
c© 2019 by the authors; licensee RonPub, Lübeck, Germany. This article is an open access article distributed under the terms and conditions of
the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).

Open Access

Open Journal of Cloud Computing (OJCC)
Volume 6, Issue 1, 2019

http://www.ronpub.com/ojcc
ISSN 2199-1987

Code Generation for Big Data Processing
in the Web using WebAssembly

Sven Groppe, Niklas Reimer

Institute of Information Systems (IFIS), University of Lübeck, Ratzeburger Allee 160, D-23562 Lübeck, Germany,
groppe@ifis.uni-luebeck.de, Niklas.Reimer@student.uni-luebeck.de

ABSTRACT

Traditional clusters for cloud computing are quite hard to configure and setup, and the number of cluster nodes is
limited by the available hardware in the cluster. We hence envision the concept of a Browser Cloud: One just has
to visit with his/her web browser a certain webpage in order to connect his/her computer to the Browser Cloud.
In this way the setup of the Browser Cloud is much easier than those of traditional clouds. Furthermore, the
Browser Cloud has a much larger number of potential nodes, as any computer running a browser may connect to
and be integrated in the Browser Cloud. New challenges arise when setting up a cloud by web browsers: Data
is processed within the browser, which requires to use the technologies offered by the browser for this purpose.
The typically used JavaScript runtime environment may be too slow, because JavaScript is an interpreted language.
Hence we investigate the possibilities for computing the work-intensive part of the query processing inside a virtual
machine of the web browser. The technology WebAssemby for virtual machines is recently supported by all major
browsers and promises high speedups in comparison with JavaScript. Recent approaches to efficient Big Data
processing generate code for the data processing steps of queries. To run the generated code in a WebAssembly
virtual machine, an online compiler is needed to generate the WebAssembly bytecode from the generated code.
Hence our main contribution is an online compiler to WebAssembly bytecode especially developed to run in the web
browser and for Big Data processing based on code generation of the processing steps. In our experiments, the
runtimes of Big Data processing using JavaScript is compared with running WebAssembly technologies in the major
web browsers.

TYPE OF PAPER AND KEYWORDS

Regular Research paper: Browser Cloud, Big Data, Browser Virtual Machine, WebAssembly, JavaScript

1 INTRODUCTION

Complex data processing tasks are typically splitted into
basic operations, which form an operator graph. In
the traditional way taken by databases each operator
offers the same interface, the iterator interface, such that
the operators can be orthogonally composed together
in the operator graph [10]. The iterator interface
offers especially a method to retrieve the next computed
result, such that first results are determined before the

whole data has been processed and materialization of
intermediate results to external storage like hard disks
or SSDs is often avoided.

However, if all operators implement the same interface
and can be dynamically composed in the operator graph,
the method calls need to be virtual using indirect
addresses of the method implementations, which is the
standard approach for calling overridden methods in
object-oriented languages. Indeed virtual method calls
are slower than direct method calls, where the addresses

1

http://creativecommons.org/licenses/by/4.0/
http://www.ronpub.com/ojcc

Open Journal of Cloud Computing (OJCC), Volume 6, Issue 1, 2019

+ - x
← → ...

Query
Parser

Opti-
mizer

Code
Gene-
rator

Query
Exe-

cution

Algebra Expression

Algebra Expression

WebAssembly Bytecode

JavaScript-Engine

WebAssembly-Engine

Browser

Figure 1: Query processing in the browser via code
generation using an online kotlin compiler

of the method implementations are fixed and can be
determined at compile-time. For typical applications,
the difference in performance is insignificant. However,
for big data processing, where millions, billions or
more data items need to be processed, methods for data
processing need to be also called millions, billions or
more times, such that the performance is drastically
increased whenever direct addressing is used to call
methods. Whenever queries to be processed are retrieved
at runtime, direct method calls during data processing
can be only achieved if code for the single data
processing steps are dynamically composed together,
compiled and executed. This approach is called code
generation [19].

For a long time, the Web environment doesn’t seem
to be suitable for Big Data processing, because there
was no technology to establish a network between
the browsers of a website, and browsers didn’t offer
enough computing and storage resources. The situation
changes from browser generation to browser generation
by supporting technologies like WebRTC [29] for
real-time communication capabilities, and JavaScript
[28] and WebAssembly [27] for executing programs.
WebAssembly defines bytecode to be run in a virtual
machine and promises faster execution times than the
interpreted JavaScript language.

Kotlin [15] is currently the rising star among newly
developed programming languages with 2.6 times
growth in contributors in one year on Github [11].
Furthermore, Kotlin is ideally designed for large-scale
data processing [12]. Hence we focus on the use of
Kotlin as programming language for formulating the
generated code for Big Data processing.

Code generation for Big Data processing requires

a compiler that runs directly in the browser (see
Figure 1) to start query processing at any browser in
the network. Alternative architectures with a server
increases latency and communication costs because
of introducing additional communication over the
network. However, there is a lack of WebAssembly
compilers that directly run in the browser. Hence our
contribution includes a compiler from a Kotlin subset to
WebAssembly bytecode.

Furthermore, we run experiments to validate the
performance speedup of WebAssembly bytecode
executing Big Data processing tasks in comparison to
running generated code in JavaScript.

2 BASICS

While we introduce relevant programming languages
in Section 2.1, we describe different types of code
generation in Section 2.2 as basics about code generation
for query processing. We introduce the related work in
Section 2.3.

2.1 Programming Languages

For the implementation we use the programming
languages JavaScript (for our online compiler) and
Kotlin (for the multiplatform engine), as well as
WebAssembly bytecode as compilation target for
executing the generated code from the query. For a better
overview we introduce them with focus on the special
features in this context.

2.1.1 JavaScript

JavaScript [28] is an object-oriented general-purpose
interpreter language. It’s origins date back to 1995 when
JavaScript, which was called LiveScript at that time,
has been integrated into the Netscape webbrowser to
introduce interactive features for websites.

JavaScript runs a garbage collector in the background,
which task is to clean up the memory by identifying and
deleting superflous objects and leaving the free space for
the operating system. Being an interpreted language, the
code isn’t compiled beforehand. It is processed in the
background when accessing a website. Over the years
JavaScript has become a very integral part of the browser
engines and the browser developers continously increase
their efforts to provide better JavaScript performance.
However, JavaScript execution is still outperformed by
machine code by a factor of 10-100. Especially games
or applications with huge amounts of data suffer a lot
from this fact. [5]

2

S. Groppe, N. Reimer: Code Generation for Big Data Processing in the Web using WebAssembly

Kotlin

LLVM/Native

Win

Linux

MacOS

iOS

Android
(arm32/64
/x86/64)

watchOS
(x86/arm32/64)

tvOS
(x64/arm64)

WebAssembly

JS
Browser

Server Node.js

JVM

Desktop

Server

Android

Figure 2: Targets of Kotlin

2.1.2 Kotlin

Kotlin is a general-purpose programming language being
developed since 2010 by Jet Brains s.r.o.. It’s free
software as it’s source code is published unter the
Apache 2 licence. [15]

Kotlin offers some special features including the
support for several platforms like JVM, Android,
JavaScript and a native execution in one multiplatform
project (see Figure 2). Through combination of
elements of object-oriented and functional programming
as well as readable short-hand notations for often used
code patterns, many programs can be expressed in
Kotlin using less code than in most other programming
languages. Parser generators can be feeded with the
context free grammar of the Kotlin syntax to generate
very fast parsers of the Kotlin language.

For code generation it’s very handy to use a
compact, but easy processable programming language.
Furthermore, it is planned to develop a multiplatform

Big Data analytics engine, which owns a common
code basis for Big Data processing over several target
platforms. Because of Kotlin’s multiplatform feature,
this multiplatform Big Data analytics engine [7] is
currently being developed in Kotlin. Hence it is very
consistent to use Kotlin as programming language for
the web compiler for running the generated code for Big
Data processing.

2.1.3 WebAssembly

The WebAssembly technology [27] includes a virtual
machine that is being executed inside of the web browser.
It’s instances are stored, controlled and called using
JavaScript.

WebAssembly’s virtual machine is based on the
principle of the stack machine. As the stack is able to
store several data types, it’s necessary to save additional
information about the data type of the elements on the
stack. This method prevents that operations are being
executed on elements of a different data type.

As a new way to deploy established programming
languages to the web browser, WebAssembly has a
great potential. Hence there exists already a huge
collection of projects that compile various languages to
WebAssembly. [3]

The currently available version 1.0 is the very first
release that is ready for productive use. It’s focused
on the four skills compilation target, fast execution,
compactness and linear memory to run C/C++ code and
is called Minimum Viable Product (MVP). This is also
the first version that has been shipped with major web
browsers.

Before executing the bytecode it’s subjected for
a machine-dependent optimization in the browser.
Additionally, a semantically equivalent and more
human-readable text representation has been specified
that can be used during the development process.

By now the only way to instantiate a WebAssembly
module is by running a JavaScript program that calls
special functions of a JavaScript API for WebAssembly.
For this purpose, the developer creates a module
with the compiled bytecode that can be instantiated
afterwards. Then the developer specifies the glue
that provides information about variables, objects and
linear memory that JavaScript and the WebAssembly
instance will share. Finally the glue gets assigned to the
WebAssembly instance.

2.2 Code Generation

We differ between two main types of code generation:
• offline code generation for generating code before the

application is compiled, and

3

Open Journal of Cloud Computing (OJCC), Volume 6, Issue 1, 2019

• online code generation for generating and executing
code at runtime of the application.
The online code generation is being used by modern

database engines like Apache Spark and Apache Flink
to speed up query processing. In comparison to these
Big Data frameworks, we developed an online compiler
for code generation for Big Data processing in the Web
instead of staying in the Java virtual machine (JVM).
In our experiments, we hence investigate the benefits of
running WebAssembly in comparison to JavaScript for
Big Data processing in the web browser (see Section 4).

2.2.1 Offline-Code Generation

In general, a set of rules is applied during code
generation, where an input is transformed to code for
compilation and execution. In the offline variant this
process is done before the application is compiled.
Indeed typically the generated code is compiled together
with the code of the application itself.

This type is often used for (de)serializing objects from
and to the memory. Despite to some proprietary formats
the serialization [6] often uses some standardized
formats like XML and JSON.

2.2.2 Online-Code Generation

Online code generation generates code at runtime, which
is compiled to machine code (or to bytecode in case of
using the JVM) and executed during the same run of the
program. In most cases, the generated code is formulated
in the language of the application triggering the code
generation.

JavaScript comes along with the built-in function
eval() offering to compile1 and execute JavaScript
code, while other languages like Java require external
libraries like the Janino compiler [14] for compiling and
executing generated code at runtime.

The generated code is faster as it won’t contain
any virtual calls or load static values from variables.
Especially during processing huge amounts of data it’s
possible to show [19] that generating code can improve
the speed of query processing a lot.

Usually the process of generating, compiling and
finally executing code takes more time than executing
conventional code once (tnaive). However, because
the runtime trun of the generated code is probably
less, the following equation system calculates how
many iterations n are needed to amortize the costs of
generating tbuild and compiling tcompile code:

1 Indeed modern browsers apply Just-In-Time (JIT) compilers like V8
(Chrome/Chromium), SpiderMonkey (Firefox), Chakra (Edge) and
JavaScriptCore (Safari) to compile JavaScript to machine code.

tbuild + tcompile + n · trun ≤ n · tnaive

We run some experiments2 to test if code generation
already has some benefits for pure JavaScript execution:
We observed an average execution time of Tnaive =
0.95µs for a general vector multiplication (of a vector of
size 4) with a constant (see Listing 2). A corresponding
code generation approach (see Listing 3) took tbuild +
tcompile = 1ms for generating and compiling the code.
The generated code (see Listing 4) runs in trun =
0.02µs, such that after 1075 iterations the costs are
amortized for generating and compiling the code.

2.3 Related Work

Brodersen [7] developed a first prototype of a
Multiplatform Big Data Analytics Engine, i.e., it’s able
to run inside the Java Virtual Machine (JVM) and
inside a JavaScript engine in the browser (using Kotlin’s
feature of multiplatform development). The realized
way of code generation lacks of a data serialization and
therefore hands over iterable objects to the generated
code. This is possible due to the fact that the generated
code is executed in the same runtime environment, such
that it can access all objects and the whole function
library of the engine. The engine generates code in
two different ways: The JVM variant uses the Janino-
Compiler [14] while the JavaScript variant uses the
built-in eval() function. Experimental results show a
significant improvement of the performance when using
code generation. Furthermore, Big Data processing via
the eval() function is much slower in comparison to the
Janino compiler.

Neumann’s contribution [19] includes a translation
from database queries into C++ and assembly code
for the virtual machine LLVM that is finally being
translated to machine code. Starting from the point
that hand-written code, but also generated program
code, can be optimized for a very specific query by
utilizing the available resources better than traditional
database systems like MySQL [21] or MonetDB [17].
In the experimental results code generation reduces
the execution times and the number of mispredicted
branches of execution and cache misses that require to
load missing data from the memory to the cache of the
processor.

A contribution by Nagel et al. [18] deals with in-
memory databases. He used the LINQ Framework [16]
by Microsoft to store and access his data inside of a
C# program. Like the contribution in [19] he also
used a high-level programming language, in this case

2 Our test system is a Microsoft Surface Pro (2017), Model 1796,
running Firefox

4

S. Groppe, N. Reimer: Code Generation for Big Data Processing in the Web using WebAssembly

C# instead of C++ for the overall control flow of the
query processing. However, the operations on the data
are generated by a low-level (but close to hardware)
language C (instead of the LLVM assembler). The
experimental results also showed a huge improvement
of the performance and a much more efficient use of the
cache inside the CPU.

Horvath et al. [13] deal with the serialization of
Java objects in Apache Flink. It turned out that the
serialization is often the bottleneck by taking more
than 20% of the execution time. By implementing
code generation in combination with the Janino
compiler Flink generates optimized methods that offer
a serialization with a speedup up to factor six. The
data format used for the serialization is critical for
performance, too, such that the generated methods are
optimized and were incompatible to the binary format of
the conventional methods.

The contribution [4] of Armbrust et al. describes the
implementation of relational schemas for Apache Spark.
Here, users provide queries similar to SQL in a domain-
specific language. The given queries are optimized by
Catalyst [8] by first generating an operator tree, which
is further optimized. Subsequently an internal compiler
directly generates JVM bytecode from the operator
tree. The performance for the executed test cases is
doubled in experiments in comparison to a traditional
implementation in Scala without code generation. This
method can also be applied to Python applications with
much higher performance speedups up to a factor 12.

Hence there are already some contributions to code
generation in database management systems, but to the
best of our knowledge it has not been dealt with code
generation for query processing in browsers (especially
using WebAssembly code). Furthermore, we also
introduce the concept of a Browser Cloud in this paper.

3 MULTI-PLATFORM BIG DATA ANALYTICS
ENGINE

In this contribution we deal with code generation for
Big Data analytics in the browser environment using
WebAssembly. Our contribution is embedded in a vision
of a new generation of Big Data Analytics Engines to
be introduced in Section 3.1, which work on multiple
platforms (see Section 3.1.1) and are also running in
a cloud of browsers (see Section 3.1.2). Furthermore,
we describe the memory organization of our proposed
engine in Section 3.2 and the developed online compiler
used for compilation (and execution) of the generated
code from queries in Section 3.3.

3.1 Vision

Our vision for a new generation of Big Data Analytics
Engines is two-fold: We envision a multiplatform
development, such that the engine is available for several
platforms with considerable benefits as discussed in
Section 3.1.1. We show in [7] the feasibility of a
multiplatform engine (for the JVM and browser target
platforms). Furthermore, we are of the opinion that the
browser environment has advantages in comparison with
traditional Clouds (see Section 3.1.2). We elaborate on
the Browser Cloud in [26].

3.1.1 Multiplatform versus Single-Platform
Big Data Analytics Engine

Multiplatform Big Data Analytics Engines have
considerable benefits in comparison to engines running
only on a single platform. We identify the following
benefits:

Development Efforts: The development of a Multi-
Platform Big Data Analytics Engine comes along with
initially more efforts in comparison to the variant for
a single platform. However, if more platforms are
considered, the single platform variant needs to be ported
and sometimes even the programming language needs to
be changed. In contrast, in the multiplatform variant
platform-specific code has already been identified to
be modified for the different platforms and platform-
independent shared code (being supported by Kotlin)
runs in different platforms without modifications.

Reusability: The reusability of code is much larger
for the Multiplatform Big Data Analytics Engine,
because new platforms can be easier integrated avoiding
new developments from scratch.

Learning Curve: As a matter of fact, the
configuration of multiplatform projects are more
complicated, and the used tools and the whole project
structure are more complex. Hence, the learning curve
is initially higher for the multiplatform variant in
comparison to single platform developments. However,
clever applying development patterns and available tools
may help to reduce the learning curve.

Performance: Similar performance for the
multiplatform in comparison to the single platform
variant can be achieved. Kotlin supports platform-
specific declarations by marking a class as expected in
the shared code, which must be implemented for the
different target platforms. With clever usage of this
feature, the multiplatform developer doesn’t introduce

5

Open Journal of Cloud Computing (OJCC), Volume 6, Issue 1, 2019

+ - x
← → ...

+ - x
← → ...

+ - x
← → ...

Web
Server

…

Client of
Web Cloud

Node Node

Figure 3: The Browser Cloud

additional overhead in the binaries and may avoid costly
virtual calls.

Administration Effort: The Multiplatform Big Data
Analytics Engine has the great advantage of shared code
between the different platforms. Bugs in the shared code
hence need to be fixed and the shared code for new
features need to be developed only once, and not for each
of the platforms like it would be the case for ported single
platform engines.

Communication and I/O Interoperability between
different Platforms: One might also consider to
develop (de)serialization routines for communication
and file storage as much as possible as shared code.
In this way 100% interoperability of communication
and file formats between instances running on different
platforms is easier to achieve in comparison to develop
several single platform engines.

3.1.2 Browser Cloud

Cloud Computing offers the easy access of computing
resources via a network according to the NIST definition
of Cloud Computing [24]. Peer-to-peer (P2P) networks
can comply with these properties of Cloud Computing
[25], even if peer-to-peer networks are unreliable [9]. In
these P2P Clouds each computer of the network offers
its (computing and storage) resources.

Definition of Browser Cloud: A Browser Cloud is a
P2P network offering Cloud Computing features, which
is built upon browser instances (i.e., the peers are the
browser instances).

In Table 1 we compare the Browser Cloud (see
Figure 3) with traditional Clouds (e.g., a Hadoop
cluster).

The network architecture of a traditional Cloud is
typically built after the master/slave principle. If the
master node crashes, the whole cluster is affected: Hence

there is a single point of failure (SPOF) in principle.
The disadvantage of the SPOF is often weakened by
running some few standby master nodes taking over the
functionality of the master in case of a crash. In contrast,
the functionalities of all participating browsers are equal
in the Browser Cloud except of the webserver delivering
the webpage for adding browsers to the Browser Cloud.
Hence an already running Browser Cloud can continue
its work after some browsers or even the webserver
crash. However, if the webserver crashes, no new
browsers can be added to the Browser Cloud, which
might be a kind of SPOF with low impact preventing a
further scaling.

In traditional Clouds, a computer must have a
corresponding runtime environment before the computer
can be part of the Cloud. The necessary runtime
environment often not only includes the installation of
the Java Runtime Environment, but also the configuration
of a distributed file system (e.g., Hadoop Distributed File
System (HDFS)). The installation of the master node
requires much more configuration and installation steps.
In case of the Browser Cloud, a webserver needs to be
setup, which delivers the program for the participating
browser instances. Hence the clients only need to run a
browser instance and the browser software is included as
standard software in most operating system distributions.

The administration of the Browser Cloud is also
easier in comparison to a traditional Cloud. In the
Browser Cloud the administrator only needs to take care
that the webserver remains accessible. In traditional
Clouds the administrator also may take over tasks
like exchanging hardware (for increasing storage and
computing capacities of the clients) and tuning the
configuration from time to time based on changing
requirements of the software running in the Cloud.

The high requirements of the hardware are advantage
and disadvantage of the traditional Cloud at the same
time. In fact powerful CPUs and fast read and write
accesses improve performance, but also increase the
costs for a computer in the Cloud. Costs and setup
efforts are hence two issues, which impedes horizontal
scaling in the traditional Cloud. In contrast, scaling
a Browser Cloud is quite simple: The corresponding
website containing the program for integration into the
Browser Cloud needs only to be called from another
browser instance. Afterwards the resources offered by
this browser instance can be utilized in the Browser
Cloud. On powerful computers, even several browser
instances can be run (in different processes) on the same
computer, such that this computer offers several peers to
the Browser Cloud.

A disadvantage of the Browser Cloud is the low
availability of single peers (but not of the whole Browser
Cloud). While a single slave in the traditional Cloud

6

S. Groppe, N. Reimer: Code Generation for Big Data Processing in the Web using WebAssembly

Table 1: Comparison: Browser Cloud versus
traditional Cloud (e.g., Hadoop)

Property Browser trad.
Cloud Cloud

Central Server (SPOF) (×) X
Mostly homogeneous × X
computers
Setup effort low high
Administration effort low high
Simple horizontal scaling X ×
(new network node)
Constant number of computers × X
(in typical case)
High availability of computers × X
Initiator is part of the network X ×
Powerful hardware necessary × X
Fast network connection × X
necessary

crashes in seldom cases, leaving of a peer in the Browser
Cloud is a typical case (especially for publicly available
websites). Hence the resources offered by the Browser
Cloud may fluctuate much, but the resources offered
in the traditional Cloud remain usually approximately
constant.

3.2 Big Data Memory Organization

The memory organization is one of the main factors
for the performance of our engine for query and Big
data processing in the browser. Hence we describe
our approach to the data layout in memory here.
The memory organization especially determines the
number of cache misses during program execution for
transferring the data from memory over the caches to
the CPU, and hence overall how efficient the data can
be accessed.

For accessing the column ID, all attributes of a person
in Table 2 must be loaded or memory cells must be
skipped. A more efficient approach is the column-
oriented model like in Table 3, where all values of a
column are close to each other. Whenever the values of a
column are accessed, then less cache misses occur for the
column-oriented model, as more values of the column
are directly loaded to and fit into the cache [1].

Additionally, a simple raw binary data buffer (i.e.,
JavaScript ArrayBuffer objects) instead of object-
oriented programming features is used. This allows
serialization without any overhead of metadata as stored
in JavaScript objects. The data format Parquet [2]

Table 2: Example for row-oriented storing of data

memory−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
ID lastname firstname birthday
1 Mouse Mickey 1928-11-18
2 Duck Daisy 1940-06-07
3 Duck Donald 1934-06-09

Table 3: Data from Table 2 in column oriented format

memory−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
ID 1 2 3

lastname Mouse Duck Duck
firstname Mickey Daisy Donald
birthday 1928-11-18 1940-06-07 1934-06-09

developed by the Apache Software Foundation and used
by Twitter and Yahoo follows a similar approach to
column-oriented storage. Another advantage is that
all values of a column have the same data type, such
that this data type only needs to be stored once at the
beginning of the column. Furthermore, skipping whole
columns without processing is easy for the column-
oriented model, whereas each column value needs to be
skipped for the row-oriented model.

For Big Data, the whole data to be processed cannot
be hold in main memory, because it’s typically too
large. Hence the data must be block-wise processed.
Each of the block must be deserialized before the data
block is processed and the result of the data processing
must be serialized. Whenever the old block has been
processed and a new block must be read in, or the
block holding the result is full and must be stored or
processed in another way, then the data processing is
blocked. To avoid blocking we use a double buffer
approach adapted from computer graphics [23]. It
uses two input buffers for each input relation and two
output buffers for the result, where I/O transfers and
data processing are processed in parallel with alternating
roles of the buffers after a buffer has been emptied or
filled. I/O operations in the browser are not directly
supported by WebAssembly and are implemented in our
Big Data application by applying JavaScript ArrayBuffer
objects in the JavaScript runtime. Objects for the
input buffer for the WebAssembly code are filled using
JavaScript evaluations and afterwards read and processed
by WebAssembly code. WebAssembly code then fills
the output buffer (in form of a JavaScript ArrayBuffer
object), which is read from the JavaScript runtime for
further processing.

We visualize the double buffer approach in Figure 4,
where processing steps of the WebAssembly code (i.e.,
reading the input buffer and writing the output buffer)

7

Open Journal of Cloud Computing (OJCC), Volume 6, Issue 1, 2019

Figure 4: Double buffering of input and output in Big
Data applications

iterations

1 2 3 4

w(ini,fb) r(ini,fb) w(ini,fb) r(ini,fb)

w(outfb) r(outfb) w(outfb)

w(ini,bb) w(ini,bb) w(ini,bb)

w(outbb) r(outbb)

Memory Management (JavaScript runtime):
r(outfb/bb): read the result of WASM from outfb/bb
w(ini,fb/bb): fill ini,fb/bb to be processed by WASM

Processing (WASM runtime):
r(ini,fb/bb): read and process ini,fb/bb (filled by JS)
w(outfb/bb): write results to outfb/bb (to be read by JS)

r(. . .): read operation
w(. . .): write operation
in: input buffer
out: output buffer

fb: front buffer
bb: back buffer
i: buffer index i

are marked in yellow and the memory management of
the JavaScript runtime (i.e., filling the input buffer and
reading the output buffer) in red . For example, in step
3, the JavaScript runtime fills the buffers ini,fb with new
data and also reads the results of the last iterations from
outfb. At the same in the WebAssembly runtime, input
buffer ini,bb is being processed while writing the results
into outbb. After each of those iterations the frontbuffers
fb swap the roles with the backbuffers bb. In this way
data is being read in, processed and read out at all times.

3.3 Requirements of the Online Compiler

The online compiler is used to compile the generated
code from the query and hence a key component of our
engine for query and Big data processing in the browser.
The compiler must support a programming language
that includes important constructs of query processing.
As the compiler challenges the direct execution of pre-
compiled code the compiler should be very fast but at

the same time shouldn’t bloat the application.

3.3.1 Language Design

The design of the language is a very essential
contribution of our work. We get inspired by the Kotlin
language, because its programs are concise and quite
efficient to compile, and decided to support a large
fragment of Kotlin including important constructs for
data processing. For that matter, we introduce supported
language constructs and the required data types, and
describe the way they work. If possible we also refer to
and describe a corresponding construct in WebAssembly.
• Booleans are represented by i32 in WebAssembly as

32-bit integer.
• Integers: Depending on the size WebAssembly offers
i32 and i64 for 32- and 64-bit integers.

• Floating-point numbers: Depending on the size and
desired precision WebAssembly offers f32 and f64 to
store them with 32/64-bit length.
Strings don’t have an equivalent in WebAssembly.

During data processing, they are only stored in linear
memory for in- and output of data. A string s is
interpreted as an array of the length |s| of the string
and |s| bytes are stored in linear memory at a certain
offset with the possibility of a byte-wise access. There
is no need to implement them as a special data type
class, because operations on strings like the comparison
of two strings are mapped to the byte-wise operations
(here comparison) of their byte arrays.

Based on our experiences with the Semantic Web
database LUPOSDATE [10] and our Multiplatform Big
Data Analytics Engine [7], we collected the following
features of the programming language necessary to fulfill
the fundamental requirements of data processing.
• Functions and function calls provide the interface

for JavaScript to start WebAssembly applications.
While code processed by the Janino compiler in Java
or JavaScript’s eval() function may contain single
instructions, the smallest unit of WebAssembly is a
function.

• Variables are used as a temporary storage inside of
functions.

• Global variables are not tied to a single function.
All functions inside a module are able to use them.
Furthermore, they still exist after the function call,
such that they store results of additions or counters
without returning them back to JavaScript.

• Static values are supposed to be used for values that
never change. During the compilation progress they
are already replaced.

• Arithmetic operations like +,−, ·,÷ are signed
operations like in Kotlin for the standard primitive

8

S. Groppe, N. Reimer: Code Generation for Big Data Processing in the Web using WebAssembly

number types3.
• Relational operations

– Our compiler supports pure relational operators like
<,≤, > and ≥.

– The operators = and 6= can be used for numbers as
well as for Booleans.

– The logical operators ∧ and ∨.
• Control structures

– Program branches like if/else-Constructs
– Loops
∗ do...while-loops
∗ while-loops
∗ for-loops

• Memory access is realized via memory[index] to
read or write a part of the memory, which is e.g.
necessary when reading the value of a variable or
when a new value is assigned to a variable.

• Terminal outputs are supported mainly for
debugging purposes. As WebAssembly can’t
access the webbrowser directly access to JavaScript’s
console.log-function is provided by sharing it using
glue.

• Braces modify the execution order of the operators
and curly braces define code blocks.
There are some features that are offered by Kotlin or

other programming languages that our implementation
lacks of. This is intentional as our goal is to create
a fast environment for database operations rather than
the support of a complete programming language, which
slows down the compilation. This approach is also
supported by Nagel [18] and Neumann [19].

We developed a context-free grammar as formal
representation of the language. Context free grammars
can be transformed to fast parsers using e.g. ANTLR4
[22], which also supports JavaScript as target language
of the parser to be run in the browser. Furthermore,
these parsers generate an abstract syntax tree of the
parsed program. For our online compiler we hence
developed the transformation from the abstract syntax
tree to WebAssembly bytecode, which is - besides some
technical issues of WebAssembly - overall a straight-
forward process.

4 EXPERIMENTAL EVALUATION

We introduce our experimental environment in
Section 4.1, the programs, queries and data used in
the experiments in Section 4.2 and an analysis of the
experimental results in Section 4.3.

3 Kotlin 1.3 supports unsigned numbers (Byte, Short, Int, Long) and
unsigned operations on them, which are marked as experimental.

Table 4: Versions of the software used during the
evaluation

Microsoft Surface Pro 2017 (Model 1796)
Application installed version

Microsoft Windows 10 1809 (Build 17763.195)
Mozilla Firefox 63.0.3
Google Chrome 71.0.3578.98
Java Runtime Environment 8u192
ANTLR 4.7.1
ANTLR Runtime 4.7.1

4.1 Experimental Environment

Table 4 lists the main properties of our experimental
environment.

The used device has a mechanism to adjust the clock
speed of the processor: It’s lowered in idle and runs at
full speed under load. To prevent any impact by this
feature it had been disabled.

4.2 Programs, Queries and Data

We describe our investigated programs, data and queries
used in our experiments for showing the benefits of an
online compiler to WebAssembly.
• Fibonacci numbers are an infinite series of

non-negative integers, that were named after die
mathematician Leonardo Fibonacci. The individual
members of the series grow with increasing n very
fast and are built by adding up it’s two predecessors:

fibn∈N =

{
fibn−1 + fibn−2 if n > 1

n if n ≤ 1

In computer science this representation can be easily
implemented using a recursive function. However,
the recursive variant generates a lot of function
calls and additions, such that it’s a commonly used
benchmark for the performance of a system qualifying
the recursive fibonacci program for our experiments as
well.
Despite it’s possible to run an iterative function that
saves the two predecessors and offers a much more
efficient calculation using a loop. We used this
variant to compare the performance of loops between
JavaScript and WebAssembly.

• TPC-H Benchmark: The speed of a database system
highly depends on the complexity of the queries and
on the size of the data. For this reason various use
cases have their special, standardized benchmarks.
To measure the speed of transaction systems the
Transaction Processing Performance Council (TPC)
[30] provides data sets and queries for some scenarios.

9

Open Journal of Cloud Computing (OJCC), Volume 6, Issue 1, 2019

5 10 15 20 25

0

10,000

20,000

fib(n)

t
in
µ
s

Firefox JavaScript
Chrome JavaScript

Firefox WebAssembly
Chrome WebAssembly

Figure 5: Comparing recursive fibonacci calculations

The TPC defined a data set with a fixed size of
8 tables for the scenario of decision support. A
typical benchmark query of TPC-H is the query 6 (see
Listing 1).

SELECT
sum(l . extendedpr ice ∗ l . d iscount) as revenue

FROM
l i n e i t e m l

WHERE
l . sh ipdate >= date ’1994−01−01 ’

AND l . sh ipdate <
date ’1994−01−01 ’ + i n te rva l ’ 1 ’ year

AND l . d iscount between 0.06 − 0.01 AND 0.06 + 0.01
AND l . q u a n t i t y < 24;

Listing 1: SQL code of TPC-H Query 6

4.3 Analysis

Our experimental results show a high execution
performance of WebAssembly bytecode for data
processing tasks. For two independent functions,
three database operators as well as a query of a
database benchmark a higher performance is achieved
running WebAssembly bytecode instead of comparable
JavaScript code. The performance differences grow with
increasing size of the input data. Hence WebAssembly
has the required expressive power to execute these
processing steps and is even able to accelerate them.

By considering the results of Figure 5 for calculating
the fibonacci numbers we observe a massive growth
of the execution times with increasing input data size.
Especially for the JavaScript function running inside
the Google Chrome browser the execution times grow
very fast while Mozilla Firefox runs the same code
much faster. Still both browsers have significantly lower
executions times when using WebAssembly instead of
JavaScript.

5 10 15 20 25 30 35 40 45

0

1

2

3

fib(n)

t
in
µ
s

Firefox JavaScript
Chrome JavaScript

Firefox WebAssembly
Chrome WebAssembly

Figure 6: Comparing iterative fibonacci calculations

As the runtime complexity of the recursive fibonacci
calculations is O(1.62n) the required time for execution
grows very fast [20]. By looking at the pretty similar
results when using WebAssembly in Firefox and Chrome
we can conclude that the used features of the language,
in this case recursive function calls, additions and
if/else control structures, perform a lot faster in this
combination than correspondig pendants in JavaScript
do. These experiments also indicate that the JavaScript
engines inside the browsers offer different performances
based on internal differences of their implementations.

Despite to the recursive variant shown before, the
amount of time needed grows much slower and in a
linear way for the iterative fibonacci calculation (see
Figure 6). We see that the JavaScript function running
in Firefox is the slowest, followed by the JavaScript one
in Chrome. Nevertheless the WebAssembly equivalents
seem to have almost equal execution times which grows
slowly by increasing the ficonacci number n that will be
calculated.

The shallow rising of the curve can be explained
through the linear runtime of O(n) needed for the
iterative calculation. As we use a for loop instead of a
recursive call we can also conclude that these are also
faster executed inside the WebAssembly VM. We also
see very similar execution times in the WebAssembly
variants, while the JavaScript function differs between
the two browsers due to their different implementations
of the interpreter: Chrome seems to be much faster here
and the difference grows with rising n.

In Figure 7 we see that the runtime grows linear for
the projection operator depending on the size of the
input. All measured variants have that in common.
Also we observe much slower execution runs for both
JavaScript implementations, being slower by the factor

10

S. Groppe, N. Reimer: Code Generation for Big Data Processing in the Web using WebAssembly

4,000 8,000 12,000 16,000

0

500

1,000

1,500

2,000

Input size in attribute values

t
in
µ
s

Firefox JavaScript
Chrome JavaScript

Firefox WebAssembly
Chrome WebAssembly

Figure 7: Comparing the projection of a single
relation

3,000 6,000 9,000 12,000 15,000

0

2,000

4,000

6,000

Input size in attribute values

t
in
µ
s

Firefox JS
Chrome JS
Firefox WA
Chrome WA

Figure 8: Comparing the execution times at the union
of two relations

of 11 for Firefox and even a factor of 95 for Chrome in
comparison to their WebAssembly equivalents. We also
see differences between the two WebAssembly variants,
but these are not as big as they are in Javscript.

The linear growth depending on the size was to be
expected as there is just one relation that only has to
be read once. The differences in the WebAssembly
implementations suggest that they are caused by having
different good implementations of memory management
inside the browsers as the iterative fibonacci variant
also uses the same for loops and if/else structures but
causing much smaller differences in the execution times.
Same holds for the JavaScript implementations but with
much greater effects: Firefox is significantly faster than
Chrome because the Int32Array class was implemented
in different ways.

40 80 120 160 200 240

0

2,000

4,000

6,000

Input size in attribute values

t
in
µ
s

Firefox JS
Chrome JS
Firefox WA
Chrome WA

Figure 9: Comparing the execution times to generate
a cartesian product

5 10 15 20 25

0

2,000

4,000

6,000

8,000

10,000

Input size in megabyte

t
in
m
s

Firefox JavaScript
Chrome JavaScript

Firefox WebAssembly
Chrome WebAssembly

Figure 10: Comparing the execution of TPC-H 6
benchmark

We expect that the union operator will have a linear
runtime as both relations will be concatenated according
to the column based storing. Hence, they only have to
be read once and appended in the result: As a result the
output of two relations with m and n rows has m + n
rows. In our experiments (see Figure 8), the execution
times of the union operator has indeed a linear growth,
but this time Firefox is much faster for WebAssembly
and JavaScript in comparison to Chrome. Even though
Chrome achieves a significantly slower execution time of
the WebAssembly code resulting in a difference of factor
100 while Firefox reaches a factor of 14.

The measured execution times of cartesian products
follow a reasonable polynomial growth (see Figure 9).
However, we also observe much lower runtimes for
both WebAssembly functions compared to the JavaScript

11

Open Journal of Cloud Computing (OJCC), Volume 6, Issue 1, 2019

ones. We also see that they hardly differ between the two
browsers: While the WebAssembly variant has speedup
of factor 10 in Mozilla Firefox, the difference in Google
Chrome is about factor 100. Even though Firefox was
faster than chrome in all cases.

The polynomial execution time is caused by the
cartesian product: In our experiments, both input
relations have the same size and contain m rows and n
columns. This means that every relation contains m ·m
attribute values. When applying the cartesian product to
them this results in m2 rows and 2n columns with a sum
of 2 ·m2 · n attribute values.

All execution times of the TPC-H 6 query (see
Figure 10) rise linear as the input data size grows but
their gradient differs. Hence the required times of
the JavaScript variant running in the Chrome browser
rises from 2036 milliseconds at the 5 Megabyte data
set to 20816 milliseconds at the 25 Megabyte data set
by a factor of 5.31 while the data set grows by factor
five. Similar results are achieved in Mozilla Firefox
with a factor of 5.81 and an increase from 543 to
3155 milliseconds on the same data sets. Just a little
bit faster is the WebAssembly engine in Firefox with
535 and 2779 milliseconds execution times, resulting
in a growth of 5.19. Using Chrome’s WebAssembly
implementation there are big differences finishing the
processing after only 53 respectively 193 milliseconds
while the execution times also grow less with a factor of
3.64.

As this query uses one relation that is being iterated
only once, it’s running time growth is linear. Despite
to the fact this query uses the same language features
we already evaluated before, we see differences to
the evaluation of a single operator: One is that the
execution times between JavaScript and WebAssembly
are closer to each other, another one is that the Chrome
browser is the fastest. The first difference is related
to the usage of the DataView class for the JavaScript
implementation: It seems to have a better performing
implementation than Chrome, by offering a performance
for the linear memory similar to WebAssembly’s. The
second difference can’t be explained this way as the
memory access stays the same.

However, we have do admit that the compiler needs
between 4 and 18 milliseconds depending on the browser
to translate and instantiate the program code into
WebAssembly bytecode while the instantiation of a new
JavaScript function by using eval() is done within a
millisecond. This difference needs to be amortized at
execution time. It is the case for the TPC-H 6 query when
using an input with a size of at least one Megabyte.

Additionally we detected very different times of the
browsers when executing JavaScript code, especially
when dealing with ArrayBuffers. Hence it can be worth

the effort to compare and select from the available
options. This is also true for the Big Data Engine that
consistently fills the ArrayBuffers with new input and
may be a possible bottleneck in the processing pipeline.

5 SUMMARY AND CONCLUSIONS

We realized a JavaScript-based compiler for a small
fragment of the Kotlin language using the parser
generator ANTLR4. The developed compiler is
running inside the browser and generates WebAssembly
bytecode to be directly instantiated in the browser and
executed afterwards. The in- and output of data uses the
shared memory between WebAssembly and JavaScript
by splitting them in single bytes, which are stored in a
column oriented format.

To evaluate the performance of the compiler and
the data format we implemented two mathematical
functions and query 6 of the database benchmark TPC-
H in JavaScript as well as in our Kotlin-like language.
Afterwards we run benchmarks with various input data
sizes using the web browsers Mozilla Firefox and
Google Chrome.

In our experiments the compiled WebAssembly
bytecode is faster executed compared to equivalent
JavaScript-code variants. Indeed the speedup of
executing the generated WebAssembly bytecode versus
the JavaScript variant grows with increasing size of
the input data. With these experiments, we show that
using WebAssembly bytecode greatly speeds up query
processing in browsers and are a key for a competitive
query processing in the envisioned Browser Cloud. By
achieving high performance results, our contributions are
also a great step towards query and Big data processing
in the browser in real-time.

In our future work, we will work on our multiplatform
engine to support the most important platforms and
include also native desktop and server targets like
Linux and windows. Furthermore, we will realize the
Browser Cloud. We have also plans to develop a hybrid
multiplatform database, where data storage and query
processing spans over different platforms at runtime.

REFERENCES

[1] D. J. Abadi, S. R. Madden, and N. Hachem,
“Column-stores vs. Row-stores: How Different
Are They Really?” in Proceedings of the
2008 ACM SIGMOD International Conference on
Management of Data, ser. SIGMOD ’08. New
York, NY, USA: ACM, 2008, pp. 967–980.

12

S. Groppe, N. Reimer: Code Generation for Big Data Processing in the Web using WebAssembly

[2] Apache Software Foundation, “Apache Parquet,”
2016. [Online]. Available: https://parquet.apache.
org/

[3] Appcypher, “Awesome WebAssembly Languages,”
2018. [Online]. Available: https://github.com/
appcypher/awesome-wasm-langs

[4] M. Armbrust, R. S. Xin, C. Lian, Y. Huai,
D. Liu, J. K. Bradley, X. Meng, T. Kaftan,
M. J. Franklin, A. Ghodsi, and M. Zaharia,
“Spark SQL: Relational Data Processing in Spark,”
in Proceedings of the 2015 ACM SIGMOD
International Conference on Management of Data,
ser. SIGMOD ’15. New York, NY, USA: ACM,
2015, pp. 1383–1394.

[5] J. Bewersdorff, Gibt es Klassen in JavaScript?
Wiesbaden: Springer Fachmedien Wiesbaden,
2014, pp. 126–141.

[6] N. Bhatti, J. Goff, W. Hassan, Z. Kovacs,
P. Martin, R. McClatchey, H. Stockinger, and
I. Willers, “Object Serialisation and Deserialisation
Using XML,” in 10th International Conference on
Management of Data (COMAD 2000), 2000.

[7] S. Brodersen, “Multi-Platform Big Data Analytics
Engine with Code Generation for the Java Virtual
Machine and the Browser,” Master’s thesis,
University of Lübeck, 2018.

[8] Databricks, “Catalyst Optimizer - Databricks,”
2018. [Online]. Available: https://databricks.com/
glossary/catalyst-optimizer

[9] K. Graffi, D. Stingl, C. Gross, H. Nguyen,
A. Kovacevic, and R. Steinmetz, “Towards a
P2P Cloud: Reliable Resource Reservations in
Unreliable P2P Systems,” in 16th International
Conference on Parallel and Distributed Systems,
2010, pp. 27–34.

[10] S. Groppe, Data Management and Query
Processing in Semantic Web Databases. Springer,
May 2011.

[11] N. Heath, “The 3 Next Big Programming
Languages: GitHub’s Rising Stars for 2018,”
https://www.techrepublic.com/article/the-3-next-
big-programming-languages-githubs-rising-stars-
for-2018/, 17th October 2018, accessed 21st June
2019.

[12] A. Hinchman, “Kotlin & Data
Science: A Budding Love Story,”
https://towardsdatascience.com/kotlin-data-
science-a-budding-love-story-ad366a633213, 30th
October 2018, accessed 21st June 2019.

[13] G. Horváth, N. Pataki, and M. Balassi, “Code
Generation in Serializers and Comparators of

Apache Flink,” in Proceedings of the 12th
Workshop on Implementation, Compilation,
Optimization of Object-Oriented Languages,
Programs and Systems, ser. ICOOOLPS’17. New
York, NY, USA: ACM, 2017.

[14] janino compiler, “Janino - A Super-Small, Super-
Fast Java Compiler,” 2001. [Online]. Available:
https://janino-compiler.github.io/janino/

[15] JetBrains s.r.o., “FAQ - Kotlin Programming
Language,” 2016. [Online]. Available: https:
//kotlinlang.org/docs/reference/faq.html

[16] Microsoft, “Sprachintegrierte Abfrage (Language-
Integrated Query, LINQ),” 2017. [Online].
Available: https://docs.microsoft.com/de-de/
dotnet/csharp/programming-guide/concepts/linq/

[17] MonetDB B.V., “MonetDB - Column-Store
Pioneers,” 2004. [Online]. Available: https:
//www.monetdb.org/

[18] F. Nagel, G. Bierman, and S. D. Viglas, “Code
Generation for Efficient Query Processing in
Managed Runtimes,” Proc. VLDB Endow., vol. 7,
no. 12, pp. 1095–1106, Aug. 2014.

[19] T. Neumann, “Efficiently Compiling Efficient
Query Plans for Modern Hardware,” Proc. VLDB
Endow., vol. 4, no. 9, pp. 539–550, Jun. 2011.

[20] O. M. Oliver Vornberger, “O-
Notation,” Universität Osnabrück, 2000.
[Online]. Available: http://www-lehre.informatik.
uni-osnabrueck.de/∼ainf/2000/skript/node39.html

[21] Oracle Corporation, “MySQL - The World’s Most
Popular Open Source Database,” 1995. [Online].
Available: https://www.mysql.com/

[22] T. Parr, “ANTLR (ANother Tool for Language
Recognition),” 1992. [Online]. Available: https:
//www.antlr.org/

[23] E. Peise, D. Fabregat-Traver, and P. Bientinesi,
“High Performance Solutions for Big-data GWAS,”
Parallel Comput., vol. 42, no. C, pp. 75–87, Feb.
2015.

[24] T. G. N. Peter Mell (NIST), “The NIST Definition
of Cloud Computing,” https://csrc.nist.gov/
publications/detail/sp/800-145/final, 2011,
accessed 21st June 2019.

[25] R. Ranjan, L. Zhao, X. Wu, A. Liu,
A. Quiroz, and M. Parashar, Peer-to-Peer
Cloud Provisioning: Service Discovery and
Load-Balancing. London: Springer London,
2010, pp. 195–217. [Online]. Available: https:
//doi.org/10.1007/978-1-84996-241-4 12

13

https://parquet.apache.org/
https://parquet.apache.org/
https://github.com/appcypher/awesome-wasm-langs
https://github.com/appcypher/awesome-wasm-langs
https://databricks.com/glossary/catalyst-optimizer
https://databricks.com/glossary/catalyst-optimizer
https://www.techrepublic.com/article/the-3-next-big-programming-languages-githubs-rising-stars-for-2018/
https://www.techrepublic.com/article/the-3-next-big-programming-languages-githubs-rising-stars-for-2018/
https://www.techrepublic.com/article/the-3-next-big-programming-languages-githubs-rising-stars-for-2018/
https://towardsdatascience.com/kotlin-data-science-a-budding-love-story-ad366a633213
https://towardsdatascience.com/kotlin-data-science-a-budding-love-story-ad366a633213
https://janino-compiler.github.io/janino/
https://kotlinlang.org/docs/reference/faq.html
https://kotlinlang.org/docs/reference/faq.html
https://docs.microsoft.com/de-de/dotnet/csharp/programming-guide/concepts/linq/
https://docs.microsoft.com/de-de/dotnet/csharp/programming-guide/concepts/linq/
https://www.monetdb.org/
https://www.monetdb.org/
http://www-lehre.informatik.uni-osnabrueck.de/~ainf/2000/skript/node39.html
http://www-lehre.informatik.uni-osnabrueck.de/~ainf/2000/skript/node39.html
https://www.mysql.com/
https://www.antlr.org/
https://www.antlr.org/
https://csrc.nist.gov/publications/detail/sp/800-145/final
https://csrc.nist.gov/publications/detail/sp/800-145/final
https://doi.org/10.1007/978-1-84996-241-4_12
https://doi.org/10.1007/978-1-84996-241-4_12

Open Journal of Cloud Computing (OJCC), Volume 6, Issue 1, 2019

[26] D. Rickert, “Parallel Programming Models in a
Browser Cloud Organized as a P2P Network via
WebRTC,” Master’s thesis, University of Lübeck,
2018.

[27] A. Rossberg (editor), “WebAssembly Core
Specification,” W3C Proposed Recommendation,
https://www.w3.org/TR/wasm-core-1/, 2019.

[28] B. Terlson (editor), “ECMAScript R© 2018
Language Specification,” http://ecma-international.
org/ecma-262/, June 2018, accessed 21st June
2019.

[29] The WebRTC project authors, “WebRTC,” https://
webrtc.org/, accessed 21st June 2019.

[30] Transaction Processing Performance Council,
“Tpc-homepage v5,” 1988. [Online]. Available:
http://www.tpc.org/default.asp

AUTHOR BIOGRAPHIES

Sven Groppe earned his
diploma degree in Computer
Science in 2002 and his Doctor
degree in 2005 from the
University of Paderborn. He
earned his habilitation degree
in 2011 from the University
of Lübeck. He worked in the
European projects B2B-ECOM,
MEMPHIS, ASG and TripCom.
He was a member of the DAWG

W3C Working Group, which developed SPARQL. He
was the project leader of the DFG project LUPOSDATE,
an open-source Semantic Web database, and one of the
project leaders of two research projects, which research
on FPGA acceleration of relational and Semantic Web
databases. He is also leading a DFG project on GPU and
APU acceleration of main-memory database indexes,
and a DFG project about Semantic Internet of Things.
He is also the chair of the Semantic Big Data workshop
series, which is affiliated with the ACM SIGMOD
conference (so far 2016 to 2019), and of the Very Large
Internet of Things workshop in conjunction with the
VLDB conference (so far 2017 to 2019). His research
interests include databases, Semantic Web, query and
rule processing and optimization, Cloud Computing,
acceleration via GPUs and FPGAs, peer-to-peer (P2P)
networks, Internet of Things, data visualization and
visual query languages.

Niklas Reimer earned his
bachelor’s degree from the
University of Lübeck in Medical
Informatics in 2019. He
wrote his bachelor’s thesis
about compiling queries into
WebAssembly bytecode for
faster query processing inside of
the web browser. His interests
include federative networks,
databases and health care data

standards.

14

https://www.w3.org/TR/wasm-core-1/
http://ecma-international.org/ecma-262/
http://ecma-international.org/ecma-262/
https://webrtc.org/
https://webrtc.org/
http://www.tpc.org/default.asp

S. Groppe, N. Reimer: Code Generation for Big Data Processing in the Web using WebAssembly

APPENDIX

Listing 2: Naive approach for a multiplication function in JavaScript
1 f u n c t i o n N a i v e M u l t i p l i c a t i o n (i npu t , k) {
2 t h i s . i npu t = i npu t ;
3 t h i s . k = k ;
4 }
5 N a i v e M u l t i p l i c a t i o n . p ro to type . m u l t i p l y = f u n c t i o n () {
6 t h i s . m u l t i p l y (t h i s . i npu t) ;
7 }
8 N a i v e M u l t i p l i c a t i o n . p ro to type . m u l t i p l y = f u n c t i o n (i npu t) {
9 l e t index ;

10 f o r (index i n i npu t)
11 i npu t [index] ∗= t h i s . k ;
12 }
13 l e t i t e r a t i o n s = 100000 ;
14 l e t numbers = {a : 42 , b : 17 , c : 23 , d : 27 , e : 49} ;
15 l e t mul = new N a i v e M u l t i p l i c a t i o n (numbers , 2) ;
16 l e t s t a r t = new Date () ;
17 f o r (l e t i = 0 ; i < i t e r a t i o n s ; i++)
18 mul . m u l t i p l y () ;
19 l e t end = new Date () ;
20 l e t t ime = end . getTime () − s t a r t . getTime () ;
21 console . log ((t ime / i t e r a t i o n s) + ” m i l l i seconds average ”) ;

Listing 3: Generate code for a multiplication function in JavaScript
1 f u n c t i o n C o m p i l i n g M u l t i p l i e r (i npu t , k) {
2 l e t codeStr ing = ” t h i s . m u l t i p l y = f u n c t i o n () { ” ;
3 l e t index ;
4 f o r (index i n i npu t)
5 codeStr ing += ” i npu t . ” + index + ” ∗= ” + k + ” ; ” ;
6 codeStr ing += ”} ” ;
7 eval (codeStr ing) ;
8 }
9

10 l e t i t e r a t i o n s = 100000 ;
11 l e t comp i leS ta r t = new Date () ;
12 l e t numbers = {a : 42 , b : 17 , c : 23 , d : 27 , e : 49} ;
13 l e t mul = new C o m p i l i n g M u l t i p l i e r (numbers , 2) ;
14 l e t compileEnd = new Date () ;
15
16 l e t r unS ta r t = new Date () ;
17 f o r (l e t i = 0 ; i < i t e r a t i o n s ; i++)
18 mul . m u l t i p l y () ;
19 l e t runEnd = new Date () ;
20 console . log (
21 (compileEnd . getTime () − comp i leS ta r t . getTime ()) + ” m i l l i seconds compi la t ion , ”
22 + ((runEnd . getTime () − r unS ta r t . getTime ()) / i t e r a t i o n s) + ” m i l l i seconds average run t ime ”) ;

Listing 4: Generated JavaScript function for multiplication
1 t h i s . m u l t i p l y = f u n c t i o n () {
2 t h i s . data . a ∗= 2 ;
3 t h i s . data . b ∗= 2 ;
4 t h i s . data . c ∗= 2 ;
5 t h i s . data . d ∗= 2 ;
6 t h i s . data . e ∗= 2 ;
7 }

15

	Introduction
	Basics
	Programming Languages
	JavaScript
	Kotlin
	WebAssembly

	Code Generation
	Offline-Code Generation
	Online-Code Generation

	Related Work

	Multi-Platform Big Data Analytics Engine
	Vision
	Multiplatform versus Single-Platform Big Data Analytics Engine
	Browser Cloud

	Big Data Memory Organization
	Requirements of the Online Compiler
	Language Design

	Experimental Evaluation
	Experimental Environment
	Programs, Queries and Data
	Analysis

	Summary and Conclusions

