings of the IEEE, vol.
104, no. 5, pp. 1058–1070, May 2016.

[30] F. Zeilinger, A. Einfalt, K. Diwold, A. Plank, and
A. Lugmaier, “Influence of Different Framework
Conditions on the Effectiveness of Control
Concepts in Distribution Grids,” in CIRED
Workshop 2016, Jun 2016, paper 259.

AUTHOR BIOGRAPHIES

Stephan Cejka joined the
department for Corporate
Technology of Siemens Austria
in 2014. There he works as
Research Scientist and Junior
Expert in a research group
for Smart Grids and Smart
Buildings. He received his
bachelors degree in Software
& Information Engineering
from Vienna University of

Technology in 2013 and his magister degree in Laws
from University of Vienna in 2016. Currently, he is
enrolled in the master study "Software Engineering &
Internet Computing" at Vienna University of Technology
and in the PhD study in Laws at University of Vienna.
Research interests include distributed systems, data
storage and privacy in the Smart Grid area.

Albin Frischenschlager was
born in 1988 in Vienna. He
received a master degree in
Computer Engineering from
the Vienna University of
Technology. His diploma
thesis was about: “Autonomous
path planning using probabilistic
maps”. During his studies, Albin
Frischenschlager was employed
as system-administrator and

software developer for different companies. Since
October 2014, Albin Frischenschlager is working in a
Smart Grid research group of Corporate Technology at
Siemens AG Austria as a project manager and software
developer.

28

S. Cejka et al.: Operation of Modular Smart Grid Applications Interacting through a Distributed Middleware

Mario Faschang was research
engineer and project manager at
the Energy Department of AIT
Austrian Institute of Technology
GmbH in Vienna until August
2017. Faschang holds a M.Sc.
(Dipl.-Ing.) degree (2011)
in electrical engineering and
information technology from
TU Vienna and a Ph.D. in
engineering science (2015).

Before joining AIT, he was with Siemens AG Austria
and research assistant at TU Vienna. Faschang’s
research focuses on future power grids and voltage
control in low voltage distribution grids with high
share of distributed, alternative power generation and
electro mobility. Faschang was awarded the Austrian
INiTS award, the “green tech” award, and the Austrian
Smart Grids Pioneer Award together with his colleagues
in 2012. He is member of Austrian Electrotechnical
Association (OVE), IEEE Austria, and officer of IEEE
Austria Young Professionals Affinity Group.

Mark Stefan studied Computer
Science (Bachelor and Master)
at the Vienna University of
Technology. He started his
professional career at Robert
Bosch AG in Vienna (software
and function development,
project management) where he
was working for about 2.5 years.
In 2012, he joined the Institute
of Computer Aided Automation
at the Vienna University of

Technology, working as project assistant and doing his
PhD-studies. He developed an algorithm for optimizing
railway systems in terms of deadlock detection and
avoidance as well as the minimization of the traction
energy consumption. Since June 2014, he is working
as Research Engineer and Project Manager at the AIT
Austrian Institute of Technology GmbH. Since 2014,
Dr. Stefan holds lectures at St.Pölten University of
Applied Sciences (Application of Graphs in the Railway
Sector).

Konrad Diwold received a
master degree in Artificial
Intelligence from the Free
University Amsterdam
(Netherlands) in 2007. From
2008 until 2011 Konrad Diwold
was a research associate at the
parallel and complex systems
workgroup at the University of
Leipzig (Germany). His work
concerned biological inspired

algorithms. He received a Ph.D. in computer science
from the University of Leipzig in 2012. From 2011
until 2014 Konrad Diwold was a research associate
at the Fraunhofer Institute for Wind Energy and
Energy System Technology (Kassel, Germany) in
the department of distribution system operation. His
work concerned the smart integration of renewable
energy resources in distribution system operation.
Since January 2015, he is working in a research group
of Corporate Technology with focus on Smart Grid
technologies at Siemens AG Österreich.

29

	Introduction
	IoT-compliant Power Distribution Grids and the Role of Applications in Such Systems
	Similarity between IoT and Interacting Distributed Power Applications
	Outline

	Application Framework for Distribution System Operation
	Gridlink
	Provisioning Tasks

	iSSN Use Case Scenario: Active Voltage Regulation
	Middleware Optimization
	Service Discovery Optimization
	Memory Optimization

	Security Threats
	Event Bus Blocking Attack / Trusted Gridlink Apps
	Communication Issues / Gridlink Security Layer

	Conclusion and Outlook

